
CODING IN GRAPHS AND LINEAR ORDERINGS

J. KNIGHT, A. SOSKOVA, AND S. VATEV

Abstract. There is a Turing computable embedding Φ of di-
rected graphs A in undirected graphs (see [14]). Moreover, there
is a fixed tuple of formulas that give a uniform effective interpre-
tation; i.e., for all directed graphs A, these formulas interpret A
in Φ(A). It follows that A is Medvedev reducible to Φ(A) uni-
formly; i.e., A ≤s Φ(A) with a fixed Turing operator that serves
for all A. We observe that there is a graph G that is not Medvedev
reducible to any linear ordering. Hence, G is not effectively inter-
preted in any linear ordering. Similarly, there is a graph that is
not interpreted in any linear ordering using computable Σ2 for-
mulas. Any graph can be interpreted in a linear ordering using
computable Σ3 formulas. Friedman and Stanley [3] gave a Turing
computable embedding L of directed graphs in linear orderings.
We show that there is no fixed tuple of Lω1ω-formulas that, for
all G, interpret the input graph G in the output linear ordering
L(G). Harrison-Trainor and Montalbán [6] have also shown this,
by a quite different proof.

1. Introduction

Friedman and Stanley [3] introduced Borel embeddings as a way of
comparing classification problems for different classes of structures. A
Borel embedding of a class K in a class K′ represents a uniform proce-
dure for coding structures from K in structures from K′. Many Borel
embeddings are actually Turing computable [2]. A Turing computable
embedding of a class K in a class K′ represents an effective coding
procedure.

WhenA is coded in B, effective decoding is represented by a Medvedev
reduction of A to B. Harrison-Trainor, Melnikov, R. Miller, and Mon-
talbán [4] defined a notion of effective interpretation of A in B. They
also defined a notion of computable functor, where this is a pair of
Turing operators, one taking copies of B to copies of A, and the other
taking isomorphisms between copies of B to isomorphisms between the

All three authors were partially supported by the NSF grant DMS-1600625. The
last two authors were partially supported by BNSF, MON, DN 02/16.

1



2 J. KNIGHT, A. SOSKOVA, AND S. VATEV

corresponding copies of A. They showed that A is effectively inter-
preted in B iff there is a computable functor from B to A. The first
operator is a Medvedev reduction. For some Turing computable em-
beddings Φ, there are uniform formulas that effectively interpret the
input structure in the output structure, so we get a uniform Medvedev
reduction. This uniform Medvedev reduction represents uniform ef-
fective decoding. Harrison-Trainor, R. Miller, and Montalbán [5] also
considered interpretations by Lω1ω formulas, guaranteeing Borel decod-
ing.

We mention here a paper of Hirschfeldt, Khoussainov, Shore, and
Slinko [7] that is related to [4]. The goal in [7] was to give conditions
guaranteeing that computable dimension transfers from a structure A
to a structure B. There are two main results. In one, A is effectively
defined in B, while in the other, A is effectively interpreted in B. Both
results involve conditions saying that B is essentially rigid over the
defined (or interpreted) copy of A.

The class of undirected graphs and the class of linear orderings both
lie on top under Turing computable embeddings. The standard Tur-
ing computable embeddings of directed graphs (or structures for an
arbitrary computable relational language) in undirected graphs come
with uniform effective interpretations. We give examples of graphs that
are not Medvedev reducible to any linear ordering, or to the jump of
any linear ordering. By contrast, any single graph can be effectively
interpreted in the second jump of some linear ordering.

For the known Turing computable embedding of the class of graphs
in the class of linear orderings, due to Friedman and Stanley, we show
that there is no uniform interpretation defined by Lω1ω formulas; that
is, no fixed tuple of Lω1ω formulas can interpret every graph in its
Friedman-Stanley ordering.

In the remainder of the introduction, we give some definitions and
background. We recall the Turing computable embedding of directed
graphs (or structures for an arbitrary computable relational language)
in undirected graphs. For this embedding, we have a uniform effec-
tive interpretation. In Section 2, we describe the graphs that are not
Medvedev reducible to any linear ordering, or to the first jump of a
linear ordering. We explain why any graph is effectively interpreted
in the second jump of some linear ordering—so we have a Medvedev
reduction. In Section 3, we recall the Turing computable embedding Φ
of graphs in linear orderings due to Friedman and Stanley. We show
that there do not exist formulas of Lω1ω that, for all G, interpret G
in Φ(G).



CODING IN GRAPHS AND LINEAR ORDERINGS 3

1.1. Conventions. We assume that the language of each structure
is computable, where this means that the set of non-logical symbols is
computable and we can effectively determine the type and arity of each
symbol. We may assume that the languages are relational. We restrict
our attention to structures with universe equal to ω. Let Mod(L) be
the class of L-structures with this universe. We identify a structure
A with its atomic diagram D(A). We may identify this, via Gödel
numbering, with a set of natural numbers, or with an element of 2ω.
Thus, we think of Mod(L) as a subclass of 2ω. For a class of structures
K ⊆ Mod(L), we suppose that K is axiomatized by an Lω1ω sentence.
By a result of López-Escobar [12], this is the same as assuming that K
is a Borel subclass of Mod(L) closed under isomorphism.

1.2. Borel embeddings. The following definition is from [3].

Definition 1. We say that a class K is Borel embeddable in a class
K′, and we write K ≤B K′, if there is a Borel function Φ ∶ K → K′ such
that for A,B ∈ K, A ≅ B iff Φ(A) ≅ Φ(B).

A Borel embedding of K into K′ represents a uniform procedure for
coding structures from K in structures from K′. Friedman and Stanley
[3] gave the following result.

Theorem 1.1. The following classes lie on top under ≤B.

(1) undirected graphs
(2) fields of any fixed characteristic
(3) 2-step nilpotent groups
(4) linear orderings

Friedman and Stanley defined an embedding of graphs in fields of any
fixed characteristic. They also defined an embedding of graphs in linear
orderings. For the other classes listed above, Friedman and Stanley
credit earlier sources. Lavrov [11] defined an embedding of Mod(L)
in undirected graphs, for any L. There are similar constructions due
to Nies [19] and Marker [14]. Mekler [15] defined an embedding of
graphs in 2-step nilpotent groups. Alternatively, we get an embedding
of graphs in 2-step nilpotent groups by composing the embedding of
graphs in fields with an earlier embedding by Mal’tsev [13] of fields in
2-step nilpotent groups.

1.3. Turing computable embeddings. Kechris suggested to the first
author that she and her students should consider effective embeddings.
This is done in [2], [10].



4 J. KNIGHT, A. SOSKOVA, AND S. VATEV

Definition 2. We say that a class K is Turing computably embedded
in a class K′, and we write K ≤tc K′, if there is a Turing operator
Φ ∶ K → K′ such that for all A,B ∈ K, A ≅ B iff Φ(A) ≅ Φ(B).

A Turing computable embedding represents an effective coding pro-
cedure. The next result is in [2].

Theorem 1.2. The following classes lie on top under ≤tc.
(1) undirected graphs
(2) fields of any fixed characteristic
(3) 2-step nilpotent groups
(4) linear orderings

The involves simply noting that the Borel embeddings of Friedman-
Stanley, Lavrov, Nies, Marker, Mekler, and Mal’tsev are all, in fact,
Turing computable.

1.4. Medvedev reductions. A problem is a subset of 2ω or ωω. Prob-
lem P is Medvedev reducible to problem Q if there is a Turing operator
Φ that takes elements of Q to elements of P . The problems that in-
terest us ask for copies of particular structures, where each copy is
identified with an element of 2ω.

Definition 3. We say that A is Medvedev reducible to B, and we
write A ≤s B if there is a Turing operator that takes copies of B to
copies of A.

Supposing that A is coded in B, a Medvedev reduction of A to B
represents an effective decoding procedure.

1.5. Sample embedding. Below, we describe Marker’s Turing com-
putable embedding of directed graphs in undirected graphs.

(1) For each point a in the directed graph A, the undirected graph
B has a point ba connected to a triangle.

(2) For each ordered pair of points (a, a′) from A, B has a point
p(a,a′) that is connected directly to ba and with one intermediate
point to ba′ (p(a,a′) and ba′ are each connected directly to the
intermediate point c). The point p(a,a′) is connected to a square
if there is an arrow from a to a′, and to a pentagon otherwise.

For structures A with more relations, the same idea works—we use
more special points and more n-gons.

Fact: For Marker’s embedding Φ of directed graphs in undirected
graphs, there are finitary existential formulas that, for all inputs A,
define in Φ(A) the following:



CODING IN GRAPHS AND LINEAR ORDERINGS 5

(1) the set D consisting of the points ba connected to a triangle,
(2) the set of ordered pairs (ba, ba′) such that the special point p(a,a′)

is connected to a square,
(3) the set of ordered pairs (ba, ba′) such that the special point p(a,a′)

is connected to a pentagon.

This guarantees that any copy of Φ(A) computes a copy of A.

1.6. Effective interpretations and computable functors. In a
number of familiar examples where A ≤s B, the structure A is defined
or interpreted in B using formulas of special kinds.

Example 1. The usual definition of the ring of integers Z involves an
interpretation in the semi-ring of natural numbers N. Let D be the set
of ordered pairs (m,n) of natural numbers. We think of the pair (m,n)
as representing the integer m−n. With this in mind, we can easily give
finitary existential formulas that define ternary relations of addition
and multiplication on D, and the complements of these relations, and
a congruence relation ∼ on D, and the complement of this relation,
such that (D,+, ⋅)/∼ ≅ Z.

Harrison-Trainor, Melnikov, R. Miller, and Montalbán [4] defined a
very general kind of interpretation of A in B guaranteeing that A ≤s B.
The tuples in B that represent elements of A have no fixed arity. Recall
that a computable Σ1 formula is a c.e. disjunction of finitary existen-
tial formulas. We will use Σc

α to denote the computable infinitary Σα

formulas, and the same for ∆c
α and Πc

α. Normally, we consider for-
mulas with a fixed tuple of variables. However, following [4], we will
consider relations R ⊆ B<ω in our interpretations, and we will say that
such a relation R is defined in B by a Σc

1 formula that when there is a
computable sequence of Σc

1 formulas ϕn(x̄n) defining R ∩ Bn. Our Σc
1

definition of R is ⋁nϕn(x̄n). A relation R defined in this way is c.e.
relative to B.

Example 2. The dependence relation on tuples in a Q-vector space is
a familiar relation with no fixed arity. It is defined by a Σc

1 formula
⋁nϕn(x̄n) of the kind that we use for effective interpretations. We let
ϕn(x̄n) = ⋁λ λ(x̄n) = 0, where λ ranges over the non-trivial rational
linear combinations of x̄n = (x1, . . . , xn).

In a given structure B, we say that a relation R is ∆c
1-definable over

c̄ if R and the complementary relation ¬R are each defined by Σc
1

formulas, with parameters c̄.



6 J. KNIGHT, A. SOSKOVA, AND S. VATEV

Definition 4. A structure A = (A,Ri) is effectively interpreted in a
structure B if there is a set D ⊆ B<ω, Σc

1-definable over ∅, and there are
relations ∼ and R∗

i on D, ∆c
1-definable over ∅, such that (D,R∗

i )/∼ ≅ A.

Above, we described Marker’s Turing computable embedding of di-
rected graphs in undirected graphs, and we saw there are uniform fini-
tary existential formulas that in the output directed graph a set D and
relations ±R∗ such that (D,R∗) is isomorphic to the input undirected
graph. Friedman and Stanley’s original embedding of graphs in fields
involved a uniform interpretation by means of Σc

3 formulas. A more re-
cent embedding of graphs in fields, due to R. Miller, Poonen, Schoutens,
and Shlapentokh [16], gives a uniform effective interpretation.

Harrison-Trainor, Melnikov, R. Miller, and Montalbán [4] defined a
second notion.

Definition 5. A computable functor from B to A is a pair of Turing
operators (Φ,Ψ) such that Φ takes copies of B to copies of A and Ψ
takes isomorphisms between copies of B to isomorphisms between the
corresponding copies of A, so as to preserve identity and composition.

The main result from [4] gives the equivalence of the two notions.

Theorem 1.3. For structures A and B, A is effectively interpreted in
B iff there is a computable functor Φ,Ψ from B to A.

Corollary 1.4. If A is effectively interpreted in B, then A ≤s B.

Proof. We get a Medvedev reduction by taking the first half Φ of the
computable functor Φ,Ψ. �

Kalimullin [8] showed that the converse of the corollary fails. We
may have a Turing operator Φ taking copies of B to copies of A without
having a Turing operator Ψ taking triples (B1,B2, f) to g, where B1,B2

are copies of B and B1 ≅f B2 and Φ(B1) ≅g Φ(B2).

In the proof of Theorem 1.3, it is important that the set D in the
interpretation consist of tuples from B of arbitrary arity. The same is
true in the proof of the following.

Proposition 1.5. If A is computable, then A is effectively interpreted
in all structures B.

Proof. Let D = B<ω. We let b̄ ∼ c̄ if b̄, c̄ are tuples of the same length.
For simplicity, suppose A = (ω,R), where R is binary. We define R∗

such that R∗(b̄, c̄) holds iff A ⊧ R(m,n), where m is the length of b̄
and n is the length of c̄. �



CODING IN GRAPHS AND LINEAR ORDERINGS 7

1.7. Interpretations by more general formulas. We may consider
interpretations of A in B, where D, ± ∼, and ±R∗

i are defined in B
by Σc

2 formulas, and we have (D, (R∗

i )i∈ω)/∼ ≅ A. There is a notion
of jump of a structure [17, 18]. The jump of A is a structure A′ =
(A, (Ri)i∈ω), where Ri is the relation defined in A by the ith Σc

1 formula.
We can iterate the jump, forming A′′ = (A′)′, etc. For our purposes,
the following facts about jumps suffice.

(1) For a structure A, the jump is a structure A′ such that the
relations defined in A′ by Σc

1 formulas are just those defined in
A by Σc

2 formulas.
(2) For a structure A, the jump structure A′ is computed by D(A)′.
(3) The relations defined inA′′ by Σc

1 formulas are just those defined
in A by Σc

3 formulas.

Harrison-Trainor, R. Miller, and Montalbán [5] proved the analogue
of the result from [4] in which the interpretations are defined by for-
mulas of Lω1ω, and the functors are Borel. Again for an interpretation
of A in B, the set of tuples in B that represent elements of B may
have arbitrary arity. If R ⊆ B<ω, and we have a countable sequence of
Lω1ω-formulas ϕn(x̄n) defining R ∩ Bn, then we refer to ⋁nϕn(x̄n) as
an Lω1ω definition of R.

Theorem 1.6. A structure A is interpreted in B using Lω1ω-formulas
iff there is a Borel functor (Φ,Ψ) from B to A.

2. Interpreting graphs in linear orderings

As we have seen, any structure can be effectively interpreted in a
graph. Linear orderings do not have so much interpreting power. To
show this, we use the following result of Linda Jean Richter [20].

Proposition 2.1 (Richter). For a linear ordering L, the only sets
computable in all copies of L are the computable sets.

Proposition 2.2. There is a graph G such that for all linear orderings
L, G /≤s L.

Proof. Let S be a non-computable set. LetG be a graph such that every
copy computes S. We may take G to be a “daisy” graph, consisting
of a center node with a “petal” of length 2n + 3 if n ∈ S and 2n + 4 if
n ∉ S. Now, apply Proposition 2.1. �

The following result, from [9], is a lifting of Proposition 2.1.

Proposition 2.3. For a linear ordering L, the only sets computable in
all copies of L′ (or in the jumps of all copies of L) are the ∆0

2 sets.



8 J. KNIGHT, A. SOSKOVA, AND S. VATEV

This yields a lifting of Proposition 2.2.

Proposition 2.4. There is a graph G such that for all linear orderings
L, G /≤s L′.
Proof. Let S be a non-∆0

2 set. Let G be a graph such that every copy
computes S. Then apply Proposition 2.3. �

The pattern above does not continue. The following is well-known
(see Theorem 9.12 [1]).

Proposition 2.5. For any set S, there is a linear ordering L such that
for all copies of L, the second jump computes S.

Proof sketch. For a set A, the ordering σ(A ∪ {ω}) (the “shuffle sum”
of orderings of type n for n ∈ A and of type ω) consists of densely many
copies of each of these orderings. The degrees of copies of σ(A ∪ {ω})
are the degrees of sets X such that A is c.e. relative to X ′′. Let A =
S ⊕Sc, where Sc is the complement of S. Consider the linear ordering
L = σ(A ∪ {ω}). Then we have a pair of finitary Σ3 formulas saying
that n ∈ S iff L has a maximal discrete set of size 2n and n /∈ S iff L
has a maximal discrete set of size 2n + 1. It follows that any copy of
L′′ uniformly computes the set S. �

Using Proposition 2.5, we get the following.

Proposition 2.6. For any graph G, there is a linear ordering L such
that G ≤s L′′,
Proof. Let S be the diagram of a specific copy of G and let L be as in
Proposition 2.5. Then G ≤s L′′. �

3. Turing computable embedding of graphs in linear
orderings

The class of linear orderings, like the class of graphs, lies on top under
Turing computable embeddings. We describe the Turing computable
embedding L, given in [3], of directed graphs in linear orderings.

Friedman-Stanley embedding. First, let (An)n∈ω be an effective
partition of Q into disjoint dense sets. Let (tn)1≤n<ω be a list of the
atomic types in the language of directed graphs. We let t1 be the
type of ∅, we put the types for single elements next, then the types
for distinct pairs, then the types for distinct triples, etc. For a graph
G, the ordering L(G) is a sub-ordering of Q<ω, with the lexicographic
ordering. The elements of L(G) are the finite sequences

σ = r0q1r1 . . . rn−1qnrnk ∈ Q<ω



CODING IN GRAPHS AND LINEAR ORDERINGS 9

satisfying the following conditions:

(1) for each i < n, ri ∈ A0, and rn ∈ A1,
(2) there is a special tuple in G associated with σ, of length n,

satisfying the atomic type tm,
(3) if n = 0, then the special tuple is ∅, while if n ≥ 1, then the

special tuple has form a1, . . . , an, where for all i with 1 ≤ i ≤ n,
qi ∈ Aai—we can read off the special tuple from the terms in σ,

(4) k is a natural number less than m.

In talks, the first author has claimed, without any proof, that this
embedding does not represent an interpretation. Our goal in the rest
of the paper is to prove the following theorem.

Theorem 3.1 (Main Theorem). There do not exist Lω1ω-formulas that,
for all graphs G, interpret G in L(G).

We begin with some definitions and simple lemmas about L(G).
Definition 6. Let b = r0q1r1 . . . rn−1qnrnk ∈ L(G). We say that b men-
tions ā if ā is the special tuple in G of length n, such that for 1 ≤ i ≤ n,
qi ∈ Aai.
Lemma 3.2. Suppose b ∈ L(G) mentions ā. Then b lies in a maximal
discrete interval of some finite size m ≥ 1. The number m tells us the
atomic type of ā; in particular, it tells us the length of ā.

Proof. It is clear from the definition of L(G) that if b mentions ā, where
ā satisfies the atomic type tm on our list, then b lies in a maximal
discrete set of size m. Knowing just that b lies in a maximal discrete
set of size m, we know the atomic type, and this tells us the length
of ā. �

The structure of the linear ordering L(G) does not directly tell us the
lengths of the elements b (as elements of Q<ω). However, if b mentions
ā of length n, then b has length 2n + 2.

Lemma 3.3. If b ∈ L(G) has length 2n + 2, then there is an infinite
interval around b that consists entirely of elements of length at least
2n + 2.

Proof. Suppose that b = r0q1r1 . . . rn−1qnrnk. The elements d that ex-
tend the initial segment r0q1r1 . . . rn−1qn, of length 2n, are closer to b
than those that differ on one of the first 2n terms. These d all have
length at least 2n + 2, and they form the interval we want. �

Lemma 3.4. Let b, b′ ∈ L(G), where b < b′, and let d be an element of
[b, b′] of minimum length. If d mentions c̄, then all elements of [b, b′]
mention extensions of c̄.



10 J. KNIGHT, A. SOSKOVA, AND S. VATEV

Proof. Say that d has length 2k + 2. Then b and b′ are both in an
interval around d consisting of elements of length at least 2k + 2. Let
σ be the initial segment of d of length 2k. Then all elements of [b, b′]
must extend σ. Thus, all of these mention extensions of c̄. �

Let b̄ be a tuple in L(G). For each bi in b̄, let āi be the tuple in G
mentioned by bi. The formulas true of b̄ in L(G) are determined by the
formulas true in G of the various āi, together with the “shape” of b̄.

Definition 7. For a tuple b̄ = (b1, . . . , bn) in L(G), the shape encodes
the following information:

(1) the order type of b̄—for simplicity, we suppose that
b1 < b2 < . . . < bn,

(2) the size of each interval (bi, bi+1)—we note that the interval is
infinite unless bi, bi+1 belong to the same finite discrete set in
L(G), which means that they agree on all but the last term,

(3) the location of each bi in the finite discrete interval to which it
belongs,

(4) the length of each bi,
(5) for i < n, the number ki such that 2ki + 2 is the length of a

shortest element d in the interval [bi, bi+1]—d mentions a tuple
c̄ of length ki, and all elements of [bi, bi+1] mention tuples that
extend c̄.

Proposition 3.5. For each n-tuple b̄, there exist Πc
4, and Σc

4, formulas
in the language of linear orderings, that, for all G, say in L(G) that
the n-tuple x̄ has the same shape as b̄.

Proof. We note the following:

(1) For any finite n, we have a finitary Σ2 formula saying of an
interval that it has at least n elements and it does not have at
least n+1 elements. Thus, there are finitary Σ2 and Π2 formulas
saying that an interval (bi, bi+1) has size n.

(2) We have a finitary Σ3 formula saying that bi sits in a specific
position in a maximal discrete set of size n.

(3) Assuming that our list of the atomic types (tn)1≤n<ω is as de-
scribed above, we have finitary Σ3 formulas saying that bi has
length 2n + 2—we take a finite disjunction of formulas saying
that bi lies in a maximal discrete interval of size r, where tr is
the atomic type of a tuple of length n.

(4) For each k, we have a finitary Π3 formula saying that all z in
[bi, bi+1] have length at least 2k + 2.



CODING IN GRAPHS AND LINEAR ORDERINGS 11

Taking an appropriate finite conjunction of the formulas described
above, we obtain a Σc

4 definition of the set of tuples of a specific shape,
and also a Πc

4 definition. �

Remarks on elements of length 2: Suppose d has length 2. Then
∅ is the tuple mentioned by d and the atomic type of ∅ is t1, so d has
the form r00, where r0 ∈ A1. Note that d is the only element of L(G)
that starts with r0. If b < d < b′, then b has first term r and b′ has
first term r′, where r < r0 < r′. Since all Ai are dense in Q, essentially
everything happens in the intervals (b, d) and (d, b′).
Lemma 3.6. Suppose c < c∗ < c′ in L(G), where c∗ has length 2.

(1) For any ē in (c,∞), there is an automorphism of (c,∞) taking
ē to some ē′ in the interval (c, c∗).

(2) For any ē in (−∞, c′), there is an automorphism of (−∞, c′)
taking ē to some ē′ in the interval (c∗, c′).

Proof. We prove (1). Note that c∗ has form r0, where r ∈ A1. The first
term of c is some q < r. Let c∗∗ be an element of length 2 to the right
of all elements of ē, with first term p. There is a permutation of Q, say
f , such that

(a) f preserves the ordering and membership in the Ai’s (i.e., f is
an automorphism of the structure (Q,<, (Ai)i∈ω),

(b) f(q) = q and f(p) = r.
We define an automorphism g of (c,∞), taking each element xσ to
f(x)σ—we are changing just the first term. The fact that f preserves
the ordering and membership in Ai’s is needed to be sure that g has
domain and range (c,∞). �

If a < b in the ordering L(G), we may say that a lies to the left of b,
or that b lies to the right of a.

Lemma 3.7. Let b̄ be a finite tuple in L(G), and let c be an element
of L(G).

(1) There is an automorphism of L(G) taking b̄ to a tuple b̄′, with <-
first element b′, such that c < b′ and the interval (c, b′) contains
some element of length 2.

(2) There is also an automorphism taking b̄ to a tuple b̄′′, with <-
greatest element b′′, such that b′′ < c and the interval (b′′, c)
contains some element of length 2.

Proof. We give the proof for (1). Suppose that c (as a finite sequence)
begins with r. Let b be the <-first element of b̄, and suppose that b
(as a finite sequence) begins with p. Let f be a permutation of Q



12 J. KNIGHT, A. SOSKOVA, AND S. VATEV

that preserves the ordering and membership in the Ai’s, and such that
f(p) > r. We have an automorphism g of L(G) such that

g(xσ) = f(x)σ.
By our choice of f , it follows that g has domain and range all of L(G).
To see that there is an element of length 2 between c and the <-first
element of g(b̄), we note that there is an element of A1 between r and
f(p). �

3.1. The relations ∼γ. Below, we recall a family of equivalence rela-
tions, defined for pairs of tuples, from the same structure, or from two
different structures.

Definition 8. Let A and B be structures for a fixed finite relational
language. Let ā and b̄ be tuples of the same length, where ā in A and
b̄ is in B.

(1) (A, ā) ∼0 (B, b̄) if the tuples ā and b̄ satisfy the same atomic
formulas in their respective structures.

(2) For γ > 0, (A, ā) ∼γ (B, b̄) if for all β < γ,
(a) for all c̄ ∈ A, there exists d̄ ∈ B such that

(A, ā, c̄) ∼β (B, b̄, d̄),
(b) for all d̄ ∈ B, there exists c̄ ∈ A such that

(A, ā, c̄) ∼β (B, b̄, d̄).

Note: We write A ∼γ B to indicate that (A,∅) ∼γ (B,∅).
Lemma 3.8. Let A be a computable structure for a finite relational
language. For any γ < ωCK1 and for any tuple ā in A, we can effectively
find a Πc

2γ-formula ϕγā(x̄) such that A ⊧ ϕγā(b̄) iff ā ∼γ b̄.
Proof. We proceed by induction on γ. Let γ = 0. Then

ϕ0
ā(x̄) = ⋀

φ(x̄)∈B

φ(x̄),

where B is the set of atomic formulas and negations of atomic formulas
true of ā in A. This formula is finitary quantifier-free. Suppose γ > 0,
where we have the formulas ϕβā for all β < γ and all ā. Then

ϕγā(x̄) = ⋀
β<γ

[⋀
c̄
(∃ȳ)ϕβā,c̄(x̄, ȳ) & ⋀

ȳ
(∀ȳ)⋁

c̄
ϕβā,c̄(x̄, ȳ)]

This formula is Πc
2γ, as required. �

Lemma 3.9. Let L be a fixed finite relational language. For any com-
putable ordinal γ, and any tuples of variables x̄, ȳ, of the same length,
we can effectively find a computable Π2γ-formula ϕγ(x̄, ȳ) such that for
any L-structure A, and any tuples ā and b̄ from A, A ⊧ ϕγ(ā, b̄) iff
(A, ā) ∼γ (A, b̄).



CODING IN GRAPHS AND LINEAR ORDERINGS 13

Proof. Suppose that x̄ and ȳ have length m. Let γ = 0 and let At be
the computable set of all atomic formulas on the first m variables in
the language L. Then

ϕ0(x̄, ȳ) = ⋀
φ∈At

(φ(x̄)↔ φ(ȳ)),

which is finitary quantifier-free. Suppose we have determined the for-
mulas ϕβ(x̄, ȳ) for all β < γ and all appropriate pairs of tuples of vari-
ables x̄, ȳ. Then

ϕγ(x̄, ȳ) = ⋀
β<γ

[⋀
ū,v̄

(∀ū)(∃v̄)ϕβ(x̄, ū, ȳ, v̄) & ⋀
v̄,ū

(∀v̄)(∃ū)ϕβ(x̄, ū, ȳ, v̄)],

which is a Πc
2γ formula. �

The next lemma is well-known, and the proof is straightforward (see
[1]).

Lemma 3.10. Let A and B be structures for the same countable lan-
guage, and let ā and b̄ be tuples of the same length, in A and B, re-
spectively. Then for any countable ordinal γ, if (A, ā) ∼γ (B, b̄), then
the Σc

γ formulas true of ā in A are the same as those true of b̄ in B.

3.2. ∼γ-equivalence in linear orderings. In a linear ordering, the
∼γ-class of a tuple ā is determined by the ∼γ-classes of the intervals with
endpoints in ā. Let A and B be linear orderings. Let ā = a1 < . . . < an
be a tuple in A, and let b̄ = b1 < . . . < bn be a tuple in B. Let I0, . . . , In
and J0, . . . , Jn be the intervals in A and B determined by ā and b̄; i.e.,
I0 is the interval (−∞, a1) in A, J0 is the interval (−∞, b1) in B, for
i < n, Ii is the interval (ai, ai+1) in A, Ji is the interval (bi, bi+1) in B,
In is the interval (an,∞) in A, and Jn is the interval (bn,∞) in B. The
next lemma is also well-known, with a straightforward proof. In [1],
there is a similar result, with the asymmetric back-and-forth relations
≤γ replacing the symmetric relations ∼γ.
Lemma 3.11. (A, ā) ∼γ (B, b̄) iff for i ≤ n, Ii ∼γ Ji.
3.3. More on the orderings L(G). We return to the orderings of
form L(G). In the next subsection, we will prove that there do not exist
Lω1ω formulas that, for all G, interpret G in L(G). Roughly speaking,
the outline is as follows. We assume that there are such formulas.
The formulas are Σα, for some countable ordinal α. Moreover, they
are X-computable Σα for some X such that α < ωX1 . Taking G to be
the ordering ωX1 , we will produce tuples b̄, c̄, b̄′ in L(G) representing
elements a, e, a′ of G such that b̄, c̄ ∼γ c̄, b̄′, although in G, we have
a < e and a′ < e. This is a contradiction. The current subsection gives
several lemmas about the relations ∼γ on tuples in L(G), and about



14 J. KNIGHT, A. SOSKOVA, AND S. VATEV

automorphisms of L(G). These lemmas are what we need to produce
the tuples b̄, c̄, b̄′.

To start off, we note that if a1, a2 ∼1 b1, b2, then the sizes of the
intervals (a1, a2) and (b1, b2) match. Moreover, if a ∼2 b, then a and b
belong to maximal discrete intervals of the same size.

Lemma 3.12. Let I = (b, b′), where b < b′, and let J = (c, c′), where
c < c′. Suppose b ∼γ c and b′ ∼γ c′, where some b∗ ∈ I and some c∗ ∈ J
each have length 2. Then I ∼γ J .

Proof. Suppose β < γ. Take d̄ in I. We want ē in J such that
(I, d̄) ∼β (J, ē). We consider the cases β = 0, β = 1, and β ≥ 2.

Case 1: Suppose β = 0. The fact that J contains an element of length
2 implies that it is an infinite interval. We choose ē in this interval
ordered in the same way as d̄.

Case 2: Suppose β = 1. The tuple d̄ partitions the interval I = (b, b′)
into sub-intervals I0, . . . , Im. We need ē partitioning J into sub-intervals
J0, . . . , Jm of the same sizes. The first few intervals Ii may be finite.
Since b ∼2 c, we can match these intervals. Similarly, we can match the
last few intervals, if these are finite. For simplicity, we suppose that
the intervals I0 and Im are both infinite. The tuple d̄ is automorphic
to a tuple d̄′ lying entirely to the right of c, with first element infinitely
far from c. Let d′ be infinitely far to the right of the last term of d̄′. By
Lemma 3.6, there is an automorphism of the interval (c,∞) taking d̄′, d′

to some ē, e′ in the interval (c, c′). We let the Ji’s be the sub-intervals
of J determined by ē. These have the desired sizes.

Case 3: Suppose β ≥ 2. We may suppose that d̄ = d̄1, b∗, d̄2. The
intervals (b,∞) and (c,∞) are ∼γ-equivalent. Therefore, we have ē1, c∗∗

in (c,∞) ∼β-equivalent to d̄1, b∗ in (b,∞). Since β ≥ 2, we have that
c∗∗ has length 2. Let p be the first term of c, let r be the first term
of c∗, and let q be the first term of c∗∗. Let f be a permutation of Q,
preserving the order and the Ai’s, fixing p and taking q to r. We have an
automorphism g of (c,∞) (or of L(G)) that takes xσ to f(x)σ. Let ē′1
be g(ē1). The sub-intervals of I (or of (b,∞)) determined by d̄1, b∗ are
∼β equivalent to the sub-intervals of (c,∞) determined by ē1, c∗∗. These
are isomorphic to the sub-intervals determined by ē′1, g(c∗∗). Thus, the
sub-intervals of (b,∞) determined by d̄1, b∗ are ∼β-equivalent to the
sub-intervals of (c,∞) determined by ē′1, c

∗.
In a similar way, we get ē′2 such that the sub-intervals of (c∗,∞)

determined by c∗, ē′2 are ∼β-equivalent to those determined by b∗, d̄2 in
(b∗,∞). We let ē be ē′1, ē

′

2. All together, the sub-intervals of (b, b′)



CODING IN GRAPHS AND LINEAR ORDERINGS 15

determined by d̄ are ∼β-equivalent to the corresponding sub-intervals
of (c, c′) determined by ē. �

Lemma 3.13. Let b̄1, b̄2, c̄1, c̄2 be increasing sequences in L(G), where
b̄1 ∼γ c̄1 and b̄2 ∼γ c̄2. Suppose further that there is an element of length
2 between the last element of b̄1 and the first element of b̄2, and there
is an element of length 2 between the last element of c̄1 and the first
element of c̄2. Then b̄1, b̄2 ∼γ c̄1, c̄2.

Proof. Say that b̄1 = (b1, . . . , bk), b̄2 = (bk+1, . . . , bn), c̄1 = (c1, . . . , ck),
and c̄2 = (ck+1, . . . , cn). Let Ii be the intervals determined by b̄1, b̄2, and
let Ji be the intervals determined by c̄1, c̄2, for i ≤ n. The fact that
b̄1 ∼γ c̄1 implies that Ii ∼γ Ji for i < k. The fact that b̄2 ∼γ c̄2 implies
that Ii ∼γ Ji for k < i ≤ n. It remains to show that Ik ∼γ Jk. We have
bk ∼γ ck and bk+1 ∼γ ck+1. We have elements of length 2 in each of the
intervals Ik and Jk. Applying the previous lemma, we get the fact that
Ik ∼γ Jk. Therefore, b̄1, b̄2 ∼γ c̄1, c̄2. �

Lemma 3.14. Suppose b̄, b̄′ are tuples in L(G) of the same shape. Let
ā, ā′ be the full tuples from G mentioned by the bi’s, or the b′i’s. If
ā ∼γ ā′, then b̄ ∼γ b̄′.

Proof. We proceed by induction on γ. For γ = 0, the statement is
trivially true. Supposing that the statement holds for β < γ, we show
it for γ. Suppose ā ∼γ ā′. We will have b̄ ∼γ b̄′ provided that for all
β < γ,

(1) for any d̄, there is some d̄′ such that b̄, d̄ ∼β b̄′, d̄′, and
(2) for any d̄′, there is some d̄ such that b̄, d̄ ∼β b̄′, d̄′.

By symmetry, it is enough to prove (1). Say that c̄ is the tuple of
elements of G mentioned in the di’s and not in ā. Since ā ∼γ ā′ in G,
there is a tuple c̄′ such that ā, c̄ ∼β ā′, c̄′. In L(G), we choose d̄′, so that
the ordering and shape of b̄′, d̄′ matches that of b̄, d̄, and for each d′i, the
tuple ā′, c̄′ mentioned in d′i corresponds to the one from ā, c̄ mentioned
in di. Using the fact that b̄′ and b̄ have the same shape, we can see that
such d̄′ exist. By the induction hypothesis, we have b̄, d̄ ∼β b̄′d̄′. �

Definition 9. We say that A is a computable infinitary substructure of
B if A is a substructure of B and for all computable infinitary formulas
ϕ(x̄) and all ā in A, B ⊧ ϕ(ā) iff A ⊧ ϕ(ā). (The definition is the same
as elementary substructure except that the formulas are not elementary
(finitary) first order.)



16 J. KNIGHT, A. SOSKOVA, AND S. VATEV

Lemma 3.15. Let G1 and G2 be directed graphs such that G1 is a
computable infinitary substructure of G2. Suppose also that G2 is com-
putable, so L(G2) is computable. Then L(G1) is a computable infini-
tary substructure of L(G2).

Proof. Note that L(G1) is a substructure of L(G2). The Tarski-Vaught
test was originally stated for elementary substructure, but it also works
for computable infinitary substructure. To show that L(G1) is a com-
putable infinitary substructure of L(G2), it is enough to show that for
any computable infinitary formula ψ(x̄, u), if L(G2) ⊧ ψ(b̄, d), where b̄
is in L(G1), then L(G2) ⊧ ψ(b̄, d′) for some d′ ∈ L(G1).

Say that ψ is a Πc
α formula. Suppose b̄mentions ā fromG1. The tuple

from G1 mentioned by d may include some elements from ā, plus some
further elements c̄. By Lemma 3.8, we have a computable infinitary
formula ϕαā,c̄(x̄, ȳ) defining in G2 the ∼α-class of ā, c̄. By the Tarski-
Vaught test, there is some c̄′ in G1 such that G2 ⊧ ϕαā,c̄(ā, c̄′). Then in
G2, ā, c̄ ∼α ā, c̄′. Say that ū is the tuple in G2 mentioned by d. Each ui
is in ā, c̄. Let v̄ be the tuple in G1 such that if ui ∈ ā, then vi = ui and
if ui ∈ c̄, then vi is the element of c̄′ corresponding to c̄. Thus, ū ∼α v̄.
We choose d′, mentioning the tuple v̄, such that b̄, d and b̄, d′ have the
same ordering and the same shape. Then by Lemma 3.14, b̄, d ∼α b̄, d′.
By Lemma 3.10, we conclude that L(G2) ⊧ ψ(b̄, d′), as required. �

3.4. Proof of Theorem 3.1. Theorem 3.1 says that there are no Lω1ω-
formulas that, for all directed graphs G, define an interpretation of G in
L(G). We introduce the ideas of the proof in a warm-up result. Among
the directed graphs are the linear orderings. The Harrison ordering H
has order type ωCK1 (1+η). While ωCK1 has no computable copy, H does
have a computable copy. It is well known that H and ωCK1 satisfy the
same computable infinitary sentences. In fact, they satisfy the same
Πα sentences of Lω1ω for all computable ordinals α.

Let I be the initial segment ofH of order type ωCK1 . Thinking ofH as
a directed graph, we can form the linear orderings L(H) and L(I). Just
because H has a computable copy, it is effectively interpreted in every
structure B. We have a computable functor (Φ,Ψ) that ignores the
input—Φ always gives the same computable copy of H, and Ψ always
gives the identity isomorphism. Our warm-up result will say that there
are no computable infinitary formulas that define an interpretation of
H in L(H) and also define an interpretation of I in L(I).

Proposition 3.16. L(I) is a computable infinitary substructure of
L(H).



CODING IN GRAPHS AND LINEAR ORDERINGS 17

Proof. Since I and H satisfy the same computable infinitary sentences
and every element of I is defined by a computable infinitary formula,
it follows that I is a computable infinitary substructure of H. We
apply Lemma 3.15 to conclude that L(I) is a computable infinitary
substructure of H. �

Proposition 3.17 (Warm-up). There do not exist computable infini-
tary formulas that define an interpretation of H in L(H) and also
define an interpretation of I in L(I).

Proof. Suppose there are computable infinitary formulas that define an
interpretation of H in L(H), and also define an interpretation of I in
L(I). Say D, ∼, and <○ are the sets of tuples defined by these formulas
in L(H). We note that all elements of I are represented by tuples from
D that are in L(I), and all tuples from D that are in L(I) represent
elements of I. We can translate computable infinitary formulas de-
scribing H and its elements into computable infinitary formulas about
tuples in L(H), referring to the formulas that define D, ∼, and <○.

For each computable ordinal α, we have a formula ϕα(x) saying of an
element x in H that pred(x) = {y ∶ y < x} has order type α. Let ψα(x̄)
be the translation formula saying of a tuple x̄ that it is in D and the
set of predecessors of the equivalence class of x̄ has order type α. For
each computable ordinal α, there is a tuple in D satisfying ψα(x̄) (for
an appropriate x̄). Since L(I) is a computable infinitary substructure
of L(H), some tuple from D in L(I) also satisfies ψα(x̄). Moreover,
each tuple from D in L(I) satisfies one of the formulas ψα. Recall that
the ordering H is computable, and so is L(H). We define equivalence
relations ≡γ on D.

Definition 10. For tuples ā and b̄ in D, let ā ≡γ b̄ iff

(1) ā and b̄ have the same shape and
(2) ā ∼γ b̄.

Fact: For each computable ordinal γ and each ā in D, the ≡γ-class of
ā is defined by a computable infinitary formula.

We need one more lemma.

Lemma 3.18. For each computable ordinal γ, there is a ≡γ-class C
such that there are arbitrarily large computable ordinals α for which
some b̄ in C satisfies ψα.

Proof. In L(H), we have a tuple b̄ in D not satisfying any of the formu-
las ψα for computable ordinals α. Let C be the ≡γ-class of b̄. Since L(I)
is a computable infinitary substructure of L(H), and C is defined by a



18 J. KNIGHT, A. SOSKOVA, AND S. VATEV

computable infinitary formula, we must have tuples of L(I) belonging
to C and satisfying ψα for arbitrarily large computable ordinals α. �

Suppose that the formulas defining D, <○, and ∼ are all Σc
γ. Since D

may have no fixed arity, we mean that there is a computable sequence
of Σc

γ formulas defining the sets of n-tuples in D, and similarly for <○
and ∼. By Lemma 3.18, there is a set C ⊆ D in which all tuples have
the same shape and are in the same ∼γ-class—in particular, the tuples
in C all have the same arity. We choose tuples b̄ and c̄ in L(I), both
belonging to C, such that b̄ satisfies ψα and c̄ satisfies ψβ, where α < β.

By Lemma 3.7, we may suppose that all elements of the tuple b̄
lie to the left of the <-first element of c̄, and the interval between
the <-greatest element of b̄ and the <-first element of c̄ contains an
element of length 2. Also, by the same lemma, we have a tuple b̄′,
automorphic to b̄, such that all elements of b̄′ lie to the right of the <-
greatest element of c̄, and the interval between the <-greatest element
of c̄ and the <-first element of b̄′ contains an element of length 2. Since
b̄ satisfies ψα and c̄ satisfies ψβ, we should have L(I) ⊧ b̄ <○c̄. Since
b̄′ is automorphic to b̄, it should also satisfy ψα, so we should have
L(I) ⊧ b̄′ <○c̄. Applying Lemma 3.13, we get the fact that b̄, c̄ ∼γ c̄, b̄′.
Therefore, since L(I) ⊧ b̄ <○c̄, and <○ is defined by a Σc

γ-formula, we

have L(I) ⊧ c̄ <○b̄′. This is the contradiction that we were expecting
when we set out to prove Proposition 3.17. �

We have proved Proposition 3.17, saying that there do not exist
computable infinitary formulas that define an interpretation both for
the Harrison ordering H in L(H) and for the well-ordered initial seg-
ment I in L(I). We assumed that there were computable infinitary
formulas, say Σc

γ, defining both interpretations, and we arrived at a
contradiction. We used H and L(H) to arrive at a sequence of tuples
b̄α in L(I), representing arbitrarily large elements of I, and all having
the same shape and satisfying the same computable Σc

γ formulas. We
then used automorphisms of L(I) to show that our proposed interpre-
tation failed. The next result says that, in fact, there do not exist
computable infinitary formulas that define an interpretation for I in
L(I). Of course, I is isomorphic to ωCK1 .

Proposition 3.19. There is no interpretation of ωCK1 in L(ωCK1 ) de-
fined by computable infinitary formulas.

Proof. Suppose we have an interpretation of ωCK1 in L(ωCK1 ), defined
by computable infinitary formulas. Say that the formulas that define
the appropriate D, <○, and ∼ are Σc

γ. Our assumption gives the fact
that for a Harrison ordering with well-ordered initial segment I, these



CODING IN GRAPHS AND LINEAR ORDERINGS 19

formulas interpret I in L(I). However, the assumption does not say
that they also interpret H in L(H). Thus, we are not in a position to
use the important Lemma 3.18.

The following lemma is simple enough that we omit the proof.

Lemma 3.20. Let A be a computable structure. If B satisfies the
computable infinitary sentences true in A, then the formulas ϕγ

d̄
that

define the ∼γ-equivalence classes of all tuples in A also define the ∼γ-
equivalence classes of all tuples in B. Moreover, if B ⊧ ϕγ

d̄
(b̄), then the

Σc
γ-formulas true of b̄ in B are the same as those true of d̄ in A.

The next lemma gives the conclusion of Lemma 3.18. The proof
involves locating ωCK1 inside a larger ordering similar to the Harrison
ordering.

Lemma 3.21. In L(ωCK1 ), there are tuples d̄α, corresponding to arbi-
trarily large computable ordinals α, such that all d̄α are in D, all have
the same length and shape, all are ∼γ-equivalent, and d̄α satisfies ψα.

Proof of lemma. We use Barwise-Kreisel Compactness. Let Γ be a Π1
1

set of computable infinitary sentences describing a structure

U = (U1 ∪U2, U1,<1, U2,<2, F, c)
such that

(1) U1 and U2 are disjoint sets,
(2) (U1,<1) is a linear ordering that satisfies the computable infini-

tary sentences true in ωCK1 and H—since H is computable, this
is Π1

1,
(3) (U2,<2) satisfies the computable infinitary sentences true in

L(ωCK1 )—this is Π1
1 since L(H) is computable and L(I) is a

computable infinitary substructure of L(H),
(4) F is a function from DU2 to U1 that induces an isomorphism

between (DU2 , <○)/
∼U

2 and (U1,<1),
(5) c is a constant in U1 such that c >1 α for all computable ordinals

α; i.e., there is a proper initial segment of <1-pred(c) of type α.

Every ∆1
1 subset of Γ is satisfied by taking copies of ωCK1 , L(ωCK1 ),

with an appropriate function F , and letting c be a sufficiently large
computable ordinal. Therefore, the whole set Γ has a model. Let b̄ be
an element of DU2 such that F (b̄) = c. Let C be the set of tuples of U2

having the shape of b̄ and ∼γ-equivalent to b̄. Since (U2,<2) satisfies the
same computable infinitary sentences true in the computable structure
L(H), by the lemma above, the ∼γ-equivalence class of b̄ is defined
in (U2,<2) by a computable infinitary formula. For each computable



20 J. KNIGHT, A. SOSKOVA, AND S. VATEV

ordinal α, we have a computable infinitary sentence χα saying that
some tuple in C does not satisfy ψβ for any β < α. The sentence χα is
true in our model of Γ, witnessed by b̄ such that F (b̄) = c. Therefore,
the sentence χα is true also in L(ωCK1 ), witnessed by some b̄′. Since
our formulas define an interpretation of ωCK1 in L(ωCK1 ), the witness b̄′

for χα in L(ωCK1 ) must satisfy ψγ for some γ ≥ α. �

Now, we can proceed as in the proof of Proposition 3.17. We are
working in L(ωCK1 ). We choose b̄, c̄, from the sequence of d̄α’s in the
lemma, such that b̄ ∼γ c̄, where b̄ satisfies ψα and c̄ satisfies ψβ, for
α < β. By Lemma 3.7, we may suppose that the elements of b̄ all lie
to the left of the <-first element of c̄, and the interval between the <-
greatest element of b̄ and the <-first element of c̄ contains an element
of length 2. Since α < β, we should have L(ωCK1 ) ⊧ b̄ <○c̄. We can take
b̄′ automorphic to b̄ such that all elements of b̄′ lie to the right of the <-
greatest element of c̄, and the interval between the <-greatest element of
c̄ and the <-first element of b̄′ contains an element of length 2. Clearly,
L(ωCK1 ) ⊧ b̄′ <○c̄ since b̄′ satisfies ψα(x̄). Applying Lemma 3.13 we get
the fact that b̄, c̄ ∼γ c̄, b̄′. It follows that L(ωCK1 ) ⊧ c̄ <○b̄′, which is a
contradiction. �

We are ready to complete the proof of Theorem 3.1, saying that there
is no tuple of Lω1ω-formulas that, for all directed graphs G, interprets
G in L(G).

Proof of Theorem 3.1. Suppose that we have such formulas. For some
X, the formulas are X-computable infinitary. Let G be a linear order-
ing of type ωX1 . Relativizing Proposition 3.19, we have the fact that G
is not interpreted in L(G) by any X-computable formulas. �

The Friedman-Stanley embedding represents a uniform effective en-
coding of directed graphs in linear orderings. We have seen that there
is no uniform interpretation of the input graph in the output linear
ordering.

Conjecture 1. Let Φ be a Turing computable embedding of directed
graphs in linear orderings. There do not exist Lω1ω formulas that, for
all directed graphs G, define an interpretation of G in Φ(G).

References

[1] C. J. Ash, J. F. Knight, Computable Structures and the Hyperarithmetical
Hierarchy, Elsevier, 2000

[2] W. Calvert, D. Cummins, J. F. Knight, and S. Miller, “Comparing classes of
finite structures”, Algebra and Logic, vol. 43(2004), no. 6, pp. 374–392.



CODING IN GRAPHS AND LINEAR ORDERINGS 21

[3] H. Friedman and L. Stanley, “A Borel reducibility theory for classes of count-
able structures”, Journal of Symbolic Logic, vol. 54(1989), no. 3, pp. 894–914.

[4] M. Harrison-Trainor, A. Melnikov, R. Miller, and A. Montalbán, “Com-
putable functors and effective interpretability”, Journal of Symbolic Logic,
vol. 82(2017), no. 1, pp. 77–97.

[5] M. Harrison-Trainor, R. Miller, and A. Montalbán, “Borel functors and in-
finitary interpretations”, Journal of Symbolic Logic, vol. 83 (2018), no. 4, pp.
1434–1456.

[6] M. Harrison-Trainor and A. Montalbán, “The tree of tuples of a structure”,
pre-print.

[7] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko, “Degree spectra
and computable dimension in algebraic structures,” APAL, vol. 115(2002),
pp. 71–113.

[8] I. Kalimullin, “Algorithmic reducibilities of algebraic structures”, Journal of
Logic and Computation, vol. 22(2012), no. 4, pp. 831–843.

[9] J. F. Knight, “Degrees coded in jumps of orderings”, Journal of Symbolic
Logic, vol. 51(1986), no. 4, pp. 1034–1042.

[10] J. F. Knight, S. Miller, and M. Vanden Boom, “Turing computable embed-
dings”, Journal of Symbolic Logic, vol. 72(2007), no. 3, pp. 901–918.

[11] I. S. Lavrov, “Effective inseparability of the set of identically true formulae
and finitely refutable formulae for certain elementary theories”, Algebra and
Logic, vol 2(1963), pp. 5–18.

[12] E. G. K. Lopez-Escobar, “An interpolation theorem for denumerably long
formulas”, Fundamenta Mathematicae, vol. 57(1965), pp. 253–272.

[13] A. Mal’tsev, “Some correspondences between rings and groups”, Matematich-
eskii Sbornik. New Series, vol. 50(1960), pp. 257–266

[14] D. Marker, Model Theory: an Introduction, Springer, GTM, 2002.
[15] A. Mekler, “Stability of nilpotent groups of class 2 and prime exponent”,

Journal of Symbolic Logic, vol. 46(1981), pp. 781–788.
[16] R. Miller, B. Poonen, H. Schoutens, A. Shlapentokh, “A computable functor

from graphs to fields”, Journal of Symbolic Logic, vol. 83(2018), no. 1, pp.
326–348.

[17] Montalbán A. : “Notes on the jump of a structure”. Mathematical Theory
and Computational Practice, CiE 2009 (K. Ambos-Spies, B. Löwe, W. Merkle
eds.) Lecture Notes in Computer Science, 5635 (2009) 372–378.

[18] Montalbán, Computable Structure Theory, draft of book.
[19] A. Nies, “Undecidable fragments of elementary theories”, Algebra Universalis,

vol. 35(1996), no. 1, pp. 8–33.
[20] L. J. Richter, “Degrees of structures”, Journal of Symbolic Logic, vol.

46(1981), no. 4, pp. 723–731.

Department of Mathematics, University of Notre Dame, USA
E-mail address: knight.1@nd.edu

Department of Mathematical Logic, Sofia University, Bulgaria
E-mail address: asoskova@fmi.uni-sofia.bg

Department of Mathematical Logic, Sofia University, Bulgaria
E-mail address: stefanv@fmi.uni-sofia.bg


