
STRONG JUMP INVERSION

W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT,
C. MCCOY, A. SOSKOVA, AND S. VATEV

Abstract. We say that a structure A admits strong jump inversion
provided that for every oracle X, if X ′ computes D(C)′ for some C ∼= A,
then X computes D(B) for some B ∼= A. Jockusch and Soare [13]
showed that there are low linear orderings without computable copies,
but Downey and Jockusch [7] showed that every Boolean algebra ad-
mits strong jump inversion. More recently, D. Marker and R. Miller
[19] have shown that all countable models of DCF0 (the theory of dif-
ferentially closed fields of characteristic 0) admit strong jump inversion.
We establish a general result with sufficient conditions for a structure
A to admit strong jump inversion. Our conditions involve an enumera-
tion of B1-types, where these are made up of formulas that are Boolean
combinations of existential formulas. Our general result applies to some
familiar kinds of structures, including some classes of linear orderings
and trees. We do not get the result of Downey and Jockusch for ar-
bitrary Boolean algebras, but we do get a result for Boolean algebras
with no 1-atom, with some extra information on the complexity of the
isomorphism. Our general result gives the result of Marker and Miller.
In order to apply our general result, we produce a computable enumer-
ation of the types realized in models of DCF0. This also yields the fact
that the saturated model of DCF0 has a decidable copy.

1. Introduction

We often identify a structure A with its atomic diagram D(A). Then
D(A)′ is the jump of the structure. This is the only notion of jump that
we shall actually use. We are interested in the following notion of jump
inversion.

The authors are grateful for support from NSF Grant DMS #1101123, which allowed
the first, third, fourth, and fifth authors to visit Sofia, allowed the sixth author to visit
Notre Dame, and allowed the seventh author to visit University of Portland. The second
author is grateful for support from RFBR-16-31-60077 and from Kazan Federal University,
which allowed him to visit Notre Dame. The third author is grateful for the support from
the Simons Foundation Collaboration Grant and from the CCFF and Dean’s Research
Chair Award of the George Washington University. Finally, the sixth and seventh authors
are grateful for support from BNSF, MON DN 02/16 and NSF Grant DMS #1600625.
Finally, the authors are grateful to the referees, for helpful suggestions, and especially for
making us aware of work of Marker and Miller on differentially closed fields.

1



2W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

Definition 1.1. A structure A admits strong jump inversion provided that
for all sets X, if X ′ computes D(C)′ for some C ∼= A, then X computes
D(B) for some B ∼= A.

Remark 1.2. The structure A admits strong jump inversion iff for all X,
if A has a copy that is low over X, then it has a copy that is computable in
X. Here when we say that C is low over X, we mean that D(C)′ ≤T X ′.

The definition of strong jump inversion was motivated by the following
result of Downey and Jockusch [7].

Theorem 1.3 (Downey-Jockusch). All Boolean algebras admit strong jump
inversion.

Sketch of proof. Let A be a Boolean algebra that is low over X. Then X ′

computes the set of atoms in A. Downey and Jockusch showed that if X ′

computes (A, atom(x)), then X computes a copy of A. The proof involves
some non-uniformity. A Boolean algebra with only finitely many atoms
obviously has a computable copy. Suppose A has infinitely many atoms. If
A is low over X, then there is an X-computable Boolean algebra B with
a function f , ∆0

2 relative to X, which would be an isomorphism from B to
A except that it may map a finite join of atoms in B to a single atom in
A. We convert f into an isomorphism by re-apportioning the atoms (see
Vaught [32]). �

Here are some further examples of structures that admit strong jump
inversion.

Example 1.4 (Equivalence structures). Each equivalence structure is char-
acterized up to isomorphism by the number of equivalence classes of vari-
ous sizes. We consider equivalence structures with infinitely many infinite
classes. It is well-known, and easy to prove, that such an equivalence struc-
ture has an X-computable copy iff the set of pairs (n, k) such that there
are at least k classes of size n is Σ0

2 relative to X. (See [1] for a complete
characterization of the equivalence structures with computable copies.)

Proposition 1.5. Let A be an equivalence structure with infinitely many
infinite classes. Then A admits strong jump inversion.

Proof. If A is low over X, then the set Q consisting of pairs (n, k) such that
there are at least k classes of size n is Σ0

2 relative to A, so it is Σ0
2 relative

to X. Then A has an X-computable copy. �

Example 1.6 (Abelian p-groups of length ω). By Ulm’s Theorem, a count-
able Abelian p-group is characterized up to isomorphism by the Ulm sequence
and the dimension of the divisible part. For an account of this, see [14]. An
Abelian p-group of length ω can be expressed as a direct sum of copies of
Zpn+1, for finite n, and the Prüfer group Zp∞. Then the Ulm sequence is
(un(G))n∈ω, where un(G) is the number of direct summands of form Zpn+1.
The dimension of the divisible part is the number of direct summands of



STRONG JUMP INVERSION 3

form Zp∞. It is well-known, and easy to prove, that if G is an Abelian p-
group of length ω with a divisible part of infinite dimension, then G has an
X-computable copy iff the set {(n, k) : un(G) ≥ k} is Σ0

2 relative to X.

Proposition 1.7. Let G be an Abelian p-group of length ω such that the
divisible part has infinite dimension. Then G admits strong jump inversion.

Proof. Suppose G itself is low over X. The set {(n, k) : un(G) ≥ k} is
Σ0

2 relative to G, so it is Σ0
2 relative to X. Then G has an X-computable

copy. �

Not all countable structures admit strong jump inversion.

Example 1.8. Jockusch and Soare [13] showed that there are low linear
orderings with no computable copy.

Example 1.9. Let T be a low completion of PA. There is a model A such
that the atomic diagram D(A), and even the complete diagram Dc(A), are
computable in T . Then D(A)′ is ∆0

2. By a well-known result of Tennenbaum,
since A is necessarily non-standard, there is no computable copy.

In Section 2, we give a general result with sufficient conditions for strong
jump inversion. In Section 3, we give several applications of our general
result. The last of these gives the result of Marker and Miller [19] saying
that all models of DCF0 admit strong jump inversion. We add a result
saying that the countable saturated model of DCF0 has a decidable copy.
In the remainder of Section 1, we mention briefly some further notions of
jump and jump inversion.

1.1. Further notions of jump and jump inversion. Recall that a rela-
tion R is relatively intrinsically Σ0

α on a structure A if in all (isomorphic)
copies B of A, the image of R is Σ0

α relative to B. By a result of [2] and [6],
these are the relations that are definable in A by computable Σα formulas,
with parameters.

There is a computable set of indices for computable Σ1 formulas, so we can
enumerate, uniformly in D(A), all relations that are relatively intrinsically
Σ0

1 on A (r.i.c.e.). Moreover, we can uniformly compute all of these relations
from the Turing jump of the diagram, D(A)′. The jump of A is often defined
to be a structure A′ obtained by adding to A a specific named family of
r.i.c.e. relations, from which all others are effectively obtained. Then the
r.i.c.e. relations on A′ are just those which are relatively intrinsically Σ0

2 on
A itself.

Definition 1.10 (Canonical jump). For a structure A, the canonical jump
is a structure A′ = (A, (Ri)i∈ω), where (Ri)i∈ω are relations from which we
can uniformly compute all r.i.c.e. relations on A, and from the index i of the
relation Ri, we can compute the arity of Ri and a computable Σ1 formula
(without parameters) that defines it in A.



4W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

Remark 1.11. The set ∅′ is included in the canonical jump. We may give
it by a family of relations Rf(e), for a computable function f , where Rf(e)

is always true if e ∈ ∅′ and always false otherwise. We may define Rf(e) by
the computable Σ1 formula

∨
s τe,s, where τe,s is > if e has entered ∅′ by step

s and ⊥ otherwise.

The original definition of the jump of A, as a structure, appears in the
Ph.D. thesis of Baleva, supervised by Soskov [4, 5]. The definition was
later used by A. Soskova and Soskov [29] for some jump inversion theorems.
The definition in [29] looks slightly different. Some arithmetic is added to
the structure, and the sequence of relations is coded by a single relation.
The domain of A′ is the “Moschovakis extension” of A with an appropriate
coding mechanism, and the added relation is one that codes the forcing
relation of the computable infinitary Σ0

1 formulas as an analogue of Kleene’s
set K. There is yet another notion of jump, which involves Σ-definability
in the hereditarily finite sets over a base structure. This notion appears in
work of Morozov [24], Stukachev [30, 31], Puzarenko [26], and others from
the Novosibirsk school. It applies to base structures of arbitrary cardinality.

Montalbán [21] initially used relatively intrinsically Π0
1 relations instead

of r.i.c.e. relations. The definition given above is a modification of the one
in [21], which was arrived at after some group discussions in Sofia in the
summer of 2011. In the spring of 2012, Russian, Bulgarian, and U.S. re-
searchers gathered in Chicago for further discussions of the notions of jump,
at the workshop “Definability in computable structures”, funded mainly by
the Packard Foundation. Later, Montalbán proved that the different-looking
definitions are equivalent (see [22]).

For some structures, there is a smaller subset of the relations that is
sufficiently powerful to replace the full set.

Definition 1.12 (Structural jump). A structural jump of A is an expansion
A′ = (A, (Ri)i∈ω) such that each Ri has a Σ1 defining formula that we can
compute from i, and every relation that is relatively intrinsically Σ0

2 on A is
r.i.c.e. on A′ ⊕ ∅′.

Here the structure A′ ⊕ ∅′ is the expansion of A′ by a family of relations
that encode the set ∅′, as explained in Remark 1.11.

For certain classes of structures, there is a structural jump formed by
adding a finite set of such relations. In particular, the relation atom(x)
is sufficient for Boolean algebras, and the successor relation succ(x, y) is
sufficient for linear orders. See [21] for further examples.

There are different statements of “jump inversion”. The well-known Fried-
berg Jump Inversion Theorem says that if ∅′ ≤T Y , then there is a set X
such that X ′ ≡T Y ≡ ∅′ ⊕ X. We can easily produce a structure B such
that X ≡T B, and then Y ≡T B′. This is one kind of jump inversion. A
more interesting kind of jump inversion theorem was proved by Soskov and
A. Soskova [28], [29], and later (independently) by Montalbán [21].



STRONG JUMP INVERSION 5

Theorem 1.13 (Soskov, A. Soskova, Montalbán). For any countable struc-
ture A, if Y computes a copy of the canonical jump A′ of A, there exists a
set X such that X ′ ≡T Y and X computes a copy of A.

The proposition below shows that we can express strong jump inversion
in terms of copies of the canonical jump structure A′, as opposed to the
Turing jump of the atomic diagram for various copies B.

Proposition 1.14. For any structure A, the following are equivalent:

(1) A admits strong jump inversion.
(2) For all sets X, if X ′ computes a copy of the canonical jump A′ of
A, then X computes a copy of A.

(3) For all sets X and Y , if X ′ ≡T Y ′ and Y computes a copy of A then
so does X.

Proof. For (2) ⇒ (1), assume A has a copy B with (D(B))′ ≤T X ′. Since
D(B′) ≤T (D(B))′ ≤T X ′, (2) implies that X computes a copy of A.

For (1)⇒ (3), let X ′ ≡T Y ′, where Y computes a copy B of A. Then X ′

computes D(B)′. By (1), X computes a copy of A.
For (3) ⇒ (2), suppose X ′ computes a copy of A′. By Theorem 1.13,

there exists Y such that Y computes a copy of A and Y ′ ≡T X ′. By (3), X
computes a copy of A. �

2. General result

In this section, we give a result with conditions sufficient to guarantee
that a structure admits strong jump inversion. The result is not difficult to
prove. However, there are a number of examples where it applies. To state
the result, we need some definitions.

Definition 2.1. Let S be a countable family of sets. An enumeration of S is
a set R of pairs (i, k) such that S is the family of sets Ri = {k : (i, k) ∈ R}.
If A = Ri, we say that i is an R-index for A.

Note: When we say that R is a computable enumeration of a family of
sets, we mean that R is a computable set of pairs. This means that the
sets Ri are computable, uniformly in i. Some researchers have used the term
differently, saying that R is a computable enumeration if the sets Ri are
uniformly computably enumerable.

Below, we define Bn-types precisely. We shall focus on B1-types.

Definition 2.2.

(1) A Bn-formula is a finite Boolean combination of ordinary finite ele-
mentary Σn-formulas.

(2) A Bn-type is the set of Bn-formulas in the complete type of some
tuple in some structure for the language.



6W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

Definition 2.3. Fix a structure A. Let S be a set of B1-types including all
those realized in A. Let R be an enumeration of S. An R-labeling of A is
a function taking each tuple ā in A to an R-index for the B1-type of ā.

We are interested in structures A with the following property.

Definition 2.4 (Effective type completion). The structure A satisfies ef-
fective type completion if there is a uniform effective procedure that, given
a B1-type p(ū) realized in A and an existential formula ϕ(ū, x) such that
(∃x)ϕ(ū, x) ∈ p(ū), yields a B1-type q(ū, x) with ϕ(ū, x) ∈ q(ū, x), such that
if ā in A realizes p(ū), then some b in A realizes q(ā, x).

Here is our general result.

Theorem 2.5. A structure A admits strong jump inversion if it satisfies
the following conditions:

(1) There is a computable enumeration R of a set of B1-types including
all those realized by tuples in A.

(2) A satisfies effective type completion.
(3) For all sets X, if X ′ computes the jump of some copy of A, then X ′

computes a copy of A with an R-labeling.

Moreover, if C is a copy of A with an X ′-computable R-labeling, then we get
an X-computable copy B of A with an X ′-computable isomorphism from B
to C.

Remark 2.6. For some structures A, Condition (3) is satisfied in a strong
way. For any C ∼= A, D(C)′ computes an R-labeling of C. Hence, if A is
low, there is a ∆0

2 isomorphism from A to a computable copy.

Proof of Theorem 2.5. Suppose that A satisfies the three conditions. Let X
be a set such that X ′ computes the jump of some copy of A. By Condition
(3), X ′ computes a copy with an R-labeling. We must show that there is an
X-computable copy. For simplicity, we suppose that A has a ∆0

2 R-labeling,
and we produce a computable copy B, basing our construction on guesses
at various portions of the R-labeling of A. Note that once we have guessed
the label for a tuple ā correctly, we computably know the entire B1-type of
that tuple. We build a computable copy B and a ∆0

2 isomorphism f from B
to A. We have the following requirements.

R2a: a ∈ ran(f)

R2b+1: b ∈ dom(f)

We start with an R-index for the type of ∅, where this type is the B1-
theory of A. At each stage s, we have a tentative partial isomorphism fs
mapping a tuple d̄ from B to a tuple c̄ in A, where the R-indices of the
types of c̄ and all of its initial segments still look correct. (At a later stage
t, we may see that some of the guesses at these indices are incorrect, and we
retain only the portion of fs satisfying an initial segment of requirements



STRONG JUMP INVERSION 7

based on guesses at R-indices that all look correct.) Moreover, we have
enumerated a finite part δ(d̄, b̄) of the atomic diagram of B; this can never
change, since B must be computable. We will have checked the consistency
of δ(d̄, b̄) with our guesses at the R-indices of the B1-types of the tuple c̄ and
its initial segments. Supposing that the function taking d̄ to c̄ satisfies the
earlier requirements, we can satisfy the requirement R2a once we guess the
R-index for the B1-type p(ū, x) of c̄, a. We map some b, either old or new,
to a so that δ(ū, v̄) is consistent with p(ū, x). (Recall that the B1-types are
computable.)

Suppose that the function taking d̄ to c̄ satisfies the requirement Ri for
all i < 2b + 1, and R2b+1 is least that is unsatisfied at this stage s. Again,
we assume that we have correct guesses on the R-indices for the B1 types
of c̄ and all of its initial segments; let p(ū) be the B1-type of c̄. Finally, we
have put δ(d̄, b, b̄) in the atomic diagram of B. Now we use the assumption
of effective type completion. We determine, effectively in p(ū) and the exis-
tential formula (∃v̄)δ(ū, x, v̄), a type q(ū, x) appropriate for c̄ and a putative
fs(b). If c̄ realizes p(ū), then some a will realize q(c̄, x). At step s, we can
give a computable index for q(ū, x), but not an R-index.

By effective type completion, if p(ū) really is the B1-type of c̄, then q(c̄, x)
will be realized in A. We define fs(b) as follows. We find the first a such
that, based on our guess at the R-index of the B1 type of c̄, a, this type
and q(ū, x) agree on the first s formulas; then fs(b) = a. Of course, this
guess at the element a is likely wrong. Therefore, in order to guarantee that
this requirement is satisfied, at each subsequent stage t, we need to check
that, based on our guess at the R-index of the B1 type of c̄, a, this type and
q(ū, x) agree on the first t formulas. If this is not the case, then we need
to re-define ft(b), but always maintaining q(ū, x) as the guaranteed type
of q(c̄, f(b)), so long as our work on earlier requirements seems correct. (In
particular, note that as we check consistency of the atomic diagram with the
B1 types associated with requirement R2b+1, we use the computable index
for q(ū, x).) There is a first a realizing q(c̄, x), and eventually, we will have
the R-index for the B1 type of c̄, a. Then we will have fs(b) = f(b) = a. �

In several examples, A has effective type completion because it satisfies a
property that we call weak 1-saturation. To describe this property, we need
a preliminary definition.

Definition 2.7. Suppose p(ū) and q(ū, x) are B1-types. We say that q(ū, x)
is generated by the formulas of p(ū) and existential formulas provided that
q(ū, x) ⊇ p(ū), and for any universal formula ψ(ū, x) (in the indicated vari-
ables), writing neg(ψ) for the natural existential formula logically equivalent
to ¬ψ, we have ψ(ū, x) ∈ q(ū, x) iff there is a finite conjunction χ(ū, x) of
existential formulas in q(ū, x) such that (∃x)[χ(ū, x) & neg(ψ(ū, x))] is not
in p(ū).



8W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

Definition 2.8. The structure A is weakly 1-saturated provided that if p(ū)
is the B1-type of a tuple ā, and q(ū, x) is a B1-type generated by formulas
of p(ū) and existential formulas, then q(ā, x) is realized in A.

The following is clear.

Lemma 2.9. Let p(ū) be a B1-type. Suppose q(ū, x) is a B1-type that is
generated by formulas of p(ū) and existential formulas. Then q(ū, x) is con-
sistent with all extensions of p(ū) to a complete type in variables ū.

Proposition 2.10. If A is weakly 1-saturated, then it satisfies effective type
completion.

Proof. Let p(ū) be a B1-type, and suppose ϕ(ū, x) is an existential formula
such that (∃x)ϕ(ū, x) ∈ p(ū). We effectively produce a type q(ū, x) extend-
ing p(ū) and containing the formula ϕ(ū, x), such that if ā realizes p(ū), then
some b realizes q(ā, x). The type q(ū, x) is generated by formulas of p(ū)
and existential formulas, including the formula ϕ(ū, x). We determine this
B1-type computably as follows. We start with p(ū) and ϕ(ū, x). We have a
computable list (ϕn(ū, x))n∈ω of all existential formulas in variables ū, x, in
order of Gödel number. We consider these formulas, in order, and we put
ϕn(ū, x) into q(ū, x) iff it is consistent with what we have already put into
q(ū, x). (This consistency check is computable relative to p(ū), because it
entails only asking whether the relevant B1 formulas are in p(ū).) If we fail
to put ϕn(ū, x) in, then all tuples satisfying what we did put in must satisfy
neg(ϕn(ū, x)), so that is in q(ū, x). Knowing exactly which existential for-
mulas are in q(ū, x), we can determine which B1 formulas are in (using truth
tables). We have described an effective procedure for determining q(ū, x).
By weak 1-saturation, there is some b in A realizing q(ā, x). �

3. Examples

In this section, we consider some examples of structures that admit strong
jump inversion. The examples are chosen to illustrate the use of Theorem
2.5. In Subsection 3.1, we discuss two special kinds of linear orderings.
For both, we can apply Theorem 2.5. For the first, Condition (3) holds in
a strong way, as in Remark 2.6. In Subsection 3.2, we consider Boolean
algebras with no 1-atoms. The result of Downey and Jockusch says that
every low Boolean algebra has a computable copy. In the case where there
are no 1-atoms, our result gives a ∆0

3 isomorphism from a low copy to a
computable one. In Subsection 3.3, we apply Theorem 2.5 to some special
classes of trees.

In Subsection 3.4, we consider models of an ℵ0-categorical elementary
first order theory T such that T ∩ Σ2 is computably enumerable. The fact
that the B1-types are all isolated makes it easy to produce a computable
enumeration. By contrast, in Subsection 3.5, we consider models of the
theory of differentially closed fields of characteristic 0. Here, although the
theory is decidable, with all types computable, producing a computable



STRONG JUMP INVERSION 9

enumeration of them is not trivial. We get a result of Marker and R. Miller
[19] saying that all models of DCF0 admit strong jump inversion. Moreover,
a result of Morley in [23] implies that, since the types of the theory have
a computable enumeration, the saturated model of DCF0 has a decidable
copy.

3.1. Linear orderings. The second author proved strong jump inversion
for two special classes of linear orderings, with further results on complexity
of isomorphisms. The results are given in [9], [10], [11]. Here we prove these
results using Theorem 2.5.

First, we describe the possible B1 types in linear orderings. Every B1-
type p(ū) is determined uniquely by the sizes of the intervals to the left of
the first element, between successive elements, and to the right of the last
element. Thus, we can define a computable enumeration R of all B1-types
realized in linear orderings so that from the index i of the B1-type Ri, we
can effectively obtain the sizes of the intervals.

Let p(u1, u2) be a B1-type in which the interval (u1, u2) is infinite. We
consider B1-types q(u1, u2, x), with u1 < x < u2. To understand which of
these are generated by formulas from p(u1, u2) and existential formulas, it
is helpful to consider the following cases.

Case 1: Let q(u1, u2, x) be a B1-type such that the interval (u1, x) is finite,
of size k, and the interval (x, u2) is infinite. Let t(u1, u2) be a complete
type saying that u1 and u2 are infinitely far apart and u1 belongs to a
maximal discrete interval of size less than k. Clearly, p(u1, u2) is consistent
with t(u1, u2), whereas q(u1, u2, x) is not. By Lemma 2.9, q(u1, u2, x) is not
generated by p(u1, u2) and existential formulas.

Case 2: Let q(u1, u2, x) extend p(u1, u2) such that u1 < x < u2, and the
intervals (u1, x) and (x, u2) are both infinite. Then q(u1, u2, x) is generated
by p(u1, u2) and the infinite set of existential formulas saying that for each
n, there are at least n elements in the intervals (u1, x) and (x, u2).

Proposition 3.1. Let A be a linear ordering such that every infinite interval
can be split into two infinite parts. Then A is weakly 1-saturated.

Proof. For a tuple ā, we consider the possible B1-types q(ā, x). First, sup-
pose q(ā, x) locates x in a finite interval (−∞, a0), (ai, ai+1), or (an,∞) so
that the sizes of the two subintervals to the left and right of x add up prop-
erly. Then q(ū, x) is generated by formulas of p(ū) and existential formulas
saying that the subintervals have at least the desired size, and q(ā, x) must
be realized. Next, suppose q(ā, x) locates x in an infinite interval (−∞, a0),
(ai, ai+1), or (an,∞). If q(ā, x) is generated by formulas of p(ū) and exis-
tential formulas, then x must split the interval into two infinite parts. The
ordering A has exactly this feature. �

Here is the simpler of the two results on linear orderings.



10W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

Theorem 3.2. Let A be a linear ordering such that each element lies on
a maximal discrete set that is finite. Suppose there is a finite bound on the
sizes of these sets. Then A admits strong jump inversion. Moreover, if A is
low over X, then there is an X-computable copy with an isomorphism that
is ∆0

2 relative to X.

Proof. Let N be the finite bound on the sizes of the maximal discrete sets.
It is ∆0

2 relative to A to say that the interval (a, b) has size n for some fixed
n. It is Σ0

1 relative to A to say that the interval is infinite—we just ask
whether the interval has size greater than N .

Suppose that A is low over X. We can apply a procedure that is ∆0
2

relative to X to assign an R-index to the type of any tuple ā = (a1, . . . , an).
Any of the intervals (−∞, a1), (an,∞) and (ai, ai+1) is infinite if it has
size greater than N . Using a procedure that is ∆0

2 relative to X, we can
determine whether the size is k, for k ≤ N . We have an R-labeling of A
that is ∆0

2 relative to X. Then Theorem 2.5 gives an X-computable copy
with an isomorphism that is ∆0

2 relative to X. �

The next result, Theorem 3.3, is more complicated. Before we state the
result, we review some well-known, basic concepts about linear orderings.
Recall the block equivalence relation ∼ on a linear ordering A, where a ∼ b
iff [a, b] is finite. For any linear ordering A, each equivalence class under this
relation is an interval that is either finite or of order type ω, ω∗, or ζ = ω∗+ω.
Furthermore, the quotient structure A/∼ is itself a linear ordering, where
each distinct point represents an equivalence class under ∼.

In Theorem 3.3, for a given A that is low over X, it is not clear that A
itself has an R-labeling that is ∆0

2 relative to X. However, we can build
a copy B with such an R-labeling. We write η for the order type of the
rationals.

Theorem 3.3. Let A be a linear ordering for which the quotient A/∼ has
order type η. Suppose also that in A, every infinite interval has arbitrarily
large finite successor chains. Then A admits strong jump inversion. More-
over, if A is low over X, then there is an X-computable copy B with an
isomorphism that is ∆0

3 over X from A to B.

Proof. As in the previous result, let R be a computable enumeration of all
B1-types realized in linear orderings, such that from the index i of the type
Ri, we can compute the sizes, including ∞, of the intervals. Also, as in the
previous result, every infinite interval in A has an element that splits the
interval into two infinite parts. This implies that A is weakly 1-saturated.
Suppose A is low over X. We will prove the following.

Lemma 3.4. There is a copy B of A with an R-labeling that is ∆0
2 over X.

Moreover, there is an isomorphism f from B to A such that f is ∆0
3 relative

to X.

Assuming the lemma, we complete the proof of Theorem 3.3 as follows.
Given A, low over X, the lemma gives a copy B with an R-labeling that is



STRONG JUMP INVERSION 11

∆0
2 relative to X, and an isomorphism f from B to A that is ∆0

3 relative to
X. By Theorem 2.5, there is an X-computable copy C with an isomorphism
g from C to B that is ∆0

2 relative to X. Then f ◦ g is an isomorphism from
C to A that is ∆0

3 relative to X.

Proof of Lemma. For simplicity, we suppose that A is low. We build a ∆0
2

copy B, along with some labels for sizes of intervals and a ∆0
3 isomorphism

f . We suppose that the universe of A is ω. The copy B, also with universe
ω, will have the intervals labeled by size. Throughout, we use the oracle
∆0

2. Suppose An is the true ordering on the first n elements of A, with
the intervals correctly labeled by size. At stage s, we construct (using the
∆0

2 oracle) an approximation An,s in which the intervals are either correctly
labeled with a finite number at most s, or else carry the label ∞. We have
a finite sub-ordering Bs of B in which the intervals are labeled by size, once
and for all.

We want an isomorphism f from B onto A. We must satisfy the following
requirements.

R2a: Put a into ran(f).

R2b+1: Put b into dom(f).

By the end of each stage s, we have a finite function fs that seems to
satisfy the first few requirements, so that our current labels on the intervals
with endpoints in ran(fs) match the labels on the corresponding intervals
in dom(fs). Moreover, we ensure that if fs(b) = a, then for any successor
chain around b in Bs, we also have seen, by stage s, a corresponding successor
chain around a in A.

An interval that seemed infinite at stage s may be seen to be finite at stage
s + 1. So in defining fs+1, we first determine the largest initial segment of
fs (in terms of priority requirements) that can be preserved. Consider the
highest priority requirement that now must be satisfied.

Suppose the next requirement to be satisfied is to put a into ran(f).
We have no problem finding an appropriate pre-image b and assigning the
appropriate sizes to the intervals having b as an endpoint.

Suppose the next requirement to be satisfied is to put b into dom(f). In
the interesting sub-case, b lies in an interval (d, d′), where (d, b) and (b, d′)
are both labeled infinite, fs(d) = c and fs(d

′) = c′, where (c, c′) appears to
be infinite. We need to define a = fs+1(b) such that (c, a) and (a, c′) both
appear infinite, and whatever successor chain surrounding b is matched by
one surrounding a. The naive strategy is to just look for a. This strategy
may not work. Believing that we have found a, and seeing that a lies in a
finite interval inside (c, c′), we may create a bigger successor chain around b,
inside (d, d′). Eventually, we may discover that the interval (c, a) or (a, c′)
is finite. Now, we cannot map b to a. Moreover, we have made the search
for f(b) more difficult in that it must lie in a larger finite interval matching



12W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

the one we have created around b. This can keep happening. Our current
guess at the appropriate a = f(b) may keep attaching itself to a successor
chain around c or c′.

We need a better strategy. Instead of trying to define a = fs+1(b) imme-
diately, we identify the first (relative to the standard ordering on pairs of
the universe ω of A) “buffer pair” (z, z′) such that (c, z), (z, z′) and (z′, c′)
all appear infinite in A. Once we find such a (z, z′), then we search within
(z, z′) for an element a and a successor chain around it sufficient to match
whatever one we may have created around b; we define fs+1(b) = a. Assum-
ing the interval (c, c′) is correctly labeled as infinite, then, at some stage,
we will settle on the first correct buffer pair (z, z′), i.e., one such that (c, z),
(z, z′) and (z′, c′) all are really infinite in A. Then, applying the hypothesis
about A, we are guaranteed to find in (z, z′) an element a with a finite in-
terval around it large enough to correspond to whatever one we may have
built around b by this stage. (Recall that, in general, when we map b to a
for some requirement, we vow not to locate b in a finite interval larger than
the one we have seen around a.) Following this procedure, we can eventually
satisfy all requirements. �

�

3.2. Boolean algebras. As we mentioned in the introduction, Downey and
Jockusch [7] showed that every low Boolean algebra has a computable copy.
In [16], it is shown that for a low Boolean algebra A, there is a computable
copy B with a ∆0

4 isomorphism. In unpublished work, the second author
proved that this is best possible, in the sense that there is a low Boolean
algebra with no ∆0

3 isomorphism taking A to a computable copy B.
For every element a in the Boolean algebra B, we say that a has size n if

it is the join of n atoms of B. If a is not the join of finitely many atoms of
B, then we say that a has infinite size. Here we consider Boolean algebras
with no 1-atoms, which means that every infinite element splits into two
infinite elements. To describe the B1-type of a tuple ā in B, we consider
the finite sub-algebra of B generated by ā. Note that an atom in this finite
sub-algebra is not necessarily an atom of B. It is easy to see that for a tuple
ā in B, the B1-type of ā is uniquely determined by the sizes in B of the atoms
in the finite sub-algebra generated by ā. Thus, we can define a computable
enumeration R of all B1-types realized in Boolean algebras so that from the
index i of the B1-type Ri we can effectively obtain the sizes of the atoms in
the sub-algebra generated by a tuple that satisfies this B1-type.

Let p(u) be a B1-type saying that u is infinite. We need to know which
B1-types q(u, x) are generated by p(u) and existential formulas. We have
two interesting cases.

Case 1: Let q(u, x) be the B1-type extending p(u) in which x splits u into
one finite element, say of size k, and one infinite element. Let t(u) be a
complete type saying that u has infinite size, but there are fewer than k



STRONG JUMP INVERSION 13

atoms below it. Clearly, p(u) is consistent with t(u), whereas q(u, x) is not.
By Lemma 2.9, it follows that q(u, x) is not generated by p(u) and existential
formulas.

Case 2: Let q(u, x) be the B1-type extending p(u) in which x splits u into
two elements of infinite sizes. Then q(u, x) is generated by p(u) and the
infinite set of existential formulas saying that there are at least n distinct
elements below x and u \ x, for every n.

The proof of the following is then straightforward.

Lemma 3.5. If A is a Boolean algebra with no 1-atoms, then A is weakly
1-saturated.

Proposition 3.6. Suppose A is an infinite Boolean algebra with no 1-atoms.
Then A admits strong jump inversion. Moreover, if A is low over X, there
is an X-computable copy B with an isomorphism that is ∆0

3 relative to X.

Proof. We are assuming that A is low over X. To show that there is an
X-computable copy, it is enough to show the following.

Lemma 3.7. Let A be Boolean algebra with no 1-atom. If A is low over
X, then X ′ computes a copy B with an R-labeling. Moreover, there is an
isomorphism f from B to A that is ∆0

3 relative to X.

Proof. For simplicity, we suppose that A is low, and our entire construction
uses a ∆0

2 oracle. For notational convenience, when we write ā ∈ A or b̄ ∈ B,
we identify the tuple with the finite sub-algebra (of A or B) determined by
the tuple. Since A is low, the atom relation on A is ∆0

2. Since we will guess
(using the ∆0

2 oracle) that an element of A is finite iff we recognize it as
the join of finitely many atoms of A, any such guess is correct. Now at a
particular stage s, our guess may incorrectly assign an R-label of infinite to
a finite element a of A; however, there will be a stage t where we correctly
guess the R-label of a from that stage onward. For any truly infinite element
a, we guess the R-label correctly at all stages.

We must computably (relative to ∆0
2) construct B with an R-labeling and

an isomorphism f between B and A that is correct in the limit, so that f
is ∆0

3.
As usual, we have the following requirements.

R2a: a ∈ ran(f)

R2b+1: b ∈ dom(f)

At stage s = 0, we define f(0B) = 0A and f(1B) = 1A; this will never
change. We guess that 1A is labeled with ∞ (this will never be wrong), and
we label 1B with ∞.

Assume that by the end of stage s we have defined b̄ ∈ B with R-labels
and fs : d̄→ c̄, where d̄ is a subsequence of b̄, so that the following hold:



14W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

(1) the finite algebras d̄ and c̄ agree;
(2) if fs(d) = c, then the R-label on d matches the stage s approximation

of the R-label on c;
(3) if fs(d) = c, and the finite R-labels among those we have assigned

to Bs imply that there are at least k atoms (of B) below d, then by
stage s, we have seen at least k atoms below c.

Stage (s + 1) approximations of R-labelings of A may reveal that an
element in A with stage s approximate R-label ∞ actually is finite. So in
defining fs+1, we first determine the largest initial segment of fs (in terms of
priority requirements) that can be preserved. Consider the highest priority
requirement that now must be satisfied.

Suppose the next requirement to be satisfied is to put a into ran(f). The
element a splits each atom α of the subalgebra c̄ into α1 and α2, each of
which has a stage s+1 approximation of its R-label. If fs(β) = α, then β can
be split—using the other elements of b̄ or introducing new elements into B if
necessary—into β1 and β2 so that if we extend fs by defining fs+1(β1) = α1

and fs+1(β2) = α2, then properties (1) - (3) above are maintained and R2a

is satisfied.
Suppose the next requirement to be satisfied is to put b into dom(f).

If b has not yet appeared among b̄, then simply extend fs to include b in
any way consistent with what we’ve defined so far about b̄ and consistent
with conditions (1)-(3) above, and define the R-labels on the elements of
b̄, b accordingly. Otherwise, b splits each atom β of the subalgebra d̄ into
β1 and β2, each of which has an R-label that must be preserved. The only
interesting case is when β1, β2 both have R-label ∞. By conditions (1) and
(2) above, α, the atom in c̄ corresponding to β, has a current approximate R-
label∞. Because A contains no 1-atom, we “look ahead” if necessary, either
to discover that this R-label on α is incorrect, or to find the least (in terms
of the universe ω) element α1 below α so the approximate R-labels of both
α1 and α−α1 are ∞. If we discover the former, then we must use a smaller
initial segment of fs and start over to satisfy a higher priority requirement.
Otherwise, we are almost ready to meet the requirement R2b+1. If the R-
labels in b̄ imply that there are at least k1 atoms (of B) below β1 and at
least k2 atoms (of B) below β2, then by property (3) above, we have seen
at least k1 + k2 atoms (of A) below α. Consider the element α1± finitely
many atoms below α so that this new element α′1 has at least k1 atoms
below it, and α − α′1 has at least k2 atoms below it. Extend fs by defining
fs+1(β1) = α′1 and fs+1(β2) = α − α′1. Then properties (1) - (3) above are
maintained and R2b+1 is satisfied. �

�

3.3. Trees. We consider some special classes of subtrees of ω<ω. Our trees
grow downward. The top node is ∅. For the language of trees, we use
the predecessor function, where ∅—the root—is its own predecessor. We
consider two special classes of trees. The first is very simple.



STRONG JUMP INVERSION 15

Proposition 3.8. Suppose A is a tree such that the top node is infinite (i.e.,
it has infinitely many successors), and each infinite node has only finitely
many successors that are terminal, with the rest all infinite. Then A admits
strong jump inversion.

Proof. The B1-type of a tuple ā is determined by the subtree generated by
ā and labels “infinite” or “terminal” on the nodes, in particular, on the ai.
We have a computable enumeration of all possible labeled finite subtrees of
trees of this kind. From this, we get a computable enumeration R of the
B1-types. Suppose that A is low. Then there is a ∆0

2 R-labeling of A.

Weak 1-saturation. Take ā in A. Consider a possible B1-type p(ā, x),
generated by formulas true of ā and existential formulas. The type may
locate x in the subtree generated by ā. Then the type is realized. The type
may locate x properly below some infinite ai, or at some level not below any
ai. Again the type is realized by a new infinite element.

By Theorem 2.5, we get a computable copy of A. �

The second class of trees is a bit more complicated. We use some defini-
tions and notation. If T is a sub-tree of ω<ω, and a ∈ T , we write Ta for the
tree consisting of a and all nodes below.

Definition 3.9. For nodes a in a fixed tree T ,

(1) we say that a is finite if Ta is finite,
(2) we say that a is infinite if Ta is infinite. (For the trees we consider

below, if a is infinite, we will require not only that Ta is infinite, but
also that a has infinitely many successors, so we will have agreement
with the definition we used in Proposition 3.8.)

Notation. Let a be finite, with Ta the subtree below a. Let T 1
a be a possible

re-labeling of the nodes in Ta in which the nodes in a subtree are labeled∞.
We write (T 1

a )∗ for the infinite tree that results from extending the labeled
tree T 1

a so that all new nodes in (T 1
a )∗ are labeled∞, and each node labeled

∞ has infinitely many successors labeled ∞. (No finite node in T 1
a acquires

successors in (T 1
a )∗.)

Here is the result for the second class of trees.

Proposition 3.10. Suppose T is a subtree of ω<ω such that the top node
is infinite, and for any infinite node a, there are only finitely many finite
successors. Suppose also that for any infinite node a, for any finite successor
b, if T 1

b is a possible re-labeling of Tb making all nodes in a certain subtree
infinite, then there are infinitely many successors bn of a such that
Tbn
∼= (T 1

b )∗. Then T admits strong jump inversion.

Proof. For simplicity, we suppose that T is low, and we apply Theorem 2.5
to produce a computable copy. For a tuple ā in T , the B1-type of ā is deter-
mined by the subtree generated by ā and formulas saying, for an element a



16W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

of this subtree that it is infinite, or that it is finite with a specific finite tree
Ta. We can show that T is weakly 1-saturated. Consider a B1-type for ā, x,
generated by B1-formulas true of ā and existential formulas. The type may
put x in the subtree generated by ā, or in one of the trees Tai , where ai (in
the subtree) is finite. In either of these cases, the type is realized. Or, the
type may put x below some infinite ai (in the subtree). Again, the type is
realized, since there is a copy of ω<ω below ai. This shows that A is weakly
1-saturated.

We have a computable enumeration of the possible finite labeled subtrees,
and, hence, of the B1-types realized in trees of this kind. Let R be this
computable enumeration of B1-types. To apply Theorem 2.5, we need the
following.

Lemma 3.11. There is a copy B of T with a ∆0
2 R-labeling.

Proof. We build a ∆0
2 copy B of T with nodes labeled as infinite, or with a

specific finite tree below. We suppose that the ω-list of elements of T has
the feature that the top element comes first, and any other element comes
after its predecessor. This condition will also hold for the copy B. For B,
we label the top node ∞. Having built a finite labeled subtree of B, and
determined a tentative partial isomorphism f from this to a subtree of T ,
we may find that some first node b labeled ∞ in B is mapped to a node a
in T such that Ta is actually finite. The predecessor of b, say b′, is labeled
∞, and we may still believe that the predecessor a′ of a in T has an infinite
tree below. In our B, we vow to add no more terminal nodes to Bb and we
look for a successor a′′ of a with the appropriate Ta′′ . At a given stage, we
take the first a′′ that seems to work. Our first guess may not be correct—we
may eventually see an unwanted finite node in Ta′′ . However, because of
the structural properties we are assuming about T , we will eventually find
a good a′′, with Ta′′ matching our Bb. �

Applying Theorem 2.5, we get a computable copy of T . �

3.4. Models of a theory with few B1-types. Lerman and Schmerl [17]
gave conditions under which an ℵ0-categorical theory T has a computable
model. They assumed that the theory is arithmetical and T ∩ Σn+1 is Σ0

n

for each n. In [15], the assumption that T is arithmetical is dropped, and,
instead, it is assumed that T ∩Σn+1 is Σ0

n uniformly in n. The proof in [17]
gives the following.

Theorem 3.12 (Lerman-Schmerl). Let T be an ℵ0-categorical theory that
is ∆0

N and suppose that for all 1 ≤ n < N , T ∩ Σn+1 is Σ0
n. Then T has a

computable model.

To prove this, Lerman and Schmerl showed the following.

Lemma 3.13. For any n < N , if A is a model whose Bn+1-diagram is
computable in X ′, and T ∩Σn+2 is Σ0

1 in X, then there is a model B whose
Bn-diagram is computable in X.



STRONG JUMP INVERSION 17

Let T be as in the Lerman-Schmerl Theorem. Let A be a model of T that
is low over X. Then the Σ1 diagram of A is computable in X ′. Of course,
T ∩ Σ2 is Σ0

1, so it is Σ0
1 relative to X. The lemma implies that A has an

X-computable copy. In fact, we get the following.

Theorem 3.14. Let T be an elementary first order theory, in a computable
language, such that T ∩ Σ2 is Σ0

1. Suppose that for each tuple of variables
x̄, there are only finitely many B1-types in variables x̄ consistent with T .
Then every model A admits strong jump inversion. Moreover, if A is low
over X, then there is an X-computable copy B with an isomorphism that is
∆0

2 relative to X.

Proof. First, we show that there is a computable enumeration of all the B1-
types. Uniformly in each tuple of variables x̄, we build a c.e. tree Px̄ whose
paths represent the B1-types in x̄. We have a computable enumeration of
B1-formulas (ϕn(x̄)n∈ω. At level n, the nodes σ in Px̄ represent the different
finite sequences of formulas ±ϕk (in the appropriate tuple of variables), for
k < n, that we see to be consistent with T , using the fact that T ∩Σ2 is c.e.
Note that each node σ ∈ Px̄ extends to a path. Also, Px̄ has only finitely
many paths. We may suppose, running the enumeration of T ∩ Σ2 ahead,
if necessary, that at step s, for the first s tuples of variables x̄, the terminal
nodes in our approximation to Px̄ all have length s.

We use all of these trees together to define the enumeration R. At stage
s, we have assigned indices to the currently terminal nodes σ in Px̄ for the
first s tuples of variables x̄. For a given node σ, assigned index i, we will
have put into Ri the formulas ±ϕ corresponding to this node σ. At stage
0, we assign the index 0 to the top node of P∅. At stage s + 1, for each of
the first s tuples of variables x̄, each node σ of length s in Px̄ has at least
one extension of length s+ 1. We give the index of σ to one such τ . There
may be further extensions of σ or other old nodes, and we give these new
indices. In addition, for the (s+ 1)st tuple of variables x̄, we assign indices
to the terminal nodes of the stage s + 1 approximation. For the indices i
assigned by stage s + 1 to nodes σ of tree Px̄, we put into Ri all of the
formulas corresponding to σ. This process yields the desired computable
enumeration of the B1-types consistent with T .

Next, we show that A is weakly 1-saturated. Suppose q(ū, x) is a B1-
type (consistent, of course) generated by formulas true of ā and existential
formulas ϕ(ū, x). Since q(ū, x) is isolated, it is principal, with a generating
formula γ(ū, x), of the form ρ(ū) & χ(ū, x), where ρ(ū) is in the B1-type of
ā, and χ(ū, x) is a finite conjunction of existential formulas. B1 type of ā
includes the formula (∃x)χ(ū, x). We have (∃x)χ(ū, x) true of ā in A, so the
type is realized.

Lemma 3.15. If A is low over X, then there is an R-labeling of A that is
∆0

2 relative to X.



18W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

Proof. For simplicity, we suppose A is low. For a tuple of variables x̄, ∆0
2

can find generating formulas for all of the B1-types. Then ∆0
2 can check

which generating formula is true of a given tuple of elements ā. Then we
have a ∆0

2 R-labeling. �

Finally, we apply Theorem 2.5 to get an X-computable copy B of A with
an isomorphism from B to A that is ∆0

2 relative to X. �

Note: There are non-ℵ0-categorical theories satisfying the conditions of
Theorem 3.14.

Proof. We write Θ for the ordering of type η+2+η. In [8], it was shown that
for any linear ordering A, Θ · A has a computable copy iff A has a ∆0

2 copy.
Let T1 be a complete theory of linear orderings that is not ℵ0-categorical.
Let T be the complete theory whose models are exactly the orderings of
the form Θ · A, where A is a model of T1. The theory T has a sentence
saying that every element lies on an interval of type Θ. In addition, there
are axioms guaranteeing that the restriction of our ordering to the set of
elements that are the first in a successor pair satisfies all sentences ϕ in T1.

We note that the B1-types realized in models of T come from partitions
into intervals of size 0 or ∞, with no two adjacent intervals of size 0. These
are principal, so they are realized in all models of T . We note that if we
replace T1 by some other theory S1 of infinite linear orderings, and form S in
the same way, then the B1-types realized in any and all models of S would
be the same. Therefore, the Σ2 theories are the same. If S1 is decidable,
then so is S. Thus, whether or not T1 is decidable, T ∩Σ2 is decidable. We
chose T1 not ℵ0-categorical, so T is also not ℵ0-categorical. �

3.5. Differentially closed fields.

3.5.1. DF0. A differential field is a field with one or more derivations satis-
fying the following familiar rules:

(1) δ(u+ v) = δ(u) + δ(v), and
(2) δ(u · v) = u · δ(v) + δ(u) · v.

We consider differential fields of characteristic 0, and with a single deriva-
tion δ.

Trivially, Q is a differential field, under the derivation that takes all el-
ements to 0. If a is an element of a differential field K, then a generates
a differential field F ⊆ K, where the elements of F are gotten from a by
closing under addition, multiplication, subtraction, division, and derivation.

3.5.2. DCF0. Roughly speaking, a differentially closed field is a differential
field in which differential polynomials have roots, where a differential poly-
nomial is a polynomial p(x) in x and its various derivatives. We write DCF0

for the theory of differentially closed fields (of characteristic 0, with a single
derivation). A. Robinson showed that the theory DCF0 admits elimination
of quantifiers. L. Blum, in her thesis, gave a nice computable set of axioms,



STRONG JUMP INVERSION 19

showing that the theory is decidable. Thus, the elimination of quantifiers
is effective. Blum also showed that DCF0 is ω-stable. Then general model-
theoretic results imply the existence and uniqueness of prime models over an
arbitrary set. The existence and uniqueness of differential closures were not
proved by algebraic methods—they really used the model theoretic results.
For a discussion of differentially closed fields, emphasizing Blum’s results,
see Sacks [27].

3.5.3. Differential polynomials. We consider differential polynomials p(x) in
a single variable x. A differential polynomial p(x), over a differential field K,

may be thought of as an algebraic polynomial inK[x, δ(x), δ(2)(x), . . . , δ(n)(x)],
for some n. We write K〈x〉 for the set of differential polynomials over K.
Initially, we let K be Q, where δ(q) = 0 for all q ∈ Q. Later, K will be
a finitely generated extension of Q. Differential fields satisfy the quotient
rule—this is easy to prove from the product rule. From this, it follows that
if a is an element of a differential field extending K, and F is the differential
subfield generated over K by a, then each element of F can be expressed in

the form p(a)
q(a) , where p(x), q(x) ∈ K〈x〉.

Definition 3.16 (Order). For p(x) ∈ K〈x〉, the order is the greatest n such

that δ(n)(x) appears non-trivially in p(x). There are some special cases. An
algebraic polynomial in x (with no derivatives) has order 0. The 0 polynomial
has order ∞.

Definition 3.17 (degree, rank, order of ranks). For p(x) ∈ K〈x〉 of finite

order n, the degree of p(x) is the highest power k of δ(n)(x) that appears.
The rank of p(x) is the ordered pair (n, k), where n is the order and k is the
degree. We order the possible ranks of differential polynomials lexicographi-
cally.

Definition 3.18. A differential polynomial p(x) ∈ K〈x〉 of order n is said to
be irreducible if it is irreducible when considered as an algebraic polynomial
in K[x, δ(x), . . . , δ(n)(x)] (think of x and its derivatives as indeterminates).
We count the 0 polynomial as irreducible.

3.5.4. Blum’s axioms for DCF0. Blum’s axioms say that a differentially
closed field (of characteristic 0 and with a single derivation), is a differential
field K such that

(1) for any pair of differential polynomials p(x), q(x) ∈ K〈x〉 such that
the order of q(x) is less than that of p(x), there is some x satisfying
p(x) = 0 and q(x) 6= 0,

(2) if p(x) has order 0, then p(x) has a root.

The axioms of form (2) say that K is algebraically closed.

3.5.5. Types. We want to understand the types, in any number of variables,
realized in models of DCF0. For a single variable x, each type over ∅ is deter-
mined by an irreducible differential polynomial p(x) ∈ Q〈x〉. If p(x) ∈ Q〈x〉



20W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

is irreducible of order n, then the corresponding type consists of formulas
provable from the axioms of DCF0, the formula p(x) = 0 and further formu-
las q(x) 6= 0, for q(x) ∈ Q〈x〉 of order less than n. The formulas q(x) 6= 0,

for q(x) ∈ Q〈x〉 of order less than n, say that x, δ(x), δ(2)(x), . . . , δ(n−1)(x)
are algebraically independent over Q. We allow the case where p(x) is the
0 polynomial, which has order ∞. In this case, the corresponding type λp
consists of the formulas provable from the axioms of DCF0 and the formulas
q(x) 6= 0 for q(x) of all finite orders.

Similarly, for a differential field K, each type over K (to be realized in
some extension of K to a model of DCF0) is determined by an irreducible
differential polynomial p(x) ∈ K〈x〉. If p(x) is irreducible of order n, the
corresponding type λK,p consists of formulas provable from the axioms of
DCF0, the atomic diagram of K, the formula p(x) = 0, and further formulas
q(x) 6= 0, for q(x) of order less than n. The formulas q(x) 6= 0, taken

together, say that x, δ(x), . . . , δ(n−1)(x) are algebraically independent over
K.

A proof of the following result can be found in Sacks [27], pp. 297-298.

Proposition 3.19.

(1) If p(x) ∈ Q〈x〉 is irreducible, the corresponding type λp is complete
over ∅. Moreover, all types over ∅ (in the variable x) have this form.

(2) For a differential field K, if p(x) ∈ K〈x〉 is irreducible, then λK,p
is a complete type over K, and all types over K (in the variable x)
have this form.

Among the types in one variable (over ∅, or over K), there is a unique
type, obtained from the 0 polynomial, that is differential transcendental.
The other types, obtained from differential polynomials of finite rank, are
differential algebraic.

3.5.6. Types in several variables. In general, we can determine a type in
variables (x1, . . . , xn) by giving the type of x1 (over ∅), the type of x2 over
x1, the type of x3 over (x1, x2), and so on. To describe a type in variables
(x1, . . . , xn), we imagine a large differentially closed field M and we consider
various elements and differential subfields. The type of x1 is λp1 for some
irreducible p1 ∈ Q〈x1〉. Let K1 be the differential subfield of M generated
by x1 over Q, where x1 satisfies λp1 in M . The type of x2 over K1 is λK1,p2

for some irreducible p2 ∈ K1〈x2〉. Let K2 be the differential field generated
by x2 over K1. In general, given Ki generated by x1, . . . , xi, the type of xi+1

over Ki is λKi,pi+1 for some irreducible pi+1 ∈ Ki〈xi+1〉, and then Ki+1 is
the differential subfield of M generated by xi+1 over Ki.

3.5.7. Toward strong jump inversion. Marker and R. Miller [19] showed that
all models of DCF0 admit strong jump inversion. Our goal in this subsection
is to obtain this result using our Theorem 2.5. In the earlier applications of
Theorem 2.5, the structures satisfied the condition of effective type comple-
tion because they were weakly 1-saturated. Among the countable models



STRONG JUMP INVERSION 21

of DCF0, only the saturated one is weakly 1-saturated. There are 2ℵ0 non-
isomorphic countable models. (In fact, Marker and Miller gave a method
for coding an arbitrary countable graph in a model of DCF0.) We will need
to show effective type-completion in some other way. There is a lemma in
[19] that does exactly this. Since we have effective quantifier elimination, we
can work with quantifier-free types. Most of our effort goes into producing a
computable enumeration R of the quantifier-free types realized in models of
DCF0. Once we have this, we can show easily that for any model A, D(A)′

computes an R-labeling of A. This puts us in position to apply Theorem 2.5.

3.5.8. Computable enumeration of types. It may at first seem that it should
be easy to produce a computable enumeration of types. After all, the theory
DCF0 is decidable and all types are computable. However, T. Millar [20]
gave an example of a decidable theory T , with all types computable, such
that there is no computable enumeration of all types. So, we have some
work to do.

By quantifier elimination, we can pass effectively from a quantifier-free
type λ(x̄) to the complete type generated by DCF0 ∪λ(x̄). In what follows,
we will enumerate quantifier-free types. We will consider realizations of
the quantifier-free types in differential fields K that are not differentially
closed, bearing in mind that a tuple realizing λ(x̄) in K will realize the
corresponding complete type generated by DCF0 ∪λ(x̄) in any extension of
K to a model of DCF0.

We eventually give a uniform procedure that, for a given tuple of variables
x̄, yields an enumeration of the types in x̄. But first, we give a procedure for
a single variable x in order to elucidate the relevant issues before proceeding
to the full procedure. We determine a type λ(x) corresponding to each
differential polynomial p(x) ∈ Q〈x〉, irreducible or not. Let (ϕs)s∈ω be
a computable list of the atomic formulas in variable x, in order of Gödel
number. At each stage, we will have put into λ(x) finitely many formulas,
always checking consistency with DCF0.

At stage 0, we put into the type λ(x) just the formula p(x) = 0, assuming
that this is consistent. We also determine the order of p(x)—we can do this
just by inspection. At stage s, we will decide ϕs, putting it or its negation
into λ(x). If p(x) is irreducible, there will be a proof of exactly one of ϕs,
¬ϕs from DCF0, p(x) = 0, and the formulas q(x) 6= 0, for q(x) ∈ Q〈x〉 of
order less than that of p(x). So, we search for a proof. Being reducible is
c.e., and if p(x) is reducible, we will eventually see this.

At stage s, we search until we either find a proof of ±ϕs or discover that
p(x) is reducible. If we find a proof of ϕs (or ¬ϕs), then we add this formula
to our type, provided that it is consistent to do so. If we find that p(x) is
reducible, then we just decide ϕs so as to maintain consistency with DCF0.
The procedure we have just described gives a type λ corresponding to each
p ∈ Q〈x〉. If p is irreducible, then λ = λp. Thus, by considering all p ∈ Q〈x〉,
we get all types in the variable x.



22W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

A type in one variable corresponded to a differential polynomial p(x) over
Q. Intuitively, we’d like to enumerate types in n variables using all n-tuple of
polynomials, according to the pattern described in subsection 3.5.6. Unfor-
tunately, since the fields themselves depend on the polynomials in the tuple,
it is not even clear if a potential polynomial would make sense; one of its
coefficients might actually be undefined. Therefore, our enumeration con-
struction takes these obstacles into account with a more formal approach. A
type in n variables will correspond to an n-tuple of formal differential poly-
nomials p1(x1), . . . , pn(xn). Here p1(x1) is an actual differential polynomial
with coefficients in Q. For i ≥ 1, pi+1(xi+1) looks like a differential polyno-
mial, but the coefficients come from a set KF

i of formal names for possible
elements of a differential field generated by elements x1, . . . , xi. We say more
about these formal names below. We define the sets KF

i and KF
i 〈xi+1〉 by

induction on i.
The many lemmas below allow us to prove Proposition 3.32, the com-

putable enumeration of types, from the basic definitions and results in [27].
In personal correspondence, Marker and Pillay described less elementary
but more efficient ways of deriving this result using more modern machinery
about differentially closed fields.

Definition 3.20.

(1) KF
0 = Q, and KF

0 〈x1〉 = Q〈x1〉,
(2) KF

i 〈xi+1〉 is the set of formal expressions that look like differential
polynomials in the variable xi+1 but have coefficients in KF

i as op-
posed to a well-defined differential field,

(3) KF
i+1 consists of the expressions r(xi+1)

s(xi+1) , where r, s ∈ KF
i 〈xi+1〉.

Lemma 3.21. Uniformly in n, we can enumerate the n-tuples p1(x1), . . . , pn(xn),
where pi+1(xi+1) ∈ KF

i 〈xi+1〉.

Proof. The set KF
0 is a fixed computable set with computable index, and

there is a uniform, effective procedure to construct KF
i 〈xi+1〉 from KF

i and
KF
i+1 from KF

i 〈xi+1〉. Therefore, there is a single, computable function that
gives computable indices for all of these sets. Then there is computable
function that, given n, finds a computable index of KF

0 〈x1〉 × KF
1 〈x2〉 ×

· · · ×KF
n−1〈xn〉. �

Given an n-tuple of formal differential polynomials p1, . . . , pn as above, we
will obtain a type λ(x1, . . . , xn) by producing a sequence of differential fields
K0, . . . ,Kn, where K0 = Q, and Ki+1 is generated over Ki by an element
xi+1 satisfying a chosen type λi+1 that depends on pi+1. In the end, Kn will
be generated by x1, . . . , xn, and λ(x1, . . . , xn) will be the type realized by
x1, . . . , xn that generates Kn. We give several lemmas.

Lemma 3.22. There is a uniform effective procedure that, given a differen-
tial field K and a type λ(x) over K, yields a differential field K ′ ⊇ K that
is generated over K by an element x realizing λ.



STRONG JUMP INVERSION 23

Proof. Uniformly in K, we construct a computable, formal set NK that

consists of names of the form r(x)
s(x) , where r(x), s(x) ∈ K〈x〉. Next, we define

the universe of K ′ from NK and λ(x) by induction:

(1) at step 1, consider the first element of NK , which is a formal expres-

sion of the form r(x)
s(x) . We use λ(x) to determine if s(x) = 0. If so,

then we do not include r(x)
s(x) in the universe of K ′; otherwise we do.

(2) at step n + 1, consider the (n + 1)st element of NK , which is a

formal expression of the form r(x)
s(x) , where r(x), s(x) ∈ K〈x〉. We use

λ(x) to determine if s(x) = 0. If so, then we do not include r(x)
s(x)

in the universe of K ′. If not, then we use λ(x) and simple “cross

multiplication” to determine if r(x)
s(x) is equal to any r1(x)

s1(x) that we

included in K ′ an earlier step. If so, then we do not include r(x)
s(x) in

the universe of K ′; otherwise we do.

Uniformly in K and λ(x), the above procedure computably enumerates the
elements of the universe of K ′ in order; therefore, the universe of K ′ is
uniformly computable in K and λ(x).

Finally, to define the constants and operations on the universe of K ′, we
first use λ(x) to identify element in the universe K ′ that is equal to 0K

1K

and the element equal to 1K
1K

. Next, to calculate a sum or product of two

elements r(x)
s(x) and r1(x)

s1(x) in K ′, or to calculate δ
(
r(x)
s(x)

)
, we add, multiply, or

differentiate formally, and then we use λ(x) to determine what element in
the universe of K ′ the formal expression is equal to. The definitions of these
operations are uniformly computable from K ′ and λ, and thus ultimately
from K and λ. �

Given an actual differential field Ki, generated by elements x1, . . . , xi,
some names from KF

i have a definite value in Ki, while others do not. Recall
that the names are quotients. We do not get a value if the denominator is
0.

Lemma 3.23. There is a uniform effective procedure that, given a differ-
ential field Ki generated by elements x1, . . . , xi, and an element f ∈ KF

i ,
determines whether f makes sense, and if so, assigns to f a definite value
in Ki.

Proof. We first form a finite set S of names such that f ∈ S, and if g ∈ S ∩
KF
j , for 0 < j ≤ i, and h is a coefficient from the numerator or denominator

of g, then h ∈ S. We form Kj for 0 ≤ j ≤ i. We then proceed by induction
on j to determine for all g ∈ S∩KF

j , whether g has value in Kj , and if so, to
assign the value. Then f has a value iff all elements of S have a value. �

Lemma 3.24. There is a uniform effective procedure that, given p ∈ KF
i 〈xi+1〉

and a differential field Ki generated by elements x1, . . . , xi, determines whether



24W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

p makes sense (i.e., whether the coefficients all have value in Ki), and if so,
identifies p with an element of Ki〈xi+1〉.

Proof. Given the p ∈ KF
i 〈xi+1〉, we simply identify its coefficients as ele-

ments of KF
i . Then we apply the previous lemma to each of the co-efficients

individually. If all of the co-efficients make sense, then we assign each of
them a definite value in Ki and then construct the corresponding element of
Ki〈xi+1〉. Otherwise, if at least one of the coefficients does not make sense,
p does not make sense. �

Lemma 3.25. There is a uniform effective procedure that, given a differ-
ential field K and a differential polynomial p(x) over K, enumerates the
differential polynomials q(x) of order lower than that of p(x).

Proof. First, there is a computable procedure, uniform in K, that computes
orders of p(x) ∈ K〈x〉. Namely, assuming p(x) is written where formal “like
terms” already are combined, then the procedure looks for the term with
the highest derivative δn(x) appearing as a factor, where the coefficient
in K for at least one such term is non-zero. Then, uniformly in K and
p(x), there is an effective procedure that lists all algebraic polynomials in
K[x, δ(x), . . . , δn−1(x)]. �

Lemma 3.26. There is a uniform effective procedure that, given a differen-
tial field K and a differential polynomial p(x) over K, enumerates the proofs
of formulas ϕ(x) (with parameters in K) from DCF0, D(K), p(x) = 0, and
q(x) 6= 0, for q of lower order.

Proof. By Lemma 3.25, we can enumerate the polynomials q(x) of lower
order, so we can enumerate the axioms to use in our proofs. Then we can
enumerate proofs from these axioms of formulas of the kind we are interested
in. �

In Lemma 3.26, we did not assume that p(x) is irreducible. So, the set of
axioms may not generate a consistent, complete type over K.

Lemma 3.27. There is a uniform effective procedure that, given a differ-
ential field K, enumerates the reducible differential polynomials p(x) over
K.

Proof. For a given p(x) we enumerate D(K), searching for a formula of form
r(x) · s(x) = p(x), where r(x) and s(x) are differential polynomials over K,
both non-constant. The search halts iff p(x) is reducible. �

Lemma 3.28. Let K be a differential field. For any tuple k̄ in K, DCF0

together with the quantifier-free type of k̄ generates a complete type that
would be realized by k̄ in any extension of K to a model of DCF0.

Proof. Let K ⊆ M , where M is a differentially closed field. By quantifier
elimination, any formula true of k̄ in M is proved from DCF0 and the
quantifier-free formulas true of k̄. �



STRONG JUMP INVERSION 25

Lemma 3.29. There is a uniform effective procedure for determining, for a
differential field K and a formula ϕ(k̄, x) (with parameters k̄ in K), whether
ϕ(k̄, x) is consistent with DCF0 ∪D(K).

Proof. Let γ(k̄) be the quantifier-free type realized by k̄ inK. By Lemma 3.28,
DCF0 ∪ γ(k̄) generates a complete type that would be realized by k̄ in
any extension of K to a model of DCF0. Then ϕ(k̄, x) is consistent with
DCF0 ∪D(K) iff (∃x)ϕ(k̄, x) is in this type. �

Lemma 3.30. There is a uniform effective procedure that, given a differ-
ential field K and p(x) ∈ K〈x〉, enumerates a type λ(x) for x over K.
Moreover, if p(x) is irreducible, then λ(x) = λK,p.

Proof. We can determine the order of p(x), just by inspection. At each step,
we will have put finitely many formulas into the type λ(x), having checked
consistency with DCF0 ∪D(K) as in Lemma 3.29 (the parameters from K
that appear in the formulas form the relevant k̄). At step 0, we put into
λ(x) the formula p(x) = 0, assuming that this is consistent. We have a
computable enumeration of the atomic formulas ϕs(x) with parameters in
K. At step s+1, we decide ϕs(x), adding ϕs(x) or ¬ϕs(x) to the type λ(x).
If we have already seen that p(x) is reducible, then we add ϕs(x) to the type
if it is consistent to do so, and otherwise, we add ¬ϕs(x). Suppose that p(x)
appears to be irreducible. Then we simultaneously search for the following:

(1) a proof of ±ϕs from DCF0∪D(K), p(x) = 0, and formulas q(x) 6= 0
for q of order less than that of p,

(2) evidence that p(x) is reducible over K.

By Lemmas 3.26 and 3.27, these are computable searches. One of the
searches will halt, since if p(x) is irreducible, then the formulas in (1) above
generate a complete type over K. If we find that p(x) is reducible, then we
proceed as above, adding ±ϕs(x) just to maintain consistency. (We check
consistency as in Lemma 3.29.) If we find a proof of ϕs, or ¬ϕs, then we
add this formula to the type, provided that it is consistent to do so. We
take inconsistency as evidence that p(x) is reducible, and we proceed as
above. �

Proposition 3.31. Uniformly in n, we can enumerate the types in n vari-
ables.

Proof. By Lemma 3.21, uniformly in n, we can enumerate the n-tuples of for-
mal differential polynomials p1, . . . , pn, where p1 ∈ Q〈x1〉, pi+1 ∈ KF

i 〈xi+1〉.
The jth n-tuple of differential polynomials p1, . . . , pn will yield the jth type
λ(x1, . . . , xn) in variables x1, . . . , xn. We describe λ(x1, . . . , xn) in terms of
some differential fields K1, . . . ,Kn and types λi(xi) over Ki−1. We note that
p1 is an actual differential polynomial over K0 = Q. We apply Lemma 3.30
to p1 and Q, to get a type λ1(x1). We apply Lemma 3.22 to Q and λ1 to
get the differential field K1 generated by x1 realizing λ1.



26W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

Now, p2(x2) is only an element of KF
1 〈x2〉, where KF

1 is not an actual
differential field. We apply Lemma 3.24 to K1 to determine whether p2(x2)
makes sense as a differential polynomial over K1. If not, then we generate
a type λ2 for x2 over K1 using DCF0 ∪D(K1) as follows. We run through
the atomic formulas ϕs(x2) (over K1) in order, adding ϕs if it is consistent
to do so, and otherwise adding ¬ϕs. We check consistency at each step as
in Lemma 3.29. If p2 makes sense as a differential polynomial over K1, then
we apply Lemma 3.30 to get λ2. We then apply Lemma 3.22 to get the
differential field K2 generated by x2 realizing λ2 over K1.

In general, given Ki, we apply Lemma 3.24 to determine whether pi+1

makes sense as differential polynomial over Ki. If not, then we generate a
type λi+1, using DCF0 ∪D(Ki). If pi+1 makes sense as a differential poly-
nomial over Ki, then we apply Lemma 3.30 to get a type λi+1 for xi+1 over
Ki. From Ki and λi+1, we get Ki+1 as in Lemma 3.22. After finitely many
steps, calculating computable indices for the differential fields Ki and the
types λi, we arrive at the differential field Kn. This is generated over Q by
the elements x1, . . . , xn. The quantifier-free type we want is that realized by
x1, . . . , xn in Kn. Of course, since DCF0 has effective quantifier elimination,
we then effectively compute the complete type realized by x1, . . . , xn. �

As planned, we combine the enumerations of types in variables x1, . . . , xn,
for various n.

Proposition 3.32. There is a computable enumeration R of all complete
types realized in models of DCF0.

Now, we can prove the result of Marker and Miller, using our Theorem
2.5.

Proposition 3.33. Every countable model of DCF0 admits strong jump
inversion.

Proof. By Proposition 3.32, there is a computable enumeration R of the
complete types realized in models of DCF0, and thus, of the B1 types.
Thus, Condition (1) of Theorem 2.5 holds. The following lemma shows that
Condition (3) holds in the strong way.

Lemma 3.34. Let X be a subset of ω, and let A be a model of DCF0 that
is low over X. Then X ′ computes an R-labeling of A.

Proof of Lemma. Note that for each tuple ā, we have an A-computable pro-
cedure for finding, at step s, the first index i such that Ri agrees with the
type of ā on the first s quantifier-free formulas. After some step s, this i
is the first index for the B1-type of ā. Thus, we have an R-labeling that is
computable in D(A)′, and hence, in X ′, since A is low over X. �

We need to establish Condition (2), effective type completion. There is a
uniform effective procedure for computing, from a type p(ū) and a formula
ϕ(ū, x), consistent with p(ū), a type q(ū, x) such that if c̄ satisfies p(ū), then



STRONG JUMP INVERSION 27

some a satisfies q(c̄, x). Marker and Miller [19] needed this for the same
reason we do. It is Lemma 4.3 in their paper. (The type q(c̄, x) will be
realized in the differential closure of c̄.) The conditions for Theorem 2.5 are
all satisfied. Therefore, A admits strong jump inversion. �

3.5.9. Decidable saturated model of DCF0. In general, a structure A is com-
putable if its atomic diagram is computable, and A is decidable if the com-
plete diagram is computable. By elimination of quantifiers, a model of DCF0

is decidable iff it is computable. Using Proposition 3.32, we can show that
the countable saturated model of DCF0 has a decidable copy. We need the
following result from Morley [23].

Theorem 3.35. Let T be a countable complete elementary first order theory
for a computable language. Then the following are equivalent:

(1) T has a decidable saturated model,
(2) there is a computable enumeration of all types realized in models

of T .

Using Theorem 3.35 and Proposition 3.32, we get the following.

Corollary 3.36. The saturated model of DCF0 has a decidable copy.

References

[1] C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hier-
archy, Elsevier, 2000.

[2] C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, “Generic copies of countable
structures”, Annals of Pure and Applied Logic, vol. 42(1989), pp. 195-205.

[3] V. Baleva and I. Soskov, “Ash’s Theorem for Abstract Structures”, Logic Colloquium
?02, ed. by Z. Chatzidakis, P. Koepke, and W.

[4] V. Baleva, The jump operation for structure degrees, PhD thesis, Sofia University St.
Kliment Ohridski, 2002.

[5] V. Baleva, “The jump operation for structure degrees”, Archive for Math. Logic, vol.
45(2006), pp. 279-265.

[6] J. Chisholm, “Effective model theory vs. recursive model theory”, J. Symb. Logic,
vol. 55(1990), pp. 1168-1191.

[7] R. Downey and C. G. Jockusch, “Every low Boolean algebra is isomorphic to a
recursive one”, PAMS, vol. 122(1994), pp. 871-880.

[8] R. Downey and J. F. Knight, “Orderings with αth jump degree 0α,” Proc. of A.M.S,
vol. 114(1992), pp. 545-552.

[9] A. N. Frolov, “∆0
2 copies of linear orderings”, Algebra and Logic, vol. 45(2006), pp.

201-209.
[10] A. N. Frolov, “Linear orderings of low degrees”, Siberian Math. Journal, vol. 51(2010),

pp. 913-925.
[11] A. N. Frolov, “Low linear orderings”, Journal of Logic and Computation, vol.

22(2012), pp. 745-754.
[12] S. S. Goncharov, “Strong constructivizability of homogeneous models”, Algebra and

Logic, vol. 17(1978), pp. 247–263 (English translation).
[13] C. G. Jockusch and R. I. Soare, “Degrees of orderings not isomorphic to recursive

linear orderings”, APAL, vol. 52(1991), pp. 39-64.
[14] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, 1954.



28W. CALVERT, A. FROLOV, V. HARIZANOV, J. KNIGHT, C. MCCOY, A. SOSKOVA, AND S. VATEV

[15] J. F. Knight, “Non-arithmetical ℵ0-categorical theories with recursive models”, J.
Symb. Logic, vol. 59(1994), pp. 106-112.

[16] J. F. Knight and M. Stob, “Computable Boolean algebras”, J. Symb. Logic, vol.
65(2000), pp. 1605-1623.

[17] M. Lerman and J. H. Schmerl, “Theories with recursive models”, J. Symb. Logic, vol.
44(1979), pp. 59-76.

[18] Macintyre and Marker, “Degrees of recursively saturated models”, TAMS, vol.
82(1984), pp. 539-554.

[19] D. Marker and R. Miller, “Turing degree spectra of differentially closed fields”, JSL,
vol. 82(2017), pp. 1-25.

[20] T. S. Millar, “Foundations of recursive model theory”, Annals of Mathematical Logic,
vol. 13(1978), pp. 45–72.

[21] A. Montalbán, “Notes on the jump of a structure”, in Mathematical Theory and
Computational Practice, Proc. of CiE Meeting in Heidelberg, ed. by K. Ambos-Spies,
B. Löwe, and W. Merkle, pp. 371-378, 2009.

[22] A. Montalbán, “Rice Sequences of Relations,” Philosophical Transactions of the Royal
Society A, vol. 370 (2012), 3464-3487.

[23] M. Morley “Decidable models,” Israel Journal of Mathematics, vol. 25(1976), pp.
233-240.

[24] A. S. Morozov, “On the relation of Σ-reducibility between admissible sets”, Siberian
Math. Journal, vol. 45(2004), pp. 634-652 (English translation).

[25] M. G. Peretyat’kin, “Criterion for strong constructivizability of a homogeneous
model”, Algebra and Logic, vol. 17(1978), pp. 290–301 (English translation).

[26] V. G. Puzarenko, “On a certain reducibility on admissible sets”, Siberian Math.
Journal, vol. 50(2009), pp. 330-340 (English translation).

[27] G. E. Sacks, Saturated Model Theory, W. A. Benjamin, Inc., 1972.
[28] A. Soskova and I. N. Soskov, “Jump spectra of abstract structures”, Proceedings of

the 6th Panhellenic Logic Symposium, Eds. C. Dimitrakopoulos, S. Zachos and K.
Hatzikiriakou, Volos, Greece, (2007), pp. 114-117.

[29] A. A. Soskova and I. N. Soskov, “A jump inversion theorem for the degree spectra”,
Journal of Logic and Computation, vol. 19(2009), pp. 199-215.

[30] A. Stukachev, “A jump inversion theorem for the semilattices of Sigma-degrees”,
Siberian Electronic Mathematical Reports, vol. 6(2009), pp. 182-190 (in Russian).

[31] A. Stukachev, “A jump inversion theorem for the semilattices of Sigma-degrees”.
[32] R. L. Vaught, Topics in the Theory of Arithmetical Classes and Boolean Algebras,

Ph.D. thesis, University of California, Berkeley, 1954.

Department of Mathematics, Southern Illinois University, USA
E-mail address: wcalvert@siu.edu

Department of Mathematics, Kazan Federal University, Russia
E-mail address: Andrey.Frolov@ksu.ru

Department of Mathematics, George Washington University, USA
E-mail address: harizanv@gwu.edu

Department of Mathematics, University of Notre Dame, USA
E-mail address: knight.1@nd.edu

Department of Mathematics, University of Portland, USA
E-mail address: mccoy@up.edu

Department of Mathematical Logic, Sofia University, Bulgaria
E-mail address: asoskova@fmi.uni-sofia.bg



STRONG JUMP INVERSION 29

Department of Mathematical Logic, Sofia University, Bulgaria
E-mail address: stefanv@fmi.uni-sofia.bg


