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1. Introduction

1.1. Degree Spectrum and Cospectrum of a structure. Let A = (N;R1, . . . ,
Rk) be a partial structure over the set of all natural numbers N,where each Ri is a
subset of N

ri and ”=” and ”6=” are among R1, . . . , Rk.
An enumeration f of A is a total mapping from N onto N.
For every A ⊆ N

a define f−1(A) = {〈x1 . . . xa〉 : (f(x1), . . . , f(xa)) ∈ A}.
Let f−1(A) = f−1(R1) ⊕ · · · ⊕ f−1(Rk).
For any sets of natural numbers A and B the set A is enumeration reducible to B

(A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). By dege(A)
we denote the enumeration degree of the set A. The set A is total if A ≡e A⊕(N\A).
A degree a is called total if a contains the e-degree of a total set. For every recursive
ordinal α by A(α) we shall denote the α-th enumeration jump of A [8].

The Degree Spectrum of A is the set

Sp(A) = {dege(f
−1(A)) : f is an enumeration of A}.

The above notion is introduced by [5] for bijective enumerations and is used in
[4, 2, 3, 7]. where some results about the degree spectra of structures are obtained.

If a ∈ Sp(A) and b is a total e-degree, a ≤ b, then b ∈ Sp(A) [7]. So, the Degree
Spectrum of A is closed upwards.

Denote by De the set of all enumeration degrees. Let A ⊆ De . The Co-set of A
is the set Co(A) of all lower bounds of A. Namely

Co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤ a)}.

2. Joint spectrum of a sequence of structures

Let ζ be a recursive ordinal and let {Aξ}ξ≤ζ be a sequence of structures over the
natural numbers.

The Joint Spectrum of the sequence {Aξ}ξ≤ζ is the set

Sp({Aξ}ξ≤ζ) = {a : a ∈ De & (∀ξ ≤ ζ)(a(ξ) ∈ Sp(Aξ))}.

Let α ≤ ζ. The α - th Jump Spectrum of {Aξ}ξ≤ζ is the set

Spα({Aξ}ξ≤ζ) = {a(α) : a ∈ Sp({Aξ}ξ≤ζ)}.
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2.1. Cospectra of Joint Spectra of a sequence of structures. Let α ≤ ζ.
The α - th Co-spectrum of {Aξ}ξ≤ζ is the Co-set of Spα({Aξ}ξ≤ζ), i.e.

Cospα({Aξ}ξ≤ζ) = {b : b ∈ De&(∀a ∈ Spα({Aξ}ξ≤ζ))(b ≤ a)}.

In [10] we represented a characterization of the Cospectrum of the Joint Degree
Spectrum of finitely many structures. Here we shall consider Cospα({Aξ}ξ≤ζ).

2.1.1. Proposition.For any α ≤ ζ, Cospα({Aξ}ξ≤ζ) = Cospα({Aξ}ξ≤α).

It is clear that Cospα({Aξ}ξ≤α) ⊆ Cospα({Aξ}ξ≤ζ). The oposite follows from the
Jump Inversion Theorem from [9] and the fact that fot each ξ the degree spectrum
Sp(Aξ) is closed upwards.

2.2. The jump set of a sequence of sets. Let for each ξ ≤ ζ fξ be an enumer-
ation of Aξ and f = {fξ}ξ≤ζ . For any recursive ordinal α ≤ ζ we define the jump

set Pf
α of the sequence {Aξ}ξ≤ζ by means of transfinite recursion on α:

(i) P
f
0 = f−1

0 (A0).
(ii) Let α = β + 1. Then let Pf

α = (Pf
β)′ ⊕ f−1

α (Aα).

(iii) Let α = limα(p). Then set P
f
<α = {〈p, x〉 : x ∈ P

f

α(p)} and let Pf
α =

P
f
<α ⊕ f−1

α (Aα).

2.2.1. Theorem.Let A ⊆ N. Then

dege(A) ∈Cospα({Aξ}ξ≤ζ) ⇐⇒

( for every sequnce f = {fξ}ξ≤ζ)(fξ enumeration of Aξ)(A ≤e P
f
α).

It follows from the Jump Inversion Theorem from [9].

3. Generic enumerations and forcing

3.1. Satisfaction relation. Let W0, . . . ,Wz, . . . be the Godel enumeration of the
r.e. sets and Dv be the finite set having canonical code v.

For every α ≤ ζ, e and x in N define the relations f |=α Fe(x) and f |=α ¬Fe(x)
by transfite induction on α:

(i) f |=0 Fe(x) iff there exists a v such that 〈v, x〉 ∈ We and Dv ⊆ f−1
0 (A0);

(ii) α = β + 1.

f |=α Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(

u = 〈0, eu, xu〉 & f |=β Feu
(xu) ∨

u = 〈1, eu, xu〉 & f |=β ¬Feu
(xu) ∨

u = 〈2, xu〉 & xu ∈ f−1
α (Aα)));

(iii) Let α = limα(p). Then

f |=α Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

(u = 〈0, pu, eu, xu〉 & f |=α(pu) Feu
(xu))∨

(u = 〈2, xu〉 & xu ∈ f−1
α (Aα))));

(iv) f |=α ¬Fe(x) ⇐⇒ f 6|=α Fe(x).
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3.1.1. Proposition. For each A ⊆ N

A ≤e P
f
α ⇐⇒ there is a number e such that A = {x : f |=α Fe(x)}.

3.2. Finite parts and forcing. The forcing conditions which we shall call finite

parts are sequnces τ of finite mappings τξ, ξ ≤ ζ from N to N, so that
⋃

ξ≤ζ dom(τξ)
is finite. If τ and ρ are finite parts, then τ ⊆ ρ if for each ξ ≤ ζ (τξ ⊆ ρξ).

For every α ≤ ζ, e and x in N and every finite part τ we define the forcing
relations τ 
α Fe(x) and τ 
α ¬Fe(x) following the definition of ”|=α”.

(i) τ 
0 Fe(x) ⇐⇒ there exists a v such that 〈v, x〉 ∈ We & Dv ⊆ τ−1
0 (A0);

(ii) α = β + 1.

τ 
α Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We &

(∀u ∈ Dv)(u = 〈0, eu, xu〉 & τ 
β Feu
(xu) ∨

u = 〈1, eu, xu〉 & τ 
β ¬Feu
(xu) ∨

u = 〈2, xu〉 & xu ∈ τ−1
α (Aα)));

(iii) Let α = limα(p). Then

τ 
α Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

(u = 〈0, pu, eu, xu〉 & τ 
α(pu) Feu
(xu))∨

(u = 〈2, xu〉 & xu ∈ τ−1
α (Aα))));

(iv) τ 
α ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 6
α Fe(x)).

3.3. Forcing properties. Let α ≤ ζ, e, x ∈ N and δ, τ be finite parts.

(1) If δ ⊆ τ , then
δ 
α (¬)Fe(x) =⇒ τ 
α (¬)Fe(x);

(2) If (∀ξ ≤ α)(δξ = τξ), then
δ 
α (¬)Fe(x) =⇒ τ 
α (¬)Fe(x).

Define δ ⊆α τ ⇐⇒ (∀ξ ≤ α)(δξ ⊆ τξ) & (∀ξ > α)(δξ = τξ).
Let τ 


∗
α (¬)Fe(x) be the same as τ 
α (¬)Fe(x) with the exception of

(iii) τ 
α ¬Fe(x) ⇐⇒ (∀ρ ⊇α τ)(ρ 6
α Fe(x)).

The next Lemma shows that actually the star forcing relation 

∗
α coincides with

the forcing relation 
α.

3.3.1. Lemma. τ 
α (¬)Fe(x) ⇐⇒ τ 

∗
α (¬)Fe(x).

3.4. Generic enumerations. For any α < ζ, e, x ∈ N denote by
Xα

〈e,x〉 = {ρ : ρ 
α Fe(x)}.
An enumeration f of {Aξ}ξ≤ζ is α-generic if for every β < α, e, x ∈ N

(∀τ ⊆ f)(∃ρ ∈ Xβ

〈e,x〉)(τ ⊆ ρ) =⇒ (∃τ ⊆ f)(τ ∈ Xβ

〈e,x〉).

3.4.1. Lemma.

(1) Let f be an α-generic enumeration, α < ζ. Then

f |=α Fe(x) ⇐⇒ (∃τ ⊆ f)(τ 
α Fe(x)).
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(2) Let f be an α + 1-generic enumeration. Then

f |=α ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ 
α ¬Fe(x)).

3.5. Forcing α - definable sets. The set A ⊆ N is forcing α-definable on {Aξ}ξ≤ζ

if there exist a finite part δ and e ∈ N such that

x ∈ A ⇐⇒ (∃τ ⊇ δ)(τ 
α Fe(x)).

3.5.1. Theorem. Let A ⊆ N.

If A ≤e Pf
α for all f - enumerations of {Aξ}ξ≤ζ , then A is forcing α-definable on

{Aξ}ξ≤ζ .

4. The Normal Form Theorem

In this section we shall give an explicit form of the forcing α-definable on {Aξ}ξ≤ζ

sets by means of positive recursive Σ+
α formulae. These formulae can be considered

as a modification of the Ash’s formulae introduced in [1].

4.1. Recursive Σ+
α formulae. Let, for each ξ ≤ ζ, Lξ = {T ξ

1 , . . . , T ξ
nξ
} be the

language of Aξ. We suppose that the languages Lξ are disjoint.
For each α ≤ ζ, define the elementary Σ+

α formulae and Σ+
α formulae by transfinite

induction on α, as follows.

(1) An elementary Σ+
0 formula with free variables among X̄ is an existential

formula of the form:

∃Y1 . . . ∃Ymϕ(X̄, Y1, . . . , Ym),

where ϕ is a finite conjunction of atomic formulae in L0;
(2) α = β + 1. An elementary Σ+

α formula is in the form

∃Y0 . . . ∃Ymϕ(X̄, Y0 . . . Ym)

where ϕ is a finite conjunction of Σ+
β formulae and negations of Σ+

β formulae
and atoms of Lα;

(3) Let α = lim α(p) be a limit ordinal and α ≤ ζ. The elementary Σ+
α formula

are in the form

∃Y0 . . . ∃Ymϕ(X̄, Y0, . . . , Ym),

where ϕ is a finite conjunction of atoms of Lα and Σ+
α(p) formulae.

(4) A Σ+
α formula is an r.e. infinitary disjunction of elementary Σ+

α formulae
with free variables among X̄.

Let Φ be a Σ+
α formula α ≤ ζ with free variables among X0, . . . , Xi and let

t0, . . . , ti be elements of N. Then by {Aξ}ξ≤ζ |= Φ(X0/t
0, . . . , Xi/ti) we shall denote

that Φ is true on {Aξ}ξ≤ζ under the variable assignment v such that v(X0) =
t0, . . . , v(Xi) = ti.
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4.2. The formally α-definable sets. The set A ⊆ N is formally α-definable on
{Aξ}ξ≤ζ if there exists an e ∈ N and a recursive sequence {Φ}γ(e,x) of Σ+

α formulae
with free variables among W0, . . . ,Wk and elements t0, . . . , tk of N such that the
following equivalence holds:

x ∈ A ⇐⇒ {Aξ}ξ≤ζ |= Φγ(e,x)(W0/t0 . . . Wk/tk).

4.2.1. Theorem. Let A ⊆ N be forcing α-definable on {Aξ}ξ≤ζ. Then A is formally

α-definable on {Aξ}ξ≤ζ.

4.2.2. Theorem. Let A ⊆ N. Then the following are equivalent:

(1) dege(A) ∈ Cospα({Aξ}ξ≤ζ).
(2) For every enumeration f of {Aξ}ξ≤ζ , A ≤e Pf

α.

(3) A is forcing α-definable on {Aξ}ξ≤ζ .

(4) A is formally α-definable on {Aξ}ξ≤ζ .
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