COSPECTRA OF JOINT SPECTRA OF A SEQUENCE OF STRUCTURES

A. A. SOSKOVA

1. INTRODUCTION

1.1. Degree Spectrum and Cospectrum of a structure. Let $\mathfrak{A} = (\mathbb{N}; R_1, \ldots, R_k)$ be a partial structure over the set of all natural numbers \mathbb{N} , where each R_i is a subset of \mathbb{N}^{r_i} and "=" and " \neq " are among R_1, \ldots, R_k .

An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} . For every $A \subseteq \mathbb{N}^a$ define $f^{-1}(A) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in A \}$. Let $f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \dots \oplus f^{-1}(R_k)$.

For any sets of natural numbers A and B the set A is enumeration reducible to B $(A \leq_e B)$ if there is an enumeration operator Γ_z such that $A = \Gamma_z(B)$. By $deg_e(A)$ we denote the enumeration degree of the set A. The set A is total if $A \equiv_e A \oplus (\mathbb{N} \setminus A)$. A degree a is called total if a contains the e-degree of a total set. For every recursive ordinal α by $A^{(\alpha)}$ we shall denote the α -th enumeration jump of A [8].

The Degree Spectrum of \mathfrak{A} is the set

$$Sp(\mathfrak{A}) = \{ deg_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A} \}.$$

The above notion is introduced by [5] for bijective enumerations and is used in [4, 2, 3, 7]. where some results about the degree spectra of structures are obtained. If $a \in Sp(\mathfrak{A})$ and b is a total e-degree, $a \leq b$, then $b \in Sp(\mathfrak{A})$ [7]. So, the Degree

Spectrum of \mathfrak{A} is closed upwards.

Denote by \mathcal{D}_e the set of all enumeration degrees. Let $\mathcal{A} \subseteq \mathcal{D}_e$. The Co-set of \mathcal{A} is the set $Co(\mathcal{A})$ of all lower bounds of \mathcal{A} . Namely

$$Co(\mathcal{A}) = \{b : b \in \mathcal{D}_e \& (\forall a \in \mathcal{A}) (b \le a)\}.$$

2. Joint spectrum of a sequence of structures

Let ζ be a recursive ordinal and let $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ be a sequence of structures over the natural numbers.

The Joint Spectrum of the sequence $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ is the set

$$Sp(\{\mathfrak{A}_{\xi}\}_{\xi\leq\zeta}) = \{a : a \in \mathcal{D}_e \& (\forall \xi \leq \zeta) (a^{(\xi)} \in Sp(\mathfrak{A}_{\xi}))\}.$$

Let $\alpha \leq \zeta$. The α - th Jump Spectrum of $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ is the set

$$Sp^{\alpha}(\{\mathfrak{A}_{\xi}\}_{\xi\leq\zeta})=\{a^{(\alpha)}:a\in Sp(\{\mathfrak{A}_{\xi}\}_{\xi\leq\zeta})\}.$$

2.1. Cospectra of Joint Spectra of a sequence of structures. Let $\alpha \leq \zeta$. The α - th Co-spectrum of $\{\mathfrak{A}_{\xi}\}_{\xi\leq \zeta}$ is the Co-set of $Sp^{\alpha}(\{\mathfrak{A}_{\xi}\}_{\xi\leq \zeta})$, i.e.

$$Cosp^{\alpha}(\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}) = \{b : b \in \mathcal{D}_e \& (\forall a \in Sp^{\alpha}(\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta})) (b \leq a)\}.$$

In [10] we represented a characterization of the Cospectrum of the Joint Degree Spectrum of finitely many structures. Here we shall consider $Cosp^{\alpha}(\{\mathfrak{A}_{\mathfrak{f}}\}_{\mathfrak{f}\leq \mathfrak{c}})$.

2.1.1. Proposition. For any $\alpha \leq \zeta$, $Cosp^{\alpha}(\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}) = Cosp^{\alpha}(\{\mathfrak{A}_{\xi}\}_{\xi \leq \alpha})$.

It is clear that $Cosp^{\alpha}({\mathfrak{A}}_{\xi}_{\xi\leq\alpha}) \subseteq Cosp^{\alpha}({\mathfrak{A}}_{\xi}_{\xi\leq\zeta})$. The oposite follows from the Jump Inversion Theorem from [9] and the fact that for each ξ the degree spectrum $Sp(\mathfrak{A}_{\xi})$ is closed upwards.

2.2. The jump set of a sequence of sets. Let for each $\xi \leq \zeta f_{\xi}$ be an enumeration of \mathfrak{A}_{ξ} and $f = \{f_{\xi}\}_{\xi \leq \zeta}$. For any recursive ordinal $\alpha \leq \zeta$ we define the *jump* set $\mathfrak{P}^{f}_{\alpha}$ of the sequence $\{\mathfrak{A}_{\xi}\}_{\xi\leq \zeta}$ by means of transfinite recursion on α :

- (i) $\mathcal{P}_0^f = f_0^{-1}(\mathfrak{A}_0).$ (ii) Let $\alpha = \beta + 1$. Then let $\mathcal{P}_\alpha^f = (\mathcal{P}_\beta^f)' \oplus f_\alpha^{-1}(\mathfrak{A}_\alpha).$
- (iii) Let $\alpha = \lim \alpha(p)$. Then set $\mathcal{P}_{<\alpha}^f = \{\langle p, x \rangle : x \in \mathcal{P}_{\alpha(p)}^f\}$ and let $\mathcal{P}_{\alpha}^f =$ $\mathcal{P}^f_{<\alpha} \oplus f^{-1}_{\alpha}(\mathfrak{A}_{\alpha}).$

2.2.1. Theorem.Let $A \subseteq \mathbb{N}$. Then

 $deg_e(A) \in Cosp^{\alpha}(\{\mathfrak{A}_{\mathcal{E}}\}_{\mathcal{E}\leq \zeta}) \iff$

(for every sequnce
$$f = \{f_{\xi}\}_{\xi < \zeta}$$
) $(f_{\xi}$ enumeration of $\mathfrak{A}_{\xi})(A \leq_{e} \mathfrak{P}_{\alpha}^{f})$

It follows from the Jump Inversion Theorem from [9].

3. Generic enumerations and forcing

3.1. Satisfaction relation. Let W_0, \ldots, W_z, \ldots be the Godel enumeration of the r.e. sets and D_v be the finite set having canonical code v.

For every $\alpha \leq \zeta$, e and x in N define the relations $f \models_{\alpha} F_e(x)$ and $f \models_{\alpha} \neg F_e(x)$ by transfite induction on α :

(i) $f \models_0 F_e(x)$ iff there exists a v such that $\langle v, x \rangle \in W_e$ and $D_v \subseteq f_0^{-1}(\mathfrak{A}_0)$; $f \models_{\alpha} F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \& (\forall u \in D_v))$ $u = \langle 0, e_u, x_u \rangle \& f \models_{\beta} F_{e_u}(x_u) \lor$ (ii) $\alpha = \beta + 1$. $u = \langle 1, e_u, x_u \rangle \& f \models_{\beta} \neg F_{e_u}(x_u) \lor$

$$u = \langle 2, x_u \rangle \& x_u \in f_\alpha^{-1}(\mathfrak{A}_\alpha)));$$

(iii) Let $\alpha = \lim \alpha(p)$. Then

$$f \models_{\alpha} F_{e}(x) \iff (\exists v)(\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})($$
$$(u = \langle 0, p_{u}, e_{u}, x_{u} \rangle \& f \models_{\alpha(p_{u})} F_{e_{u}}(x_{u})) \lor$$
$$(u = \langle 2, x_{u} \rangle \& x_{u} \in f_{\alpha}^{-1}(\mathfrak{A}_{\alpha})));$$

(iv) $f \models_{\alpha} \neg F_e(x) \iff f \not\models_{\alpha} F_e(x)$.

3.1.1. Proposition. For each $A \subseteq \mathbb{N}$

 $A \leq_e \mathfrak{P}^f_{\alpha} \iff$ there is a number *e* such that $A = \{x : f \models_{\alpha} F_e(x)\}.$

3.2. Finite parts and forcing. The forcing conditions which we shall call *finite* parts are sequnces τ of finite mappings $\tau_{\xi}, \xi \leq \zeta$ from \mathbb{N} to \mathbb{N} , so that $\bigcup_{\xi \leq \zeta} dom(\tau_{\xi})$ is finite. If τ and ρ are finite parts, then $\tau \subseteq \rho$ if for each $\xi \leq \zeta$ $(\tau_{\xi} \subseteq \rho_{\xi})$.

For every $\alpha \leq \zeta$, e and x in \mathbb{N} and every finite part τ we define the forcing relations $\tau \Vdash_{\alpha} F_e(x)$ and $\tau \Vdash_{\alpha} \neg F_e(x)$ following the definition of " \models_{α} ".

(i)
$$\tau \Vdash_{0} F_{e}(x) \iff$$
 there exists a v such that $\langle v, x \rangle \in W_{e} \& D_{v} \subseteq \tau_{0}^{-1}(\mathfrak{A}_{0});$
 $\tau \Vdash_{\alpha} F_{e}(x) \iff \exists v (\langle v, x \rangle \in W_{e} \&$
(ii) $\alpha = \beta + 1.$
 $(\forall u \in D_{v})(u = \langle 0, e_{u}, x_{u} \rangle \& \tau \Vdash_{\beta} F_{e_{u}}(x_{u}) \lor$
 $u = \langle 1, e_{u}, x_{u} \rangle \& \tau \Vdash_{\beta} \neg F_{e_{u}}(x_{u}) \lor$
 $u = \langle 2, x_{u} \rangle \& x_{u} \in \tau_{\alpha}^{-1}(\mathfrak{A}_{\alpha})));$

(iii) Let $\alpha = \lim \alpha(p)$. Then

$$\tau \Vdash_{\alpha} F_{e}(x) \iff (\exists v)(\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})(u = \langle 0, p_{u}, e_{u}, x_{u} \rangle \& \tau \Vdash_{\alpha(p_{u})} F_{e_{u}}(x_{u})) \lor (u = \langle 2, x_{u} \rangle \& x_{u} \in \tau_{\alpha}^{-1}(\mathfrak{A}_{\alpha}))));$$

(iv)
$$\tau \Vdash_{\alpha} \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \not\Vdash_{\alpha} F_e(x))$$

3.3. Forcing properties. Let $\alpha \leq \zeta, e, x \in \mathbb{N}$ and δ, τ be finite parts.

(1) If $\delta \subseteq \tau$, then $\delta \Vdash_{\alpha} (\neg) F_e(x) \Longrightarrow \tau \Vdash_{\alpha} (\neg) F_e(x);$ (2) If $(\forall \xi \leq \alpha) (\delta_{\xi} = \tau_{\xi})$, then $\delta \Vdash_{\alpha} (\neg) F_e(x) \Longrightarrow \tau \Vdash_{\alpha} (\neg) F_e(x).$

Define $\delta \subseteq_{\alpha} \tau \iff (\forall \xi \leq \alpha) (\delta_{\xi} \subseteq \tau_{\xi}) \& (\forall \xi > \alpha) (\delta_{\xi} = \tau_{\xi}).$ Let $\tau \Vdash_{\alpha}^{*} (\neg) F_{e}(x)$ be the same as $\tau \Vdash_{\alpha} (\neg) F_{e}(x)$ with the exception of (iii) $\tau \Vdash_{\alpha} \neg F_{e}(x) \iff (\forall \rho \supseteq_{\alpha} \tau) (\rho \not\models_{\alpha} F_{e}(x)).$

The next Lemma shows that actually the star forcing relation \Vdash_{α}^{*} coincides with the forcing relation \Vdash_{α} .

3.3.1. Lemma. $\tau \Vdash_{\alpha} (\neg) F_e(x) \iff \tau \Vdash_{\alpha}^* (\neg) F_e(x).$

3.4. Generic enumerations. For any $\alpha < \zeta, e, x \in \mathbb{N}$ denote by $X^{\alpha}_{\langle e, x \rangle} = \{ \rho \models_{\alpha} F_{e}(x) \}.$

An enumeration f of $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ is α -generic if for every $\beta < \alpha, e, x \in \mathbb{N}$

$$(\forall \tau \subseteq f)(\exists \rho \in X^{\beta}_{\langle e, x \rangle})(\tau \subseteq \rho) \Longrightarrow (\exists \tau \subseteq f)(\tau \in X^{\beta}_{\langle e, x \rangle}).$$

3.4.1. Lemma.

(1) Let f be an α -generic enumeration, $\alpha < \zeta$. Then

$$f \models_{\alpha} F_e(x) \iff (\exists \tau \subseteq f)(\tau \Vdash_{\alpha} F_e(x)).$$

(2) Let f be an $\alpha + 1$ -generic enumeration. Then

$$f \models_{\alpha} \neg F_e(x) \iff (\exists \tau \subseteq f)(\tau \Vdash_{\alpha} \neg F_e(x)).$$

3.5. Forcing α - definable sets. The set $A \subseteq \mathbb{N}$ is forcing α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ if there exist a finite part δ and $e \in \mathbb{N}$ such that

$$x \in A \iff (\exists \tau \supseteq \delta)(\tau \Vdash_{\alpha} F_e(x)).$$

3.5.1. Theorem. Let $A \subseteq \mathbb{N}$.

If $A \leq_e \mathfrak{P}^f_{\alpha}$ for all f - enumerations of $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$, then A is forcing α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$.

4. The Normal Form Theorem

In this section we shall give an explicit form of the forcing α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ sets by means of *positive* recursive Σ_{α}^+ formulae. These formulae can be considered as a modification of the Ash's formulae introduced in [1].

4.1. Recursive Σ_{α}^+ formulae. Let, for each $\xi \leq \zeta$, $\mathcal{L}_{\xi} = \{T_1^{\xi}, \ldots, T_{n_{\xi}}^{\xi}\}$ be the language of \mathfrak{A}_{ξ} . We suppose that the languages \mathcal{L}_{ξ} are disjoint.

For each $\alpha \leq \zeta$, define the elementary Σ_{α}^+ formulae and Σ_{α}^+ formulae by transfinite induction on α , as follows.

(1) An elementary Σ_0^+ formula with free variables among \bar{X} is an existential formula of the form:

$$\exists Y_1 \dots \exists Y_m \varphi(\bar{X}, Y_1, \dots, Y_m)$$

where φ is a finite conjunction of atomic formulae in \mathcal{L}_0 ;

(2) $\alpha = \beta + 1$. An elementary Σ^+_{α} formula is in the form

$$\exists Y_0 \ldots \exists Y_m \varphi(X, Y_0 \ldots Y_m)$$

where φ is a finite conjunction of Σ_{β}^{+} formulae and negations of Σ_{β}^{+} formulae and atoms of \mathcal{L}_{α} ;

(3) Let $\alpha = \lim \alpha(p)$ be a limit ordinal and $\alpha \leq \zeta$. The elementary Σ_{α}^{+} formula are in the form

$$\exists Y_0 \ldots \exists Y_m \varphi(X, Y_0, \ldots, Y_m),$$

where φ is a finite conjunction of atoms of \mathcal{L}_{α} and $\Sigma^{+}_{\alpha(p)}$ formulae.

(4) A Σ_{α}^{+} formula is an r.e. infinitary disjunction of elementary Σ_{α}^{+} formulae with free variables among \bar{X} .

Let Φ be a Σ_{α}^+ formula $\alpha \leq \zeta$ with free variables among X_0, \ldots, X_i and let t_0, \ldots, t_i be elements of \mathbb{N} . Then by $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta} \models \Phi(X_0/t^0, \ldots, X_i/t_i)$ we shall denote that Φ is true on $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ under the variable assignment v such that $v(X_0) = t_0, \ldots, v(X_i) = t_i$.

4.2. The formally α -definable sets. The set $A \subseteq \mathbb{N}$ is formally α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$ if there exists an $e \in \mathbb{N}$ and a recursive sequence $\{\Phi\}^{\gamma(e,x)}$ of Σ_{α}^{+} formulae with free variables among W_0, \ldots, W_k and elements t_0, \ldots, t_k of \mathbb{N} such that the following equivalence holds:

$$x \in A \iff \{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta} \models \Phi^{\gamma(e,x)}(W_0/t_0 \dots W_k/t_k).$$

4.2.1. Theorem. Let $A \subseteq \mathbb{N}$ be forcing α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$. Then A is formally α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi < \zeta}$.

4.2.2. Theorem. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:

- (1) $deg_e(A) \in Cosp^{\alpha}(\{\mathfrak{A}_{\xi}\}_{\xi < \zeta}).$
- (2) For every enumeration f of $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$, $A \leq_{e} \mathfrak{P}^{f}_{\alpha}$.
- (3) A is forcing α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi \leq \zeta}$.
- (4) A is formally α -definable on $\{\mathfrak{A}_{\xi}\}_{\xi < \zeta}$.

References

- C. J. Ash, Generalizations of enumeration reducibility using recursive infinitary propositional senetences, Ann. Pure Appl. Logic 58 (1992), 173–184.
- C. J. Ash, C. Jockush, and J. F. Knight, Jumps of orderings, Trans. Amer. Math. Soc. 319 (1990), 573–599.
- R. G. Downey and J. F. Knight, Orderings with α-th jump degree 0^(α), Proc. Amer. Math. Soc. 114 (1992), 545–552.
- J. F. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51 (1986), 1034– 1042.
- 5. L. J. Richter, Degrees of structures, J. Symbolic Logic 46 (1981), 723–731.
- I. N. Soskov, A jump inversion theorem for the enumeration jump, Arch. Math. Logic 39 (2000), 417–437.
- <u>Elements of least degree of families of sets</u>, Third Panhellenic Logic Symposium (Crete) (E. Kranakis, ed.), 2001.
- 8. I. N. Soskov and V. Baleva, Ash's theorem for abstract structures, submitted.
- 9. _____, *Regular enumerations*, to appear in the J. Symbolic Logic.
- 10. I. N. Soskov and A. A. Soskova, Cospectra of joint spectra of structures, submitted.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, SOFIA UNIVERSITY, BLVD. "JAMES BOURCHIER" 5, 1164 SOFIA, BULGARIA

E-mail address: asoskova@fmi.uni-sofia.bg