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Abstract. In the present paper we give two applications of the Jump
inversion theorem for the degree spectra [12], which says that every jump
spectrum is also a spectrum and that if a spectrum A is contained in
the set of the jumps of the degrees in some spectrum B then there ex-
ists a spectrum C such that C ⊆ B and A is equal to the set of the
jumps of the degrees in C. In the first application we give a method of
constructing a structure, possessing an nth - jump degree equal to 0(n)

and which has no kth -jump degree for k < n. In the second result we
relativize Wehner’s construction [13] and obtain a structure whose nth
-jump spectrum contains all degrees above an arbitrary fixed degree.
Key words: Turing degrees; degree spectra; forcing; Marker’s exten-
sions; enumerations.

1 Degree spectra and jump spectra

Let A = (A;R1, . . . , Rs) be a countable structure, where the set A is infinite,
each Ri ⊆ Ari and the equality = is among R1, . . . , Rs.

The notion of a degree spectrum of a countable structure is introduced by
Richter [9] and further studied by Ash, Downey, Jockush and Knight [1,
2, 6].

An enumeration f of A is a total mapping of N onto A.
Given a set R ⊆ Aa and an enumeration f of A, let

f−1(R) = {〈x1, . . . , xa〉 | (f(x1), . . . , f(xa)) ∈ R}.

Let f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rs).

Definition 1. The degree spectrum of A is the set

DS(A) = {dT(f−1(A)) | f is an enumeration of A} .
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Here by dT(B) we denote the Turing degree of the set B.
For every structure A the degree spectrum DS(A) is closed upwards [11], i.e.

for all Turing degrees a and b, a ∈ DS(A) & a ≤ b⇒ b ∈ DS(A).

Definition 2. The jump spectrum of A is the set DS1(A) = {a′ | a ∈ DS(A)}.

Theorem 3. [12] For every structure A there exists a structure B such that
DS1(A) = DS(B).

The structure B is constructed in two stages. First, we define the least acceptable
extension A∗ of A which we call Moschovakis’ extension of A. Roughly speaking
A∗ is an extension of A with additional coding machinery. Using this coding
machinery we define the set KA which is an analogue of Kleene’s set K. Finally
we set B = (A∗,KA).

Theorem 4. [12] Let A and B be structures such that DS(A) ⊆ DS1(B). Then
there exists a structure C such that DS(C) ⊆ DS(B) and DS1(C) = DS(A).

The structure C is obtained as a Marker’s extension of A [8], coding B in C.
In the construction we use a relativized variant of the representation of Σ0

2 sets
of Goncharov and Khoussainov [3].

Definition 5. Let n ≥ 1. The nth jump spectrum of A is the set DSn(A) =
{a(n) | a ∈ DS(A)}.

One can easily see by induction on n that for every n there exists a structure
A(n) such that DSn(A) = DS(A(n)).

Theorem 6. [12] Let A and B be structures such that DS(A) ⊆ DSn(B). Then
there exists a structure C such that DS(C) ⊆ DS(B) and DSn(C) = DS(A).

2 Some Applications

Definition 7. A degree a is said to be the nth jump degree of a structure A if
a is the least element of DSn(A).

Notice that if a is the nth jump degree of A then for all k, a(k) is the (n+k)th
jump degree of A. Hence if a structure A possesses an nth jump degree then it
possesses (n+ k)th jump degrees for all k.

The definitions above can be naturally generalized for all recursive ordinals
α. In [2] Downey and Knight proved with a fairly complicated construction
that for every recursive ordinal α there exists a linear ordering A such that A
has αth jump degree equal to 0(α) but for all β < α, there is no βth jump degree
of A.

Here we shall present a construction which allows us to obtain for every
natural number n examples of structures which have (n+ 1)st jump degree but
do not have kth jump degree for k ≤ n.

The idea of this construction is the following. In [12] we give an example of
a group A, a subgroup of the set of rational numbers, satisfying the following
conditions:



1. DS(A) ⊆ {a : 0(n) ≤ a}.
2. DS(A) has no least element.
3. A has a first jump degree equal to 0(n+1).

Let B = (N ; =) be a structure such that DS(B) is equal to the set of all
Turing degrees. Clearly DS(A) ⊆ DSn(B). By Theorem 6, there exists a structure
C such that DSn(C) = DS(A). Therefore C does not have an nth jump degree
and hence it has no kth jump degree for k ≤ n. On the other hand DSn+1(C) =
DS1(A) and hence the (n+ 1)th jump degree of C is 0(n+1).

Our second application is a generalization of results of Slaman [10] and
Wehner [13]. They give an example of a structure with degree spectrum con-
sisting of all nonrecursive Turing degrees.

Theorem 8. [13] There is a family of finite sets, which has no r.e. enumeration,
i.e. r.e. universal set, and for each nonrecursive set X there is a enumeration
recursive in X.

First we relativize this theorem.

Theorem 9. Let B ⊆ N . There is a family F of sets, which has no r.e. in B
enumeration, and for each set X >T B there is a enumeration of the family F ,
recursive in X.

Following an idea of Kalimullin [7] we consider the following family of sets

F = {{0} ⊕B} ∪ {{1} ⊕B} ∪ {{n+ 2} ⊕ F | F finite set, F 6= WB
n }.

Proposition 10. Let X ⊆ N . If a universal for F set U is r.e. in X then
X >T B.

It is clear that B ≤T X.
If we assume that B ≡T X, then we can construct a recursive in B function

g, such that (∀n)(WB
g(n) 6= WB

n ). This is a contradiction with the recursion
theorem.

Proposition 11. Let B <T X. There exists a universal set U for the family F ,
such that U ≤T X.

Since X 6≤ B then at least one of the sets X or X is not r.e. in B. Without
loss of generality assume that X is not r.e. in B. Fix an enumeration of X =
{x1, . . . , xs, . . .} and denote by νs = 〈x1, . . . , xs〉.

The set U we construct in stages. At each stage s we find an approximation
Us of U and a witness xsn,F,i for every finite set F and i, n ∈ N .

Construction

U0 = {(0, 0)} ∪ {(0, 2x+ 1) | x ∈ B} ∪ {(1, 2)} ∪ {(1, 2x+ 1) | x 6∈ B}∪
{(〈n, F, i〉+ 2, 2n+ 4)} ∪ {(〈n, F, i〉+ 2, 2x+ 1) | x ∈ F} (1)

for each finite set F and i, n ∈ N and let x0n,F,i = −1.
At stage s, denote by F s〈n,F,i〉 = {x | (〈n, F, i〉+ 2, 2x+ 1) ∈ Us}.



– If F s〈n,F,i〉 6= WB
n,s and xsn,F,i 6= −1, we set xs+1

n,F,i = xsn,F,i.

– If F s〈n,F,i〉 = WB
n,s and xsn,F,i 6= −1, we set xs+1

n,F,i = −1 and add (〈n, F, i〉 +

2, 2νs + 1) to Us+1.
– If xsn,F,i = −1, we check if there is a z such that z ∈ F s〈n,F,i〉 6⇔ z ∈ WB

n,s.

If there is such a number z, we set xs+1
n,F,i to be the least one. If not, we add

(〈n, F, i〉+ 2, 2νs + 1) to Us+1.

End of construction
Let U =

⋃
s U

s and F =
⋃
F s.

Consider the sequence {xsn,F,i}.

1. If this sequence has a limit a natural number, i.e. it is stable for all s ≥ s0
for some s0, then the index 〈n, F, i〉 is an index of a finite set from the family
F .

2. If the sequence has a limit −1 or it does not have a limit at all, then there
exists a monotone sequence of stages s1 < s2 < . . . < sk < . . ., such that
WB
n,s = {νsk | k ∈ N} ∪ F . It follows that the set {νsk | k ∈ N} is r.e. in B,

and hence X is r.e. in B. A contradiction.

It follows that every set with index greater than 1 in U is finite and belongs to
the family F . It is clear that every member of the family F has an index.

Moreover (〈n, F, i〉+ 2, 2x+ 1) ∈ U if and only if one of the following holds:

1. x ∈ F ;
2. x = 〈ν0, . . . , νs〉, for some s.

Hence U ≤T X.
So the constructed set U is universal for the family F and U ≤T X.

Theorem 12 (Wehner, Slaman). [13][10] There is a structure C, for which
DS(C) = {x | x >T 0}.

The relativized result is the following:

Theorem 13. For each n ∈ N and every Turing degree b ≥ 0(n) there exists C,
for which DSn(C) = {x | x >T b} .

We construct the structure A, such that DS(A) = {x | x >T b}, using the
family F in the same way as is done in [13]. Let B = (N ; =). It is clear that
b ∈ DSn(B) for each b ≥ 0(n). Thus DS(A) ⊆ DSn(B). By the Jump inversion
Theorem 6 there exists a structure C, such that DSn(C) = DS(A).

Finally we would like to note that there is a relativized variant of Wehner’s
result for b = 0(n) and for b = 0′′ as follows:

Theorem 14. [4] For every n there is a structure C, such that DS(C) = {x |
x(n) >T 0(n)}, i.e. the degree spectrum contains exactly all non-lown Turing
degrees.

Theorem 15. [5] There is a structure C, such that DS(C) = {x | x′ ≥T 0′′}.



And the last authors made a suggestion that they can use an arbitrary Turing
degree b in place of 0′′ and thereby building structures with spectrum {x | x′ ≥T
b}.

In conclusion would like to point out that the Jump inversion theorem gives
a method to lift some interesting results for degree spectra to the nth jump
spectra.
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