
CO-SPECTRA OF JOINT SPECTRA OF STRUCTURES

A. A. SOSKOVA AND I. N. SOSKOV

Abstract. We introduce and study the notion of joint spectrum of finitely

many abstract structures. A characterization of the lower bounds of the ele-
ments of the joint spectrum is obtained.

1. Introduction

Let A = (N;R1, . . . , Rk) be a structure with domain the set of all natural num-
bers N, where each Ri is a subset of Nri and ”=” and ”̸=” are among R1, . . . , Rk.

An enumeration f of A is a total mapping from N onto N.
For every A ⊆ Na define

f−1(A) = {⟨x1 . . . xa⟩ : (f(x1), . . . , f(xa)) ∈ A}
Let

f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk).

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). By de(A)
we denote the enumeration degree of the set A. The set A is total if A ≡e A+,
where A+ = A⊕ (N\A). An enumeration degree is called total if it contains a total
set.

1.1. Definition.The Degree Spectrum of A is the set

DS(A) = {de(f−1(A)) : f is an enumeration of A}.
The notion is introduced by [6] for bijective enumerations. In [2, 5, 4, 7] several

results about degree spectra of structures are obtained. In [7] it is shown that if
a ∈ DS(A) and b is a total e-degree, a ≤ b, then b ∈ DS(A). In other words, the
Degree Spectrum of A is closed upwards.

The co-spectrum of the structure A is the set of all lower bounds of the degree
spectra of A. Co-spectra are introduced and studied in [7].

The aim of the present paper is to study a generalization of the notions of degree
spectra and co-spectra for finitely many structures and to give a normal form of the
sets which generates the elements of the generalized co-spectra in terms of recursive
Σ+ formulae.

In what follows we shall use the following Jump Inversion Theorem proved in [8].
Notice that the jump operation ”′” denotes here the enumeration jump introduced
by Cooper [3].

Given n + 1 sets B0, . . . , Bn, for every i ≤ n define the set P(B0, . . . , Bi) by
means of the following inductive definition:
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(i) P(B0) = B0;
(ii) If i < n, then P(B0, . . . , Bi+1) = (P(B0, . . . , Bi))

′ ⊕Bi+1.

1.2. Theorem. Let n > k ≥ 0, B0, . . . , Bn be arbitrary sets of natural numbers.
Let A ⊆ N and let Q be a total subset of N such that P(B0, . . . , Bn) ≤e Q and
A+ ≤e Q. Suppose also that A ̸≤e P(B0, . . . , Bk). Then there exists a total set F
having the following properties:

(i) For all i ≤ n, Bi ≤e F
(i);

(ii) For all i, 1 ≤ i ≤ n, F (i) ≡e F ⊕ P(B0, . . . , Bi−1)
′;

(iii) F (n) ≡e Q.
(iv) A ̸≤e F

(k).

2. Joint spectra of structures

Let us fix the structures A0, . . . ,An.

2.1. Definition.The Joint Spectrum of A0, . . . ,An is the set

DS(A0,A1, . . . ,An) = {a : a ∈ DS(A0),a
′ ∈ DS(A1), . . . ,a

(n) ∈ DS(An)}.

2.2. Definition.Let k ≤ n. The k - th Jump Spectrum of A0, . . . ,An is the set

DSk(A0, . . . ,An) = {a(k) : a ∈ DS(A0, . . . ,An)}.

2.3. Proposition. DSk(A0, . . . ,An) is closed upwards, i.e. if a(k) ∈ DSk(A0, . . . ,
An), b is a total e-degree and a(k) ≤ b, then b ∈ DSk(A0, . . . ,An).

Proof. Suppose that a(k) ∈ DSk(A0, . . . ,An), b is a total degree and b ≥ a(k). By
the Jump Inversion Theorem 1.2 there is a total e-degree f such that:

(1) a(i) ≤ f (i), for all i ≤ k;
(2) f (k) = b.

Clearly a(i) ≤ f (i) for i ≤ n. Since a(i) ∈ DS(Ai) and f (i) is total, f (i) ∈ DS(Ai),
i ≤ n. Therefore f ∈ DS(A0, . . . ,An) and hence b = f (k) ∈ DSk(A0, . . . ,An). �

2.4. Definition.Let k ≤ n. The k - th Co-spectrum of A0, . . . ,An is the set of all
lower bounds of DSk(A0, . . . ,An), i.e.

CSk(A0, . . . ,An) = {b : b ∈ De&(∀a ∈ DSk(A0, . . . ,An))(b ≤ a)}.

2.5. Proposition. Let k ≤ n. Then

CSk(A0, . . .Ak . . . ,An) = CSk(A0, . . . ,Ak).

Proof. Clearly DSk(A0, . . . ,Ak, . . . ,An) ⊆ DSk(A0, . . . ,Ak) and hence

CSk(A0, . . . ,Ak) ⊆ CSk(A0, . . . ,Ak, . . . ,An).

To show the reverse inclusion let c ∈ CSk(A0, . . . ,An), i.e. c ≤ a(k) for all a ∈
DS(A0, . . . ,An). Suppose that c ̸∈ CSk(A0, . . . ,Ak). Then there exist sets C and
A such that de(C) = c and de(A) ∈ DS(A0, . . . ,Ak) and C ̸≤e A(k). Notice that
P(A,A′, . . . , A(k)) ≡e A(k) and therefore C ̸≤e P(A,A′, . . . , A(k)). Fix some sets
B1, . . . , Bn−k such that de(B1) ∈ DS(Ak+1), . . . , de(Bn−k) ∈ DS(An). Applying
the Jump Inversion Theorem 1.2 we obtain a total set F such that:

(i) For all i ≤ k, A(i) ≤e F
(i);

(ii) For all j, 1 ≤ j ≤ n− k, Bj ≤e F
(k+j);

(iii) C ̸≤e F
(k).
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Since the degree spectra are closed upwards, de(F
(i)) ∈ DS(Ai), i = 0, . . . , n

and hence de(F ) ∈ DS(A0, . . . ,An). On the other hand C ̸≤e F (k) and hence
c ̸∈ CSk(A0, . . . ,An). A contradiction. �

2.6. Theorem.Let A ⊆ N. Then the following are equivalent:

(1) de(A) ∈ CSk(A0, . . . ,Ak).
(2) For every k + 1 enumerations f0, . . . , fk,

A ≤e P(f
−1
0 (A0), . . . , f

−1
k (Ak))).

Proof. Suppose that A satisfies (2) and consider a b ∈ DS(A0, . . . ,Ak). We shall
show that de(A) ≤ b(k).

Let i ≤ k. Then b(i) ∈ DS(Ai) and hence there exists an enumeration fi such
that b(i) = de(f

−1
i (Ai)). Clearly de(A) ≤ de(P(f

−1
0 (A0), . . . , f

−1
k (Ak))) = b(k).

Suppose now that de(A) ∈ CSk(A0, . . . ,Ak) and f0, . . . , fk are enumerations.
Set Bi = f−1

i (Ai), i = 0, . . . , k. Towards a contradiction assume that A ̸≤e

P(f−1
0 (A0), . . . , f

−1
k (Ak)). By the Jump Inversion Theorem 1.2 there is a total set

F such that: Bi ≤e F (i), i ≤ k, and A ̸≤e F (k). Clearly de(F ) ∈ DSk(A0, . . . ,Ak)
and de(A) ̸≤ F (k). So, de(A) ̸∈ CSk(A0, . . . ,Ak). A contradiction. �

3. Generic enumerations and forcing

3.1. The satisfaction relation. Given k + 1 enumerations f0, . . . , fk, denote by

f̄ the sequence f0, . . . , fk and set for i ≤ k, Pf̄
i = P(f−1

0 (A0), . . . , f
−1
i (Ai)).

Let W0, . . . ,Wz, . . . be a Goedel enumeration of the r.e. sets and Dv be the
finite set having canonical code v.

For every i ≤ k, e and x in N define the relations f̄ |=i Fe(x) and f̄ |=i ¬Fe(x)
by induction on i:

(i) f̄ |=0 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈ We & Dv ⊆ f−1
0 (A0));

(ii)

f̄ |=i+1 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈ We & (∀u ∈ Dv)(

u = ⟨0, eu, xu⟩ & f̄ |=i Feu(xu) ∨
u = ⟨1, eu, xu⟩ & f̄ |=i ¬Feu(xu) ∨
u = ⟨2, xu⟩ & xu ∈ f−1

i+1(Ai+1)));

(iii) f̄ |=i ¬Fe(x) ⇐⇒ f̄ ̸|=i Fe(x).

From the above definition it follows easily the truth of the following:

3.1. Proposition. Let A ⊆ N and i ≤ k. Then

A ≤e P
f̄
i ⇐⇒ (∃e)(A = {x : f̄ |=i Fe(x)}).

3.2. Finite parts and forcing. The forcing conditions which we shall call finite
parts are k− tuples τ̄ = (τ0, . . . , τk) of finite mappings τ0, . . . , τk of N in N. We
shall use the letters δ̄, τ̄ , ρ̄, µ̄ to denote finite parts.

For every i ≤ k, e and x in N and every finite part τ̄ we define the forcing
relations τ̄ i Fe(x) and τ̄ i ¬Fe(x) following the definition of relations ”|=i”.

3.2. Definition.

(i) τ̄ 0 Fe(x) ⇐⇒ (∃v)(⟨v, x⟩ ∈ We & Dv ⊆ τ−1
0 (A0));
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(ii)

τ̄ i+1 Fe(x) ⇐⇒ ∃v(⟨v, x⟩ ∈ We &

(∀u ∈ Dv)(u = ⟨0, eu, xu⟩ & τ̄ i Feu(xu) ∨
u = ⟨1, eu, xu⟩ & τ̄ i ¬Feu(xu) ∨
u = ⟨2, xu⟩ & xu ∈ τ−1

i+1(Ai+1)));

(iii) τ̄ i ¬Fe(x) ⇐⇒ (∀ρ̄ ⊇ τ̄)(ρ̄ ̸i Fe(x)).

Given finite parts δ̄ = (δ0, . . . , δk) and τ̄ = (τ0, . . . , τk), let

δ̄ ⊆ τ̄ ⇐⇒ δ0 ⊆ τ0, . . . , δk ⊆ τk.

3.3. Proposition. Let i ≤ k, e, x ∈ N and δ̄ = (δ0, . . . , δk), τ̄ = (τ0, . . . , τk) be
finite parts.

(1) δ̄ ⊆ τ̄ , then δ̄ i (¬)Fe(x) =⇒ τ̄ i (¬)Fe(x);
(2) If δ0 = τ0, . . . , δi = τi then δ̄ i (¬)Fe(x) ⇐⇒ τ̄ i (¬)Fe(x).

Proof. The monotonicity condition (1) is obvious.
The proof of (2) is by induction on i. Skipping the obvious case i = 0 suppose

that i < k and

δ̄ i (¬)Fe(x) ⇐⇒ τ̄ i (¬)Fe(x).

Let τj = δj , j ≤ i+1. From the definition of the relation i+1 it follows immediately
that

δ̄ i+1 Fe(x) ⇐⇒ τ̄ i+1 Fe(x).

Assume that δ̄ i+1 ¬Fe(x) but τ̄ 1i+1 ¬Fe(x). Then there exists a finite part
ρ̄ ⊇ τ̄ such that ρ̄ i+1 Fe(x). Consider the finite part µ̄ such that µj = ρj , j ≤ i+1
and µj = δj for i+1 < j ≤ k. Clearly µ̄ ⊇ δ̄ and µ̄ i+1 Fe(x). A contradiction. �

3.4. Definition. If δ̄ = (δ0, . . . , δk), τ̄ = (τ0, . . . , τk) and i ≤ k define

δ̄ ⊆i τ̄ ⇐⇒ δ0 ⊆ τ0, . . . , δi ⊆ τi, δi+1 = τi+1, . . . , δk = ρk.

Let τ̄ ∗
i (¬)Fe(x) be the same as τ̄ i (¬)Fe(x) with the exception of

(iii) τ̄ i ¬Fe(x) ⇐⇒ (∀ρ̄ ⊇i τ̄)(ρ̄ ̸∗
i Fe(x)).

As an immediate corrolary of the previous Proposition we get the following:

3.5. Lemma. For each i ≤ k, e, x ∈ N and τ̄ ,

τ̄ i (¬)Fe(x) ⇐⇒ τ̄ ∗
i (¬)Fe(x).

3.3. Generic enumerations. For any i ≤ k, e, x ∈ N denote by Xi
⟨e,x⟩ = {ρ̄ : ρ̄ i

Fe(x)}.
If f̄ = (f0, . . . , fk) is an enumeration of A0, . . . ,Ak, then

τ̄ ⊆ f̄ ⇐⇒ τ0 ⊆ f0, . . . , τk ⊆ fk.

3.6. Definition. An enumeration f̄ of A0, . . . ,Ak is i-generic if for every j < i,
e, x ∈ N

(∀τ̄ ⊆ f̄)(∃ρ̄ ∈ Xj
⟨e,x⟩)(τ̄ ⊆ ρ̄) =⇒ (∃τ̄ ⊆ f̄)(τ̄ ∈ Xj

⟨e,x⟩).

3.7. Lemma.

(1) Let f̄ be an i-generic enumeration. Then

f̄ |=i Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ i Fe(x)).
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(2) Let f be an i+ 1-generic enumeration. Then

f̄ |=i ¬Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ i ¬Fe(x)).

Proof. Induction on i. Clearly for every f̄ we have that

f̄ |=0 Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ 0 Fe(x)).

From the definition of the relations |=i and i it follows immediately that if for
some enumeration f̄ we have the equivalences

f̄ |=i Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ i Fe(x))

and

f̄ |=i ¬Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ i ¬Fe(x)),

then we have also and

f̄ |=i+1 Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ i+1 Fe(x)).

So to finish the proof we have to show that if for some i < k the enumeration f̄ is
i+1-generic and (1) holds, then (2) holds as well. Indeed suppose that f̄ |=i ¬Fe(x).
Assume that there is no τ̄ ⊆ f̄ such that τ̄ i ¬Fe(x). Then for every τ̄ ⊆ f̄ there
exists a finite part ρ̄ ⊇ τ̄ such that ρ̄ i Fe(x). From the i + 1 - genericity of f̄ it
follows that there exists a finite part τ̄ ⊆ f̄ such that τ̄ i Fe(x). Hence f̄ |=i Fe(x).
A contradiction.

Assume now that τ̄ ⊆ f̄ and τ̄ i ¬Fe(x). Assume that f̄ |=i Fe(x). Then we
can find a finite part µ̄ ⊆ f̄ such that µ̄ i Fe(x) and µ̄ ⊇ τ̄ . A contradiction. �

3.4. Forcing k - definable sets.

3.8. Definition. The set A ⊆ N is forcing k-definable on A0, . . . ,Ak if there exist
a finite part δ̄ and e ∈ N such that

x ∈ A ⇐⇒ (∃τ̄ ⊇ δ̄)(τ̄ k Fe(x)).

3.9. Theorem. Let A ⊆ N.
If A ≤e P(f−1

0 (A0), . . . , f
−1
k (Ak)) for all f0, . . . , fk enumerations of A0, . . . ,Ak,

respectively, then A is forcing k-definable on A0, . . . ,Ak.

Proof. Suppose that A is not forcing k-definable on A0, . . . ,Ak.

We shall construct a k + 1 - generic enumeration f̄ such that A ̸≤ P
f̄
k .

The construction of the enumeration f̄ will be carried out by steps. On each
step j we shall define a finite part δ̄j = (δj0, . . . , δ

j
k), so that δ̄j ⊆ δ̄j+1, and take

fi = ∪jδ
j
i , for each i ≤ k.

On the steps j = 3q we shall ensure that each fi is a total surjective mapping
from N onto N. On the steps j = 3q + 1 we shall ensure that f̄ is k + 1- generic.

On the steps j = 3q + 2 we shall ensure that A ̸≤ P
f̄
k .

Let δ̄0 = (∅, . . . , ∅).
Suppose that δ̄j is defined.
Case j = 3q. For every i, 0 ≤ i ≤ k, let xi be the least natural number which

does not belong to the domain of δji and yi be the least natural number which does

not belong to the range of δji . Let δ
j+1
i (xi) = yi and δj+1

i (x) ≃ δji (x) for x ̸= xi.
Case j = 3⟨e, i, x⟩+1, i ≤ k. Check if there exists a finite part ρ̄ ⊇ δ̄j such that

ρ̄ i Fe(x). If so then let δ̄j+1 be the least such ρ. Otherwise let δ̄j+1 = δ̄j .
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Case j = 3q + 2. Consider the set

C = {x : (∃τ̄ ⊇ δ̄j)(τ̄ k Fq(x))}.

Clearly C is forcing k-definable on A0, . . . ,Ak and hence C ̸= A. Then there
exists a x such that either x ∈ A and x ̸∈ C or x ∈ C and x ̸∈ A. Take δ̄j+1 = δ̄j

in the first case.
If the second case holds then there must exist a ρ ⊇ δ̄j such that ρ  Fq(x). Let

δ̄j+1 be the least such ρ.
Let δ̄j+1 = δ̄j in the other cases.
To prove that the so received enumeration f̄ = ∪j δ̄

j is k + 1-generic let us fix
numbers i ≤ k, e, x ∈ N and suppose that for every finite part τ̄ ⊆ f̄ there is
an extention ρ̄ i Fe(x). Then consider the step j = 3⟨e, i, x⟩ + 1. From the
construction we have that δ̄j+1 i Fe(x).

Suppose that there is an q ∈ N, so that A = {x : f̄ |=k Fq(x)}. Consider the
step j = 3q + 2. From the construction there is a x such that one of the following
two cases holds.

(a) x ∈ A and (∀ρ̄ ⊇ δ̄j)(ρ̄ ̸k Fq(x)). So, δ̄
j k ¬Fq(x).

Since f̄ is k + 1-generic x ∈ A & f̄ ̸|=k Fq(x). A contradiction.
(b) x ̸∈ A & δ̄j+1 k Fq(x). Since f̄ is k+1-generic f̄ |=k Fq(x). A contradiction.

�

4. The Normal Form Theorem

In this section we shall give an explicit form of the forcing k-definable on A0,
. . . , Ak sets by means of positive recursive Σ+

k formulae. These formulae can be
considered as a modification of Ash’s formulae introduced in [1].

4.1. Recursive Σ+
k formulae. Let, for each i ≤ k, Li = {T i

1, . . . , T
i
ni
} be the

language of Ai, where every T i
j is an rij-ary predicate symbol, and L = L0∪· · ·∪Lk.

We suppose that the languages L0, . . . ,Lk are disjoint.
For each i ≤ k - fix a sequence Xi

0, . . . ,Xi
n, . . . of variables. The upper index i

in the variable Xi
j shows that the possible values of Xi

j will be in |Ai|. By X̄i we

shall denote finite sequences of variables of the form Xi
0, . . . , X

i
l .

For each i ≤ k, define the elementary Σ+
i formulae and the Σ+

i formulae by
induction on i, as follows.

4.1. Definition.

(1) An elementary Σ+
0 formula with free variables among X̄0 is an existential

formula of the form:

∃Y 0
1 . . . ∃Y 0

mΦ(X̄0, Y 0
1 , . . . , Y

0
m),

where Φ is a finite conjunction of atomic formulae in L0 with variables
among Y 0

1 . . . Y 0
m, X̄0;

(2) An elementary Σ+
i+1 formula with free variables among X̄0 . . . X̄i+1 is in

the form

∃Ȳ 0 . . .∃Ȳ i+1Φ(X̄0 . . . X̄i+1, Ȳ 0, . . . , Ȳ i+1)

where Φ is a finite conjunction of Σ+
i formulae and negations of Σ+

i formu-
lae with free variables among Ȳ 0 . . . Ȳ i, X̄0 . . . X̄i and atoms of Li+1 with
variables among X̄i+1, Ȳ i+1;
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(3) A Σ+
i formula with free variables among X̄0, . . . , X̄i is an r.e. infinitary dis-

junction of elementary Σ+
i formulae with free variables among X̄0, . . . , X̄i.

Let Φ be a Σ+
i formula i ≤ k with free variables among X̄0, . . . , X̄i and let

t̄0, . . . , t̄i be elements of N. Then by (A0, . . . ,Ai) |= Φ(X̄0/t̄0, . . . , X̄i/t̄i) we shall
denote that Φ is true on (A0, . . . ,Ai) under the variable assignment v such that
v(X̄0) = t̄0, . . . , v(X̄i) = t̄i. More precisely we have the following:

4.2. Definition.

(1) If Φ = ∃Y 0
1 . . . ∃Y 0

mΨ(X̄0, Y 0
1 , . . . , Y

0
m) is a Σ+

0 formula, then

(A0) |= Φ(X̄0/t̄0) ⇐⇒ ∃s1 . . . ∃sm(A0 |= Ψ(X̄0/t̄0, Y 0
1 /s1, . . . , Y

0
m/sm)).

(2) If Φ = ∃Ȳ 0 . . . ∃Ȳ i+1Ψ(X̄0, . . . , X̄i+1, Ȳ 0, . . . , Ȳ i+1), and Ψ = (φ & α),
where φ(X̄0, . . . , X̄i, Ȳ 0, . . . , Ȳ i) is a conjunction of Σ+

i formulae and nega-
tions of Σ+

i formulae and α(Ȳ i+1, X̄i+1) is a conjunction of atoms of Li+1,
then

(A0, . . . ,Ai+1) |= Φ(X̄0/t̄0, . . . ,X̄i+1/t̄i+1) ⇐⇒
∃s̄0 . . . ∃s̄i+1((A0, . . . ,Ai) |=φ(X̄0/t̄0, . . . , X̄i/t̄i, Ȳ

0/s̄0, . . . , Ȳ i/s̄i) &

(Ai+1) |= α(X̄i+1/t̄i+1, Ȳ i+1/s̄i+1)).

4.2. The formally k-definable sets.

4.3. Definition. The set A ⊆ N is formally k-definable on A0, . . . ,Ak if there exists
a recursive sequence {Φ}γ(x) of Σ+

k formulae with free variables among W̄ 0, . . . , W̄ k

and elements t̄0, . . . , t̄k of N such that the following equivalence holds:

x ∈ A ⇐⇒ (A0 . . .Ak) |= Φγ(x)(W̄ 0/t̄0 . . . W̄ k/t̄k).

We shall show that every forcing k-definable set is formally k-definable.
Let for every i, 0 ≤ i ≤ k, vari be an effective bijective mapping of the natural

numbers onto the variables with upper index i. Given a natural number x, by Xi

we shall denote the variable vari(x).
Let y1 < y2 < . . . < yk be the elements of a finite set D, let Q be one of the

quantifiers ∃ or ∀ an let Φ be an arbitrary formula. Then by Qi(y : y ∈ D)Φ we
shall denote the formula QY i

1 . . . QY i
kΦ.

4.4. Proposition. Let Ē = (E0 . . . Ek) be a sequence of finite sets of natural

numbers, where Ej = {wj
0, . . . , w

j
sj}. Let i ≤ k, x, e be elements of N. There exists

an uniform effective way to construct a Σ+
i formula Φi

Ē,e,x
with free variables among

W̄ 0, . . . , W̄ k, where W i
j = var(wi

j), such that for every finite part δ̄ = (δ0 . . . δk),
dom(δ0) = E0 . . . dom(δk) = Ek

(A0, . . . ,Ak) |= Φi
Ē,e,x(W̄

0/δ0(w̄
0), . . . , W̄ k/δk(w̄

k)) ⇐⇒ δ̄ ∗
i Fe(x).

Proof. We shall construct the formula Φi
Ē,e,x

by induction on i following the defi-

nition of the forcing.
(1) Let i = 0. Let V = {v : ⟨v, x⟩ ∈ We}. Consider an element v of V . For every

u ∈ Dv define the atom Πu as follows

(a) If u = ⟨j, x0
1, . . . , x

0
rj ⟩, where 1 ≤ j ≤ n0 and all x0

1, . . . , x
0
rj are elements of

E0, then let Πu = T 0
j (X

0
1 , . . . , X

0
rj ).

(b) Let Πu = X0
0 ̸= X0

0 in the other cases.
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Set Πv =
∧

u∈Dv
Πu and Φ0

Ē,e,x
=

∨
v∈V Πv.

(2) Case i+ 1. Let V = {v : ⟨v, x⟩ ∈ We} and v ∈ V .
For every u ∈ Dv define the formula Πu as follows:

(a) If u = ⟨0, eu, xu⟩, then let Πu = Φi
Ē,eu,xu

.

(b) If u = ⟨1, eu, xu⟩, then let

Πu = ¬[
∨

E∗
0⊇E0...E∗

i ⊇Ei

(∃0y ∈ E∗
0 \ E0) . . . (∃iy ∈ E∗

i \ Ei)Φ
i
Ē∗,eu,xu

],

where Ē∗ = (E∗
0 , . . . , E

∗
i , Ei+1, . . . , Ek).

(c) If u = ⟨2, xu⟩, xu = ⟨j, xi+1
1 , . . . , xi+1

rj ⟩, j ≤ ni+1 and xi+1
1 , . . . , xi+1

rj ∈ Ei+1

then let Πu = T i+1
j (Xi+1

1 , . . . , Xi+1
rj ).

(d) Let Πu = Φi
{∅},0,0 ∧ ¬Φi

{∅},0,0 in the other cases.

Now let Πv =
∧

u∈Dv
Πu and set Φi+1

Ē,e,x
=

∨
v∈V Πv. An induction on i shows

that for every i the Σ+
i formula Φi

Ē,e,x
satisfies the requirements of the Proposition.

�

4.5. Theorem. Let A ⊆ N be forcing k-definable on A0, . . . ,Ak. Then A is
formally k-definable on A0, . . . ,Ak.

Proof. If A is forcing k-definable on A0, . . . ,Ak then there exist a finite part δ̄ =
(δ0, . . . , δk) and e ∈ N, such that

x ∈ A ⇐⇒ (∃τ̄ ⊇ δ̄)(τ̄ k Fe(x)) ⇐⇒ (∃τ̄ ⊇ δ̄)(τ̄ ∗
k Fe(x)).

Let for i = 1, . . . , k,Ei = dom(δi) = {wi
1, . . . , w

i
r} and let δ(wi

j) = tij , j = 1, . . . , r.

Set Ē = (E0, . . . , Ek). From the previous Proposition we know that:

(A0, . . . ,Ak) |=
∨

Ē∗⊇Ē

∃(y ∈ Ē∗ \ Ē)Φk
E∗,e,x(W̄

0/t̄0, . . . , W̄
k/t̄k) ⇐⇒

(∃τ̄ ⊇ δ̄)(dom(τ̄) = Ē∗)(τ̄ ∗
k Fe(x)).

Then for all x ∈ N the following equivalence is true:

x ∈ A ⇐⇒ (A0, . . . ,Ak) |=
∨

Ē∗⊇Ē

∃(y ∈ Ē∗ \ Ē)Φk
E∗,e,x(W̄

0/t̄0, . . . , W̄
k/t̄k).

From here we can conclude that A is formally k-definable on A0, . . . ,Ak. �

4.6. Theorem. Let A ⊆ N. Then the following are equivalent:

(1) de(A) ∈ CSk(A0, . . . ,An), k ≤ n.
(2) For every enumeration f̄ of A0, . . . ,Ak, A ≤e Pk(f

−1
0 (A0), . . . , f

−1
k (Ak)).

(3) A is forcing k-definable on A0, . . . ,Ak.
(4) A is formally k-definable on A0, . . . ,Ak.

Proof. The equivalence (1) ⇐⇒ (2) follows from the Theorem 2.6.
The implication (2) ⇒ (3) follows from the Theorem 3.9.
The implication (3) ⇒ (4) follows from the previous theorem.
The last implication (4) ⇒ (2) follows by induction on i. �
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