CO-SPECTRA OF JOINT SPECTRA OF STRUCTURES

A. A. SOSKOVA AND I. N. SOSKOV

ABSTRACT. We introduce and study the notion of joint spectrum of finitely many abstract structures. A characterization of the lower bounds of the elements of the joint spectrum is obtained.

1. INTRODUCTION

Let $\mathfrak{A} = (\mathbb{N}; R_1, \ldots, R_k)$ be a structure with domain the set of all natural numbers \mathbb{N} , where each R_i is a subset of \mathbb{N}^{r_i} and "=" and " \neq " are among R_1, \ldots, R_k . An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .

For every $A \subseteq \mathbb{N}^a$ define

$$f^{-1}(A) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in A \}$$

Let

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k).$$

For any sets of natural numbers A and B the set A is enumeration reducible to B $(A \leq_e B)$ if there is an enumeration operator Γ_z such that $A = \Gamma_z(B)$. By $d_e(A)$ we denote the enumeration degree of the set A. The set A is total if $A \equiv_e A^+$, where $A^+ = A \oplus (\mathbb{N} \setminus A)$. An enumeration degree is called total if it contains a total set.

1.1. Definition. The Degree Spectrum of \mathfrak{A} is the set

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A} \}.$

The notion is introduced by [6] for bijective enumerations. In [2, 5, 4, 7] several results about degree spectra of structures are obtained. In [7] it is shown that if $\mathbf{a} \in DS(\mathfrak{A})$ and \mathbf{b} is a total e-degree, $\mathbf{a} \leq \mathbf{b}$, then $\mathbf{b} \in DS(\mathfrak{A})$. In other words, the Degree Spectrum of \mathfrak{A} is closed upwards.

The co-spectrum of the structure \mathfrak{A} is the set of all lower bounds of the degree spectra of \mathfrak{A} . Co-spectra are introduced and studied in [7].

The aim of the present paper is to study a generalization of the notions of degree spectra and co-spectra for finitely many structures and to give a normal form of the sets which generates the elements of the generalized co-spectra in terms of recursive Σ^+ formulae.

In what follows we shall use the following Jump Inversion Theorem proved in [8]. Notice that the jump operation "'" denotes here the enumeration jump introduced by COOPER [3].

Given n + 1 sets B_0, \ldots, B_n , for every $i \leq n$ define the set $\mathcal{P}(B_0, \ldots, B_i)$ by means of the following inductive definition:

¹⁹⁹¹ Mathematics Subject Classification. 03D30.

Key words and phrases. enumeration reducibility, enumeration jump, enumeration degrees, forcing.

- (i) $\mathcal{P}(B_0) = B_0;$
- (ii) If i < n, then $\mathcal{P}(B_0, \dots, B_{i+1}) = (\mathcal{P}(B_0, \dots, B_i))' \oplus B_{i+1}$.

1.2. Theorem. Let $n > k \ge 0$, B_0, \ldots, B_n be arbitrary sets of natural numbers. Let $A \subseteq \mathbb{N}$ and let Q be a total subset of \mathbb{N} such that $\mathcal{P}(B_0, \ldots, B_n) \le_e Q$ and $A^+ \le_e Q$. Suppose also that $A \not\le_e \mathcal{P}(B_0, \ldots, B_k)$. Then there exists a total set F having the following properties:

- (i) For all $i \leq n$, $B_i \leq_e F^{(i)}$;
- (ii) For all $i, 1 \leq i \leq n$, $F^{(i)} \equiv_e F \oplus \mathcal{P}(B_0, \dots, B_{i-1})'$;
- (iii) $F^{(n)} \equiv_e Q.$
- (iv) $A \not\leq_e F^{(k)}$.

2. Joint spectra of structures

Let us fix the structures $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$.

2.1. Definition. The Joint Spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

 $DS(\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = \{\mathbf{a} : \mathbf{a} \in DS(\mathfrak{A}_0), \mathbf{a}' \in DS(\mathfrak{A}_1), \ldots, \mathbf{a}^{(n)} \in DS(\mathfrak{A}_n)\}.$

2.2. Definition.Let $k \leq n$. The k - th Jump Spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set

 $DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n) = \{\mathbf{a}^{(\mathbf{k})} : \mathbf{a} \in DS(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)\}.$

2.3. Proposition. $DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$ is closed upwards, i.e. if $\mathbf{a}^{(\mathbf{k})} \in DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, **b** is a total e-degree and $\mathbf{a}^{(\mathbf{k})} \leq \mathbf{b}$, then $\mathbf{b} \in DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$.

Proof. Suppose that $\mathbf{a}^{(\mathbf{k})} \in DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, **b** is a total degree and $\mathbf{b} \geq \mathbf{a}^{(\mathbf{k})}$. By the Jump Inversion Theorem 1.2 there is a total e-degree **f** such that:

- (1) $\mathbf{a}^{(i)} \leq \mathbf{f}^{(i)}$, for all $i \leq k$;
- (2) $\mathbf{f}^{(\mathbf{k})} = \mathbf{b}.$

Clearly $\mathbf{a}^{(i)} \leq \mathbf{f}^{(i)}$ for $i \leq n$. Since $\mathbf{a}^{(i)} \in DS(\mathfrak{A}_i)$ and $\mathbf{f}^{(i)}$ is total, $\mathbf{f}^{(i)} \in DS(\mathfrak{A}_i)$, $i \leq n$. Therefore $\mathbf{f} \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$ and hence $\mathbf{b} = \mathbf{f}^{(\mathbf{k})} \in DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$. \Box

2.4. Definition.Let $k \leq n$. The k - th Co-spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set of all lower bounds of $DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, i.e.

 $CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n) = \{\mathbf{b} : \mathbf{b} \in \mathcal{D}_e\&(\forall \mathbf{a} \in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a})\}.$

2.5. Proposition. Let $k \leq n$. Then

$$CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k\ldots,\mathfrak{A}_n)=CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k).$$

Proof. Clearly $DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k,\ldots,\mathfrak{A}_n) \subseteq DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k)$ and hence

 $CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k) \subseteq CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k,\ldots,\mathfrak{A}_n).$

To show the reverse inclusion let $\mathbf{c} \in CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, i.e. $\mathbf{c} \leq \mathbf{a}^{(\mathbf{k})}$ for all $\mathbf{a} \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$. Suppose that $\mathbf{c} \notin CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$. Then there exist sets C and A such that $d_e(C) = \mathbf{c}$ and $d_e(A) \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$ and $C \not\leq_e A^{(k)}$. Notice that $\mathcal{P}(A, A', \ldots, A^{(k)}) \equiv_e A^{(k)}$ and therefore $C \not\leq_e \mathcal{P}(A, A', \ldots, A^{(k)})$. Fix some sets B_1, \ldots, B_{n-k} such that $d_e(B_1) \in DS(\mathfrak{A}_{k+1}), \ldots, d_e(B_{n-k}) \in DS(\mathfrak{A}_n)$. Applying the Jump Inversion Theorem 1.2 we obtain a total set F such that:

- (i) For all $i \leq k$, $A^{(i)} \leq_e F^{(i)}$;
- (ii) For all $j, 1 \le j \le n-k, B_j \le_e F^{(k+j)}$;
- (iii) $C \not\leq_e F^{(k)}$.

 $\mathbf{2}$

Since the degree spectra are closed upwards, $d_e(F^{(i)}) \in DS(\mathfrak{A}_i), i = 0, \ldots, n$ and hence $d_e(F) \in DS(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$. On the other hand $C \leq_e F^{(k)}$ and hence $c \notin CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$. A contradiction.

2.6. Theorem.Let $A \subseteq \mathbb{N}$. Then the following are equivalent:

- (1) $d_e(A) \in CS_k(\mathfrak{A}_0, \dots, \mathfrak{A}_k).$
- (2) For every k + 1 enumerations f_0, \ldots, f_k ,

$$A \leq_{e} \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \dots, f_k^{-1}(\mathfrak{A}_k))).$$

Proof. Suppose that A satisfies (2) and consider a $\mathbf{b} \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$. We shall show that $d_e(A) \leq \mathbf{b}^{(\mathbf{k})}$.

Let $i \leq k$. Then $\mathbf{b}^{(i)} \in DS(\mathfrak{A}_i)$ and hence there exists an enumeration f_i such

that $\mathbf{b}^{(\mathbf{i})} = d_e(f_i^{-1}(\mathfrak{A}_i))$. Clearly $d_e(A) \leq d_e(\mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \dots, f_k^{-1}(\mathfrak{A}_k))) = \mathbf{b}^{(\mathbf{k})}$. Suppose now that $d_e(A) \in CS_k(\mathfrak{A}_0, \dots, \mathfrak{A}_k)$ and f_0, \dots, f_k are enumerations. Set $B_i = f_i^{-1}(\mathfrak{A}_i), i = 0, \dots, k$. Towards a contradiction assume that $A \not\leq_e$ $\mathcal{P}(f_0^{-1}(\mathfrak{A}_0),\ldots,f_k^{-1}(\mathfrak{A}_k))$. By the Jump Inversion Theorem 1.2 there is a total set F such that: $B_i \leq_e F^{(i)}, i \leq k$, and $A \not\leq_e F^{(k)}$. Clearly $d_e(F) \in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k)$ and $d_e(A) \not\leq F^{(k)}$. So, $d_e(A) \notin CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$. A contradiction. \square

3. Generic enumerations and forcing

3.1. The satisfaction relation. Given k + 1 enumerations f_0, \ldots, f_k , denote by \overline{f} the sequence f_0, \ldots, f_k and set for $i \leq k$, $\mathfrak{P}_i^{\overline{f}} = \mathfrak{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_i^{-1}(\mathfrak{A}_i)).$

Let W_0, \ldots, W_z, \ldots be a Goedel enumeration of the r.e. sets and D_v be the finite set having canonical code v.

For every $i \leq k$, e and x in N define the relations $\overline{f} \models_i F_e(x)$ and $\overline{f} \models_i \neg F_e(x)$ by induction on *i*:

(i)
$$f \models_0 F_e(x) \iff (\exists v)(\langle v, x \rangle \in W_e \& D_v \subseteq f_0^{-1}(\mathfrak{A}_0));$$

 $\bar{f} \models_{i+1} F_e(x) \iff (\exists v)(\langle v, x \rangle \in W_e \& (\forall u \in D_v))($
(ii) $u = \langle 0, e_u, x_u \rangle \& \bar{f} \models_i F_{e_u}(x_u) \lor$
 $u = \langle 1, e_u, x_u \rangle \& \bar{f} \models_i \neg F_{e_u}(x_u) \lor$
 $u = \langle 2, x_u \rangle \& x_u \in f_{i+1}^{-1}(\mathfrak{A}_{i+1})));$
(iii) $\bar{f} \models_i \neg F_e(x) \iff \bar{f} \not\models_i F_e(x).$

From the above definition it follows easily the truth of the following:

3.1. Proposition. Let $A \subseteq \mathbb{N}$ and $i \leq k$. Then

$$A \leq_e \mathfrak{P}^f_i \iff (\exists e)(A = \{x : \bar{f} \models_i F_e(x)\}).$$

3.2. Finite parts and forcing. The forcing conditions which we shall call *finite parts* are k- tuples $\bar{\tau} = (\tau_0, \ldots, \tau_k)$ of finite mappings τ_0, \ldots, τ_k of \mathbb{N} in \mathbb{N} . We shall use the letters $\bar{\delta}, \bar{\tau}, \bar{\rho}, \bar{\mu}$ to denote finite parts.

For every $i \leq k$, e and x in N and every finite part $\overline{\tau}$ we define the forcing relations $\bar{\tau} \Vdash_i F_e(x)$ and $\bar{\tau} \Vdash_i \neg F_e(x)$ following the definition of relations " \models_i ".

3.2. Definition.

(i) $\bar{\tau} \Vdash_0 F_e(x) \iff (\exists v)(\langle v, x \rangle \in W_e \& D_v \subseteq \tau_0^{-1}(\mathfrak{A}_0));$

A. A. SOSKOVA AND I. N. SOSKOV

$$\bar{\tau} \Vdash_{i+1} F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \& \\ (\forall u \in D_v)(u = \langle 0, e_u, x_u \rangle \& \bar{\tau} \Vdash_i F_{e_u}(x_u) \lor \\ u = \langle 1, e_u, x_u \rangle \& \bar{\tau} \Vdash_i \neg F_{e_u}(x_u) \lor \\ u = \langle 2, x_u \rangle \& x_u \in \tau_{i+1}^{-1}(\mathfrak{A}_{i+1})); \\ (\text{iii}) \quad \bar{\tau} \Vdash_i \neg F_e(x) \iff (\forall \bar{\rho} \supseteq \bar{\tau})(\bar{\rho} \nvDash_i F_e(x)).$$

Given finite parts $\bar{\delta} = (\delta_0, \dots, \delta_k)$ and $\bar{\tau} = (\tau_0, \dots, \tau_k)$, let

$$\bar{\delta} \subseteq \bar{\tau} \iff \delta_0 \subseteq \tau_0, \dots, \delta_k \subseteq \tau_k.$$

3.3. Proposition. Let $i \leq k, e, x \in \mathbb{N}$ and $\overline{\delta} = (\delta_0, \dots, \delta_k), \ \overline{\tau} = (\tau_0, \dots, \tau_k)$ be finite parts.

- (1) $\bar{\delta} \subseteq \bar{\tau}$, then $\bar{\delta} \Vdash_i (\neg) F_e(x) \Longrightarrow \bar{\tau} \Vdash_i (\neg) F_e(x)$; (2) If $\delta_0 = \tau_0, \dots, \delta_i = \tau_i$ then $\bar{\delta} \Vdash_i (\neg) F_e(x) \iff \bar{\tau} \Vdash_i (\neg) F_e(x)$.

Proof. The monotonicity condition (1) is obvious.

The proof of (2) is by induction on *i*. Skipping the obvious case i = 0 suppose that i < k and

$$\bar{\delta} \Vdash_i (\neg) F_e(x) \iff \bar{\tau} \Vdash_i (\neg) F_e(x).$$

Let $\tau_j = \delta_j, j \leq i+1$. From the definition of the relation \Vdash_{i+1} it follows immediately that

$$\bar{\delta} \Vdash_{i+1} F_e(x) \iff \bar{\tau} \Vdash_{i+1} F_e(x).$$

Assume that $\bar{\delta} \Vdash_{i+1} \neg F_e(x)$ but $\bar{\tau} \nvDash_{i+1} \neg F_e(x)$. Then there exists a finite part $\bar{\rho} \supseteq \bar{\tau}$ such that $\bar{\rho} \Vdash_{i+1} F_e(x)$. Consider the finite part $\bar{\mu}$ such that $\mu_j = \rho_j, j \leq i+1$ and $\mu_j = \delta_j$ for $i+1 < j \le k$. Clearly $\bar{\mu} \supseteq \bar{\delta}$ and $\bar{\mu} \Vdash_{i+1} F_e(x)$. A contradiction. \Box

3.4. Definition. If $\overline{\delta} = (\delta_0, \dots, \delta_k)$, $\overline{\tau} = (\tau_0, \dots, \tau_k)$ and $i \leq k$ define

$$\delta \subseteq_i \bar{\tau} \iff \delta_0 \subseteq \tau_0, \dots, \delta_i \subseteq \tau_i, \delta_{i+1} = \tau_{i+1}, \dots, \delta_k = \rho_k$$

Let $\bar{\tau} \Vdash_i^* (\neg) F_e(x)$ be the same as $\bar{\tau} \Vdash_i (\neg) F_e(x)$ with the exception of

(iii)
$$\bar{\tau} \Vdash_i \neg F_e(x) \iff (\forall \bar{\rho} \supseteq_i \bar{\tau}) (\bar{\rho} \not\Vdash_i^* F_e(x))$$

As an immediate corrolary of the previous Proposition we get the following:

3.5. Lemma. For each $i \leq k, e, x \in \mathbb{N}$ and $\overline{\tau}$,

$$\bar{\tau} \Vdash_i (\neg) F_e(x) \iff \bar{\tau} \Vdash_i^* (\neg) F_e(x).$$

3.3. Generic enumerations. For any $i \leq k, e, x \in \mathbb{N}$ denote by $X^i_{\langle e, x \rangle} = \{\bar{\rho} : \bar{\rho} \Vdash_i$ $F_e(x)$.

If $\overline{f} = (f_0, \ldots, f_k)$ is an enumeration of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$, then

$$\bar{\tau} \subseteq f \iff \tau_0 \subseteq f_0, \dots, \tau_k \subseteq f_k.$$

3.6. Definition. An enumeration \overline{f} of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ is *i-generic* if for every j < i, $e,x\in \mathbb{N}$

$$(\forall \bar{\tau} \subseteq \bar{f}) (\exists \bar{\rho} \in X^j_{\langle e, x \rangle}) (\bar{\tau} \subseteq \bar{\rho}) \Longrightarrow (\exists \bar{\tau} \subseteq \bar{f}) (\bar{\tau} \in X^j_{\langle e, x \rangle}).$$

3.7. Lemma.

(1) Let \overline{f} be an *i*-generic enumeration. Then

$$\bar{f} \models_i F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_i F_e(x)).$$

(2) Let f be an i + 1-generic enumeration. Then

$$\overline{f} \models_i \neg F_e(x) \iff (\exists \overline{\tau} \subseteq \overline{f})(\overline{\tau} \Vdash_i \neg F_e(x)).$$

Proof. Induction on *i*. Clearly for every \overline{f} we have that

$$\bar{f} \models_0 F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_0 F_e(x)).$$

From the definition of the relations \models_i and \Vdash_i it follows immediately that if for some enumeration \overline{f} we have the equivalences

$$\bar{f} \models_i F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_i F_e(x))$$

and

$$\bar{f} \models_i \neg F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_i \neg F_e(x)),$$

then we have also and

$$\bar{f} \models_{i+1} F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_{i+1} F_e(x)).$$

So to finish the proof we have to show that if for some i < k the enumeration \bar{f} is i+1-generic and (1) holds, then (2) holds as well. Indeed suppose that $\bar{f} \models_i \neg F_e(x)$. Assume that there is no $\bar{\tau} \subseteq \bar{f}$ such that $\bar{\tau} \Vdash_i \neg F_e(x)$. Then for every $\bar{\tau} \subseteq \bar{f}$ there exists a finite part $\bar{\rho} \supseteq \bar{\tau}$ such that $\bar{\rho} \Vdash_i F_e(x)$. From the i+1 - genericity of \bar{f} it follows that there exists a finite part $\bar{\tau} \subseteq \bar{f}$ such that $\bar{\tau} \Vdash_i F_e(x)$. Hence $\bar{f} \models_i F_e(x)$. A contradiction.

Assume now that $\bar{\tau} \subseteq \bar{f}$ and $\bar{\tau} \Vdash_i \neg F_e(x)$. Assume that $\bar{f} \models_i F_e(x)$. Then we can find a finite part $\bar{\mu} \subseteq \bar{f}$ such that $\bar{\mu} \Vdash_i F_e(x)$ and $\bar{\mu} \supseteq \bar{\tau}$. A contradiction. \Box

3.4. Forcing k - definable sets.

3.8. Definition. The set $A \subseteq \mathbb{N}$ is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ if there exist a finite part $\overline{\delta}$ and $e \in \mathbb{N}$ such that

$$x \in A \iff (\exists \bar{\tau} \supseteq \bar{\delta})(\bar{\tau} \Vdash_k F_e(x)).$$

3.9. Theorem. Let $A \subseteq \mathbb{N}$.

If $A \leq_e \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k))$ for all f_0, \ldots, f_k enumerations of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$, respectively, then A is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

Proof. Suppose that A is not forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

We shall construct a k+1 - generic enumeration \bar{f} such that $A \not\leq \mathcal{P}_k^f$.

The construction of the enumeration \overline{f} will be carried out by steps. On each step j we shall define a finite part $\overline{\delta}^j = (\delta_0^j, \ldots, \delta_k^j)$, so that $\overline{\delta}^j \subseteq \overline{\delta}^{j+1}$, and take $f_i = \bigcup_j \delta_i^j$, for each $i \leq k$.

On the steps j = 3q we shall ensure that each f_i is a total surjective mapping from N onto N. On the steps j = 3q + 1 we shall ensure that \bar{f} is k + 1- generic. On the steps j = 3q + 2 we shall ensure that $A \not\leq \mathcal{P}_k^{\bar{f}}$.

Let $\bar{\delta}^0 = (\emptyset, \dots, \emptyset).$

Suppose that $\bar{\delta}^j$ is defined.

CASE j = 3q. For every i, $0 \le i \le k$, let x_i be the least natural number which does not belong to the domain of δ_i^j and y_i be the least natural number which does not belong to the range of δ_i^j . Let $\delta_i^{j+1}(x_i) = y_i$ and $\delta_i^{j+1}(x) \simeq \delta_i^j(x)$ for $x \ne x_i$.

CASE $j = 3\langle e, i, x \rangle + 1$, $i \leq k$. Check if there exists a finite part $\bar{\rho} \supseteq \bar{\delta}^j$ such that $\bar{\rho} \Vdash_i F_e(x)$. If so then let $\bar{\delta}^{j+1}$ be the least such ρ . Otherwise let $\bar{\delta}^{j+1} = \bar{\delta}^j$.

CASE j = 3q + 2. Consider the set

$$C = \{ x : (\exists \bar{\tau} \supseteq \bar{\delta}^j) (\bar{\tau} \Vdash_k F_q(x)) \}.$$

Clearly C is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ and hence $C \neq A$. Then there exists a x such that either $x \in A$ and $x \notin C$ or $x \in C$ and $x \notin A$. Take $\bar{\delta}^{j+1} = \bar{\delta}^j$ in the first case.

If the second case holds then there must exist a $\rho \supseteq \overline{\delta}^j$ such that $\rho \Vdash F_q(x)$. Let $\bar{\delta}^{j+1}$ be the least such ρ .

Let $\bar{\delta}^{j+1} = \bar{\delta}^{j}$ in the other cases.

To prove that the so received enumeration $\bar{f} = \bigcup_i \bar{\delta}^j$ is k + 1-generic let us fix numbers $i \leq k, e, x \in \mathbb{N}$ and suppose that for every finite part $\overline{\tau} \subseteq \overline{f}$ there is an extention $\bar{\rho} \Vdash_i F_e(x)$. Then consider the step $j = 3\langle e, i, x \rangle + 1$. From the construction we have that $\bar{\delta}^{j+1} \Vdash_i F_e(x)$.

Suppose that there is an $q \in \mathbb{N}$, so that $A = \{x : \overline{f} \models_k F_q(x)\}$. Consider the step j = 3q + 2. From the construction there is a x such that one of the following two cases holds.

(a) $x \in A$ and $(\forall \bar{\rho} \supseteq \bar{\delta}^j)(\bar{\rho} \not\Vdash_k F_q(x))$. So, $\bar{\delta}^j \Vdash_k \neg F_q(x)$.

Since \overline{f} is k + 1-generic $x \in A \& \overline{f} \not\models_k F_q(x)$. A contradiction. (b) $x \notin A \& \overline{\delta}^{j+1} \Vdash_k F_q(x)$. Since \overline{f} is k+1-generic $\overline{f} \models_k F_q(x)$. A contradiction.

4. The Normal Form Theorem

In this section we shall give an explicit form of the forcing k-definable on \mathfrak{A}_0 , \ldots, \mathfrak{A}_k sets by means of *positive* recursive Σ_k^+ formulae. These formulae can be considered as a modification of Ash's formulae introduced in [1].

4.1. Recursive Σ_k^+ formulae. Let, for each $i \leq k$, $\mathcal{L}_i = \{T_1^i, \ldots, T_{n_i}^i\}$ be the language of \mathfrak{A}_i , where every T_j^i is an r_j^i -ary predicate symbol, and $\mathcal{L} = \mathcal{L}_0 \cup \cdots \cup \mathcal{L}_k$.

We suppose that the languages $\mathcal{L}_0, \ldots, \mathcal{L}_k$ are disjoint. For each $i \leq k$ - fix a sequence $\mathbb{X}_0^i, \ldots, \mathbb{X}_n^i, \ldots$ of variables. The upper index iin the variable \mathbb{X}_{i}^{i} shows that the possible values of \mathbb{X}_{i}^{i} will be in $|\mathfrak{A}_{i}|$. By \bar{X}^{i} we shall denote finite sequences of variables of the form X_0^i, \ldots, X_l^i .

For each $i \leq k$, define the elementary Σ_i^+ formulae and the Σ_i^+ formulae by induction on i, as follows.

4.1. Definition.

(1) An elementary Σ_0^+ formula with free variables among \bar{X}^0 is an existential formula of the form:

$$\exists Y_1^0 \dots \exists Y_m^0 \Phi(\bar{X}^0, Y_1^0, \dots, Y_m^0),$$

where Φ is a finite conjunction of atomic formulae in \mathcal{L}_0 with variables among $Y_1^0 \dots Y_m^0, \bar{X}^0;$

(2) An elementary Σ_{i+1}^+ formula with free variables among $\bar{X}^0 \dots \bar{X}^{i+1}$ is in the form

$$\exists \bar{Y}^0 \dots \exists \bar{Y}^{i+1} \Phi(\bar{X}^0 \dots \bar{X}^{i+1}, \bar{Y}^0, \dots, \bar{Y}^{i+1})$$

where Φ is a finite conjunction of Σ_i^+ formulae and negations of Σ_i^+ formulae with free variables among $\bar{Y}^0 \dots \bar{Y}^i, \bar{X}^0 \dots \bar{X}^i$ and atoms of \mathcal{L}_{i+1} with variables among $\bar{X}^{i+1}, \bar{Y}^{i+1}$;

(3) $A \Sigma_i^+$ formula with free variables among $\bar{X}^0, \ldots, \bar{X}^i$ is an r.e. infinitary disjunction of elementary Σ_i^+ formulae with free variables among $\bar{X}^0, \ldots, \bar{X}^i$.

Let Φ be a Σ_i^+ formula $i \leq k$ with free variables among $\bar{X}^0, \ldots, \bar{X}^i$ and let $\bar{t}^0, \ldots, \bar{t}^i$ be elements of \mathbb{N} . Then by $(\mathfrak{A}_0, \ldots, \mathfrak{A}_i) \models \Phi(\bar{X}^0/\bar{t}^0, \ldots, \bar{X}^i/\bar{t}^i)$ we shall denote that Φ is true on $(\mathfrak{A}_0, \ldots, \mathfrak{A}_i)$ under the variable assignment v such that $v(\bar{X}^0) = \bar{t}^0, \ldots, v(\bar{X}^i) = \bar{t}^i$. More precisely we have the following:

4.2. Definition.

- (1) If $\Phi = \exists Y_1^0 \dots \exists Y_m^0 \Psi(\bar{X}^0, Y_1^0, \dots, Y_m^0)$ is a Σ_0^+ formula, then
- $(\mathfrak{A}_0) \models \Phi(\bar{X}^0/\bar{t}^0) \iff \exists s_1 \ldots \exists s_m(\mathfrak{A}_0 \models \Psi(\bar{X}^0/\bar{t}^0, Y_1^0/s_1, \ldots, Y_m^0/s_m)).$
- (2) If $\Phi = \exists \bar{Y}^0 \dots \exists \bar{Y}^{i+1} \Psi(\bar{X}^0, \dots, \bar{X}^{i+1}, \bar{Y}^0, \dots, \bar{Y}^{i+1})$, and $\Psi = (\varphi \& \alpha)$, where $\varphi(\bar{X}^0, \dots, \bar{X}^i, \bar{Y}^0, \dots, \bar{Y}^i)$ is a conjunction of Σ_i^+ formulae and negations of Σ_i^+ formulae and $\alpha(\bar{Y}^{i+1}, \bar{X}^{i+1})$ is a conjunction of atoms of \mathcal{L}_{i+1} , then

$$\begin{aligned} (\mathfrak{A}_{0},\ldots,\mathfrak{A}_{i+1}) &\models \Phi(\bar{X}^{0}/\bar{t}^{0},\ldots,\bar{X}^{i+1}/\bar{t}^{i+1}) \iff \\ \exists \bar{s}^{0}\ldots \exists \bar{s}^{i+1}((\mathfrak{A}_{0},\ldots,\mathfrak{A}_{i}) \models \varphi(\bar{X}^{0}/\bar{t}^{0},\ldots,\bar{X}^{i}/\bar{t}_{i},\bar{Y}^{0}/\bar{s}^{0},\ldots,\bar{Y}^{i}/\bar{s}^{i}) \& \\ (\mathfrak{A}_{i+1}) \models \alpha(\bar{X}^{i+1}/\bar{t}^{i+1},\bar{Y}^{i+1}/\bar{s}^{i+1})). \end{aligned}$$

4.2. The formally *k*-definable sets.

4.3. Definition. The set $A \subseteq \mathbb{N}$ is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ if there exists a recursive sequence $\{\Phi\}^{\gamma(x)}$ of Σ_k^+ formulae with free variables among $\overline{W}^0, \ldots, \overline{W}^k$ and elements $\overline{t}^0, \ldots, \overline{t}^k$ of \mathbb{N} such that the following equivalence holds:

 $x \in A \iff (\mathfrak{A}_0 \dots \mathfrak{A}_k) \models \Phi^{\gamma(x)}(\bar{W}^0/\bar{t}^0 \dots \bar{W}^k/\bar{t}^k).$

We shall show that every forcing k-definable set is formally k-definable.

Let for every $i, 0 \le i \le k, var_i$ be an effective bijective mapping of the natural numbers onto the variables with upper index i. Given a natural number x, by X^i we shall denote the variable $var_i(x)$.

Let $y_1 < y_2 < \ldots < y_k$ be the elements of a finite set D, let Q be one of the quantifiers \exists or \forall an let Φ be an arbitrary formula. Then by $Q^i(y : y \in D)\Phi$ we shall denote the formula $QY_1^i \ldots QY_k^i\Phi$.

4.4. Proposition. Let $\overline{E} = (E_0 \dots E_k)$ be a sequence of finite sets of natural numbers, where $E_j = \{w_0^j, \dots, w_{s_j}^j\}$. Let $i \leq k, x, e$ be elements of \mathbb{N} . There exists an uniform effective way to construct a Σ_i^+ formula $\Phi_{\overline{E},e,x}^i$ with free variables among $\overline{W}^0, \dots, \overline{W}^k$, where $W_j^i = var(w_j^i)$, such that for every finite part $\overline{\delta} = (\delta_0 \dots \delta_k)$, $dom(\delta_0) = E_0 \dots dom(\delta_k) = E_k$

$$(\mathfrak{A}_0,\ldots,\mathfrak{A}_k)\models\Phi^i_{\bar{E},e,x}(\bar{W}^0/\delta_0(\bar{w}^0),\ldots,\bar{W}^k/\delta_k(\bar{w}^k))\iff \bar{\delta}\Vdash^*_i F_e(x).$$

Proof. We shall construct the formula $\Phi^i_{\overline{E},e,x}$ by induction on *i* following the definition of the forcing.

(1) Let i = 0. Let $V = \{v : \langle v, x \rangle \in W_e\}$. Consider an element v of V. For every $u \in D_v$ define the atom Π_u as follows

- (a) If $u = \langle j, x_1^0, \dots, x_{r_j}^0 \rangle$, where $1 \le j \le n_0$ and all $x_1^0, \dots, x_{r_j}^0$ are elements of E_0 , then let $\Pi_u = T_j^0(X_1^0, \dots, X_{r_j}^0)$.
- (b) Let $\Pi_u = X_0^0 \neq X_0^0$ in the other cases.

Set $\Pi_v = \bigwedge_{u \in D_v} \Pi_u$ and $\Phi^0_{\overline{E}, e, x} = \bigvee_{v \in V} \Pi_v$. (2) Case i + 1. Let $V = \{v : \langle v, x \rangle \in W_e\}$ and $v \in V$. For every $u \in D_v$ define the formula Π_u as follows:

- (a) If $u = \langle 0, e_u, x_u \rangle$, then let $\Pi_u = \Phi^i_{\overline{E}, e_u, x_u}$.
- (b) If $u = \langle 1, e_u, x_u \rangle$, then let

$$\Pi_u = \neg [\bigvee_{E_0^* \supseteq E_0 \dots E_i^* \supseteq E_i} (\exists^0 y \in E_0^* \setminus E_0) \dots (\exists^i y \in E_i^* \setminus E_i) \Phi_{\bar{E}^*, e_u, x_u}^i],$$

- where $\bar{E}^* = (E_0^*, \dots, E_i^*, E_{i+1}, \dots, E_k).$ (c) If $u = \langle 2, x_u \rangle$, $x_u = \langle j, x_1^{i+1}, \dots, x_{r_j}^{i+1} \rangle$, $j \leq n_{i+1}$ and $x_1^{i+1}, \dots, x_{r_j}^{i+1} \in E_{i+1}$ then let $\Pi_u = T_j^{i+1}(X_1^{i+1}, \dots, X_{r_j}^{i+1}).$ (d) Let $\Pi_u = \Phi^i_{\{\emptyset\}, 0, 0} \land \neg \Phi^i_{\{\emptyset\}, 0, 0}$ in the other cases.

Now let $\Pi_v = \bigwedge_{u \in D_v} \Pi_u$ and set $\Phi_{\bar{E},e,x}^{i+1} = \bigvee_{v \in V} \Pi_v$. An induction on *i* shows that for every *i* the Σ_i^+ formula $\Phi_{\bar{E},e,x}^i$ satisfies the requirements of the Proposition.

4.5. Theorem. Let $A \subseteq \mathbb{N}$ be forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$. Then A is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

Proof. If A is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ then there exist a finite part $\overline{\delta} =$ $(\delta_0, \ldots, \delta_k)$ and $e \in \mathbb{N}$, such that

$$x \in A \iff (\exists \bar{\tau} \supseteq \bar{\delta})(\bar{\tau} \Vdash_k F_e(x)) \iff (\exists \bar{\tau} \supseteq \bar{\delta})(\bar{\tau} \Vdash_k^* F_e(x)).$$

Let for $i = 1, ..., k, E_i = \text{dom}(\delta_i) = \{w_1^i, ..., w_r^i\}$ and let $\delta(w_j^i) = t_j^i, j = 1, ..., r$. Set $\overline{E} = (E_0, \ldots, E_k)$. From the previous Proposition we know that:

$$(\mathfrak{A}_{0},\ldots,\mathfrak{A}_{k})\models\bigvee_{\bar{E}^{*}\supseteq\bar{E}}\exists(y\in\bar{E}^{*}\setminus\bar{E})\Phi_{E^{*},e,x}^{k}(\bar{W}^{0}/\bar{t}_{0},\ldots,\bar{W}^{k}/\bar{t}_{k})\iff$$
$$(\exists\bar{\tau}\supseteq\bar{\delta})(\operatorname{dom}(\bar{\tau})=\bar{E}^{*})(\bar{\tau}\Vdash_{k}^{*}F_{e}(x)).$$

Then for all $x \in \mathbb{N}$ the following equivalence is true:

$$x \in A \iff (\mathfrak{A}_0, \dots, \mathfrak{A}_k) \models \bigvee_{\bar{E}^* \supseteq \bar{E}} \exists (y \in \bar{E}^* \setminus \bar{E}) \Phi^k_{E^*, e, x}(\bar{W}^0/\bar{t}_0, \dots, \bar{W}^k/\bar{t}_k).$$

From here we can conclude that A is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

4.6. Theorem. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:

- (1) $d_e(A) \in CS_k(\mathfrak{A}_0, \dots, \mathfrak{A}_n), k \leq n.$
- (2) For every enumeration \overline{f} of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k, A \leq_e \mathfrak{P}_k(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k)).$
- (3) A is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.
- (4) A is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

Proof. The equivalence $(1) \iff (2)$ follows from the Theorem 2.6.

The implication $(2) \Rightarrow (3)$ follows from the Theorem 3.9.

The implication $(3) \Rightarrow (4)$ follows from the previous theorem.

The last implication $(4) \Rightarrow (2)$ follows by induction on *i*.

References

- C. J. Ash, Generalizations of enumeration reducibility using recursive infinitary propositional senetences, Ann. Pure Appl. Logic 58 (1992), 173–184.
- [2] C. J. Ash, C. Jockush, and J. F. Knight, Jumps of orderings, Trans. Amer. Math. Soc. 319 (1990), 573–599.
- [3] S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ₂ sets are dense, J. Symbolic Logic 49 (1984), 503–513.
- [4] R. G. Downey and J. F. Knight, Orderings with α-th jump degree 0^(α), Proc. Amer. Math. Soc. 114 (1992), 545–552.
- [5] J. F. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51 (1986), 1034–1042.
- [6] L. J. Richter, Degrees of structures, J. Symbolic Logic 46 (1981), 723–731.
- [7] I. N. Soskov, Degree spectra and co-spectra of structures, Submitted.
- [8] _____, A jump inversion theorem for the enumeration jump, Arch. Math. Logic **39** (2000), 417–437.

Faculty of Mathematics and Computer Science, Sofia University, BLVD. "James Bourchier" 5, 1164 Sofia, Bulgaria

E-mail address: asoskova@fmi.uni-sofia.bg, soskov@fmi.uni-sofia.bg