# CO-SPECTRA OF JOINT SPECTRA OF STRUCTURES 

A. A. SOSKOVA AND I. N. SOSKOV


#### Abstract

We introduce and study the notion of joint spectrum of finitely many abstract structures. A characterization of the lower bounds of the elements of the joint spectrum is obtained.


## 1. Introduction

Let $\mathfrak{A}=\left(\mathbb{N} ; R_{1}, \ldots, R_{k}\right)$ be a structure with domain the set of all natural numbers $\mathbb{N}$, where each $R_{i}$ is a subset of $\mathbb{N}^{r_{i}}$ and " $=$ " and " $\neq$ " are among $R_{1}, \ldots, R_{k}$. An enumeration $f$ of $\mathfrak{A}$ is a total mapping from $\mathbb{N}$ onto $\mathbb{N}$.
For every $A \subseteq \mathbb{N}^{a}$ define

$$
f^{-1}(A)=\left\{\left\langle x_{1} \ldots x_{a}\right\rangle:\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in A\right\}
$$

Let

$$
f^{-1}(\mathfrak{A})=f^{-1}\left(R_{1}\right) \oplus \cdots \oplus f^{-1}\left(R_{k}\right)
$$

For any sets of natural numbers $A$ and $B$ the set $A$ is enumeration reducible to $B\left(A \leq_{e} B\right)$ if there is an enumeration operator $\Gamma_{z}$ such that $A=\Gamma_{z}(B) . \operatorname{By} d_{e}(A)$ we denote the enumeration degree of the set $A$. The set $A$ is total if $A \equiv_{e} A^{+}$, where $A^{+}=A \oplus(\mathbb{N} \backslash A)$. An enumeration degree is called total if it contains a total set.

### 1.1. Definition. The Degree Spectrum of $\mathfrak{A}$ is the set

$$
D S(\mathfrak{A})=\left\{d_{e}\left(f^{-1}(\mathfrak{A})\right): f \text { is an enumeration of } \mathfrak{A}\right\}
$$

The notion is introduced by [6] for bijective enumerations. In [2, 5, 4, 7] several results about degree spectra of structures are obtained. In [7] it is shown that if $\mathbf{a} \in D S(\mathfrak{A})$ and $\mathbf{b}$ is a total e-degree, $\mathbf{a} \leq \mathbf{b}$, then $\mathbf{b} \in D S(\mathfrak{A})$. In other words, the Degree Spectrum of $\mathfrak{A}$ is closed upwards.

The co-spectrum of the structure $\mathfrak{A}$ is the set of all lower bounds of the degree spectra of $\mathfrak{A}$. Co-spectra are introduced and studied in [7].

The aim of the present paper is to study a generalization of the notions of degree spectra and co-spectra for finitely many structures and to give a normal form of the sets which generates the elements of the generalized co-spectra in terms of recursive $\Sigma^{+}$formulae.

In what follows we shall use the following Jump Inversion Theorem proved in [8]. Notice that the jump operation "'" denotes here the enumeration jump introduced by Cooper [3].

Given $n+1$ sets $B_{0}, \ldots, B_{n}$, for every $i \leq n$ define the set $\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)$ by means of the following inductive definition:

[^0](i) $\mathcal{P}\left(B_{0}\right)=B_{0}$;
(ii) If $i<n$, then $\mathcal{P}\left(B_{0}, \ldots, B_{i+1}\right)=\left(\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)\right)^{\prime} \oplus B_{i+1}$.
1.2. Theorem. Let $n>k \geq 0, B_{0}, \ldots, B_{n}$ be arbitrary sets of natural numbers. Let $A \subseteq \mathbb{N}$ and let $Q$ be a total subset of $\mathbb{N}$ such that $\mathcal{P}\left(B_{0}, \ldots, B_{n}\right) \leq_{e} Q$ and $A^{+} \leq_{e} Q$. Suppose also that $A \not \mathbb{z}_{e} \mathcal{P}\left(B_{0}, \ldots, B_{k}\right)$. Then there exists a total set $F$ having the following properties:
(i) For all $i \leq n, B_{i} \leq e F^{(i)}$;
(ii) For all $i, 1 \leq i \leq n, F^{(i)} \equiv{ }_{e} F \oplus \mathcal{P}\left(B_{0}, \ldots, B_{i-1}\right)^{\prime}$;
(iii) $F^{(n)} \equiv_{e} Q$.
(iv) $A \not Z_{e} F^{(k)}$.

## 2. JOINT SPECTRA OF STRUCTURES

Let us fix the structures $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.
2.1. Definition. The Joint Spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{a}: \mathbf{a} \in D S\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in D S\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(\mathbf{n})} \in D S\left(\mathfrak{A}_{n}\right)\right\}
$$

2.2. Definition.Let $k \leq n$. The $k$ - th Jump Spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{a}^{(\mathbf{k})}: \mathbf{a} \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right\}
$$

2.3. Proposition. $D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ is closed upwards, i.e. if $\mathbf{a}^{(\mathbf{k})} \in D S_{k}\left(\mathfrak{A}_{0}, \ldots\right.$, $\mathfrak{A}_{n}$ ), b is a total e-degree and $\mathbf{a}^{(\mathbf{k})} \leq \mathbf{b}$, then $\mathbf{b} \in D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.
Proof. Suppose that $\mathbf{a}^{(\mathbf{k})} \in D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, $\mathbf{b}$ is a total degree and $\mathbf{b} \geq \mathbf{a}^{(\mathbf{k})}$. By the Jump Inversion Theorem 1.2 there is a total e-degree $\mathbf{f}$ such that:
(1) $\mathbf{a}^{(\mathbf{i})} \leq \mathbf{f}^{(\mathbf{i})}$, for all $i \leq k$;
(2) $\mathbf{f}^{(\mathbf{k})}=\mathbf{b}$.

Clearly $\mathbf{a}^{(\mathbf{i})} \leq \mathbf{f}^{(\mathbf{i})}$ for $i \leq n$. Since $\mathbf{a}^{(\mathbf{i})} \in D S\left(\mathfrak{A}_{i}\right)$ and $\mathbf{f}^{(\mathbf{i})}$ is total, $\mathbf{f}^{(\mathbf{i})} \in D S\left(\mathfrak{A}_{i}\right)$, $i \leq n$. Therefore $\mathbf{f} \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ and hence $\mathbf{b}=\mathbf{f}^{(\mathbf{k})} \in D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.
2.4. Definition.Let $k \leq n$. The $k$ - th Co-spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set of all lower bounds of $D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, i.e.

$$
C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=\left\{\mathbf{b}: \mathbf{b} \in \mathcal{D}_{e} \&\left(\forall \mathbf{a} \in D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right)(\mathbf{b} \leq \mathbf{a})\right\}
$$

2.5. Proposition. Let $k \leq n$. Then

$$
C S_{k}\left(\mathfrak{A}_{0}, \ldots \mathfrak{A}_{k} \ldots, \mathfrak{A}_{n}\right)=C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)
$$

Proof. Clearly $D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}, \ldots, \mathfrak{A}_{n}\right) \subseteq D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$ and hence

$$
C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right) \subseteq C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}, \ldots, \mathfrak{A}_{n}\right)
$$

To show the reverse inclusion let $\mathbf{c} \in C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, i.e. $\mathbf{c} \leq \mathbf{a}^{(\mathbf{k})}$ for all $\mathbf{a} \in$ $D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$. Suppose that $\mathbf{c} \notin C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$. Then there exist sets $C$ and $A$ such that $d_{e}(C)=\mathbf{c}$ and $d_{e}(A) \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$ and $C \not \not_{e} A^{(k)}$. Notice that $\mathcal{P}\left(A, A^{\prime}, \ldots, A^{(k)}\right) \equiv_{e} A^{(k)}$ and therefore $C \not \leq_{e} \mathcal{P}\left(A, A^{\prime}, \ldots, A^{(k)}\right)$. Fix some sets $B_{1}, \ldots, B_{n-k}$ such that $d_{e}\left(B_{1}\right) \in D S\left(\mathfrak{A}_{k+1}\right), \ldots, d_{e}\left(B_{n-k}\right) \in D S\left(\mathfrak{A}_{n}\right)$. Applying the Jump Inversion Theorem 1.2 we obtain a total set $F$ such that:
(i) For all $i \leq k, A^{(i)} \leq{ }_{e} F^{(i)}$;
(ii) For all $j, 1 \leq j \leq n-k, B_{j} \leq{ }_{e} F^{(k+j)}$;
(iii) $C \not Z_{e} F^{(k)}$.

Since the degree spectra are closed upwards, $d_{e}\left(F^{(i)}\right) \in D S\left(\mathfrak{A}_{i}\right), i=0, \ldots, n$ and hence $d_{e}(F) \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$. On the other hand $C \not \mathbb{Z}_{e} F^{(k)}$ and hence $c \notin C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$. A contradiction.
2.6. Theorem. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:
(1) $d_{e}(A) \in C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$.
(2) For every $k+1$ enumerations $f_{0}, \ldots, f_{k}$,

$$
\left.A \leq_{e} \mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right)\right)
$$

Proof. Suppose that $A$ satisfies (2) and consider a $\mathbf{b} \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$. We shall show that $d_{e}(A) \leq \mathbf{b}^{(\mathbf{k})}$.

Let $i \leq k$. Then $\mathbf{b}^{(\mathbf{i})} \in D S\left(\mathfrak{A}_{i}\right)$ and hence there exists an enumeration $f_{i}$ such that $\mathbf{b}^{(\mathbf{i})}=d_{e}\left(f_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)$. Clearly $d_{e}(A) \leq d_{e}\left(\mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right)\right)=\mathbf{b}^{(\mathbf{k})}$.

Suppose now that $d_{e}(A) \in C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$ and $f_{0}, \ldots, f_{k}$ are enumerations. Set $B_{i}=f_{i}^{-1}\left(\mathfrak{A}_{i}\right), i=0, \ldots, k$. Towards a contradiction assume that $A \not Z_{e}$ $\mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right)$. By the Jump Inversion Theorem 1.2 there is a total set $F$ such that: $B_{i} \leq_{e} F^{(i)}, i \leq k$, and $A \not \leq_{e} F^{(k)}$. Clearly $d_{e}(F) \in D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$ and $d_{e}(A) \not \leq F^{(k)}$. So, $d_{e}(A) \notin C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)$. A contradiction.

## 3. Generic enumerations and forcing

3.1. The satisfaction relation. Given $k+1$ enumerations $f_{0}, \ldots, f_{k}$, denote by $\bar{f}$ the sequence $f_{0}, \ldots, f_{k}$ and set for $i \leq k, \mathcal{P}_{i}^{\bar{f}}=\mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)$.

Let $W_{0}, \ldots, W_{z}, \ldots$ be a Goedel enumeration of the r.e. sets and $D_{v}$ be the finite set having canonical code $v$.

For every $i \leq k, e$ and $x$ in $\mathbb{N}$ define the relations $\bar{f} \models_{i} F_{e}(x)$ and $\bar{f} \models_{i} \neg F_{e}(x)$ by induction on $i$ :
(i) $\bar{f} \models_{0} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \& D_{v} \subseteq f_{0}^{-1}\left(\mathfrak{A}_{0}\right)\right)$;
$\bar{f} \models_{i+1} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)(\right.$
(ii)

$$
\begin{aligned}
& u=\left\langle 0, e_{u}, x_{u}\right\rangle \& \bar{f} \models_{i} F_{e_{u}}\left(x_{u}\right) \vee \\
& u=\left\langle 1, e_{u}, x_{u}\right\rangle \& \bar{f} \models_{i} \neg F_{e_{u}}\left(x_{u}\right) \vee \\
& \left.\left.u=\left\langle 2, x_{u}\right\rangle \& x_{u} \in f_{i+1}^{-1}\left(\mathfrak{A}_{i+1}\right)\right)\right)
\end{aligned}
$$

(iii) $\bar{f} \models_{i} \neg F_{e}(x) \Longleftrightarrow \bar{f} \not \models_{i} F_{e}(x)$.

From the above definition it follows easily the truth of the following:
3.1. Proposition. Let $A \subseteq \mathbb{N}$ and $i \leq k$. Then

$$
A \leq_{e} \mathcal{P}_{i}^{\bar{f}} \Longleftrightarrow(\exists e)\left(A=\left\{x: \bar{f} \models_{i} F_{e}(x)\right\}\right)
$$

3.2. Finite parts and forcing. The forcing conditions which we shall call finite parts are $k$ - tuples $\bar{\tau}=\left(\tau_{0}, \ldots, \tau_{k}\right)$ of finite mappings $\tau_{0}, \ldots, \tau_{k}$ of $\mathbb{N}$ in $\mathbb{N}$. We shall use the letters $\bar{\delta}, \bar{\tau}, \bar{\rho}, \bar{\mu}$ to denote finite parts.

For every $i \leq k, e$ and $x$ in $\mathbb{N}$ and every finite part $\bar{\tau}$ we define the forcing relations $\bar{\tau} \Vdash_{i} F_{e}(x)$ and $\bar{\tau} \Vdash_{i} \neg F_{e}(x)$ following the definition of relations " $=_{i}$ ".

### 3.2. Definition.

(i) $\bar{\tau} \Vdash_{0} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \& D_{v} \subseteq \tau_{0}^{-1}\left(\mathfrak{A}_{0}\right)\right)$;

$$
\bar{\tau} \Vdash_{i+1} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\right.
$$

(ii)

$$
\text { (ii) } \begin{aligned}
&\left(\forall u \in D_{v}\right)(u=\left\langle 0, e_{u}, x_{u}\right\rangle \& \bar{\tau} \Vdash_{i} F_{e_{u}}\left(x_{u}\right) \vee \\
& u=\left\langle 1, e_{u}, x_{u}\right\rangle \& \bar{\tau} \Vdash_{i} \neg F_{e_{u}}\left(x_{u}\right) \vee \\
& u\left.\left.=\left\langle 2, x_{u}\right\rangle \& x_{u} \in \tau_{i+1}^{-1}\left(\mathfrak{A}_{i+1}\right)\right)\right) ; \\
& \text { (iii) } \bar{\tau} \Vdash_{i} \neg F_{e}(x) \Longleftrightarrow(\forall \bar{\rho} \supseteq \bar{\tau})\left(\bar{\rho} \Vdash_{i} F_{e}(x)\right) .
\end{aligned}
$$

Given finite parts $\bar{\delta}=\left(\delta_{0}, \ldots, \delta_{k}\right)$ and $\bar{\tau}=\left(\tau_{0}, \ldots, \tau_{k}\right)$, let

$$
\bar{\delta} \subseteq \bar{\tau} \Longleftrightarrow \delta_{0} \subseteq \tau_{0}, \ldots, \delta_{k} \subseteq \tau_{k}
$$

3.3. Proposition. Let $i \leq k, e, x \in \mathbb{N}$ and $\bar{\delta}=\left(\delta_{0}, \ldots, \delta_{k}\right), \bar{\tau}=\left(\tau_{0}, \ldots, \tau_{k}\right)$ be finite parts.
(1) $\bar{\delta} \subseteq \bar{\tau}$, then $\bar{\delta} \Vdash_{i}(\neg) F_{e}(x) \Longrightarrow \bar{\tau} \Vdash_{i}(\neg) F_{e}(x)$;
(2) If $\delta_{0}=\tau_{0}, \ldots, \delta_{i}=\tau_{i}$ then $\bar{\delta} \Vdash_{i}(\neg) F_{e}(x) \Longleftrightarrow \bar{\tau} \Vdash_{i}(\neg) F_{e}(x)$.

Proof. The monotonicity condition (1) is obvious.
The proof of (2) is by induction on $i$. Skipping the obvious case $i=0$ suppose that $i<k$ and

$$
\bar{\delta} \Vdash_{i}(\neg) F_{e}(x) \Longleftrightarrow \bar{\tau} \Vdash_{i}(\neg) F_{e}(x) .
$$

Let $\tau_{j}=\delta_{j}, j \leq i+1$. From the definition of the relation $\Vdash_{i+1}$ it follows immediately that

$$
\bar{\delta} \Vdash_{i+1} F_{e}(x) \Longleftrightarrow \bar{\tau} \Vdash_{i+1} F_{e}(x)
$$

Assume that $\bar{\delta} \Vdash_{i+1} \neg F_{e}(x)$ but $\bar{\tau} \nVdash_{i+1} \neg F_{e}(x)$. Then there exists a finite part $\bar{\rho} \supseteq \bar{\tau}$ such that $\bar{\rho} \Vdash_{i+1} F_{e}(x)$. Consider the finite part $\bar{\mu}$ such that $\mu_{j}=\rho_{j}, j \leq i+1$ and $\mu_{j}=\delta_{j}$ for $i+1<j \leq k$. Clearly $\bar{\mu} \supseteq \bar{\delta}$ and $\bar{\mu} \Vdash_{i+1} F_{e}(x)$. A contradiction.
3.4. Definition. If $\bar{\delta}=\left(\delta_{0}, \ldots, \delta_{k}\right), \bar{\tau}=\left(\tau_{0}, \ldots, \tau_{k}\right)$ and $i \leq k$ define

$$
\bar{\delta} \subseteq_{i} \bar{\tau} \Longleftrightarrow \delta_{0} \subseteq \tau_{0}, \ldots, \delta_{i} \subseteq \tau_{i}, \delta_{i+1}=\tau_{i+1}, \ldots, \delta_{k}=\rho_{k}
$$

Let $\bar{\tau} \Vdash_{i}^{*}(\neg) F_{e}(x)$ be the same as $\bar{\tau} \Vdash_{i}(\neg) F_{e}(x)$ with the exception of
(iii) $\bar{\tau} \Vdash_{i} \neg F_{e}(x) \Longleftrightarrow\left(\forall \bar{\rho} \supseteq_{i} \bar{\tau}\right)\left(\bar{\rho} \Vdash_{i}^{*} F_{e}(x)\right)$.

As an immediate corrolary of the previous Proposition we get the following:
3.5. Lemma. For each $i \leq k, e, x \in \mathbb{N}$ and $\bar{\tau}$,

$$
\bar{\tau} \Vdash_{i}(\neg) F_{e}(x) \Longleftrightarrow \bar{\tau} \Vdash_{i}^{*}(\neg) F_{e}(x)
$$

3.3. Generic enumerations. For any $i \leq k, e, x \in \mathbb{N}$ denote by $X_{\langle e, x\rangle}^{i}=\left\{\bar{\rho}: \bar{\rho} \Vdash_{i}\right.$ $\left.F_{e}(x)\right\}$.

If $\bar{f}=\left(f_{0}, \ldots, f_{k}\right)$ is an enumeration of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$, then

$$
\bar{\tau} \subseteq \bar{f} \Longleftrightarrow \tau_{0} \subseteq f_{0}, \ldots, \tau_{k} \subseteq f_{k}
$$

3.6. Definition. An enumeration $\bar{f}$ of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$ is i-generic if for every $j<i$, $e, x \in \mathbb{N}$

$$
(\forall \bar{\tau} \subseteq \bar{f})\left(\exists \bar{\rho} \in X_{\langle e, x\rangle}^{j}\right)(\bar{\tau} \subseteq \bar{\rho}) \Longrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \in X_{\langle e, x\rangle}^{j}\right)
$$

### 3.7. Lemma.

(1) Let $\bar{f}$ be an i-generic enumeration. Then

$$
\bar{f} \models_{i} F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{i} F_{e}(x)\right) .
$$

(2) Let $f$ be an $i+1$-generic enumeration. Then

$$
\bar{f} \models_{i} \neg F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{i} \neg F_{e}(x)\right) .
$$

Proof. Induction on $i$. Clearly for every $\bar{f}$ we have that

$$
\bar{f} \models_{0} F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{0} F_{e}(x)\right) .
$$

From the definition of the relations $\models_{i}$ and $\Vdash_{i}$ it follows immediately that if for some enumeration $\bar{f}$ we have the equivalences

$$
\bar{f} \models_{i} F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{i} F_{e}(x)\right)
$$

and

$$
\bar{f} \models_{i} \neg F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{i} \neg F_{e}(x)\right),
$$

then we have also and

$$
\bar{f} \models_{i+1} F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{i+1} F_{e}(x)\right) .
$$

So to finish the proof we have to show that if for some $i<k$ the enumeration $\bar{f}$ is $i+1$-generic and (1) holds, then (2) holds as well. Indeed suppose that $\bar{f} \models_{i} \neg F_{e}(x)$. Assume that there is no $\bar{\tau} \subseteq \bar{f}$ such that $\bar{\tau} \Vdash_{i} \neg F_{e}(x)$. Then for every $\bar{\tau} \subseteq \bar{f}$ there exists a finite part $\bar{\rho} \supseteq \bar{\tau}$ such that $\bar{\rho} \Vdash_{i} F_{e}(x)$. From the $i+1$ - genericity of $\bar{f}$ it follows that there exists a finite part $\bar{\tau} \subseteq \bar{f}$ such that $\bar{\tau} \Vdash_{i} F_{e}(x)$. Hence $\bar{f} \models_{i} F_{e}(x)$. A contradiction.

Assume now that $\bar{\tau} \subseteq \bar{f}$ and $\bar{\tau} \Vdash_{i} \neg F_{e}(x)$. Assume that $\bar{f} \models_{i} F_{e}(x)$. Then we can find a finite part $\bar{\mu} \subseteq \bar{f}$ such that $\bar{\mu} \Vdash_{i} F_{e}(x)$ and $\bar{\mu} \supseteq \bar{\tau}$. A contradiction.

### 3.4. Forcing $k$-definable sets.

3.8. Definition. The set $A \subseteq \mathbb{N}$ is forcing $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$ if there exist a finite part $\bar{\delta}$ and $e \in \mathbb{N}$ such that

$$
x \in A \Longleftrightarrow(\exists \bar{\tau} \supseteq \bar{\delta})\left(\bar{\tau} \Vdash_{k} F_{e}(x)\right) .
$$

### 3.9. Theorem. Let $A \subseteq \mathbb{N}$.

If $A \leq_{e} \mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right)$ for all $f_{0}, \ldots, f_{k}$ enumerations of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$, respectively, then $A$ is forcing $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$.

Proof. Suppose that $A$ is not forcing $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$.
We shall construct a $k+1$ - generic enumeration $\bar{f}$ such that $A \not \leq \mathcal{P}_{k}^{\bar{f}}$.
The construction of the enumeration $\bar{f}$ will be carried out by steps. On each step $j$ we shall define a finite part $\bar{\delta}^{j}=\left(\delta_{0}^{j}, \ldots, \delta_{k}^{j}\right)$, so that $\bar{\delta}^{j} \subseteq \bar{\delta}^{j+1}$, and take $f_{i}=\cup_{j} \delta_{i}^{j}$, for each $i \leq k$.

On the steps $j=3 q$ we shall ensure that each $f_{i}$ is a total surjective mapping from $\mathbb{N}$ onto $\mathbb{N}$. On the steps $j=3 q+1$ we shall ensure that $\bar{f}$ is $k+1$ - generic. On the steps $j=3 q+2$ we shall ensure that $A \not \leq \mathcal{P}_{k}^{\bar{f}}$.

Let $\bar{\delta}^{0}=(\emptyset, \ldots, \emptyset)$.
Suppose that $\bar{\delta}^{j}$ is defined.
CASE $j=3 q$. For every $i, 0 \leq i \leq k$, let $x_{i}$ be the least natural number which does not belong to the domain of $\delta_{i}^{j}$ and $y_{i}$ be the least natural number which does not belong to the range of $\delta_{i}^{j}$. Let $\delta_{i}^{j+1}\left(x_{i}\right)=y_{i}$ and $\delta_{i}^{j+1}(x) \simeq \delta_{i}^{j}(x)$ for $x \neq x_{i}$.

CASE $j=3\langle e, i, x\rangle+1, i \leq k$. Check if there exists a finite part $\bar{\rho} \supseteq \bar{\delta}^{j}$ such that $\bar{\rho} \Vdash_{i} F_{e}(x)$. If so then let $\bar{\delta}^{j+1}$ be the least such $\rho$. Otherwise let $\bar{\delta}^{j+1}=\bar{\delta}^{j}$.

Case $j=3 q+2$. Consider the set

$$
C=\left\{x:\left(\exists \bar{\tau} \supseteq \bar{\delta}^{j}\right)\left(\bar{\tau} \Vdash_{k} F_{q}(x)\right)\right\} .
$$

Clearly $C$ is forcing $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$ and hence $C \neq A$. Then there exists a $x$ such that either $x \in A$ and $x \notin C$ or $x \in C$ and $x \notin A$. Take $\bar{\delta}^{j+1}=\bar{\delta}^{j}$ in the first case.

If the second case holds then there must exist a $\rho \supseteq \bar{\delta}^{j}$ such that $\rho \Vdash F_{q}(x)$. Let $\bar{\delta}^{j+1}$ be the least such $\rho$.

Let $\bar{\delta}^{j+1}=\bar{\delta}^{j}$ in the other cases.
To prove that the so received enumeration $\bar{f}=\cup_{j} \bar{\delta}^{j}$ is $k+1$-generic let us fix numbers $i \leq k, e, x \in \mathbb{N}$ and suppose that for every finite part $\bar{\tau} \subseteq \bar{f}$ there is an extention $\bar{\rho} \Vdash_{i} F_{e}(x)$. Then consider the step $j=3\langle e, i, x\rangle+1$. From the construction we have that $\bar{\delta}^{j+1} \Vdash_{i} F_{e}(x)$.

Suppose that there is an $q \in \mathbb{N}$, so that $A=\left\{x: \bar{f} \models_{k} F_{q}(x)\right\}$. Consider the step $j=3 q+2$. From the construction there is a $x$ such that one of the following two cases holds.
(a) $x \in A$ and $\left(\forall \bar{\rho} \supseteq \bar{\delta}^{j}\right)\left(\bar{\rho} \nVdash_{k} F_{q}(x)\right)$. So, $\bar{\delta}^{j} \Vdash_{k} \neg F_{q}(x)$.

Since $\bar{f}$ is $k+1$-generic $x \in A \& \bar{f} \not \xi_{k} F_{q}(x)$. A contradiction.
(b) $x \notin A \& \bar{\delta}^{j+1} \Vdash_{k} F_{q}(x)$. Since $\bar{f}$ is $k+1$-generic $\bar{f} \models_{k} F_{q}(x)$. A contradiction.

## 4. The Normal Form Theorem

In this section we shall give an explicit form of the forcing $k$-definable on $\mathfrak{A}_{0}$, $\ldots, \mathfrak{A}_{k}$ sets by means of positive recursive $\Sigma_{k}^{+}$formulae. These formulae can be considered as a modification of Ash's formulae introduced in [1].
4.1. Recursive $\Sigma_{k}^{+}$formulae. Let, for each $i \leq k, \mathcal{L}_{i}=\left\{T_{1}^{i}, \ldots, T_{n_{i}}^{i}\right\}$ be the language of $\mathfrak{A}_{i}$, where every $T_{j}^{i}$ is an $r_{j}^{i}$-ary predicate symbol, and $\mathcal{L}=\mathcal{L}_{0} \cup \cdots \cup \mathcal{L}_{k}$. We suppose that the languages $\mathcal{L}_{0}, \ldots, \mathcal{L}_{k}$ are disjoint.

For each $i \leq k$ - fix a sequence $\mathbb{X}_{0}^{i}, \ldots, \mathbb{X}_{n}^{i}, \ldots$ of variables. The upper index $i$ in the variable $\mathbb{X}_{j}^{i}$ shows that the possible values of $\mathbb{X}_{j}^{i}$ will be in $\left|\mathfrak{A}_{i}\right|$. By $\bar{X}^{i}$ we shall denote finite sequences of variables of the form $X_{0}^{i}, \ldots, X_{l}^{i}$.

For each $i \leq k$, define the elementary $\Sigma_{i}^{+}$formulae and the $\Sigma_{i}^{+}$formulae by induction on $i$, as follows.

### 4.1. Definition.

(1) An elementary $\Sigma_{0}^{+}$formula with free variables among $\bar{X}^{0}$ is an existential formula of the form:

$$
\exists Y_{1}^{0} \ldots \exists Y_{m}^{0} \Phi\left(\bar{X}^{0}, Y_{1}^{0}, \ldots, Y_{m}^{0}\right)
$$

where $\Phi$ is a finite conjunction of atomic formulae in $\mathcal{L}_{0}$ with variables among $Y_{1}^{0} \ldots Y_{m}^{0}, \bar{X}^{0}$;
(2) An elementary $\Sigma_{i+1}^{+}$formula with free variables among $\bar{X}^{0} \ldots \bar{X}^{i+1}$ is in the form

$$
\exists \bar{Y}^{0} \ldots \exists \bar{Y}^{i+1} \Phi\left(\bar{X}^{0} \ldots \bar{X}^{i+1}, \bar{Y}^{0}, \ldots, \bar{Y}^{i+1}\right)
$$

where $\Phi$ is a finite conjunction of $\Sigma_{i}^{+}$formulae and negations of $\Sigma_{i}^{+}$formulae with free variables among $\bar{Y}^{0} \ldots \bar{Y}^{i}, \bar{X}^{0} \ldots \bar{X}^{i}$ and atoms of $\mathcal{L}_{i+1}$ with variables among $\bar{X}^{i+1}, \bar{Y}^{i+1}$;
(3) $A \Sigma_{i}^{+}$formula with free variables among $\bar{X}^{0}, \ldots, \bar{X}^{i}$ is an r.e. infinitary disjunction of elementary $\Sigma_{i}^{+}$formulae with free variables among $\bar{X}^{0}, \ldots, \bar{X}^{i}$.
Let $\Phi$ be a $\Sigma_{i}^{+}$formula $i \leq k$ with free variables among $\bar{X}^{0}, \ldots, \bar{X}^{i}$ and let $\bar{t}^{0}, \ldots, \bar{t}^{i}$ be elements of $\mathbb{N}$. Then by $\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{i}\right) \models \Phi\left(\bar{X}^{0} / \bar{t}^{0}, \ldots, \bar{X}^{i} / \bar{t}^{i}\right)$ we shall denote that $\Phi$ is true on $\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{i}\right)$ under the variable assignment $v$ such that $v\left(\bar{X}^{0}\right)=\bar{t}^{0}, \ldots, v\left(\bar{X}^{i}\right)=\bar{t}^{i}$. More precisely we have the following:

### 4.2. Definition.

(1) If $\Phi=\exists Y_{1}^{0} \ldots \exists Y_{m}^{0} \Psi\left(\bar{X}^{0}, Y_{1}^{0}, \ldots, Y_{m}^{0}\right)$ is a $\Sigma_{0}^{+}$formula, then

$$
\left(\mathfrak{A}_{0}\right) \models \Phi\left(\bar{X}^{0} / \bar{t}^{0}\right) \Longleftrightarrow \exists s_{1} \ldots \exists s_{m}\left(\mathfrak{A}_{0}=\Psi\left(\bar{X}^{0} / \bar{t}^{0}, Y_{1}^{0} / s_{1}, \ldots, Y_{m}^{0} / s_{m}\right)\right)
$$

(2) If $\Phi=\exists \bar{Y}^{0} \ldots \exists \bar{Y}^{i+1} \Psi\left(\bar{X}^{0}, \ldots, \bar{X}^{i+1}, \bar{Y}^{0}, \ldots, \bar{Y}^{i+1}\right)$, and $\Psi=(\varphi \& \alpha)$, where $\varphi\left(\bar{X}^{0}, \ldots, \bar{X}^{i}, \bar{Y}^{0}, \ldots, \bar{Y}^{i}\right)$ is a conjunction of $\Sigma_{i}^{+}$formulae and negations of $\Sigma_{i}^{+}$formulae and $\alpha\left(\bar{Y}^{i+1}, \bar{X}^{i+1}\right)$ is a conjunction of atoms of $\mathcal{L}_{i+1}$, then

$$
\begin{aligned}
&\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{i+1}\right) \models \Phi\left(\bar{X}^{0} / \bar{t}^{0}, \ldots, \bar{X}^{i+1} / \bar{t}^{i+1}\right) \Longleftrightarrow \\
& \quad \exists \bar{s}^{0} \ldots \exists \bar{s}^{i+1}\left(\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{i}\right) \models \varphi\left(\bar{X}^{0} / \bar{t}^{0}, \ldots, \bar{X}^{i} / \bar{t}_{i}, \bar{Y}^{0} / \bar{s}^{0}, \ldots, \bar{Y}^{i} / \bar{s}^{i}\right) \&\right. \\
&\left.\left(\mathfrak{A}_{i+1}\right) \models \alpha\left(\bar{X}^{i+1} / \bar{t}^{i+1}, \bar{Y}^{i+1} / \bar{s}^{i+1}\right)\right) .
\end{aligned}
$$

### 4.2. The formally $k$-definable sets.

4.3. Definition. The set $A \subseteq \mathbb{N}$ is formally $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$ if there exists a recursive sequence $\{\Phi\}^{\gamma(x)}$ of $\Sigma_{k}^{+}$formulae with free variables among $\bar{W}^{0}, \ldots, \bar{W}^{k}$ and elements $\bar{t}^{0}, \ldots, \bar{t}^{k}$ of $\mathbb{N}$ such that the following equivalence holds:

$$
x \in A \Longleftrightarrow\left(\mathfrak{A}_{0} \ldots \mathfrak{A}_{k}\right) \models \Phi^{\gamma(x)}\left(\bar{W}^{0} / \bar{t}^{0} \ldots \bar{W}^{k} / \bar{t}^{k}\right) .
$$

We shall show that every forcing $k$-definable set is formally $k$-definable.
Let for every $i, 0 \leq i \leq k, v a r_{i}$ be an effective bijective mapping of the natural numbers onto the variables with upper index $i$. Given a natural number $x$, by $X^{i}$ we shall denote the variable $\operatorname{var}_{i}(x)$.

Let $y_{1}<y_{2}<\ldots<y_{k}$ be the elements of a finite set $D$, let $Q$ be one of the quantifiers $\exists$ or $\forall$ an let $\Phi$ be an arbitrary formula. Then by $Q^{i}(y: y \in D) \Phi$ we shall denote the formula $Q Y_{1}^{i} \ldots Q Y_{k}^{i} \Phi$.
4.4. Proposition. Let $\bar{E}=\left(E_{0} \ldots E_{k}\right)$ be a sequence of finite sets of natural numbers, where $E_{j}=\left\{w_{0}^{j}, \ldots, w_{s_{j}}^{j}\right\}$. Let $i \leq k, x, e$ be elements of $\mathbb{N}$. There exists an uniform effective way to construct a $\Sigma_{i}^{+}$formula $\Phi_{\bar{E}, e, x}^{i}$ with free variables among $\bar{W}^{0}, \ldots, \bar{W}^{k}$, where $W_{j}^{i}=\operatorname{var}\left(w_{j}^{i}\right)$, such that for every finite part $\bar{\delta}=\left(\delta_{0} \ldots \delta_{k}\right)$, $\operatorname{dom}\left(\delta_{0}\right)=E_{0} \ldots \operatorname{dom}\left(\delta_{k}\right)=E_{k}$

$$
\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right) \models \Phi_{\bar{E}, e, x}^{i}\left(\bar{W}^{0} / \delta_{0}\left(\bar{w}^{0}\right), \ldots, \bar{W}^{k} / \delta_{k}\left(\bar{w}^{k}\right)\right) \Longleftrightarrow \bar{\delta} \Vdash_{i}^{*} F_{e}(x) .
$$

Proof. We shall construct the formula $\Phi_{\bar{E}, e, x}^{i}$ by induction on $i$ following the definition of the forcing.
(1) Let $i=0$. Let $V=\left\{v:\langle v, x\rangle \in W_{e}\right\}$. Consider an element $v$ of $V$. For every $u \in D_{v}$ define the atom $\Pi_{u}$ as follows
(a) If $u=\left\langle j, x_{1}^{0}, \ldots, x_{r_{j}}^{0}\right\rangle$, where $1 \leq j \leq n_{0}$ and all $x_{1}^{0}, \ldots, x_{r_{j}}^{0}$ are elements of $E_{0}$, then let $\Pi_{u}=T_{j}^{0}\left(X_{1}^{0}, \ldots, X_{r_{j}}^{0}\right)$.
(b) Let $\Pi_{u}=X_{0}^{0} \neq X_{0}^{0}$ in the other cases.

Set $\Pi_{v}=\bigwedge_{u \in D_{v}} \Pi_{u}$ and $\Phi_{E, e, x}^{0}=\bigvee_{v \in V} \Pi_{v}$.
(2) Case $i+1$. Let $V=\left\{v:\langle v, x\rangle \in W_{e}\right\}$ and $v \in V$.

For every $u \in D_{v}$ define the formula $\Pi_{u}$ as follows:
(a) If $u=\left\langle 0, e_{u}, x_{u}\right\rangle$, then let $\Pi_{u}=\Phi_{\bar{E}, e_{u}, x_{u}}^{i}$.
(b) If $u=\left\langle 1, e_{u}, x_{u}\right\rangle$, then let

$$
\Pi_{u}=\neg\left[\bigvee_{E_{0}^{*} \supseteq E_{0} \ldots E_{i}^{*} \supseteq E_{i}}\left(\exists^{0} y \in E_{0}^{*} \backslash E_{0}\right) \ldots\left(\exists^{i} y \in E_{i}^{*} \backslash E_{i}\right) \Phi_{\bar{E}^{*}, e_{u}, x_{u}}^{i}\right]
$$

where $\bar{E}^{*}=\left(E_{0}^{*}, \ldots, E_{i}^{*}, E_{i+1}, \ldots, E_{k}\right)$.
(c) If $u=\left\langle 2, x_{u}\right\rangle, x_{u}=\left\langle j, x_{1}^{i+1}, \ldots, x_{r_{j}}^{i+1}\right\rangle, j \leq n_{i+1}$ and $x_{1}^{i+1}, \ldots, x_{r_{j}}^{i+1} \in E_{i+1}$ then let $\Pi_{u}=T_{j}^{i+1}\left(X_{1}^{i+1}, \ldots, X_{r_{j}}^{i+1}\right)$.
(d) Let $\Pi_{u}=\Phi_{\{\emptyset\}, 0,0}^{i} \wedge \neg \Phi_{\{\emptyset\}, 0,0}^{i}$ in the other cases.

Now let $\Pi_{v}=\bigwedge_{u \in D_{v}} \Pi_{u}$ and set $\Phi_{\bar{E}, e, x}^{i+1}=\bigvee_{v \in V} \Pi_{v}$. An induction on $i$ shows that for every $i$ the $\Sigma_{i}^{+}$formula $\Phi_{\bar{E}, e, x}^{i}$ satisfies the requirements of the Proposition.
4.5. Theorem. Let $A \subseteq \mathbb{N}$ be forcing $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$. Then $A$ is formally $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$.

Proof. If $A$ is forcing $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$ then there exist a finite part $\bar{\delta}=$ $\left(\delta_{0}, \ldots, \delta_{k}\right)$ and $e \in \mathbb{N}$, such that

$$
x \in A \Longleftrightarrow(\exists \bar{\tau} \supseteq \bar{\delta})\left(\bar{\tau} \Vdash_{k} F_{e}(x)\right) \Longleftrightarrow(\exists \bar{\tau} \supseteq \bar{\delta})\left(\bar{\tau} \Vdash_{k}^{*} F_{e}(x)\right) .
$$

Let for $i=1, \ldots, k, E_{i}=\operatorname{dom}\left(\delta_{i}\right)=\left\{w_{1}^{i}, \ldots, w_{r}^{i}\right\}$ and let $\delta\left(w_{j}^{i}\right)=t_{j}^{i}, j=1, \ldots, r$. Set $\bar{E}=\left(E_{0}, \ldots, E_{k}\right)$. From the previous Proposition we know that:

$$
\begin{aligned}
& \left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right) \models \bigvee_{\bar{E}^{*} \supseteq \bar{E}} \exists\left(y \in \bar{E}^{*} \backslash \bar{E}\right) \Phi_{E^{*}, e, x}^{k}\left(\bar{W}^{0} / \bar{t}_{0}, \ldots, \bar{W}^{k} / \bar{t}_{k}\right) \Longleftrightarrow \\
& (\exists \bar{\tau} \supseteq \bar{\delta})\left(\operatorname{dom}(\bar{\tau})=\bar{E}^{*}\right)\left(\bar{\tau} \Vdash_{k}^{*} F_{e}(x)\right) .
\end{aligned}
$$

Then for all $x \in \mathbb{N}$ the following equivalence is true:

$$
x \in A \Longleftrightarrow\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right) \models \bigvee_{\bar{E}^{*} \supseteq \bar{E}} \exists\left(y \in \bar{E}^{*} \backslash \bar{E}\right) \Phi_{E^{*}, e, x}^{k}\left(\bar{W}^{0} / \bar{t}_{0}, \ldots, \bar{W}^{k} / \bar{t}_{k}\right)
$$

From here we can conclude that $A$ is formally $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$.
4.6. Theorem. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:
(1) $d_{e}(A) \in C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right), k \leq n$.
(2) For every enumeration $\bar{f}$ of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}, A \leq_{e} \mathcal{P}_{k}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right)$.
(3) $A$ is forcing $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$.
(4) $A$ is formally $k$-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$.

Proof. The equivalence (1) $\Longleftrightarrow(2)$ follows from the Theorem 2.6.
The implication $(2) \Rightarrow(3)$ follows from the Theorem 3.9.
The implication $(3) \Rightarrow(4)$ follows from the previous theorem.
The last implication (4) $\Rightarrow(2)$ follows by induction on $i$.

## References

[1] C. J. Ash, Generalizations of enumeration reducibility using recursive infinitary propositional senetences, Ann. Pure Appl. Logic 58 (1992), 173-184.
[2] C. J. Ash, C. Jockush, and J. F. Knight, Jumps of orderings, Trans. Amer. Math. Soc. 319 (1990), 573-599.
[3] S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degrees of the $\Sigma_{2}$ sets are dense, J. Symbolic Logic 49 (1984), 503-513.
[4] R. G. Downey and J. F. Knight, Orderings with $\alpha$-th jump degree $\mathbf{0}^{(\alpha)}$, Proc. Amer. Math. Soc. 114 (1992), 545-552.
[5] J. F. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51 (1986), 1034-1042.
[6] L. J. Richter, Degrees of structures, J. Symbolic Logic 46 (1981), 723-731.
[7] I. N. Soskov, Degree spectra and co-spectra of structures, Submitted.
[8] $\qquad$ , A jump inversion theorem for the enumeration jump, Arch. Math. Logic 39 (2000), 417-437.

Faculty of Mathematics and Computer Science, Sofia University, Blvd. "James Bourchier" 5, 1164 Sofia, Bulgaria

E-mail address: asoskova@fmi.uni-sofia.bg, soskov@fmi.uni-sofia.bg


[^0]:    1991 Mathematics Subject Classification. 03D30.
    Key words and phrases. enumeration reducibility, enumeration jump, enumeration degrees, forcing.

