ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 97

ANNUAIRE DE L’UNIVERSITE DE SOFIA „ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE Tome 97

PROPERTIES OF CO-SPECTRA OF JOINT SPECTRA OF STRUCTURES

ALEXANDRA SOSKOVA

Abstract

Two properties of co-spectrum of joint spectrum of finitely many abstract structures are presented: a minimal pair type theorem and an existence of a quasi-minimal degree for the joint spectrum.

Keywords: enumeration reducibility, enumeration jump, enumeration degrees, forcing 2000 MSC: 03D30

1. INTRODUCTION

Let \mathfrak{A} be an abstract structure. The degree spectrum $D S(\mathfrak{A})$ of \mathfrak{A} is the set of all enumeration degrees generated by all presentations of \mathfrak{A} on the natural numbers. In $[6,2,5,4,9]$ several results about degree spectra of structures are obtained.

The co-spectrum of the structure \mathfrak{A} is the set of all lower bounds of the degree spectra of \mathfrak{A}. Co-spectra are introduced and studied in [9].

In [10] a generalization of the notions of degree spectra and co-spectra for finitely many structures is presented - the so called joint spectrum and co-spectrum. A normal form of the sets which generates the elements of the co-spectrum of the joint spectrum in terms of some positive recursive Σ^{+}formulae, introduced first in [1], is obtained.

Here we shall prove two properties of the co-spectrum of joint spectrum of structures - the Minimal pair type theorem and the existence of a quasi-minimal degree for the joint spectrum.

Ann. Sofia Univ., Fac. Math and Inf., 97, 2005, 15-32.

The proofs use the technique of regular enumerations introduced in [8], combined with partial generic enumerations used in [9].

2. PRELIMINARIES

Let $\mathfrak{A}=\left(\mathbb{N} ; R_{1}, \ldots, R_{k}\right)$ be a partial structure over the set of all natural numbers \mathbb{N}, where each R_{i} is a subset of $\mathbb{N}^{r_{i}}$ and " $=$ " and " \neq " are among R_{1}, \ldots, R_{k}.

An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N}.
If $A \subseteq \mathbb{N}^{a}$, define

$$
f^{-1}(A)=\left\{\left\langle x_{1} \ldots x_{a}\right\rangle:\left(f\left(x_{1}\right), \ldots, f\left(x_{a}\right)\right) \in A\right\} .
$$

Let $f^{-1}(\mathfrak{A})=f^{-1}\left(R_{1}\right) \oplus \cdots \oplus f^{-1}\left(R_{k}\right)$.
For any sets of natural numbers A and B the set A is enumeration reducible to $B\left(A \leq_{e} B\right)$ if there is an enumeration operator Γ_{z} such that $A=\Gamma_{z}(B)$. By $d_{e}(A)$ we denote the enumeration degree of the set A and by \mathcal{D}_{e} the set of all enumeration degrees. The set A is total if $A \equiv_{e} A^{+}$, where $A^{+}=A \oplus(\mathbb{N} \backslash A)$. A degree a is called total if a contains the e-degree of a total set. The jump operation "'" denotes here the enumeration jump introduced by Cooper [3].

Given $n+1$ subsets B_{0}, \ldots, B_{n} of $\mathbb{N}, i \leq n$, define the set $\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)$ as follows:
(i) $\mathcal{P}\left(B_{0}\right)=B_{0}$;
(ii) If $i<n$, then $\mathcal{P}\left(B_{0}, \ldots, B_{i+1}\right)\left(\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)\right)^{\prime} \oplus B_{i+1}$.

3. JOINT SPECTRA OF STRUCTURES

Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be abstract structures on \mathbb{N}.
The joint sSpectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)\left\{\mathbf{a}: \mathbf{a} \in D S\left(\mathfrak{A}_{0}\right), \mathbf{a}^{\prime} \in D S\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{a}^{(n)} \in D S\left(\mathfrak{A}_{n}\right)\right\}
$$

For every $k \leq n$, the k-th jump spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is the set

$$
D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\left\{\mathbf{a}^{(k)}: \mathbf{a} \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right\}
$$

In [10] we prove that $D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ is closed upwards, i.e. if $\mathbf{a}^{(k)} \in D S_{k}\left(\mathfrak{A}_{0}\right.$, $\left.\ldots, \mathfrak{A}_{n}\right)$, \mathbf{b} is a total e-degree and $\mathbf{a}^{(k)} \leq \mathbf{b}$, then $\mathbf{b} \in D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

The k-th co-spectrum of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}, k \leq n$, is the set of all lower bounds of $D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, i.e.

$$
C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\left\{\mathbf{b}: \mathbf{b} \in \mathcal{D}_{e} \&\left(\forall \mathbf{a} \in D S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)\right)(\mathbf{b} \leq \mathbf{a})\right\}
$$

From [10] we know that the k-th Co-spectrum for $k \leq n$ depends only of the first k structures:

$$
C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}, \ldots, \mathfrak{A}_{n}\right) C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}\right)
$$

In [10] we give a normal form of the sets which generates the elements of the k-th co-spectrum of $D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, i.e. for every $A \subseteq \mathbb{N}$ the following are equivalent:
(1) $d_{e}(A) \in C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$;
(2) For every f_{0}, \ldots, f_{k} enumerations of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{k}$, respectively,

$$
A \leq_{e} \mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right) ;
$$

(3) A is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$;
(4) A is formally k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.

In Section 4 we shall recall the definition of the forcing k-definable sets on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.

The analog of the Minimal pair theorem, which we shall prove in Section 5, is in the following form:

Theorem 3.1. Let $k \leq n$. There exist enumeration degrees \mathbf{f} and \mathbf{g}, elements of $D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$, such that for any enumeration degree \mathbf{a} :

$$
\mathbf{a} \leq \mathbf{f}^{(k)} \& \mathbf{a} \leq \mathbf{g}^{(k)} \Longrightarrow \mathbf{a} \in C S_{k}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)
$$

The proof uses the technique of the regular enumerations from [8], which we will discuss in Section 6 .

Given a set \mathcal{A} of enumeration degrees, denote by $\operatorname{co}(\mathcal{A})$ the set of all lower bounds of \mathcal{A}. Say that the degree \mathbf{q} is a quasi-minimal with respect to \mathcal{A} if the following conditions hold:
(i) $\mathbf{q} \notin c o(\mathcal{A})$;
(ii) If \mathbf{a} is a total degree and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in \mathcal{A}$;
(iii) If \mathbf{a} is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in \operatorname{co}(\mathcal{A})$.

The second property, we are going to prove in Section 7, is the existence of a quasi-minimal degree with respect to $D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$.

Theorem 3.2. There exists an enumeration degree \mathbf{q} such that:
(i) $\mathbf{q}^{\prime} \in D S\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{q}^{(n)} \in D S\left(\mathfrak{A}_{n}\right), q \notin C S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$;
(ii) If \mathbf{a} is a total degree and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$;

Ann. Sofia Univ., Fac. Math and Inf., 97, 2005, 15-32.
(iii) If \mathbf{a} is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in C S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$.

4. FORCING k-DEFINABLE SETS

Suppose that $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ are structures on \mathbb{N}. Let f_{0}, \ldots, f_{n} be enumerations of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$, respectively.

Denote by $\bar{f}=\left(f_{0}, \ldots, f_{n}\right)$ and $\mathcal{P}_{k}^{\bar{f}} \mathcal{P}\left(f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, f_{k}^{-1}\left(\mathfrak{A}_{k}\right)\right)$ for $k=0, \ldots, n$.
Let $W_{0}, \ldots, W_{z}, \ldots$ be a Goedel enumeration of the r.e. sets and D_{v} be the finite set having a canonical code v.

For every $i \leq n, e$ and x in \mathbb{N} define the relations $\bar{f} \models_{i} F_{e}(x)$ and $\bar{f} \models_{i} \neg F_{e}(x)$ by induction on i :
(i) $\bar{f} \models_{0} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \& D_{v} \subseteq f_{0}^{-1}\left(\mathfrak{A}_{0}\right)\right)$;

$$
\bar{f} \models_{i+1} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)(\right.
$$

(ii)

$$
u=\left\langle 0, e_{u}, x_{u}\right\rangle \& \bar{f} \models_{i} F_{e_{u}}\left(x_{u}\right) \vee
$$

$$
\begin{aligned}
u & =\left\langle 1, e_{u}, x_{u}\right\rangle \& \bar{f} \models_{i} \neg F_{e_{u}}\left(x_{u}\right) \vee \\
u & \left.\left.=\left\langle 2, x_{u}\right\rangle \& x_{u} \in f_{i+1}^{-1}\left(\mathfrak{A}_{i+1}\right)\right)\right)
\end{aligned}
$$

(iii) $\bar{f} \models_{i} \neg F_{e}(x) \Longleftrightarrow \bar{f} \not \models_{i} F_{e}(x)$.

If $A \subseteq \mathbb{N}$ and $k \leq n$, then

$$
A \leq_{e} \mathcal{P}_{k}^{\bar{f}} \Longleftrightarrow(\exists e)\left(A=\left\{x: \bar{f} \models_{k} F_{e}(x)\right\}\right)
$$

The forcing conditions, which we shall call finite parts, are $n+1$-tuples $\bar{\tau}=$ $\left(\tau_{0}, \ldots, \tau_{n}\right)$ of finite mappings $\tau_{0}, \ldots, \tau_{n}$ of \mathbb{N} in \mathbb{N}. We suppose that an effective coding of the finite parts is fixed, and by the least finite part with a fixed property we mean a finite part with a minimal code.

For every $i \leq n, e$ and x in \mathbb{N} and every finite part $\bar{\tau}$ we define the forcing relations $\bar{\tau} \Vdash_{i} F_{e}(x)$ and $\bar{\tau} \Vdash_{i} \neg F_{e}(x)$ following the definition of relation $" \models_{i} "$.

Definition 4.1. (i) $\bar{\tau} \Vdash_{0} F_{e}(x) \Longleftrightarrow(\exists v)\left(\langle v, x\rangle \in W_{e} \& D_{v} \subseteq \tau_{0}^{-1}\left(\mathfrak{A}_{0}\right)\right)$;
(ii)

$$
\bar{\tau} \Vdash_{i+1} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\right.
$$

$$
\begin{aligned}
\left(\forall u \in D_{v}\right)(u & =\left\langle 0, e_{u}, x_{u}\right\rangle \& \bar{\tau} \Vdash_{i} F_{e_{u}}\left(x_{u}\right) \vee \\
u & =\left\langle 1, e_{u}, x_{u}\right\rangle \& \bar{\tau} \Vdash_{i} \neg F_{e_{u}}\left(x_{u}\right) \vee \\
u & \left.\left.=\left\langle 2, x_{u}\right\rangle \& x_{u} \in \tau_{i+1}^{-1}\left(\mathfrak{A}_{i+1}\right)\right)\right) ;
\end{aligned}
$$

(iii) $\bar{\tau} \Vdash_{i} \neg F_{e}(x) \Longleftrightarrow(\forall \bar{\rho} \supseteq \bar{\tau})\left(\bar{\rho} \Vdash_{i} F_{e}(x)\right)$.

Given finite parts $\bar{\delta}=\left(\delta_{0}, \ldots, \delta_{n}\right)$ and $\bar{\tau}=\left(\tau_{0}, \ldots, \tau_{n}\right)$, let

$$
\bar{\delta} \subseteq \bar{\tau} \Longleftrightarrow \delta_{0} \subseteq \tau_{0}, \ldots, \delta_{n} \subseteq \tau_{n}
$$

For any $i \leq n, e, x \in \mathbb{N}$ denote $X_{\langle e, x\rangle}^{i}=\left\{\bar{\rho}: \bar{\rho} \Vdash_{i} F_{e}(x)\right\}$. If $\bar{f}=\left(f_{0}, \ldots, f_{n}\right)$ is an enumeration of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$, then

$$
\bar{\tau} \subseteq \bar{f} \Longleftrightarrow \tau_{0} \subseteq f_{0}, \ldots, \tau_{n} \subseteq f_{n}
$$

Definition 4.2. An enumeration \bar{f} of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ is i-generic if for every $j<i$, $e, x \in \mathbb{N}$

$$
(\forall \bar{\tau} \subseteq \bar{f})\left(\exists \bar{\rho} \in X_{\langle e, x\rangle}^{j}\right)(\bar{\tau} \subseteq \bar{\rho}) \Longrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \in X_{\langle e, x\rangle}^{j}\right)
$$

From [10] we know that:
(1) If \bar{f} is a k-generic enumeration, then

$$
\bar{f} \models_{k} F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{k} F_{e}(x)\right)
$$

(2) If f is a $(k+1)$-generic enumeration, then

$$
\bar{f} \models_{k} \neg F_{e}(x) \Longleftrightarrow(\exists \bar{\tau} \subseteq \bar{f})\left(\bar{\tau} \Vdash_{k} \neg F_{e}(x)\right)
$$

Definition 4.3. The set $A \subseteq \mathbb{N}$ is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ if there exist a finite part $\bar{\delta}$ and $e \in \mathbb{N}$ such that

$$
x \in A \Longleftrightarrow(\exists \bar{\tau} \supseteq \bar{\delta})\left(\bar{\tau} \Vdash_{k} F_{e}(x)\right)
$$

Proposition 4.1. Let $\left\{X_{r}^{k}\right\}_{r}, k=0, \ldots, n$, be $(n+1)$-sequences of sets of natural numbers. There exists an $(n+1)$-generic enumeration \bar{f} of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ such that for any $k \leq n$ and for all $r \in \mathbb{N}$, if the set X_{r}^{k} is not forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$, then $X_{r}^{k} \mathbb{Z}_{e} \mathcal{P}_{k}^{\bar{f}}$.

Proof. We shall construct an $(n+1)$-generic enumeration \bar{f} such that for all r and all $k=0, \ldots, n$, if the set X_{r}^{k} is not forcing k-definable, then $X_{r}^{k} \mathbb{Z}_{e} \mathcal{P}_{k}^{\bar{f}}$. Let call the last condition an omitting condition.

The construction of the enumeration \bar{f} will be carried out by steps. On each step j we shall define a finite part $\bar{\delta}^{j}=\left(\delta_{0}^{j}, \ldots, \delta_{n}^{j}\right)$, so that $\bar{\delta}^{j} \subseteq \bar{\delta}^{j+1}$, and take $f_{i}=\cup_{j} \delta_{i}^{j}$ for each $i \leq n$.

On the steps $j=3 q$ we shall ensure that each f_{i} is a total surjective mapping from \mathbb{N} onto \mathbb{N}. On the steps $j=3 q+1$ we shall ensure that \bar{f} is $(n+1)$-generic. On the steps $j=3 q+2$ we shall ensure the omitting condition.

Let $\bar{\delta}^{0}=(\emptyset, \ldots, \emptyset)$.

Suppose that $\bar{\delta}^{j}$ is defined.
Case $j=3 q$. For every $i, 0 \leq i \leq n$, let $x_{i}=\mu x\left[x \notin \operatorname{dom}\left(\delta_{i}^{j}\right)\right]$ and $y_{i}=\mu y[y \notin$ $\left.\operatorname{ran}\left(\delta_{i}^{j}\right)\right]$. Let $\delta_{i}^{j+1}\left(x_{i}\right)=y_{i}$ and $\bar{\delta}_{i}^{j+1}(x) \simeq \delta_{i}^{j}(x)$ for $x \neq x_{i}$.

Case $j=3\langle e, i, x\rangle+1, i \leq n$. Check if there exists a finite part $\bar{\rho} \supseteq \bar{\delta}^{j}$ such that $\bar{\rho} \Vdash_{i} F_{e}(x)$. If so, then let $\bar{\delta}^{j+1}$ be the least such ρ. Otherwise, let $\bar{\delta}^{j+1}=\bar{\delta}^{j}$.

Case $j=3\langle e, k, r\rangle+2, k \leq n$. Consider the set X_{r}^{k}. If X_{r}^{k} is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ then let $\bar{\delta}^{j+1}=\bar{\delta}^{j}$.

Suppose now that X_{r}^{k} is not forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ and let

$$
C=\left\{x:\left(\exists \bar{\tau} \supseteq \bar{\delta}^{j}\right)\left(\bar{\tau} \Vdash_{k} F_{e}(x)\right)\right\} .
$$

Clearly, C is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. Hence $C \neq X_{r}^{k}$. Then there exists an x such that either $x \in X_{r}^{k}$ and $x \notin C$ or $x \in C$ and $x \notin X_{r}^{k}$. Take $\bar{\delta}^{j+1}=\bar{\delta}^{j}$ in the first case.

If the second case holds, then there exists $\bar{\tau} \supseteq \bar{\delta}^{j}$ such that $\bar{\tau} \Vdash_{k} F_{e}(x)$. Let $\bar{\delta}^{j+1}$ be the least such τ.

In all other cases let $\bar{\delta}^{j+1}=\bar{\delta}^{j}$.
The so received enumeration $\bar{f}=\cup_{\underline{j}} \bar{\delta}^{j}$ is $(n+1)$-generic. Let $i \leq n, e, x \in \mathbb{N}$ and suppose that for every finite part $\bar{\tau} \subseteq \bar{f}$ there is an extention $\bar{\rho} \Vdash_{i} F_{e}(x)$. Consider the step $j=3\langle e, i, x\rangle+1$. From the construction we have that $\bar{\delta}^{j+1} \Vdash_{i} F_{e}(x)$.

To prove that the enumeration \bar{f} satisfies the omitting condition, let the set X_{r}^{k} be not forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ and suppose that $X_{r}^{k} \leq_{e} \mathcal{P}_{k}^{\bar{f}}$. Then $X_{r}^{k}=\left\{x: \bar{f} \models_{k} F_{e}(x)\right\}$ for some e. Consider the step $j=3\langle e, k, r\rangle+2$. From the construction there is an x such that one of the following two cases holds:
(a) $x \in X_{r}^{k}$ and $\left(\forall \bar{\rho} \supseteq \bar{\delta}^{j}\right)\left(\bar{\rho} \Vdash_{k} F_{e}(x)\right)$. So, $\bar{\delta}^{j} \vdash_{k} \neg F_{e}(x)$.

Since \bar{f} is $(n+1)$-generic, and hence $(k+1)$-generic, $x \in X_{r}^{k} \& \bar{f} \not \vDash_{k} F_{e}(x)$. A contradiction.
(b) $x \notin X_{r}^{k} \& \bar{\delta}^{j+1} \Vdash_{k} F_{e}(x)$. Since \bar{f} is $(k+1)$-generic, $\bar{f} \models_{k} F_{e}(x)$. A contradiction.

5. MINIMAL PAIR THEOREM

First we need a modification of the "type omitting" version of Jump inversion theorem from [8]. In fact, one can see the result from the proof of Theorem 1.7 in [8]. But in this form it is not explicit formulated there. We shall postpone the proof for Section 6, where the technique of regular enumerations will be discussed.

Theorem 5.1. Let B_{0}, \ldots, B_{n} be arbitrary sets of natural numbers. Let $\left\{A_{r}^{k}\right\}_{r}$, $k=0, \ldots, n$, be $(n+1)$-sequences of subsets of \mathbb{N} such that for every r and for all $k, 0 \leq k<n, A_{r}^{k} \mathbb{Z}_{e} \mathcal{P}\left(B_{0}, \ldots, B_{k}\right)$. Then there exists a total set F having the following properties:
(i) For all $i \leq n, B_{i} \leq{ }_{e} F^{(i)}$;
(ii) For all r, for all $k, 0 \leq k<n, A_{r}^{k} \not \leq_{e} F^{(k)}$.

Proof of Theorem 3.1. We shall construct total sets F and G such that $d_{e}(F) \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right), d_{e}(G) \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$ and for each $k \leq n$ if a total set $X, X \leq_{e} F^{(k)}$ and $X \leq_{e} G^{(k)}$, then $d_{e}(X) \in C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$. And take the degree $\mathbf{f}=d_{e}(F)$ and $\mathbf{g}=d_{e}(G)$.

First we construct enumerations \bar{f} and \bar{h} of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ such that for any $k \leq n$ if a set $A \subseteq \mathbb{N}, A \leq_{e} \mathcal{P}_{k}^{\bar{f}}$ and $A \leq_{e} \mathcal{P}_{k}^{\bar{h}}$, then A is a forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.

Let g_{0}, \ldots, g_{n} be arbitrary enumerations of $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. By Theorem 5.1 for $B_{0}=g_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, B_{n}=g_{n}^{-1}\left(\mathfrak{A}_{n}\right)$ there exists a total set F such that: $g_{0}^{-1}\left(\mathfrak{A}_{0}\right) \leq_{e}$ $F, g_{1}^{-1}\left(\mathfrak{A}_{1}\right) \leq_{e} F^{\prime}, \ldots, g_{n}^{-1}\left(\mathfrak{A}_{n}\right) \leq_{e} F^{(n)}$. Since $D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$ is closed upwards, then $d_{e}(F) \in D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$, i.e. $d_{e}(F) \in D S\left(\mathfrak{A}_{0}\right), d_{e}\left(F^{\prime}\right) \in D S\left(\mathfrak{A}_{1}\right)$, $\ldots, d_{e}\left(F^{(n)}\right) \in D S\left(\mathfrak{A}_{n}\right)$. Hence, there exist $h_{0}, h_{1}, \ldots, h_{n}$ enumerations of $\mathfrak{A}_{0}, \mathfrak{A}_{1}$, \ldots, \mathfrak{A}_{n}, respectively, such that $h_{0}^{-1}\left(\mathfrak{A}_{0}\right) \equiv_{e} F, h_{1}^{-1}\left(\mathfrak{A}_{1}\right) \equiv_{e} F^{\prime}, \ldots, h_{n}^{-1}\left(\mathfrak{A}_{n}\right) \equiv_{e}$ $F^{(n)}$. Notice that for each $k \leq n, F^{(k)} \equiv_{e} \mathcal{P}_{k}^{\bar{h}}$.

For each $k, 0 \leq k \leq n$, let $\left\{X_{r}^{k}\right\}_{r}$ be the sequence of all sets enumeration reducible to $\mathcal{P}_{k}^{\bar{h}}$.

By Proposition 4.1 there is an $(n+1)$-generic enumeration \bar{f} such that for all r and all $k=0, \ldots, n$ if the set X_{r}^{k} is not forcing k-definable then $X_{r}^{k} \mathbb{Z}_{e} \mathcal{P}_{k}^{\bar{f}}$.

Suppose now that the set $A \leq_{e} \mathcal{P}_{k}^{\bar{f}}$ and $A \leq \mathcal{P}_{k}^{\bar{h}}$. Then $A=X_{r}^{k}$ for some r. From the omitting condition of \bar{f} it follows that A is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$.

Now we apply Theorem 5.1. Let $B_{0}=f_{0}^{-1}\left(\mathfrak{A}_{0}\right), \ldots, B_{n} f_{n}^{-1}\left(\mathfrak{A}_{n}\right)$ and $B_{n+1}=$ N. For each $k \leq n$ consider the sequence $\left\{A_{r}^{k}\right\}_{r}$ of these sets among the sets $\left\{X_{r}^{k}\right\}_{r}$, which are not forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. From the choice of the enumeration \bar{f} it follows that each of these sets $A_{r}^{k}, A_{r}^{k} \mathbb{Z}_{e} \mathcal{P}_{k}^{\bar{f}}$. Then by Theorem 5.1 there is a total set G such that:
(i) For all $i \leq n, f_{i}^{-1}\left(\mathfrak{A}_{i}\right) \leq_{e} G^{(i)}$;
(ii) For all r and all $k \leq n, A_{r}^{k} \mathbb{Z}_{e} G^{(k)}$.

Note that since G is a total set and because of the fact that each spectrum is closed upwards, we have that $d_{e}(G) \in D S\left(\mathfrak{A}_{0}\right), \ldots, d_{e}\left(G^{(n)}\right) \in D S\left(\mathfrak{A}_{n}\right)$, and hence $d_{e}(G) \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

Suppose now that a total set $X, X \leq_{e} F^{(k)}$ and $X \leq_{e} G^{(k)}, k \leq n$. From $X \leq_{e}$ $F^{(k)}$ and $F^{(k)} \equiv_{e} \mathcal{P}_{k}^{\bar{h}}$ it follows that $X=X_{r}^{k}$ for some r. It is clear that $X \leq_{e} \mathcal{P}_{k}^{\bar{f}}$. Otherwise, from the choice of G it follows that $X \not Z_{e} G^{(k)}$. Hence X is forcing k-definable on $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$. By the normal form of the sets, which enumeration degrees are in $C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, we have that $d_{e}(X) \in C S_{k}\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

6. REGULAR ENUMERATIONS

We shall remind the notion of regular enumerations from [8]. Let B_{0}, \ldots, B_{n} be non empty subsets of \mathbb{N}.

Finite parts are as usual finite mappings of \mathbb{N} into \mathbb{N}. The notion of i-regular finite parts is defined by induction on $i \leq n$.

The 0-regular finite parts are finite parts τ such that $\operatorname{dom}(\tau)=[0,2 q+1]$ and for all odd $z \in \operatorname{dom}(\tau), \tau(z) \in B_{0}$.

Let τ be a 0 -regular finite part. If $\operatorname{dom}(\tau)=[0,2 q+1]$, then the 0 -rank of τ $|\tau|_{0} q+1$ - the number of the odd elements of $\operatorname{dom}(\tau)$. Let B_{0}^{τ} be the set of the odd elements of $\operatorname{dom}(\tau)$. If ρ is a 0 -regular extention of τ, we shall denote this fact by $\tau \subseteq_{0} \rho$. It is clear that if $\tau \subseteq_{0} \rho$ and $|\tau|_{0}|\rho|_{0}$, then $\tau=\rho$. Let

$$
\begin{gathered}
\tau \Vdash_{0} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(\tau\left((u)_{0}\right) \simeq(u)_{1}\right)\right), \\
\tau \Vdash_{0} \neg F_{e}(x) \Longleftrightarrow \forall(\rho)\left(\tau \subseteq_{0} \rho \Rightarrow \rho \Vdash_{0} F_{e}(x)\right) .
\end{gathered}
$$

Suppose that for some $i<n$ we have defined the i-regular finite parts and for every i-regular τ - the i-rank $|\tau|_{i}$ of τ, the set B_{i}^{τ} and the relations $\tau \Vdash_{i} F_{e}(x)$ and $\tau \Vdash_{i} \neg F_{e}(x)$. Suppose also that if τ and ρ are i-regular, $\tau \subseteq \rho$ (we write $\tau \subseteq_{i} \rho$) and $|\tau|_{i}=|\rho|_{i}$, then $\tau=\rho$.

Denote by $X_{\langle e, x\rangle}^{i}=\left\{\rho: \rho\right.$ is i-regular $\left.\& \rho \Vdash_{i} F_{e}(x)\right\}$.
For any i-regular finite part τ and any set X of i-regular finite parts, denote by $\mu_{i}(\tau, X)=\mu \rho\left[\tau \subseteq_{i} \rho \& \rho \in X\right]$ if any, and $\mu_{i}(\tau, X)=\mu \rho\left[\tau \subseteq_{i} \rho\right]$, otherwise.

Definition 6.1. Let τ be a finite part and $m \geq 0$. The finite part δ is called an i-regular m omitting extension of τ if $\delta \supseteq_{i} \tau$, $\operatorname{dom}(\delta)=[0, q-1]$ and there exist natural numbers $q_{0}<\cdots<q_{m}<q_{m+1}=q$ such that:
(a) $\delta \upharpoonright q_{0}=\tau ;$
(b) For all $p \leq m, \delta\left\lceil q_{p+1} \mu_{i}\left(\delta \upharpoonright\left(q_{p}+1\right), X_{\left\langle p, q_{p}\right\rangle}^{i}\right)\right.$.

Denote by K_{τ}^{δ} the sequence q_{0}, \ldots, q_{m}. If δ and ρ are two i-regular m omitting extensions of τ and $\delta \subseteq \rho$, then $\delta=\rho$.

Let \mathcal{R}_{i} denote the set of all i-regular finite parts. Given an index j, by S_{j}^{i} we shall denote the intersection $\mathcal{R}_{i} \cap \Gamma_{j}\left(\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)\right)$, where Γ_{j} is the j-th enumeration operator.

Let τ be a finite part defined on $[0, q-1]$ and $r \geq 0$. Then τ is $(i+1)$-regular with $(i+1)$-rank $r+1$ if there exist natural numbers

$$
0<n_{0}<l_{0}<b_{0}<n_{1}<l_{1}<b_{1}<\cdots<n_{r}<l_{r}<b_{r}<n_{r+1}=q
$$

such that $\tau \upharpoonright n_{0}$ is an i-regular finite part with i-rank equal to 1 and for all j, $0 \leq j \leq r$, the following conditions are satisfied:
(a) $\tau \upharpoonright l_{j} \simeq \mu_{i}\left(\tau \upharpoonright\left(n_{j}+1\right), S_{j}^{i}\right)$;
(b) $\tau \upharpoonright b_{j}$ is an i-regular j omitting extension of $\tau \upharpoonright l_{j}$;
(c) $\tau\left(b_{j}\right) \in B_{i+1}$;
(d) $\tau \upharpoonright n_{j+1}$ is an i-regular extension of $\tau \upharpoonright\left(b_{j}+1\right)$ with i-rank equal to $\left|\tau \upharpoonright b_{j}\right|_{i}+1$.

Let $B_{i+1}^{\tau}=\left\{b_{0}, \ldots, b_{r}\right\}$. By K_{i+1}^{τ} we shall denote the sequence $K_{\tau \backslash l_{r}}^{\tau \upharpoonright b_{r}}$.
Let for every $(i+1)$-regular finite part τ

$$
\begin{gathered}
\tau \Vdash_{i+1} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v , x \rangle \in W _ { e } \& (\forall u \in D _ { v }) \left(\left(u=\left\langle e_{u}, x_{u}, 0\right\rangle \& \tau \Vdash_{i} F_{e_{u}}\left(x_{u}\right)\right) \vee\right.\right. \\
\left.\left.\left(u=\left\langle e_{u}, x_{u}, 1\right\rangle \& \tau \Vdash_{i} \neg F_{e_{u}}\left(x_{u}\right)\right)\right)\right) . \\
\tau \Vdash_{i+1} \neg F_{e}(x) \Longleftrightarrow(\forall \rho)\left(\tau \subseteq_{i+1} \rho \Rightarrow \rho \Vdash_{i+1} F_{e}(x)\right) .
\end{gathered}
$$

Definition 6.2. Let f be a total mapping of \mathbb{N} in \mathbb{N}. Then f is a regular enumeration if the following two conditions hold:
(i) For every finite part $\delta \subseteq f$, there exists an n-regular extension τ of δ such that $\tau \subseteq f$.
(ii) If $i \leq n$ and $z \in B_{i}$, then there exists an i-regular extension $\tau \subseteq f$ such that $z \in \tau\left(B_{i}^{\tau}\right)$.

Let f be a total mapping on \mathbb{N}. We define for every $i \leq n, e, x$ the relation $f \models_{i} F_{e}(x)$ by induction on i :

Definition 6.3.

(i) $f \models_{0} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(f\left((u)_{0}\right) \simeq(u)_{1}\right)\right)$;
(ii) $f \models_{i+1} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)\left(\left(u=\left\langle e_{u}, x_{u}, 0\right\rangle \&\right.\right.\right.$

$$
\left.\left.\left.f \models_{i} F_{e_{u}}\left(x_{u}\right)\right) \vee\left(u=\left\langle e_{u}, x_{u}, 1\right\rangle \& f \not \vDash_{i} F_{e_{u}}\left(x_{u}\right)\right)\right)\right) .
$$

Set $f \models_{i} \neg F_{e}(x) \Longleftrightarrow f \not \models_{i} F_{e}(x)$.
In [8] it is proven that for every regular enumeration f :

1. $B_{0} \leq_{e} f$.
2. If $i<n$, then $B_{i+1} \leq_{e} f \oplus \mathcal{P}\left(B_{0}, \ldots, B_{i}\right)^{\prime}$, and $\mathcal{P}\left(B_{0}, \ldots, B_{i}\right)<_{e} f^{(i)}$, for $i \leq n$.
3. If $A \subset \mathbb{N}$, then

$$
A \leq_{e} f^{(i)} \Longleftrightarrow(\exists e) A=\left\{x: f \models_{i} F_{e}(x)\right\}
$$

4. For all $i \leq n$ (for negation $i<n$),

$$
f \models_{i}(\neg) F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau \text { is } i \text {-regular } \& \tau \Vdash_{i}(\neg) F_{e}(x)\right)
$$

Notice that if f is a regular enumeration, then $B_{i} \leq_{e} f^{(i)}, i \leq n$.
Given a finite mapping τ defined on $[0, q-1]$, by $\tau * z$ we shall denote the extension ρ of τ defined on $[0, q]$ and such that $\rho(q) \simeq z$. We shall use the following Lemma, proved in [8].

Ann. Sofia Univ., Fac. Math and Inf., 97, 2005, 15-32.

Lemma 6.1. [8] Let A_{0}, \ldots, A_{n-1} be subsets of \mathbb{N} such that $A_{i} \not \mathbb{Z}_{e} \mathcal{P}\left(B_{0}, \ldots, B_{i}\right)$. Let τ be an n-regular finite part, defined on $[0, q-1]$. Suppose that $|\tau|_{n}=r+1$, $y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{n} \in B_{n}$ and $s \leq r+1$. Then there is an n-regular extension ρ of τ such that:
(i) $|\rho|_{n}=r+2$;
(ii) $\rho(q) \simeq y, z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{n} \in \rho\left(B_{n}^{\rho}\right)$;
(iii) if $i<n$ and $K_{i+1}^{\rho}=q_{0}^{i}, \ldots, q_{s}^{i}, \ldots, q_{m_{i}}^{i}$, then
(a) $\rho\left(q_{s}^{i}\right) \in A_{i} \Rightarrow \rho \Vdash_{i} \neg F_{s}\left(q_{s}^{i}\right)$;
(b) $\rho\left(q_{s}^{i}\right) \notin A_{i} \Rightarrow \rho \Vdash_{i} F_{s}\left(q_{s}^{i}\right)$.

Now we turn to the proof of Theorem 5.1. Set $B_{n+1}=\mathbb{N}$ and $\mathcal{P}\left(B_{0}, \ldots, B_{n+1}\right)=$ $\mathcal{P}\left(B_{0}, \ldots, B_{n}\right)^{\prime} \oplus B_{n+1}$. By a regular enumeration f we mean a regular one with respect to $B_{0}, \ldots, B_{n}, B_{n+1}$.

Proof of Theorem 5.1.

Let $\left\{A_{r}^{k}\right\}_{r}, k \leq n$, be seqences of subsets of \mathbb{N} such that $A_{r}^{k} \mathbb{Z}_{e} \mathcal{P}\left(B_{0}, \ldots, B_{k}\right)$.
We shall construct a regular enumeration f such that f "omits" the sets A_{r}^{k} for all $r, k \leq n$, i.e. $A_{r}^{k} Z_{e} f^{(k)}$.

The construction of f will be carried out by steps. At each step s we shall construct an $(n+1)$-regular finite part δ_{s}, so that $\left|\delta_{s}\right|_{n+1} \geq s+1$ and $\delta_{s} \subseteq_{n+1} \delta_{s+1}$. On the even steps we shall ensure the genericity of f, i.e. conditions (a) and (d) from the definition of i-regular finite part, and on the odd steps we shall ensure the omitting conditions, the conditions (b), (c).

Let \mathcal{R}_{n+1} be the set of all $(n+1)$-regular finite parts and $S_{j}^{n+1}=\mathcal{R}_{n+1} \cap$ $\Gamma_{j}\left(\mathcal{P}\left(B_{0}, \ldots, B_{n+1}\right)\right)$. Let $\sigma_{0}, \ldots, \sigma_{n+1}$ be recursive in $\mathcal{P}\left(B_{0}, \ldots, B_{n+1}\right)$ enumerations of the sets B_{0}, \ldots, B_{n+1}, respectively.

Let δ_{0} be an arbitrary $(n+1)$-regular finite part with $(n+1)$-rank equal to 1 . Suppose that δ_{s} is defined.

Case $s=2 m$. Check whether there exists a $\rho \in S_{m}^{n+1}$ such that $\delta_{s} \subset \rho$. If so, let δ_{s+1} be the least such ρ. Otherwise, let δ_{s+1} be the least $(n+1)$-regular extension of δ_{s} with $(n+1)$-rank equal to $\left|\delta_{s}\right|_{n+1}+1$.

Case $s=2 m+1$. Let $\left|\delta_{s}\right|_{n+1}=r+1 \geq s+1$. Let $m\langle p, e\rangle$. We may assume that $e \leq m$ and then $e<r+1$. Let $\sigma_{0}(m) \simeq z_{0}, \ldots, \sigma_{n+1}(m) \simeq z_{n+1}$. Set $\tau_{0} \simeq \mu_{n}\left(\delta_{s} * z_{n+1}, S_{r+1}^{n}\right)$. Let $l_{r+1}=\operatorname{lh}\left(\tau_{0}\right)$ and $q_{0}^{n}=l_{r+1}$. For $j<e$, let $\tau_{j+1}=\mu_{n}\left(\tau_{j} * 0, X_{\left\langle j, q_{j}^{n}\right\rangle}^{n}\right)$ and $q_{j+1}^{n}=\operatorname{lh}\left(\tau_{j+1}\right)$. So, τ_{e} and q_{e}^{n} are defined. Let

$$
C=\left\{x:\left(\exists \tau \supseteq \tau_{e}\right)\left(\tau \in \mathcal{R}_{n} \& \tau\left(q_{e}^{n}\right) \simeq x \& \tau \Vdash_{n} F_{e}\left(q_{e}^{n}\right)\right)\right\} .
$$

The set $C \leq_{e} \mathcal{P}\left(B_{0}, \ldots, B_{n+1}\right)$ and $A_{p}^{n} Z_{e} \mathcal{P}\left(B_{0}, \ldots, B_{n+1}\right)$. Then there is an a such that

$$
\begin{equation*}
a \in C \& a \notin A_{p}^{n} \vee a \notin C \& a \in A_{p}^{n} \tag{6.1}
\end{equation*}
$$

Let a_{0} be the least a satisfying (6.1).

Next we extend the finite $\tau_{e} * a_{0}$ to a finite part τ, so that τ is an n-regular $r+1$ omitting extension of τ_{0}. Set $b_{r+1}=\ln (\tau)$. Now consider the sets $A_{p}^{0}, \ldots, A_{p}^{n-1}$. By Lemma 6.1 we can construct an n-regular extension ρ of τ such that:
(i) $|\rho|_{n}=|\tau|_{n}+1$;
(ii) $\rho\left(b_{r+1}\right) \simeq z_{n+1}$ and $z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{n} \in \rho\left(B_{n}^{\rho}\right)$;
(iii) if $k<n$ and $K_{k+1}^{\rho}=q_{0}^{k}, \ldots, q_{e}^{k}, \ldots, q_{m_{k}}^{k}$, then
(a) $\rho\left(q_{e}^{k}\right) \in A_{p}^{k} \Rightarrow \rho \Vdash_{k} \neg F_{e}\left(q_{e}^{k}\right)$;
(b) $\rho\left(q_{e}^{k}\right) \notin A_{p}^{k} \Rightarrow \rho \Vdash_{k} F_{e}\left(q_{e}^{p}\right)$.

Set $\delta_{s+1}=\rho$.
Let $f=\bigcup \delta_{s}$. From the construction it follows that f is a regular enumeration. For every $e, x,\left\{\tau: \tau \in \mathcal{R}_{n+1} \& \tau \Vdash_{n+1} F_{e}(x)\right\}$ is e-reducible to $\mathcal{P}\left(B_{0}, \ldots, B_{n+1}\right)$. From here, by the even stages of the construction, it follows that for all e, x,

$$
f \models_{n+1}(\neg) F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau \in \mathcal{R}_{n+1} \& \tau \Vdash_{n+1}(\neg) F_{e}(x)\right)
$$

Since f is regular, we have that if $k \leq n$, then for all e and x,

$$
f \models_{k}(\neg) F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau \in \mathcal{R}_{k} \& \tau \Vdash_{k}(\neg) F_{e}(x)\right) .
$$

Now suppose that for some $k \leq n$ and $p, A_{p}^{k} \leq_{e} f^{(k)}$. Then the set $C_{p}^{k}=\{x$: $\left.f(x) \in A_{p}^{k}\right\}$ is also e-reducible to $f^{(k)}$. Fix an e such that for all x,

$$
\begin{equation*}
f(x) \in A_{p}^{k} \Longleftrightarrow x \in C_{p}^{k} \Longleftrightarrow f \models_{k} F_{e}(x) \tag{6.2}
\end{equation*}
$$

Consider the step $s=2\langle p, e\rangle+1$. By the construction, there exists a $q_{e}^{k} \in$ $\operatorname{dom}\left(\delta_{s+1}\right)$ such that

$$
\left(f\left(q_{e}^{k}\right) \in A_{p}^{k} \Rightarrow f \models_{k} \neg F_{e}\left(q_{e}^{k}\right)\right) \&\left(f\left(q_{e}^{k}\right) \notin A_{p}^{k} \Rightarrow f \models_{k} F_{e}\left(q_{e}^{k}\right)\right) .
$$

Clearly, $\delta_{s+1}\left(q_{e}^{k}\right) \simeq f\left(q_{e}^{k}\right)$. Now assume that $f\left(q_{e}^{k}\right) \in A_{p}^{k}$. Then $\delta_{s+1} \Vdash_{k} \neg F_{e}\left(q_{e}^{k}\right)$. Hence $f \models_{k} \neg F_{e}\left(q_{e}^{k}\right)$, which is impossible. It remains that $f\left(q_{e}^{k}\right) \notin A_{p}^{k}$. In this case $\delta_{s+1} \Vdash_{k} F_{e}\left(q_{e}^{k}\right)$ and hence $f \models_{k} F_{e}\left(q_{e}^{k}\right)$. The last again contradicts (6.2). So $A_{p}^{k} Z_{e} f^{(k)}$.

7. QUASI-MINIMAL DEGREE

Definition 7.1. Let $B_{0} \subseteq \mathbb{N}$. A set F of natural numbers is called quasiminimal over B_{0} if the following conditions hold:
(i) $B_{0}<{ }_{e} F$;

Ann. Sofia Univ., Fac. Math and Inf., 97, 2005, 15-32.
(ii) For any total set $A \subseteq \mathbb{N}$, if $A \leq_{e} F$, then $A \leq_{e} B_{0}$.

The following theorem we shall prove in the next section using the technique of partial regular enumerations.

Theorem 7.1. Let $B_{0}, \ldots, B_{n}, n \geq 1$, be arbitrary sets of natural numbers. There exists a set F having the following properties:
(i) $B_{0}<{ }_{e} F$;
(ii) For all $1 \leq i \leq n, B_{i} \leq e F^{(i)}$;
(iii) For any total set A, if $A \leq_{e} F$, then $A \leq_{e} B_{0}$.

In fact, the set F from Theorem 7.1 is a quasi-minimal over B_{0}.
Let the structures $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}$ be fixed.
Proof of Theorem 3.2. By [9], there is a quasi-minimal degree \mathbf{q}_{0} with respect to $D S\left(\mathfrak{A}_{0}\right)$, i.e.:
(i) $\mathbf{q}_{0} \notin C S\left(\mathfrak{A}_{0}\right)$;
(ii) If \mathbf{a} is a total degree and $\mathbf{a} \geq \mathbf{q}_{0}$, then $\mathbf{a} \in D S\left(\mathfrak{A}_{0}\right)$;
(iii) If \mathbf{a} is a total degree and $\mathbf{a} \leq \mathbf{q}_{0}$, then $\mathbf{a} \in C S\left(\mathfrak{A}_{0}\right)$.

Let $B_{0} \subseteq \mathbb{N}$ such that $d_{e}\left(B_{0}\right)=\mathbf{q}_{0}$, and f_{1}, \ldots, f_{n} be fixed total enumerations of $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}$. Denote $B_{1}=f_{1}^{-1}\left(\mathfrak{A}_{1}\right), \ldots, B_{n}=f_{n}^{-1}\left(\mathfrak{A}_{n}\right)$. By Theorem 7.1, there is a quasi-minimal over B_{0} set F such that:
(i) $B_{0}<_{e} F$;
(ii) For all $1 \leq i \leq n, f_{i}^{-1}\left(\mathfrak{A}_{i}\right) \leq_{e} F^{(i)}$;
(iii) For any total set A, if $A \leq_{e} F$, then $A \leq_{e} B_{0}$.

We will show that $\mathbf{q}=d_{e}(F)$ is a quasi-minimal with respect to $D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$, i.e.:
(i) $\mathbf{q}^{\prime} \in D S\left(\mathfrak{A}_{1}\right), \ldots, \mathbf{q}^{(n)} \in D S\left(\mathfrak{A}_{n}\right), \mathbf{q} \notin C S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$;
(ii) If \mathbf{a} is a total degree and $\mathbf{a} \geq \mathbf{q}$, then $\mathbf{a} \in D S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$;
(iii) If \mathbf{a} is a total degree and $\mathbf{a} \leq \mathbf{q}$, then $\mathbf{a} \in C S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$.

In order to prove (i), suppose that $\mathbf{q} \in C S\left(\mathfrak{A}_{0}\right)$. By Theorem 7.1, $\mathbf{q}_{0}<\mathbf{q}$ and thus $\mathbf{q}_{0} \in C S\left(\mathfrak{A}_{0}\right)$. A contradiction with the fact that \mathbf{q}_{0} is quasi-minimal with respect to $D S\left(\mathfrak{A}_{0}\right)$. Then $\mathbf{q} \notin C S\left(\mathfrak{A}_{0}\right)$ and hence $\mathbf{q} \notin C S\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}\right)$.

For each $i, 1 \leq i \leq n$, the set $F^{(i)}$ is total and $f_{i}^{-1}\left(\mathfrak{A}_{i}\right) \leq_{e} F^{(i)}$. Since any degree spectrum is closed upwards, it follows that $d_{e}\left(F^{(i)}\right) \in D S\left(\mathfrak{A}_{i}\right)$, i.e. $\mathbf{q}^{(i)} \in D S\left(\mathfrak{A}_{i}\right)$.

For (ii) consider a total set X such that $X \geq_{e} F$. Then $d_{e}(X) \geq \mathbf{q}_{0}$. From the fact that \mathbf{q}_{0} is quasi-minimal with respect to $D S\left(\mathfrak{A}_{0}\right)$ it follows that $d_{e}(X) \in$ $D S\left(\mathfrak{A}_{0}\right)$. Moreover, for each $1 \leq i \leq n, X^{(i)} \geq_{e} F^{(i)} \geq_{e} f_{i}^{-1}\left(\mathfrak{A}_{i}\right)$, and $X^{(i)}$ is a total set. Then for each $i \leq n, d_{e}\left(X^{(i)}\right) \in D S\left(\mathfrak{A}_{i}\right)$, and hence $d_{e}(X) \in D S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

For (iii) suppose that X is a total set and $X \leq_{e} F$. Then, from the choice of $F, X \leq_{e} B_{0}$. Because \mathbf{q}_{0} is quasi-minimal with respect to $D S\left(\mathfrak{A}_{0}\right)$, it follows that $d_{e}(X) \in C S\left(\mathfrak{A}_{0}\right)$. But $C S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)=C S\left(\mathfrak{A}_{0}\right)$ and therefore $d_{e}(X) \in$ $C S\left(\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{n}\right)$.

8. PARTIAL REGULAR ENUMERATIONS

Let $B_{0} \subseteq \mathbb{N}$.
Definition 8.1. A partial enumeration f of B_{0} is a partial surjective mapping from \mathbb{N} onto \mathbb{N} with the following properties:
(i) For all odd x, if $f(x)$ is defined, then $f(x) \in B_{0}$;
(ii) For all $y \in B_{0}$, there is an odd x such that $f(x) \simeq y$.

It is clear that if f is a partial enumeration of B_{0}, then $B_{0} \leq_{e} f$ since

$$
y \in B_{0} \Longleftrightarrow(\exists n)(f(2 n+1) \simeq y)
$$

Let $\perp \notin \mathbb{N}$.
Definition 8.2. A partial finite part τ is a finite mapping of \mathbb{N} into $\mathbb{N} \cup\{\perp\}$ such that $(\forall x)\left(x \in \operatorname{dom}(\tau) \& x\right.$ is odd $\left.\Rightarrow\left(\tau(x)=\perp \vee \tau(x) \in B_{0}\right)\right)$.

If τ is a partial finite part and f is a partial enumeration of B_{0}, say that

$$
\begin{aligned}
& \tau \subseteq f \Longleftrightarrow(\forall x \in \operatorname{dom}(\tau))((\tau(x)=\perp \\
&(\tau(x) \neq \perp(x) \text { is not defined }) \& \\
&\Rightarrow \tau(x) \simeq f(x))
\end{aligned}
$$

Let B_{0}, \ldots, B_{n} be fixed sets of natural numbers. Combining the technique of the regular enumerations with the partial (generic) enumerations on the 0-level for B_{0}, we shall construct a partial regular enumeration f, which will be quasi-minimal over the set B_{0} and such that $B_{i} \leq_{e} f^{(i)}$ for $i \leq n$.

A 0-regular partial finite part is a partial finite part $\tau \operatorname{such}$ that $\operatorname{dom}(\tau)=$ $[0,2 q+1]$ and for all odd $z \in \operatorname{dom}(\tau), \tau(z) \in B_{0}$ or $\tau(z)=\perp$.

Let B_{0}^{τ} be the set of all odd elements z of $\operatorname{dom}(\tau)$ such that $\tau(z) \in B_{0}$. The 0 -rank of $\tau,|\tau|_{0}=q+1$, we call the number of the odd elements of $\operatorname{dom}(\tau)$. If ρ is a 0 -regular partial extention of τ, we shall denote this fact again by $\tau \subseteq_{0} \rho$. It is clear that if $\tau \subseteq_{0} \rho$ and $|\tau|_{0}|\rho|_{0}$, then $\tau=\rho$. Let

$$
\tau \Vdash_{0} F_{e}(x) \Longleftrightarrow \exists v\left(\langle v, x\rangle \in W_{e} \&\left(\forall u \in D_{v}\right)(u=\langle s, t\rangle, \& \tau(s) \simeq t \& t \neq \perp .)\right),
$$

$$
\tau \Vdash_{0} \neg F_{e}(x) \Longleftrightarrow \forall(\rho)\left(\tau \subseteq_{0} \rho \Rightarrow \rho \Vdash_{0} F_{e}(x)\right) .
$$

The definition of $(i+1)$-regular partial finite part τ, the set B_{i+1}^{τ}, the $(i+1)$ rank of τ and the relations $\tau \Vdash_{i+1} F_{e}(x)$ and $\tau \Vdash_{i+1} \neg F_{e}(x)$ are defined in the same way as in Section 6, the only difference is that instead of i-regular finite parts we use i-regular partial finite parts. Notice that again if τ is an i-regular partial finite part, then τ is a j-regular partial finite part for each $j<i$.

Definition 8.3. A partial regular enumeration is a partial mapping f from \mathbb{N} onto \mathbb{N} such that the following two conditions hold:
(i) For every partial finite part $\delta \subseteq f$, there exists an n-regular partial extension τ of δ such that $\tau \subseteq f$.
(ii) If $i \leq n$ and $z \in B_{i}$, then there exists an i-regular partial finite part $\tau \subseteq f$ such that $z \in \tau\left(B_{i}^{\tau}\right)$.

If f is a partial regular enumeration and $i \leq n$, then for every $\delta \subseteq f, \operatorname{dom}(\delta) \subseteq$ $[0, q-1]$, there exists an i-regular partial $\tau \subseteq f$ such that $\delta \subseteq \tau$, and for every $x \in[0, q-1]$ if $f(x)$ is not defined, then $\tau(x)=\perp$. Moreover, there exist i-regular partial finite parts of f of arbitrary large rank.

The relation $f \models_{i} F_{e}(x)$ is the same as in Definition 6.3. By induction on i one could check that for any $A \subseteq \mathbb{N}, A \leq_{e} f^{(i)}$ iff there exists e such that for all x,

$$
x \in A \Longleftrightarrow f \models_{i} F_{e}(x)
$$

Lemma 8.1. Suppose that f is a partial regular enumeration. Then:
(1) For all $i \leq n, f \models_{i} F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau\right.$ is i-regular $\left.\& \tau \Vdash_{i} F_{e}(x)\right)$.
(2) For all $i<n, f \models_{i} \neg F_{e}(x) \Longleftrightarrow(\exists \tau \subseteq f)\left(\tau\right.$ is i-regular $\left.\& \tau \Vdash_{i} \neg F_{e}(x)\right)$.

The proof follows from the definitions by induction on i as in the total case.
Let \mathcal{R}_{i} be the set of all i-regular partial finite parts. It is clear that $\mathcal{R}_{i} \leq{ }_{e} \mathcal{P}_{i}$, where $\mathcal{P}_{i}=\mathcal{P}\left(B_{0}, \ldots, B_{n}\right)$.

Definition 8.4. A partial enumeration f is i-generic if for any $j<i$ and for every enumeration reducible to \mathcal{P}_{j} set S of j-regular partial finite parts the following condition holds:

$$
(\exists \tau \subseteq f)\left(\tau \in S \vee\left(\forall \rho \supseteq_{j} \tau\right)(\rho \notin S)\right)
$$

Proposition 8.1. Every partial regular enumeration is $(i+1)$-generic enumeration for every $i<n$.

Proof. Let S be a set of i-regular partial finite parts such that $S \leq_{e} \mathcal{P}_{i}$. Then there exists an e such that $S=\mathcal{R}_{i} \cap \Gamma_{e}\left(\mathcal{P}_{i}\right)$. Consider an (i+1)-regular partial finite part $\tau \subseteq f$ with $(i+1)$-rank greater than e. From the definition of $(i+1)$-regular partial finite part it follows that there is an i-regular partial finite part $\sigma \subseteq_{i} \tau$, and hence $\sigma \subseteq f$ such that $\sigma \in S$ or $\left(\forall \rho \supseteq_{i} \sigma\right)(\rho \notin S)$.

Proposition 8.2. Suppose that f is a partial regular enumeration. Then:
(1) For each $i \leq n, B_{i} \leq e f^{(i)}$.
(2) If $i<n$, then $f \not \mathbb{Z}_{e} \mathcal{P}_{i}$.

Proof. We know that $B_{0} \leq_{e} f$. Let $i<n$. Suppose that for each $j \leq i$, $B_{j} \leq_{e} f^{(j)}$. Then $\mathcal{P}_{i} \leq_{e} f^{(i)}$.

Since f is partial regular, for every partial finite part δ of f there exists an ($i+1$)-regular partial finite part $\tau \subseteq f$ such that $\delta \subseteq \tau$, where if $f(x)$ is not defined and $x \in \operatorname{dom}(\tau)$, then $\tau(x)=\perp$. For each q denote by $f \upharpoonright_{q}$ the partial finite part τ with $\operatorname{dom}(\tau)=[0, q-1], \tau \subseteq f$, and for each $x<q$ if $f(x)$ is not defined, then $\tau(x)=\perp$.

Let

$$
0<n_{0}<l_{0}<b_{0}<n_{1}<l_{1}<b_{1}<\cdots<n_{r}<l_{r}<b_{r}<n_{r+1}<\ldots
$$

be the numbers satisfying the conditions (a)-(d) from the definition of the $(i+$ 1)-regular partial finite part τ_{r}. Clearly, if $B_{i+1}^{f}=\left\{b_{0}, b_{1} \ldots\right\}$, then $f\left(B_{i+1}^{f}\right)=$ B_{i+1}. We shall show that there exists an effective in $f^{(i+1)}$ procedure which lists $n_{0}, l_{0}, b_{0}, \ldots$ in an increasing order.

Using the oracle f^{\prime}, we can generate consecutively the partial finite parts $f \upharpoonright q$ for $q=1,2 \ldots$. Notice that $f\left\lceil n_{0}\right.$ is i-regular and $\left.|f| n_{0}\right|_{i}=1$, and it is the first element of this sequence which belongs to \mathcal{R}_{i}. Clearly, $n_{0}=\operatorname{lh}\left(f\left\lceil n_{0}\right)\right.$.

Suppose that $n_{0}, l_{0}, b_{0}, \ldots, n_{r}$ have already been listed. Since $f \upharpoonright l_{r} \simeq \mu_{i}\left(f \upharpoonright\left(n_{r}+\right.\right.$ 1), S_{r}^{i}), we can find effectively in $f^{(i+1)}$ the partial finite part $f\left\lceil l_{r}\right.$. Then $l_{r}=$ $\operatorname{lh}\left(f \upharpoonright l_{r}\right)$. Next $f \upharpoonright b_{r}$ is an i-regular partial r omitting extension of $f \upharpoonright l_{r}$. So, there exist natural numbers $l_{r}=q_{0}<\cdots<q_{r}<q_{r+1}=b_{r}$. Using the oracle $f^{(i+1)}$, we can find consecutively the numbers $q_{0}, \ldots, q_{r}, q_{r+1}=b_{r}$. By definition, $f\left\lceil n_{r+1}\right.$ is an i-regular partial extension of $f \upharpoonright\left(b_{r}+1\right)$ having i-rank equal to $\mid f\left\lceil\left. b_{r}\right|_{i}+1\right.$. Using f^{\prime}, we can generate consecutively the partial finite parts $f \upharpoonright\left(b_{r}+1+q\right), q=0,1, \ldots$ Then $f \upharpoonright n_{r+1}$ is the first element of this sequence which belongs to \mathcal{R}_{i}.

Then B_{i+1}^{f} is effective in $f^{(i+1)}$ and $B_{i+1} \leq_{e} f^{(i+1)}$.
To prove (2), assume that $f \leq_{e} \mathcal{P}_{i}$. Then the set

$$
S=\left\{\tau: \tau \in \mathcal{R}_{i} \&\left(\exists x, y_{1} \neq y_{2} \in \mathbb{N}\right)\left(\tau(x) \simeq y_{1} \& f(x) \simeq y_{2}\right)\right\}
$$

$S \leq_{e} \mathcal{P}_{i}$. Using the fact that f is $(i+1)$-generic, there is an i-regular partial finite part $\tau \subseteq f$ such that either $\tau \in S$ or $\left(\forall \rho \supseteq_{i} \tau\right)(\rho \notin S)$. It is obvious that both of these cases are impossible. A contradiction.

Lemma 8.2. Let $i \leq n$ and τ be an i-regular partial finite part with domain $[0, q-1]$.
(1) For every $y \in \mathbb{N}, z_{0} \in B_{0}, \ldots, z_{i} \in B_{i}$, we can find effectively in $\mathcal{P}_{i-1}^{\prime}$ an i-regular partial extension ρ of τ such that $|\rho|_{i}=|\tau|_{i}+1$ and $\rho(q) \simeq y, z_{0} \in$ $\rho\left(B_{0}^{\rho}\right), \ldots, z_{i} \in \rho\left(B_{i}^{\rho}\right)$.
(2) For every sequence $\vec{a}=a_{0}, \ldots, a_{m}$ of natural numbers, one can find effectively in \mathcal{P}_{i}^{\prime} an i-regular m omitting partial extension δ of τ such that $\delta\left(K_{\tau}^{\delta}\right)=\vec{a}$.

Proof. The proof is as in the total case [8]. By induction on $i,(1)$ and (2) are proven simultaneously.

Proof of Theorem 7.1. By Proposition 8.2, it is sufficient to show that there exists a partial regular enumeration f which is quasi-minimal over B_{0}.

We shall construct f as a union of n-regular partial finite parts δ_{s} such that for all $s, \delta_{s} \subseteq_{n} \delta_{s+1}$ and $\left|\delta_{s}\right|_{n}=s+1$. Suppose that for $i \leq n \sigma_{i}$ is a recursively in B_{i} enumeration of B_{i}.

Let δ_{0} be a 0 -regular partial finite part such that $\left|\delta_{0}\right|_{n}=1$. Suppose that δ_{s} is defined. Set $z_{0}=\sigma_{0}(s), \ldots, z_{n} \sigma_{n}(s)$. Using Lemma 8.2, we can construct effectively in $\mathcal{P}_{n-1}^{\prime}$ an n-regular partial finite part $\rho \supseteq_{n} \delta_{s}$ such that $|\rho|_{n}\left|\delta_{s}\right|_{n}+1$, $\rho\left(\operatorname{lh}\left(\delta_{s}\right)\right)=s$ and $z_{0} \in \rho\left(B_{0}^{\rho}\right), \ldots, z_{n} \in \rho\left(B_{n}^{\rho}\right)$. Set $\delta_{s+1}=\rho$.

The obtained enumeration f is surjective on \mathbb{N} and it is a union of n-regular partial finite parts. From the construction is obvious that for every $z \in B_{i}$ there is an i-regular partial finite part τ of f such that $z \in B_{i}^{\tau}$. Hence f is a partial regular enumeration. By Proposition 8.1, f is $(i+1)$-generic for each $i<n$.

Then by Proposition 8.2, for $i \leq n, B_{i} \leq f^{(i)}$. Moreover, f is a partial 1-generic enumeration and hence $B_{0}<_{e} f$.

To prove that f is quasi-minimal over B_{0}, it is sufficient to show that if ψ is a total function and $\psi \leq_{e} f$, then $\psi \leq_{e} B_{0}$. It is clear that for any total set $A \subseteq \mathbb{N}$ one can construct a total function $\psi, \psi \equiv_{e} A$. Let ψ be a total function and $\psi=\Gamma_{e}(f)$. Then

$$
(\forall x, y \in \mathbb{N})\left(f \models_{0} F_{e}(\langle x, y\rangle) \Longleftrightarrow \psi(x) \simeq y\right)
$$

Consider the set

$$
S_{0}=\left\{\rho: \rho \in \mathcal{R}_{0} \&\left(\exists x, y_{1} \neq y_{2} \in \mathbb{N}\right)\left(\rho \Vdash_{0} F_{e}\left(\left\langle x, y_{1}\right\rangle\right) \& \rho \Vdash_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right)\right)\right\} .
$$

Since $S_{0} \leq{ }_{e} B_{0}$, we have that there exists a 0-regular partial finite part $\tau_{0} \subseteq f$ such that either $\tau_{0} \in S_{0}$ or $\left(\forall \rho \supseteq_{0} \tau_{0}\right)\left(\rho \notin S_{0}\right)$. Assume that $\tau_{0} \in S_{0}$. Then there exist $x, y_{1} \neq y_{2}$ such that $f \models_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right)$ and $f \models_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right)$. Then $\psi(x) \simeq y_{1}$ and $\psi(x) \simeq y_{2}$, which is impossible. So, $\left(\forall \rho \supseteq_{0} \tau_{0}\right)\left(\rho \notin S_{0}\right)$.

Let

$$
\begin{aligned}
& S_{1}=\left\{\rho: \rho \in \mathcal{R}_{0} \&\left(\exists \tau \supseteq_{0} \tau_{0}\right)\left(\exists \delta_{1} \supseteq_{0} \tau\right)\left(\exists \delta_{2} \supseteq_{0} \tau\right)\right. \\
&\left(\exists x, y_{1} \neq y_{2} \in \mathbb{N}\right)\left(\tau \subseteq_{0} \rho \& \delta_{1} \Vdash_{0} F_{e}\left(\left\langle x, y_{1}\right\rangle\right) \& \delta_{2} \Vdash_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right) \&\right. \\
& \operatorname{dom}(\rho)=\operatorname{dom}\left(\delta_{1}\right) \cup \operatorname{dom}\left(\delta_{2}\right) \& \\
&(\forall x)(x \in \operatorname{dom}(\rho) \backslash \operatorname{dom}(\tau) \Rightarrow \rho(x) \simeq \perp))\} .
\end{aligned}
$$

We have that $S_{1} \leq_{e} B_{0}$ and hence there exists a 0-regular partial finite part $\tau_{1} \subseteq f$ such that either $\tau_{1} \in S_{1}$ or $\left(\forall \rho \supseteq_{0} \tau_{1}\right)\left(\rho \notin S_{1}\right)$.

Assume that $\tau_{1} \in S_{1}$. Then there exists a 0 -regular partial finite part τ such that $\tau_{0} \subseteq_{0} \tau \subseteq_{0} \tau_{1}$ and for some $\delta_{1} \supseteq_{0} \tau, \delta_{2} \supseteq_{0} \tau$ and $x_{0}, y_{1} \neq y_{2} \in \mathbb{N}$ we have

$$
\begin{aligned}
& \delta_{1} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y_{1}\right\rangle\right) \& \delta_{2} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y_{2}\right\rangle\right) \& \operatorname{dom}\left(\tau_{1}\right)=\operatorname{dom}\left(\delta_{1}\right) \cup \operatorname{dom}\left(\delta_{2}\right) \& \\
& \&(\forall x)\left(x \in \operatorname{dom}\left(\tau_{1}\right) \backslash \operatorname{dom}(\tau) \Rightarrow \tau_{1}(x) \simeq \perp\right) .
\end{aligned}
$$

Let $\psi\left(x_{0}\right) \simeq y$. Then $f \models_{0} F_{e}\left(\left\langle x_{0}, y\right\rangle\right)$. Hence there exists a $\rho \supseteq_{0} \tau_{1}$ such that $\rho \Vdash_{0} F_{e}\left(\left\langle x_{0}, y\right\rangle\right)$. Let $y \neq y_{1}$. Define the partial finite part ρ_{0} as follows:

$$
\rho_{0}(x) \simeq \begin{cases}\delta_{1}(x) & \text { if } x \in \operatorname{dom}\left(\delta_{1}\right) \\ \rho(x) & \text { if } x \in \operatorname{dom}(\rho) \backslash \operatorname{dom}\left(\delta_{1}\right)\end{cases}
$$

Then $\tau_{0} \subseteq_{0} \rho_{0}, \delta_{1} \subseteq_{0} \rho_{0}$ and notice that for all $x \in \operatorname{dom}(\rho)$ if $\rho(x) \nsucceq \perp$, then $\rho(x) \simeq \rho_{0}(x)$. Hence $\rho_{0} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y_{1}\right\rangle\right)$ and $\rho_{0} \Vdash_{0} F_{e}\left(\left\langle x_{0}, y\right\rangle\right)$. So, $\rho_{0} \in S_{0}$. A contradiction.

Thus, $(\forall \rho)\left(\rho \supseteq_{0} \tau_{1} \Rightarrow \rho \notin S_{1}\right)$.
Let $\tau=\tau_{1} \cup \tau_{0}$. Notice that $\tau \subseteq f$. We shall show that

$$
\psi(x) \simeq y \Longleftrightarrow\left(\exists \delta \supseteq_{0} \tau\right)\left(\delta \Vdash_{0} F_{e}(\langle x, y\rangle)\right)
$$

And hence $\psi \leq_{e} B_{0}$.
If $\psi(x) \simeq y$, then $f \models_{0} F_{e}(x)$, and by Lemma $8.1(\exists \rho \subseteq f)\left(\rho \Vdash_{0} F_{e}(x)\right)$ and ρ is 0-regular. Then take $\delta=\tau \cup \rho$.

Assume that $\delta_{1} \supseteq_{0} \tau, \delta_{1} \Vdash_{0} F_{e}\left(\left\langle x, y_{1}\right\rangle\right)$. Suppose that $\psi(x) \simeq y_{2}$ and $y_{1} \neq y_{2}$. Then there exists a $\delta_{2} \supseteq_{0} \tau$ such that $\delta_{2} \Vdash_{0} F_{e}\left(\left\langle x, y_{2}\right\rangle\right)$. Set

$$
\rho(x) \simeq \begin{cases}\tau(x) & \text { if } x \in \operatorname{dom}(\tau) \\ \perp & \text { if } x \in\left(\operatorname{dom}\left(\delta_{1}\right) \cup \operatorname{dom}\left(\delta_{2}\right)\right) \backslash \operatorname{dom}(\tau)\end{cases}
$$

Clearly, $\rho \supseteq_{0} \tau_{1}$ and $\rho \in S_{1}$. A contradiction.

REFERENCES

1. Ash, C. J. Generalizations of enumeration reducibility using recursive infinitary propositional senetences, Ann. Pure Appl. Logic, 58, 1992, 173-184.
2. Ash, C. J., C. Jockush, J. F. Knight, Jumps of orderings, Trans. Amer. Math. Soc., 319, 1990, 573-599.
3. Cooper, S. B. Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ_{2} sets are dense, J. Symbolic Logic 49, 1984, 503-513.
4. Downey, R. G., J. F. Knight, Orderings with α-th jump degree $\mathbf{0}^{(\alpha)}$, Proc. Amer. Math. Soc., 114, 1992, 545-552.
5. Knight, J. F. Degrees coded in jumps of orderings, J. Symbolic Logic, 51, 1986, 1034-1042.
6. Richter, L. J. Degrees of structures, J. Symbolic Logic, 46, 1981, 723-731.
7. Selman, A. L. Arithmetical reducibilities I, Z. Math. Logik Grundlag. Math. 17, 1971, 335-350.
8. \qquad A jump inversion theorem for the enumeration jump, Arch. Math. Logic, 39, (2000), 417-437.
9. Soskov, I. N. Degree spectra and co-spectra of structures, Ann. Sofia Univ., Fac. Math. and Inf., 96, 2003, 45-68.
10. Soskova, A. A., I. N. Soskov, Co-spectra of joint spectra of structures, Ann. Sofia Univ., Fac. Math. and Inf., 96, 2003, 35-44.

Received November 12, 2002

Faculty of Mathematics and Informatics
"St. Kl. Ohridski" University of Sofia
5, J. Bourchier blvd., 1164 Sofia
BULGARIA
E-mail: asoskova@fmi.uni-sofia.bg

