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1. INTRODUCTION

Let 2l be an abstract structure. The degree spectrum DS(2() of 2 is the set of
all enumeration degrees generated by all presentations of 2 on the natural numbers.
In [6, 2, 5, 4, 9] several results about degree spectra of structures are obtained.

The co-spectrum of the structure 2l is the set of all lower bounds of the degree
spectra of 2. Co-spectra are introduced and studied in [9].

In [10] a generalization of the notions of degree spectra and co-spectra for
finitely many structures is presented - the so called joint spectrum and co-spectrum.
A normal form of the sets which generates the elements of the co-spectrum of the
joint spectrum in terms of some positive recursive X+ formulae, introduced first in
[1], is obtained.

Here we shall prove two properties of the co-spectrum of joint spectrum of
structures - the Minimal pair type theorem and the existence of a quasi-minimal
degree for the joint spectrum.
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The proofs use the technique of regular enumerations introduced in [8], com-
bined with partial generic enumerations used in [9].

2. PRELIMINARIES

Let A = (N; Ry, ..., Ry) be a partial structure over the set of all natural num-
bers N, where each R; is a subset of N and “=" and “#” are among Ry, ..., Rj.

An enumeration f of 2 is a total mapping from N onto N.

If A C N%, define

FHA) = {(o1--@a) : (f1),..., fza)) € A}

Let f7H2A) = f~'(R1) @ --- @ f~(Ry).

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A <. B) if there is an enumeration operator I', such that A =T',(B). By d.(A)
we denote the enumeration degree of the set A and by D, the set of all enumeration
degrees. The set A is total if A =, AT, where AT = A® (N\A). A degree a is called
total if @ contains the e-degree of a total set. The jump operation “’” denotes here
the enumeration jump introduced by COOPER [3].

Given n + 1 subsets By,...,B, of N, i < n, define the set P(By,...,B;) as
follows:

(i) P(Bo) = Bo;
(11) If i < n, then T(Bo, . ,Bi+1)(T(BQ, ey Bz))/ (5) B'H—l-

3. JOINT SPECTRA OF STRUCTURES

Let A, ..., 2, be abstract structures on N.
The joint sSpectrum of g, ..., A, is the set

DS(o,Ay,..., A ){a:ae DS(Ap),a’ € DS(AL),...,a"™ € DS(A,)}.
For every k < n, the k-th jump spectrum of g, ..., 2, is the set
DS;(o, ..., A){a® rae DSy, ..., An)}.

In [10] we prove that DSk (2, ..., %A,) is closed upwards, i.e. if at*) € DSy (2o,
.., 2y), b is a total e-degree and a*) < b, then b € DSk(Ao, ..., A, ).
The k-th co-spectrum of g, ..., A,, k < n, is the set of all lower bounds of
DSk(Qlo, e ,Q(n), i.e.

CSK(Ao, ..., A ){b: b e D.&(Va e DSy(Ao, ..., An))(b < a)}.
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From [10] we know that the k-th Co-spectrum for k& < n depends only of the
first k structures:

CSK(o, ..o Apy .., A )OS (Ao, ..., A ).

In [10] we give a normal form of the sets which generates the elements of
the k-th co-spectrum of DS(2y,...,2,), i.e. for every A C N the following are
equivalent:

(1) de(A) € Csk(QLOv cee ,an);

(2) For every fo, ..., fr enumerations of Ay, ..., Ay, respectively,
A< P(fg H(Ro)s s frH (AMn));

(3) A is forcing k-definable on g, ..., 2,;
(4) A is formally k-definable on 2y, ..., 2,.

In Section 4 we shall recall the definition of the forcing k-definable sets on
Aoy -y Ay

The analog of the Minimal pair theorem, which we shall prove in Section 5, is
in the following form:

Theorem 3.1. Let k < n. There exist enumeration degrees f and g, elements
of DS(Ro,2Aq,...,U,), such that for any enumeration degree a:

a< £5) & a< g(k) = a € CS,(™Uo,2Aq,...,2A).

The proof uses the technique of the regular enumerations from [8], which we
will discuss in Section 6.

Given a set A of enumeration degrees, denote by co(A) the set of all lower
bounds of A. Say that the degree q is a quasi-minimal with respect to A if the
following conditions hold:

(i) q & co(A);
(ii) If a is a total degree and a > q, then a € A;
(iii) If a is a total degree and a < g, then a € co(A).

The second property, we are going to prove in Section 7, is the existence of a
quasi-minimal degree with respect to DS (o, 2(1,...,2A,).

Theorem 3.2. There exists an enumeration degree q such that:
(i) d' € DS(A1),...,a™ € DS(A,,), ¢ & CS (Ao, A1, ..., Ap);

(ii) If a is a total degree and a > q, then a € DS(o, 2, ..., As);
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(iii) If a is a total degree and a < q, then a € CS(Rg,Aq,...,As).

4. FORCING k-DEFINABLE SETS

Suppose that g, ..., 2, are structures on N. Let fo,..., f,, be enumerations
of Ag, ..., %A, respectively. )

Denote by f = (fo,.- ., fn) and ?i?(f(;l(ﬂo), s f @) for k=0,...,n

Let Wy, ..., W,,... be a Goedel enumeration of the r.e. sets and D, be the
finite set having a canonical code v.

For every i < n, e and z in N define the relations f |=; F.(x) and f =; ~F.(z)
by induction on i:

(i) f o Fe(z) <= (3v)((v,2) € We & Dy, C f3 ' (A0));
fEin Fe(z) = ( v)((v, ) € We & (Vu € Dy)(
(i) wu) & [l Fe, (wu) V
ua$U>&f': ~F, ( )\/
xu> &xy € f ( z+1)))§
(iii) f =i ~Fe(z) <= f i Fel).
If AC N and k < n, then

e
(&

({v,
= (0,
u= (1,
= (2,

A< P = (Fe)(A={z: [ Fu(2)}).

The forcing conditions, which we shall call finite parts, are n + 1-tuples T =
(0, -..,7n) of finite mappings 79,...,7, of N in N. We suppose that an effective
coding of the finite parts is fixed, and by the least finite part with a fixed property
we mean a finite part with a minimal code.

For every ¢ < n, e and x in N and every finite part 7 we define the forcing
relations 7 Ib; F.(z) and 7 I, —=F,(z) following the definition of relation ” |=;”.

Definition 4.1. (i) 7l F.(z) <= (Jv)((v,z) € W. & D, C 75 1(20));

77-”_1'-&-1 Fe(ﬂﬁ) < 31}(< >€ W, &
B (Vu € Dv)(u =(0,ey,zy) & Tk Fe,(x4) V
(i) =(l,ey,xy) & T IF; 2F,, (24) V
u=(2,2,) &z, € 75 (Ait1)));

(iil) 7l = Fe(z) <= (Vp 2 7T)(p Wi Fe(x)).
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Given finite parts 6 = (d,...,0,) and 7 = (79,...,7,), let
8§CT < 6 C10,...,00 C Th.

For any i < n, e,z € N denote XZWC> ={p:plr; F.(x)}.
If f=(fo,...,fn) is an enumeration of Ay, ...,2,, then

%gf <~ TOQan"'aTngfn-

Definition 4.2. An enumeration f of o, ..., A, is i-generic if for every j < 1,
e,x €N

(v CBpe X], )T Cp = FCHEFeX],)

From [10] we know that:

(1) If f is a k-generic enumeration, then

F Bk Fe(a) <= (37 C [)(7 Iry, Fe(2)).

(2) If f is a (k + 1)-generic enumeration, then

[ Ek ~F(z) < (37 C [)(7 Ik ~Fo(x)).

Definition 4.3. The set A C N is forcing k-definable on %o, ..., 2, if there
exist a finite part § and e € N such that

€A — (37 D5)(7 Iy Fula)).

Proposition 4.1. Let {X*},, k = 0,...,n, be (n + 1)-sequences of sets of
natural numbers. There exists an (n + 1)-generic enumeration f of Ap,..., A,
such that for any k < n and for all v € N, if the set XF is not forcing k-definable

on Ao, ..., Ay, then XF £, (P£ .

Proof. We shall construct an (n 4 1)-generic enumeration f such that for all r
and all kK = 0,...,n, if the set X* is not forcing k-definable, then X* «, fPi. Let
call the last condition an omitting condition.

The construction of the enumeration f will be carried out by steps. On each
step j we shall define a finite part 67 = (87,...,63), so that & C 67!, and take
fi = U,;d] for each i < n.

On the steps j = 3¢ we shall ensure that each f; is a total surjective mapping
from N onto N. On the steps j = 3¢ + 1 we shall ensure that f is (n + 1)-generic.
On the steps 7 = 3¢ + 2 we shall ensure the omitting condition.

Let 6° = (0,...,0).
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Suppose that 67 is defined. _

Case j = 3q. For every i, 0 < i <n, let z; = px[r ¢ dom(d)] and y; = pyly &
ran(67)]. Let 67 (z;) = y; and 6/ (z) ~ &7 (z) for = # ;.

Case j = 3{e,i,z) + 1, i < n. Check if there exists a finite part p O ¢ such
that p I-; F.(x). If so, then let 67*! be the least such p. Otherwise, let 67! = §7.

Case j = 3{(e,k,r)+2, k < n. Consider the set X*. If X is forcing k-definable
on Ag, ..., Ay, then let 57 = §7.

Suppose now that X?” is not forcing k-definable on 2, ..., 2, and let

C = {z: (37 2 5)(F Iry, Fulz))}.

Clearly, C is forcing k-definable on 2, ...,2,. Hence C' # X*. Then there
exists an z such that either z € X* and 2 ¢ C or 2 € C and v ¢ XF. Take
871 = §7 in the first case.

If the second case holds, then there exists 7 D 67 such that 7 Ik, F.(z). Let
87*! be the least such 7.

In all other cases let 671! = §7.

The so received enumeration f = U;47 is (n+1)-generic. Let i < n, e,z € N and
suppose that for every finite part 7 C f there is an extention p IF; F,(x). Consider
the step j = 3(e,i,z) + 1. From the construction we have that 6’ I-; F,(z).

To prove that the enumeration f satisfies the omitting condition, let the set
XPF be not forcing k-definable on 2, ..., 2, and suppose that X* <, Tﬁ. Then
Xk ={z: f =k F.(2)} for some e. Consider the step j = 3(e, k,7) + 2. From the
construction there is an x such that one of the following two cases holds:

(a) x € XF and (Vp 2 67)(p I F.(z)). So, 07 Ik =F.(z).

Since f is (n+ 1)-generic, and hence (k + 1)-generic, x € XF & f £ Fo(z). A
contradiction.

(b) z & XF & §7*! Iy, Fo(x). Since f is (k + 1)-generic, f i Fo(x). A
contradiction. [

5. MINIMAL PAIR THEOREM

First we need a modification of the “type omitting” version of Jump inversion
theorem from [8]. In fact, one can see the result from the proof of Theorem 1.7
in [8]. But in this form it is not explicit formulated there. We shall postpone the
proof for Section 6, where the technique of regular enumerations will be discussed.

Theorem 5.1. Let By, ..., B, be arbitrary sets of natural numbers. Let {AF},.,
k=0,...,n, be (n+ 1)-sequences of subsets of N such that for every r and for all
k, 0 <k <mn, Ak £, P(By,...,By). Then there exists a total set F' having the
following properties:

(i) For alli <n, B; <, F@;
(ii) For all v, for all k, 0 <k <n, AF £, F(),
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Proof of Theorem 3.1. We shall construct total sets F' and G such that
de(F) € DS, ...,Apn), de(G) € DSy, ...,2A,) and for each k < n if a total
set X, X <, F(®) and X <, G| then d.(X) € CSk(Ap,...,A,). And take the
degree f = d.(F) and g = d.(G).

First we construct enumerations f and h of A, ..., A, such that for any k < n
ifaset ACN, A<, fP£ and A <, fPZ, then A is a forcing k-definable on 21, ..., 2,.

Let gg,-..,gn be arbitrary enumerations of 2g,...,2,. By Theorem 5.1 for
By = g5 " (o), ..., Bn = g; ' (A,,) there exists a total set F' such that: g5 (o) <.
Fogr () <e F'o..., g% (An) <o F™. Since DS(Ao, Ay, ..., 2A,) is closed up-
wards, then d.(F) € DS(o, A1, ..., 2Ap), i.e. de(F) € DS(p),de(F') € DS(2),
oy do(F™) € DS(2L,,). Hence, there exist hg, A1, ..., h, enumerations of 2Ag,2A;,

.., 2, respectively, such that hgl(Qlo) =, F, hfl(Qll) = F',...,h;'(2,) =
F(™)_ Notice that for each k < n, F*) =, PI.

For each k, 0 < k < n, let {XF}, be the sequence of all sets enumeration
reducible to Py

By Proposition 4.1 there is an (n 4 1)-generic enumeration f such that for all

rand all k =0,...,n if the set X* is not forcing k—deﬁnable then XF £, Ti.

Suppose now that the set A <, Ti and A < iPZ. Then A = Xﬁ for some
r. From the omitting condition of f it follows that A is forcing k-definable on
Aoy -y Ay

Now we apply Theorem 5.1. Let By = fo_l(Q[O), oo BafYRL) and By =
N. For each k < n consider the sequence {A*}, of these sets among the sets { X*},.,
which are not forcing k-definable on 2o, . . . ,2,,. From the choice of the enumeration
f it follows that each of these sets A¥, AF £, ?i. Then by Theorem 5.1 there is a
total set GG such that:

(i) For all i <n, f; '(2) <. GW;
(ii) For all 7 and all k < n, A* £, G*),

Note that since GG is a total set and because of the fact that each spectrum is
closed upwards, we have that d.(G) € DS(p), . ..,d.(G™) € DS(2,), and hence
de(G) € DS, ..., 2Ay,).

Suppose now that a total set X, X <, F®) and X <, G(k), k <n. From X <,
F®) and F®) =, Pl it follows that X = X for some r. It is clear that X <, Ti.
Otherwise, from the choice of G it follows that X £. G*). Hence X is forcing
k-definable on %dg,...,%,. By the normal form of the sets, which enumeration
degrees are in C'Sg(2p,...,2,), we have that d.(X) € CSt(™Ao,...,2A,). O

6. REGULAR ENUMERATIONS

We shall remind the notion of regular enumerations from [8]. Let By,..., By,
be non empty subsets of N.
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Finite parts are as usual finite mappings of N into N. The notion of i-regular
finite parts is defined by induction on i < n.

The 0-regular finite parts are finite parts 7 such that dom(r) = [0,2¢ + 1] and
for all odd z € dom(7),7(2) € By.

Let 7 be a O-regular finite part. If dom(7) = [0,2¢ + 1], then the O-rank of 7
|7log + 1 — the number of the odd elements of dom(7). Let BJ be the set of the
odd elements of dom(7). If p is a O-regular extention of 7, we shall denote this fact
by 7 Co p. It is clear that if 7 Co p and |7|o|plo, then 7 = p. Let

T lko Fe(z) <= Jo((v,2) € W, & (Yu € D,)(7((uw)o) =~ (u)1)),

Tl =Fe(z) <= Y(p)(T So p = pWo Fe(x)).

Suppose that for some i < n we have defined the i-regular finite parts and for
every i-regular 7 — the i-rank |7|; of 7, the set BT and the relations 7 IF; F(z) and
7 Ik; =F.(x). Suppose also that if 7 and p are i-regular, 7 C p (we write 7 C; p)
and |7|; = |p|i, then 7 = p.

Denote by Xé,z) ={p:pisiregular & pl+; F.(z)}.

For any i-regular finite part 7 and any set X of i-regular finite parts, denote
by wi (7, X) = pp[r C; p & p € X] if any, and p,; (7, X) = pp[r C; p], otherwise.

Definition 6.1. Let 7 be a finite part and m > 0. The finite part § is called
an i-regular m omitting extension of 7 if § D; 7, dom(d) = [0, ¢ — 1] and there exist
natural numbers gy < - - < ¢ < gm+1 = q such that:

(a) 1o = T;
(b) For all p < m, §lqp+1pi(6](qp + 1),X2p’qp>).
Denote by K? the sequence qo, ..., ¢m. If 6 and p are two i-regular m omitting

extensions of 7 and § C p, then § = p.

Let R; denote the set of all i-regular finite parts. Given an index j, by S]i. we
shall denote the intersection R; NT';(P(Bo, ..., B;)), where I'; is the j-th enumer-
ation operator.

Let 7 be a finite part defined on [0,¢q — 1] and 7 > 0. Then 7 is (i + 1)-regular
with (¢ 4+ 1)-rank r 4+ 1 if there exist natural numbers

O<no<lp<by<mnm <li<by<---<n. <l <b. <npy1 =¢q

such that 7[ng is an é-regular finite part with i-rank equal to 1 and for all j,
0 < 7 <r, the following conditions are satisfied:

(a) Tl =~ pi(r](n; + 1)75’;);
(b) Tb; is an i-regular j omitting extension of 7[l;;

(C) T(bj) S Bi—i—l;
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(d) 7Inj41 is an i-regular extension of 7[(b; + 1) with i-rank equal to |7]b;|; + L.

Let Bf, | = {bo,...,b.}. By K], we shall denote the sequence K FF
Let for every (i + 1)—regular finite part 7

Tlrip1 Fe(z) <= Fv({v,z) € W, & (Vu € D,)((u = {(ey,xy,0) & 7k Fe, (24))V
(u=(ey, Tu, 1) & 7 IF; 2 F,, (24)))).
Tlrip1 —Fe(2) <= (Vo)(7 Sit1 p = p i1 Fe(w)).

Definition 6.2. Let f be a total mapping of N in N. Then f is a regular
enumeration if the following two conditions hold:

(i) For every finite part 6 C f, there exists an n-regular extension 7 of § such
that 7 C f.

(ii) If : < n and z € By, then there exists an i-regular extension 7 C f such that
z € T1(B]).

Let f be a total mapping on N. We define for every i < n, e,z the relation
f i Fe(x) by induction on i:

Definition 6.3.

(i)f o Fe(z) <= Fv({v,z) € We & (Yu € Dy)(f((u)o) = (u)1));
(i) f Eig1 Fe(z) <= Fv((v,z) € W, & (Vu € D,)((u = {(ey, 2y, 0) &

)
fEi Fe, () V (u=(ew, 4, 1) & f i Fe,(2u))))
Set f ):z _‘Fe(x) — f Féz Fe(x)-

In [8] it is proven that for every regular enumeration f:
1. BO <e f

2. If i < n, then Biy; <. f ® P(By,...,B;), and P(By,...,B;) <. f@, for
1 <n.

3. If ACN, then
A<, f9 = (Be)A={z:f i F.(x)}.
4. For all i < n (for negation i < n),

fEi () Fe(z) < (37 C f)(7 is i-regular & 7 IF; (=) Fe(x)).

Notice that if f is a regular enumeration, then B; <. f@, i < n.

Given a finite mapping 7 defined on [0,q — 1], by 7 x 2 we shall denote the
extension p of 7 defined on [0, ¢] and such that p(q) ~ z. We shall use the following
Lemma, proved in [8].
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Lemma 6.1. [8] Let Ao, ..., An—1 be subsets of N such that A; £, P(By,...,B;).
Let T be an n-regular finite part, defined on [0,q — 1]. Suppose that ||, = r+ 1,
y€eN, zop € By,...,2n € B, and s <1+ 1. Then there is an n-reqular extension p
of T such that:

(@) [pln =7+2;
(il) pla) =y, 20 € p(Bg), .-, 2n € p(BR);
(iil) ifi <n and K\ = qb,.... ¢k, ... ¢, then

(a) p(qt) € A; = plr; = Fy(ql);
(b) p(qt) & A; = plF; Fo(ql).

Now we turn to the proof of Theorem 5.1. Set B, 11 = Nand P(By,...,Bui1) =
P(Bo,...,Bpn) ® Bpy1. By a regular enumeration f we mean a regular one with
respect to By, ..., By, Bhi1.

Proof of Theorem 5.1.

Let {A*},., k < n, be seqences of subsets of N such that A* £, P(By, ..., By).

We shall construct a regular enumeration f such that f “omits” the sets A¥
for all r, k < n, i.e. AF £, fF).

The construction of f will be carried out by steps. At each step s we shall
construct an (n+ 1)-regular finite part ds, so that |ds|p+1 > s+1 and 65 Crq1 ds41-
On the even steps we shall ensure the genericity of f, i.e. conditions (a) and (d)
from the definition of i-regular finite part, and on the odd steps we shall ensure the
omitting conditions, the conditions (b), (c).

Let R, 41 be the set of all (n + 1)-regular finite parts and S;-Hl = Rpy1 N
I';(P(Bo,..., Bny1)). Let 0o,...,0,41 be recursive in P(By, ..., By41) enumera-
tions of the sets By, ..., B,+1, respectively.

Let §p be an arbitrary (n + 1)-regular finite part with (n + 1)-rank equal to 1.
Suppose that §, is defined.

Case s = 2m. Check whether there exists a p € S™! such that §; C p. If
so, let ds11 be the least such p. Otherwise, let dsy1 be the least (n + 1)-regular
extension of §; with (n 4 1)-rank equal to |dg|pn+1 + 1.

Case s = 2m + 1. Let |0s|pny1 = 7+ 1 > s+ 1. Let m(p,e). We may
assume that e < m and then e < r + 1. Let oo(m) =~ zo,...,0041(M) = 2p11.
Set 70 =~ pn(ds * 2ny1,S71). Let l,11 = 1h(7g) and ¢f = l,41. For j < e, let
Tjt1 = Hn(Tj * O,X?jvng)) and ¢y = 1h(7j41). So, 7. and ¢ are defined. Let

C={z: (T 21)(T R, & T7(¢}) 2~z & TlF, Fe(ql))}-

The set C <. P(Bo, ..., Bnt1) and A} L. P(Bo, ..., Bny1). Then there is an a
such that
aceC&agAyVagC&acAy. (6.1)

Let ag be the least a satisfying (6.1).
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Next we extend the finite 7 *ag to a finite part 7, so that 7 is an n-regular r+1
omitting extension of 79. Set b.41 = lh(7). Now consider the sets A),..., An~1.
By Lemma 6.1 we can construct an n-regular extension p of 7 such that:

(@) [pln = I7ln + 1;
(ii) p(bry1) = znt1 and zg € p(BY), ..., 2z, € p(BL);
(iit) if & <n and K}, =q,....q%,...,qk, , then
(a) plag) € Ay = p bk ~Fe(qé);
(b) plar) & Ay = plby Fe(q?).

Set 5s+1 = p.

Let f = JJds. From the construction it follows that f is a regular enumeration.
For every e, x, {7 : 7 € Rpp1 & 7 IFpy1 Fe(x)} is e-reducible to P(Bo, ..., Bpt1)-
From here, by the even stages of the construction, it follows that for all e, x,

fEns1 (MFe(z) <= 31 C f)(7 € Roy1 & 7lhnyr (7)Fe(2)).
Since f is regular, we have that if k¥ < n, then for all e and =z,
fEr () F(z) <= (3T C f)(r € R & 7 Ik (7)Fe(x)).

Now suppose that for some & < n and p, A’; <. f%). Then the set C}’,f = {z:
f(x) € A} is also e-reducible to f(*). Fix an e such that for all ,

f@) € A = 2€CF = [l Feo(a). (6.2)

Consider the step s = 2(p,e) + 1. By the construction, there exists a ¢* €
dom(ds41) such that

(f(qf) € Ay = [ =k —Fe(qh)) & (f(qF) & Ay = [ =k Felql)):

Clearly, 6s11(q%) ~ f(¢¥). Now assume that f(¢¥) € A];. Then g1 1 b —~F.(q¥).
Hence f = —F.(q¥), which is impossible. It remains that f(q¥) ¢ A’If. In this
case 8541 IFx F.(q¥) and hence f = F.(q¥). The last again contradicts (6.2). So
Ar £ fM. O

7. QUASI-MINIMAL DEGREE
Definition 7.1. Let By € N. A set F of natural numbers is called quasi-
manimal over By if the following conditions hold:

(1) By <. F;
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(ii) For any total set A C N, if A <, F', then A <. By.

The following theorem we shall prove in the next section using the technique
of partial regular enumerations.

Theorem 7.1. Let By,...,B,,n > 1, be arbitrary sets of natural numbers.
There exists a set F' having the following properties:

(i) By <. F}
(ii) For all1 <i<n, B; <, F@;
(iii) For any total set A, if A <. F, then A <. By.

In fact, the set F' from Theorem 7.1 is a quasi-minimal over By.

Let the structures 2o, ..., %2, be fixed.

Proof of Theorem 3.2. By [9], there is a quasi-minimal degree q, with
respect to DS (o), i.e.:

(i) ap & CS(Ao);
(i) If a is a total degree and a > qq, then a € DS();
(iii) If a is a total degree and a < q, then a € C'S(2p).

Let By C N such that d.(By) = qq, and f1,..., fn be fixed total enumerations
of Ay, ...,2A,. Denote B; = ffl(Qll), .oy Bn = f71(A,). By Theorem 7.1, there
is a quasi-minimal over By set F' such that:

(1) BO <e F;
(i) For all 1 <i < n, f;1(2) <, FO;
(iii) For any total set A, if A <, F, then A <. By.

We will show that q = d.(F') is a quasi-minimal with respect to DS(Rlo, ..., 2,),
ie.:

(i) d' € DS(2),...,a™ € DS(,.), a & CS(Ao, A1, ..., 2A);
(ii) If a is a total degree and a > q, then a € DS (o, Az, ..., Ay);
(iii) If a is a total degree and a < q, then a € CS(Ag,As,...,Ay).

In order to prove (i), suppose that q € C'S(2p). By Theorem 7.1, q, < q and thus
qy € CS(2p). A contradiction with the fact that q is quasi-minimal with respect
to DS(24p). Then q ¢ CS(2) and hence q & CS(Ag, A1, ..., 2Ay).

For each i, 1 < i < n, the set F® is total and fi_l(Qli) <. F_ Since
any degree spectrum is closed upwards, it follows that d.(F®) € DS(;), i.e.
q? € DS(,).
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For (ii) consider a total set X such that X >, F. Then d.(X) > q,. From
the fact that q, is quasi-minimal with respect to DS(2) it follows that d.(X) €
DS(2ly). Moreover, for each 1 < i < n, X0 >, F@ >, fi_l(Qli), and X @ is a total
set. Then for each i < n, do.(X@) € DS(2;), and hence d.(X) € DS, ..., An).

For (iii) suppose that X is a total set and X <. F. Then, from the choice
of F, X <., By. Because q, is quasi-minimal with respect to DS(2), it follows
that d.(X) € CS(Rp). But CS(Ro,...,2A,) = CS(y) and therefore d.(X) €
CS(R, ..., 2A,). O

8. PARTIAL REGULAR ENUMERATIONS

Let BO - N.

Definition 8.1. A partial enumeration f of By is a partial surjective mapping
from N onto N with the following properties:

(i) For all odd z, if f(x) is defined, then f(z) € Bo;
(ii) For all y € By, there is an odd x such that f(x) ~ y.

It is clear that if f is a partial enumeration of By, then By <. f since
y€ By < (In)(f(2n+1) =y).
Let 1 ¢ N.

Definition 8.2. A partial finite part 7 is a finite mapping of N into NU { L}
such that (Vz)(x € dom(7) & z is odd = (7(x) = L V 7(z) € Byp)).

If 7 is a partial finite part and f is a partial enumeration of By, say that

TC f <= (Vz € dom(r))((r(z) = L = f(z) is not defined ) &
(r(x) # L = 7(2) = f(2)).

Let By,..., B, be fixed sets of natural numbers. Combining the technique of
the regular enumerations with the partial (generic) enumerations on the 0-level for
By, we shall construct a partial regular enumeration f, which will be quasi-minimal
over the set By and such that B; <. f® for i < n.

A 0-regular partial finite part is a partial finite part 7 such that dom(7) =
[0,2¢ + 1] and for all odd z € dom(7), 7(2) € By or 7(z) = L.

Let B be the set of all odd elements z of dom(7) such that 7(z) € By. The
O-rank of 7, |7|p = ¢ + 1, we call the number of the odd elements of dom(7). If p
is a O-regular partial extention of 7, we shall denote this fact again by 7 Cg p. It is
clear that if 7 Co p and |7|o|p|o, then 7 = p. Let

T lkg Fe(z) <= Jo({v,x) € W, & (Vu € D,)(u= (s,t), & 7(s) 2t &t # L.)),
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7 lko ~Fe(z) <= V(p)(T Co p = p Vo Fe(x)).

The definition of (i 4 1)-regular partial finite part 7, the set B7, ;, the (i +1)-
rank of 7 and the relations 7 IF;41 Fe(z) and 7 IF;11 —F(x) are defined in the same
way as in Section 6, the only difference is that instead of i-regular finite parts we
use i-regular partial finite parts. Notice that again if 7 is an i-regular partial finite
part, then 7 is a j-regular partial finite part for each j < 1.

Definition 8.3. A partial reqular enumeration is a partial mapping f from N
onto N such that the following two conditions hold:

(i) For every partial finite part § C f, there exists an n-regular partial extension
7 of § such that 7 C f.

(ii) If i < n and z € B;, then there exists an i-regular partial finite part 7 C f
such that z € 7(B]).

If f is a partial regular enumeration and ¢ < n, then for every § C f, dom(d) C
[0,q — 1], there exists an i-regular partial 7 C f such that § C 7, and for every
x € [0,q — 1] if f(z) is not defined, then 7(x) = L. Moreover, there exist i-regular
partial finite parts of f of arbitrary large rank.

The relation f |=; Fe(z) is the same as in Definition 6.3. By induction on %
one could check that for any A C N, A <. f( iff there exists e such that for all z,

r€A < [ Fe(x).
Lemma 8.1. Suppose that f is a partial regular enumeration. Then:
(1) Foralli<m, f|; Fe(xr) <= (37 C f)(7 is i-reqular & 7 IF; Fo(x)).
(2) Foralli<mn, = ~Fe(x) < (37 C f)(7 is i-reqular & 7 IF; = F(x)).

The proof follows from the definitions by induction on ¢ as in the total case.
Let R; be the set of all i-regular partial finite parts. It is clear that R; <. P,
where P; = P(By, ..., Bp).

Definition 8.4. A partial enumeration f is i-generic if for any j < ¢ and
for every enumeration reducible to P; set S of j-regular partial finite parts the
following condition holds:

BrChHresSVv¥p2;m)(pgS9)).

Proposition 8.1. Every partial reqular enumeration is (i + 1)-generic enu-
meration for every i < n.

Proof. Let S be a set of i-regular partial finite parts such that S <, P;. Then
there exists an e such that S = R; NI (P;). Consider an (i+1)-regular partial finite
part 7 C f with (i 4+ 1)-rank greater than e. From the definition of (i + 1)-regular
partial finite part it follows that there is an i-regular partial finite part o C; 7, and
hence o C f such that o € S or (Vp 2, 0)(p & S). O
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Proposition 8.2. Suppose that f is a partial reqular enumeration. Then:
(1) For eachi <n, B; <. f®.
(2) Ifi <n, then f L. P;.

Proof. We know that By <. f. Let ¢ < n. Suppose that for each j < i,
Bj <. fY). Then P; <. f.

Since f is partial regular, for every partial finite part § of f there exists an
(i4 1)-regular partial finite part 7 C f such that § C 7, where if f(x) is not defined
and z € dom(7), then 7(z) = L. For each ¢ denote by f[, the partial finite part
7 with dom(7) = [0,g — 1], 7 C f, and for each = < ¢ if f(z) is not defined, then
7(x) = L.

Let

0<n0<lo<bo<n1<l1<bl<~~~<nr<lr<br<nr+1<...

be the numbers satisfying the conditions (a)—(d) from the definition of the (i +
1)-regular partial finite part 7,.. Clearly, if B{_H = {bo,by ...}, then f(BifH) =
Bi+1. We shall show that there exists an effective in f(+1) procedure which lists
no,lo,bg, ... in an increasing order.

Using the oracle f’, we can generate consecutively the partial finite parts f|q
for ¢ = 1,2.... Notice that f[ng is i-regular and |fIng|; = 1, and it is the first
element of this sequence which belongs to R;. Clearly, no = 1h(f[no).

Suppose that ng, lg, by, . . ., n, have already been listed. Since f [l ~ p;(f(n,+
1),S8%), we can find effectively in f0+1) the partial finite part f[l,. Then I, =
Ih(f[l.). Next flb, is an i-regular partial r omitting extension of f[l.. So, there
exist natural numbers [, = ¢y < --- < ¢, < ¢r4+1 = b,. Using the oracle f(“‘l), we
can find consecutively the numbers qq, ..., ¢, g-+1 = b,. By definition, fIn,,1 is
an i-regular partial extension of f[(b, + 1) having i-rank equal to |f[b,|; + 1. Using
/', we can generate consecutively the partial finite parts f[(b.+14¢), ¢=0,1,...
Then f[n,41 is the first element of this sequence which belongs to R;.

Then Bzf+1 is effective in fO+Y and By, <. f0+D.

To prove (2), assume that f <., P;. Then the set

S={r:7eR & (Fz,y1 #y2 e N)(7(2) 2 y1 & f(z) ~y2)},

S <. P;. Using the fact that f is (i + 1)-generic, there is an i-regular partial finite
part 7 C f such that either 7 € S or (Vp 2; 7)(p € S). It is obvious that both of
these cases are impossible. A contradiction. [J

Lemma 8.2. Let i < n and 7 be an i-regular partial finite part with domain

(1) For every y € N,zg € By,...,z € B;, we can find effectively in P,_; an
i-regular partial extension p of T such that |p|; = |7|; + 1 and p(q) ~ y, 20 €
p(BE), .-z € p(BY).
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(2) For every sequence @ = ag, - . . , Gy of natural numbers, one can find effectively
in P, an i-reqular m omitting partial extension & of T such that §(K°) = a.

Proof. The proof is as in the total case [8]. By induction on 7, (1) and (2) are
proven simultaneously. [J

Proof of Theorem 7.1. By Proposition 8.2, it is sufficient to show that there
exists a partial regular enumeration f which is quasi-minimal over By.

We shall construct f as a union of n-regular partial finite parts d; such that
for all s, 65 C,, 541 and |05, = s+ 1. Suppose that for i < n o; is a recursively in
B; enumeration of B;.

Let §p be a O-regular partial finite part such that |dg|, = 1. Suppose that
ds is defined. Set zp = 0¢($),...,2,0,(s). Using Lemma 8.2, we can construct
effectively in P!, an n-regular partial finite part p D,, d, such that |p|,|ds|, + 1,
p(Ih(ds)) = s and 29 € p(Bf),...,2n € p(BL). Set d511 = p.

The obtained enumeration f is surjective on N and it is a union of n-regular
partial finite parts. From the construction is obvious that for every z € B; there is
an i-regular partial finite part 7 of f such that z € B]. Hence f is a partial regular
enumeration. By Proposition 8.1, f is (i + 1)-generic for each ¢ < n.

Then by Proposition 8.2, for i < n, B; < f(9). Moreover, f is a partial 1-generic
enumeration and hence By <. f.

To prove that f is quasi-minimal over By, it is sufficient to show that if ¢
is a total function and ¥ <. f, then ¥ <, By. It is clear that for any total set
A C N one can construct a total function v, ) =, A. Let ¢ be a total function and
Y =T(f). Then

(Va,y € N)(f o Fe((2,9)) <= ¢(x) = y).

Consider the set

So={p:p€Ro & (3z,y1 # y2 € N)(p ko Fe({z,y1)) & plFo Fe((z,y2)))}-

Since Sy <. By, we have that there exists a 0-regular partial finite part 79 C f such
that either 79 € Sy or (Vp D¢ 70)(p € So). Assume that 79 € Sy. Then there exist
z,y1 # yo such that f o Fe((z,y2)) and f o Fe((z,y2)). Then 9(z) ~ y1 and

Y(x) =~ yo, which is impossible. So, (Vp D¢ 70)(p & So).
Let
Sl = {p p e Ro & (37‘ DI To)(ﬂ(sl Bl T)(El(SQ 2o T)
(Fz,y1 # y2 € N)(7 So p & 1 ko Fe((z,y1)) & 02 IFo Fe((2,92)) &
dom(p) = dom(d;) U dom(ds) &
(Vz)(x € dom(p) \ dom(7) = p(z) ~ 1))}

We have that S; <. By and hence there exists a O-regular partial finite part 71 C f
such that either 71 € Sy or (Vp D¢ 71)(p & S1).
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Assume that 71 € S;. Then there exists a O-regular partial finite part 7 such
that 79 Cg 7 Co 71 and for some d1 Dg 7, d2 D¢ 7 and xg,y1 # Y2 € N we have

(51 ”_() Fe(<$0,y1>) & (52 H_O Fe(<$0,y2>) & dOl’Il(Tl) = dom(dl) U dOD’l((SQ) &
& (Vx)(z € dom(my) \ dom(7) = 71(x) =~ 1).

Let ¥(xg) ~ y. Then f ¢ F.({xo,y)). Hence there exists a p D¢ 71 such that
p o Fe({zo,y)). Let y # y1. Define the partial finite part py as follows:

o [50) i < dom),
polx) ~ p(z) if x € dom(p) \ dom(dy).

Then 79 Co po, 61 Co po and notice that for all € dom(p) if p(x) # L, then
p(z) = po(z). Hence py IFo Fe((zo,y1)) and po IFo Fe((zo,y)). So, po € So. A
contradiction.

Thus, (Vp)(p 20 71 = p & S1).

Let 7 = 7 U7y. Notice that 7 C f. We shall show that

P(x) =y <= (30 20 7)(0 IFo Fe((2,9)))-

And hence 9 <, By.

If (x) ~ y, then f o Fe(z), and by Lemma 8.1 (3p C f)(p kg Fe(z)) and p
is O-regular. Then take § = 7 U p.

Assume that §; D¢ 7, 61 ko Fe((2z,31)). Suppose that ¢ (z) ~ y2 and y; # ya.
Then there exists a d2 D¢ 7 such that 3 Ibg F.({x, y2)). Set

o) ~ 7(z) if x € dom(7),
1 if x € (dom(d1) U dom(dz)) \ dom(7).

Clearly, p 29 71 and p € S;. A contradiction. [J
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