Partial Degree Spectra of Abstract Structures

Alexandra A. Soskova
joint work with Ivan N. Soskov

Faculty of Mathematics and Informatics
Sofia University

Supported by BNSF Grant No. D002-258/18.12.08; Sofia University Science Fund
Outline

- Enumerations
- Degree spectra of structures
- Definability on structures
- Partial degree spectra
- Relative stability
Definition. Let $\mathcal{A} = (A, \omega; \theta_1, \ldots, \theta_n; P_1, \ldots, P_k)$ be a two sorted countable structure.

An enumeration of \mathcal{A} is $\langle f, \mathcal{B}_f \rangle$, where f is a (partial) surjective mapping of ω onto A, $\mathcal{B}_f = (\omega; \varphi_1, \ldots, \varphi_n, \sigma_1, \ldots, \sigma_k)$ and

- $\text{dom}(f)$ is closed under $\varphi_1, \ldots, \varphi_n$;
- $(\forall \bar{x} \in \text{dom}(f))(\forall \bar{y} \in \omega)[f(\varphi_i(\bar{x}, \bar{y})) = \theta_i(f(\bar{x}), \bar{y})]$;
- $(\forall \bar{x} \in \text{dom}(f))(\forall \bar{y} \in \omega)[\sigma_j(\bar{x}, \bar{y}) \iff P_j(f(\bar{x}), \bar{y})]$.

An enumeration $\langle f, \mathcal{B}_f \rangle$ is total if $\text{dom}(f) = \omega$.

Denote by $\langle \varphi \rangle = \{ \langle y, x_1, \ldots, x_n \rangle \mid \varphi(x_1, \ldots, x_n) = y \}$.

$$\langle \mathcal{B}_f \rangle = \langle \varphi_1 \rangle \oplus \cdots \oplus \langle \varphi_n \rangle \oplus \langle \sigma_1 \rangle \oplus \cdots \oplus \langle \sigma_k \rangle$$
Definition. [Richter] The Degree Spectrum of \mathcal{A} is the set

$$DS(\mathcal{A}) = \{d_e(\langle B_f \rangle) \mid \langle f, B_f \rangle \text{ is a total enumeration of } \mathcal{A}\}.$$

If $DS(\mathcal{A})$ has a least e-degree a, then a is called the degree of \mathcal{A}.

Definition. The Co-Spectrum of \mathcal{A} is the set

$$CS(\mathcal{A}) = \{d_e(X) \mid X \leq_e \langle B_f \rangle, \langle f, B_f \rangle \text{ is a tot. enum. of } \mathcal{A}\}.$$

If $CS(\mathcal{A})$ has a greatest e-degree a then a is called the co-degree of \mathcal{A}.
Proposition. If a structure \mathcal{A} has a degree a then a is also the co-degree of \mathcal{A}.

There are examples of structures with no co-degrees and structures with co-degree but no degree.
Let $\mathcal{A} = (A, \omega; \theta_1, \ldots, \theta_n, P_1, \ldots, P_k)$ and $\langle f, \mathcal{B}_f \rangle$ is an enumeration of \mathcal{A}.

A function $\theta : \omega^r \times A^m \rightarrow A$ is admissible in $\langle f, \mathcal{B}_f \rangle$ if there is a function φ partial recursive in \mathcal{B}_f, $(\langle \varphi \rangle \leq_e \langle \mathcal{B}_f \rangle)$ and:

- $\text{dom}(f)$ is closed under φ;
- $(\forall \bar{x} \in \text{dom}(f))(\forall \bar{y} \in \omega)[f(\varphi(\bar{x}, \bar{y})) = \theta(f(\bar{x}), \bar{y})]$.

And $\theta : \omega^r \times A^m \rightarrow \omega$ is admissible in $\langle f, \mathcal{B}_f \rangle$ if there is a function φ partial recursive in \mathcal{B}_f

- $\text{dom}(f)$ is closed under φ;
- $(\forall \bar{x} \in \text{dom}(f))(\forall \bar{y} \in \omega)[\varphi(\bar{x}, \bar{y}) = \theta(f(\bar{x}), \bar{y})]$.
Definition.

- A function θ is (search) computable in \mathcal{A} iff θ is admissible in all total enumerations of \mathcal{A}.
- A function θ is (REDS) partially computable in \mathcal{A} iff θ is admissible in all (partial) enumerations of \mathcal{A}.

- Search computability by Moschovakis (Fraissé, Lacombe, Montague);
- Computability by means of Recursively Enumerable Definitional Schemes (REDS) by Shepherdson (Friedman EDS).
The domains of the computable functions in \(\mathbb{A} \) we call the computably enumerable (c.e.) on \(\mathbb{A} \) sets.

Let \(L \) be the language of \(\mathbb{A} \). We add a unary predicate symbol \(T_0 \) to \(L \) to represent a predicate which is true everywhere.

Proposition. A set \(X \subseteq \omega^r \times A^m \) is c.e. on \(\mathbb{A} \) iff there is a recursive function \(\gamma : \omega^{r+1} \rightarrow \omega \), such that for any \(n \), \(E^{\gamma(n,y)}(\tilde{X}, \tilde{W}) \) is an elementary \(\Sigma_1 \) formula in \(L \) and there exist parameters \(t_1, \ldots, t_l \) of \(A \) such that:

\[
(\tilde{y}, \tilde{x}) \in X \iff (\exists n \in \omega)[\mathbb{A} \models E^{\gamma(n,y)}(\tilde{X}/\tilde{x}, \tilde{W}/\tilde{t})].
\]

These sets are exactly the relative intrinsically sets on \(\mathbb{A} \).
The Partially Computably enumerable Sets on \mathcal{A}

The domains of the partially computable functions in \mathcal{A} we call partially c.e. on \mathcal{A} sets.

Proposition. A set $X \subseteq \omega^r \times A^m$ is p.c.e. in \mathcal{A} if there is a recursive function $\gamma : \omega^{r+1} \to \omega$, such that for any n, $P^{\gamma(n,\bar{y})}(\bar{X}, \bar{W})$ is a finite conjunctions of atoms or negated atoms in L and there exist parameters t_1, \ldots, t_l of A such that:

$$(\bar{y}, \bar{x}) \in X \iff (\exists n \in \omega) [\mathcal{A} \models P^{\gamma(n,\bar{y})}(\bar{X}/\bar{x}, \bar{W}/\bar{t})].$$
Example of a structure with no co-degree

Consider $\mathcal{A} = (\mathbb{N}, \omega; \Psi; P)$, where $\Psi : \mathbb{N} \to \mathbb{N}$ and $\Psi(\langle n, x \rangle) = \langle n, x + 1 \rangle$ and the predicate $P \subseteq \mathbb{N}$:

$$
P(x) = \begin{cases}
0 & \exists t(x = \langle 0, t \rangle), \\
0 & \exists n \exists t(x = \langle n + 1, t \rangle \& t \in \emptyset^{(n+1)}), \\
\bot & \text{otherwise.}
\end{cases}
$$

For every $X \subseteq \omega$: X is c.e. in \mathcal{A} iff $\exists n(X \leq_e \emptyset^{(n)})$.
Consider the sequence $\emptyset <_e \emptyset' <_e \cdots <_e \emptyset^{(n)} <_e \cdots$. There is no set W so that:

$$(\forall X \subseteq \omega)(X \leq_e W \iff \exists n(X \leq_e \emptyset^{(n)})).$$

And hence \mathcal{A} has no co-degree.
Consider $\mathcal{A} = (\mathbb{N}, \omega; \Psi; P)$, where $\Psi : \mathbb{N} \to \mathbb{N}$ and
$\Psi(\langle n, x \rangle) = \langle n, x + 1 \rangle$ and the predicate $P \subseteq \mathbb{N}$:

$$P(x) = \begin{cases}
0 & \exists t(x = \langle 0, t \rangle), \\
0 & \exists n \exists t(x = \langle n + 1, t \rangle \& t \in \emptyset^{(n+1)}), \\
\bot & \text{otherwise.}
\end{cases}$$

For every $X \subseteq \omega$: X is c.e. in \mathcal{A} iff $\exists n(X \leq_e \emptyset^{(n)})$.
Consider the sequence $\emptyset <_e \emptyset' <_e \cdots < \emptyset^{(n)} <_e \cdots$. There is no set W so that:

$$\forall X \subseteq \omega)(X \leq_e W \iff \exists n(X \leq_e \emptyset^{(n)})).$$

And hence \mathcal{A} has no co-degree.
Proposition. Let $\mathcal{A} = (A, \omega; R, =_A)$, where A is countable set and $R \subseteq A$ is a linear order. Then $d_e(\emptyset)$ is a co-degree of \mathcal{A}.

For every $X \subseteq \omega$, if X is c.e. in \mathcal{A} then there is a recursive function γ and there exist parameters t_1, \ldots, t_l of A such that:

$$y \in X \iff (\exists n \in \omega)[\mathcal{A} \models E^{(n,y)}_{\gamma}(\bar{W}/\bar{t})].$$

And then $X \leq_e \emptyset$.
Hence $d_e(\emptyset)$ is a co-degree of \mathcal{A}.

Corollary. [Richter] If \mathcal{A} is a countable linear ordering with a degree, then this degree is $0_e = d_e(\emptyset)$.
Proposition. Let $\mathcal{A} = (A, \omega; R, =_A)$, where A is countable set and $R \subseteq A$ is a linear order. Then $d_e(\emptyset)$ is a co-degree of \mathcal{A}.

For every $X \subseteq \omega$, if X is c.e. in \mathcal{A} then there is a recursive function γ and there exist parameters t_1, \ldots, t_l of A such that:

$$y \in X \iff (\exists n \in \omega)[\mathcal{A} \models E^{(n, y)}(\bar{W}/\bar{t})].$$

And then $X \leq_e \emptyset$.

Hence $d_e(\emptyset)$ is a co-degree of \mathcal{A}.

Corollary. [Richter] If \mathcal{A} is a countable linear ordering with a degree, then this degree is $0_e = d_e(\emptyset)$.

Alexandra A. Soskova Partial Degree Spectra
An ordinal ξ is constructive if the structure $\xi = (\xi, \omega; \in, =)$ is isomorphic to a computable well ordering.

Proposition. Let ξ be a countable ordinal. Then the structure $\xi = (\xi, \omega; \in, =)$ has a degree if and only if ξ is a constructive ordinal.

Corollary. If ξ is a countable $\xi \geq \omega_1^{CK}$ then ξ has a co-degree and no degree.
Definition. The Partial Degree Spectrum of \mathcal{A} is the set

$$PDS(\mathcal{A}) = \{d_e(\langle \mathcal{B}_f \rangle) \mid \langle f, \mathcal{B}_f \rangle \text{ is a partial enumeration of } \mathcal{A}\}.$$

The least element of \mathcal{A} (if it exists) is called a partial degree of \mathcal{A}.

Definition. The Partial Co-Spectrum of \mathcal{A} is the set

$$PCS(\mathcal{A}) = \{d_e(X) \mid X \leq_e \langle \mathcal{B}_f \rangle, \langle f, \mathcal{B}_f \rangle \text{ is an enumeration of } \mathcal{A}\}.$$

If $PCS(\mathcal{A})$ has a greatest e-degree a then a is called a partial co-degree of \mathcal{A}.

Proposition. If a is a partial degree of \mathcal{A} then a is a partial co-degree of \mathcal{A}.
If a is a degree of \mathfrak{A} and b is a partial degree of \mathfrak{A} then $b \leq a$. There are structures (e.g. that from Example 1) with no partial degree.

Definition. A set $W \subseteq \mathbb{N}$ is *total* if $(\omega \setminus W) \leq_e W$. An e-degree is *total* if it contains a total set.

Proposition. Let \mathfrak{A} be a total countable structure with a partial co-degree a. Then a is a total e-degree.

Consider a set $W \in a$. Then W is p.c.e. in \mathfrak{A}, i.e. there is a recursive function γ and parameters t_1, \ldots, t_l of A such that:

$$y \in W \iff (\exists n \in \omega)[\mathfrak{A} \models P^{(n,y)}(\bar{Z}/\bar{t})].$$

The set $\{\hat{L} \mid L(\bar{Z}/\bar{t}) = 0\}$ is total and e-equivalent to W.
Theorem. If the structure \mathcal{A} has a p. co-degree which is a total e-degree then \mathcal{A} has a p. degree too.

Let a be e p.co-degree of \mathcal{A} and $W \in a$ be a total set. We construct a standard enumeration $\langle f, \mathcal{B}_f \rangle$ of \mathcal{A} such that $\langle \mathcal{B}_f \rangle \leq_e W$.

Fact: Since W is a total set then W is e-equivalent to its characteristic function. Hence for each r there is a p.r in W universal function Φ_r for the p.r. in W functions of r arguments.

If W is not total, then we can construct an enumeration $\langle f, \mathcal{B}_f \rangle$ of \mathcal{A}, $W \equiv_e \langle \mathcal{B}_f \rangle$, but the functions in \mathcal{B}_f are not single valued outside the domain of f.

Alexandra A. Soskova Partial Degree Spectra
Corollary. Every total structure \mathcal{A} with a partial co-degree has a partial degree.

Proposition. Let $\mathcal{A} = (A, \omega; R_1, \ldots, R_k)$, where all the predicates $R_j \subseteq A^{m_j}$. Then \mathcal{A} has a partial co-degree 0_e.

Corollary. Every countable linear ordering has a partial degree 0_e. And hence if ξ is not constructive ordinal, then the structure $(\xi, \omega; \in, =)$ has a partial degree 0_e and has no degree.
Let $\mathcal{A} = (\mathbb{N}, \omega; \theta_1, \ldots, \theta_n; P_1, \ldots, P_k)$.

Definition. The structure \mathcal{A} is *relatively stable* if for every total enumeration $\langle f, \mathcal{V}_f \rangle$ of \mathcal{A} the mapping f is partially recursive in \mathcal{V}_f.

Definition. The structure \mathcal{A} is *algorithmic complete* if all the p.r. functions on \mathbb{N} are computable in \mathcal{A} considered as functions on \mathbb{N} and on ω.

Proposition. *The following conditions are equivalent:*

- \mathcal{A} is relatively stable;
- the converting function $\alpha : \mathbb{N} \to \omega$, $\lambda n.\alpha(n) = n$ is computable;
- \mathcal{A} is algorithmic complete.
Theorem. \(\mathfrak{A} \) is algorithmic complete if there exists a recursive function \(\gamma(n, x) \) and parameters \(t_1, \ldots, t_l \in \mathbb{N} \) such that

\[
(\forall x \in \mathbb{N})(\forall y \in \omega)(x = y \iff (\exists n \in \omega)(\mathfrak{A} \models E^{\gamma(n,y)}(\bar{Z}/\bar{t}, X/x))).
\]

Proposition. The structure \(\mathfrak{A} = (\mathbb{N}, \omega; S, =_{\mathbb{N}}) \), where \(S : \mathbb{N} \to \mathbb{N} \) is the successor function on \(\mathbb{N} \) is algorithmic complete.

If \(E^y = T(F^y(Z), X) \) then \(\mathfrak{A} \models E^y(Z/0, X/x) \iff x = y \).
Definition. The structure \mathcal{A} is *super relatively stable* if for every enumeration $\langle f, \mathcal{B}_f \rangle$ of \mathcal{A} the mapping f has a p.r. in \mathcal{B}_f function $g \supseteq f$, i.e. for every n if $f(n)$ is defined then $g(n)$ is defined and $f(n) = g(n)$.

Let $\langle f, \mathcal{B}_f \rangle$ be an enumeration of \mathcal{A}. Then for every function φ with the property $\varphi(x) = \alpha(f(x))$ for $x \in \text{dom}(\alpha)$, $\varphi \supseteq f$.
Proposition. The following conditions are equivalent:

- \mathcal{A} is super relatively stable;
- The converting function $\alpha : \mathbb{N} \to \omega$, $\lambda n.\alpha(n) = n$ is partially computable in \mathcal{A};
- Every c.e subset of ω^{r+m}, considered as a subset of $\omega^{r} \times \mathbb{N}^{m}$, is c.e. in \mathcal{A}.
- There exists a recursive function $\gamma(n, x)$ and parameters $t_1, \ldots, t_l \in \mathbb{N}$ such that

\[
(\forall x \in \mathbb{N})(\forall y \in \omega)(x = y \Leftrightarrow (\exists n \in \omega)(\mathcal{A} \models P^{(n,y)}(\overline{Z}/\overline{t}, X/x))).
\]
Definition. The structure \mathcal{A} is *partially algorithmic complete* if all the p.r. functions on \mathbb{N} are partially computable in \mathcal{A} considered as functions on \mathbb{N} and on ω.

Definition. A structure \mathcal{A} is finitely generated if there are finitely many elements t_1, \ldots, t_l and variables W_1, \ldots, W_l, such that

$$\mathcal{A} = \{ \lambda(\bar{W}/\bar{t}) \mid \lambda \text{ is a term on } \bar{W} \}.$$

Proposition. *If a structure \mathcal{A} is partially algorithmic complete then it is finitely generated and hence the computable functions in \mathcal{A} and the partially computable functions coincide.*

Theorem. *A structure \mathcal{A} is partially algorithmic complete if and only if \mathcal{A} is super relatively stable and finitely generated.*
Example of algorithmic complete structures

Consider the structure $\mathfrak{A} = (\mathbb{N}, \omega; P; Z)$, where $P : \mathbb{N} \to \mathbb{N}$, $P(x) = x - 1$ for $x > 0$ and $P(0) = 0$, and $Z(x) = 0$ if $x = 0$, and $Z(x) = 1$ if $x > 0$.

It is clear that \mathfrak{A} is not finitely generated. Thus it is not partially algorithmic complete.

Let $L = (F, T)$ be the language of \mathfrak{A} and $x \in \mathbb{N}$, $y \in \omega$.

$$x = y \iff \mathfrak{A} \models \neg T(X/x) \land \cdots \land \neg T(F^{y-1}(X/x)) \land T(F^y(x/x)).$$

Since it is super relative stable and hence relatively stable. Then it is algorithmic complete.

An example of partially algorithmic complete structure is $\mathfrak{A} = (\mathbb{N}, \omega; S, P; Z)$, where

- $S(x) = x + 1$,
- $P(x) = x - 1$ for $x > 0$ and not defined if $x = 0$,
- $Z(x) = 0$ if $x = 0$ and not defined if $x > 0$.
Thank you!