Enumeration Degree Spectra and ω-Degree Spectra of Abstract Structures

Ivan N. Soskov, Alexandra A. Soskova

Faculty of Mathematics and Computer Science
Sofia University

May 16, 2010

Supported by BNSF Grant No. D002-258/18.12.08.
Outline

- Enumeration degrees
- Degree spectra and co-spectra
- Characterization of the co-spectra
- Representing the countable ideals as co-spectra
- Properties of upwards closed sets of degrees
- The minimal pair theorem
- Quasi-minimal degrees
- Jump spectra
- ω-degree spectra
Definition. (Friedberg and Rogers, 1959) We say that $\Psi : 2^\omega \rightarrow 2^\omega$ is an **enumeration operator** (or e-operator) iff for some c.e. set W_i

$$\Psi(B) = \{ x | (\exists D)[\langle x, D \rangle \in W_i \& D \subseteq B] \}$$

for each $B \subseteq \omega$.

Definition. For any sets A and B define A is **enumeration reducible to** B, written $A \leq_e B$, by $A = \Psi(B)$ for some e-operator Ψ.
The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$,

1. A is c.e. in B iff $A \leq_e B^+$.
2. $A \leq_T B$ iff $A^+ \leq_e B^+$.

Definition. (Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{\langle i, x \rangle | x \in \Psi_i(A)\}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.
The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$,

1. A is c.e. in B iff $A \leq_e B^+$.
2. $A \leq_T B$ iff $A^+ \leq_e B^+$.

Definition. (Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{\langle i, x \rangle | x \in \Psi_i(A)\}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

Definition. A set A is called *total* iff $A \equiv_e A^+$.
Definition. Given a set \(A \), let \(d_e(A) = \{ B \subseteq \omega | A \equiv_e B \} \).

Denote by \(\mathcal{D}_T \) the partial ordering of the Turing degrees and by \(\mathcal{D}_e \) the partial ordering of the enumeration degrees.

The Rogers embedding. Define \(\iota : \mathcal{D}_T \to \mathcal{D}_e \) by \(\iota(d_T(A)) = d_e(A^+) \). Then \(\iota \) is a Proper embedding of \(\mathcal{D}_T \) into \(\mathcal{D}_e \).

The enumeration degrees in the range of \(\iota \) are called total.

Let \(d_e(A)' = d_e(J_e(A)) \). The jump is always total and agrees with the Turing jump under the embedding \(\iota \).
Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$.

Denote by \mathcal{D}_T the partial ordering of the Turing degrees and by \mathcal{D}_e the partial ordering of the enumeration degrees.

The Rogers embedding. Define $\iota : \mathcal{D}_T \rightarrow \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e. The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι.
Definition. Given a set A, let $d_e(A) = \{ B \subseteq \omega | A \equiv_e B \}$.

Denote by \mathcal{D}_T the partial ordering of the Turing degrees and by \mathcal{D}_e the partial ordering of the enumeration degrees.

The Rogers embedding. Define $\iota: \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a Proper embedding of \mathcal{D}_T into \mathcal{D}_e. The enumeration degrees in the range of ι are called total.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι.
Degree Spectra

Let $\mathcal{A} = (\mathbb{N}; R_1, \ldots, R_k)$ be a denumerable structure. Enumeration of \mathcal{A} is every total surjective mapping of \mathbb{N} onto \mathbb{N}.

Given an enumeration f of \mathcal{A} and a subset of \mathcal{A} of \mathbb{N}^a, let

$$f^{-1}(A) = \{ \langle x_1, \ldots, x_a \rangle : (f(x_1), \ldots, f(x_a)) \in A \}.$$

Set $f^{-1}(\mathcal{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq)$.

Definition. (Richter) The Turing Degree Spectrum of \mathcal{A} is the set

$$DS_T(\mathcal{A}) = \{ d_T(f^{-1}(\mathcal{A})) : f \text{ is an one to one enumeration of } \mathcal{A} \}.$$

If a is the least element of $DS_T(\mathcal{A})$, then a is called the degree of \mathcal{A}.
Definition. The e-Degree Spectrum of \mathcal{A} is the set

$$DS(\mathcal{A}) = \{d_e(f^{-1}(\mathcal{A})) : f \text{ is an enumeration of } \mathcal{A}\}.$$

If a is the least element of $DS(\mathcal{A})$, then a is called the e-degree of \mathcal{A}.

Proposition. If \mathcal{A} has e-degree a then $a = d_e(f^{-1}(\mathcal{A}))$ for some one to one enumeration f of \mathcal{A}.

Proposition. If $a \in DS(\mathcal{A})$, b is a total e-degree and $a \leq_e b$ then $b \in DS(\mathcal{A})$.
Definition. The e-Degree Spectrum of \mathcal{A} is the set

$$DS(\mathcal{A}) = \{d_e(f^{-1}(\mathcal{A})) : f \text{ is an enumeration of } \mathcal{A}\}.$$

If a is the least element of $DS(\mathcal{A})$, then a is called the e-degree of \mathcal{A}.

Proposition. If \mathcal{A} has e-degree a then $a = d_e(f^{-1}(\mathcal{A}))$ for some one to one enumeration f of \mathcal{A}.

Proposition. If $a \in DS(\mathcal{A})$, b is a total e-degree and $a \leq_e b$ then $b \in DS(\mathcal{A})$.
Definition. The e-Degree Spectrum of \(\mathbb{A} \) is the set

\[
DS(\mathbb{A}) = \{d_e(f^{-1}(\mathbb{A})) : f \text{ is an enumeration of } \mathbb{A}\}.
\]

If \(a \) is the least element of \(DS(\mathbb{A}) \), then \(a \) is called the e-degree of \(\mathbb{A} \).

Proposition. If \(\mathbb{A} \) has e-degree \(a \) then \(a = d_e(f^{-1}(\mathbb{A})) \) for some one to one enumeration \(f \) of \(\mathbb{A} \).

Proposition. If \(a \in DS(\mathbb{A}) \), \(b \) is a total e-degree and \(a \leq_e b \) then \(b \in DS(\mathbb{A}) \).
Definition. The structure \mathcal{A} is called total if for every enumeration f of \mathcal{A} the set $f^{-1}(\mathcal{A})$ is total.

Proposition. If \mathcal{A} is a total structure then $DS(\mathcal{A}) = \iota(DS_T(\mathcal{A}))$.

Given a structure $\mathcal{A} = (\mathbb{N}, R_1, \ldots, R_k)$, for every j denote by R_j^c the complement of R_j and let $\mathcal{A}^+ = (\mathbb{N}, R_1, \ldots, R_k, R_1^c, \ldots, R_k^c)$.

Proposition. The following are true:
1 $\iota(DS_T(\mathcal{A})) = DS(\mathcal{A}^+)$.
2 If \mathcal{A} is total then $DS(\mathcal{A}) = DS(\mathcal{A}^+)$.
Clearly if \mathcal{A} is a total structure then $DS(\mathcal{A})$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene’s set and $\mathcal{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathcal{A})$ consists of all total degrees. On the other hand if $f = \lambda x. x$, then $f^{-1}(\mathcal{A})$ is an c.e. set. Hence $\bar{K} \nleq_e f^{-1}(\mathcal{A})$. Clearly $\bar{K} \leq_e (f^{-1}(\mathcal{A}))^+$. So $f^{-1}(\mathcal{A})$ is not total.

Is it true that if $DS(\mathcal{A})$ consists of total degrees then there exists a total structure \mathcal{B} s.t. $DS(\mathcal{A}) = DS(\mathcal{B})$?
Clearly if \mathcal{A} is a total structure then $DS(\mathcal{A})$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene’s set and $\mathcal{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathcal{A})$ consists of all total degrees. On the other hand if $f = \lambda x.x$, then $f^{-1}(\mathcal{A})$ is an c.e. set. Hence $\bar{K} \not\leq_e f^{-1}(\mathcal{A})$. Clearly $\bar{K} \leq_e (f^{-1}(\mathcal{A}))^\bot$. So $f^{-1}(\mathcal{A})$ is not total.

Is it true that if $DS(\mathcal{A})$ consists of total degrees then there exists a total structure \mathcal{B} s.t. $DS(\mathcal{A}) = DS(\mathcal{B})$?
Clearly if \mathcal{A} is a total structure then $DS(\mathcal{A})$ consists of total degrees. The vice versa is not always true.

Example. Let K be the Kleene’s set and $\mathcal{A} = (\mathbb{N}; G_S, K)$, where G_S is the graph of the successor function. Then $DS(\mathcal{A})$ consists of all total degrees. On the other hand if $f = \lambda x. x$, then $f^{-1}(\mathcal{A})$ is an c.e. set. Hence $\bar{K} \not\leq_e f^{-1}(\mathcal{A})$. Clearly $\bar{K} \leq_e (f^{-1}(\mathcal{A}))^+$. So $f^{-1}(\mathcal{A})$ is not total.

Is it true that if $DS(\mathcal{A})$ consists of total degrees then there exists a total structure \mathcal{B} s.t. $DS(\mathcal{A}) = DS(\mathcal{B})$?
Co-spectra

Definition. Let \mathcal{A} be a nonempty set of enumeration degrees the *co-set of* \mathcal{A} is the set $co(\mathcal{A})$ of all lower bounds of \mathcal{A}. Namely

$$co(\mathcal{A}) = \{ b : b \in D_e \& (\forall a \in \mathcal{A})(b \leq_e a) \}.$$

Example. Fix $a \in D_e$ and set $\mathcal{A}_a = \{ b \in D_e : a \leq_e b \}$. Then $co(\mathcal{A}_a) = \{ b \in D_e : b \leq_e a \}$.

Definition. Given a structure \mathfrak{A}, set $CS(\mathfrak{A}) = co(DS(\mathfrak{A}))$. If a is the greatest element of $CS(\mathfrak{A})$ then call a the *co-degree* of \mathfrak{A}.

If \mathfrak{A} has a degree a then a is also the co-degree of \mathfrak{A}. The vice versa is not always true.
Definition. Let \(A \) be a nonempty set of enumeration degrees the co-set of \(A \) is the set \(co(A) \) of all lower bounds of \(A \). Namely

\[
co(A) = \{ b : b \in D_e & (\forall a \in A)(b \leq_e a) \}.
\]

Example. Fix \(a \in D_e \) and set \(A_a = \{ b \in D_e : a \leq_e b \} \). Then

\[
co(A_a) = \{ b \in D_e : b \leq_e a \}.
\]

Definition. Given a structure \(\mathcal{A} \), set \(CS(\mathcal{A}) = co(DS(\mathcal{A})) \). If \(a \) is the greatest element of \(CS(\mathcal{A}) \) then call \(a \) the co-degree of \(\mathcal{A} \).

If \(\mathcal{A} \) has a degree \(a \) then \(a \) is also the co-degree of \(\mathcal{A} \). The vice versa is not always true.
The admissible sets

Definition. A set A of natural numbers is admissible in \mathcal{A} if for every enumeration f of \mathcal{A}, $A \leq_e f^{-1}(\mathcal{A})$.

Clearly $a \in CS(\mathcal{A})$ iff $a = d_e(A)$ for some admissible in \mathcal{A} set A.

Every finite mapping of \mathbb{N} into \mathbb{N} is called *finite part*. For every finite part τ and natural numbers e, x, let

$$
\tau \models F_e(x) \iff x \in \psi_e(\tau^{-1}(\mathcal{A})) \text{ and } \\
\tau \models \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \nvdash F_e(x)).
$$

Definition. An enumeration f is *generic* if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \models F_e(x) \lor \tau \models \neg F_e(x)$.

Ivan N. Soskov, Alexandra A. Soskova

Enumeration Degree Spectra and ω-Degree Spectra of Abstract Structures
The admissible sets

Definition. A set A of natural numbers is admissible in \mathcal{U} if for every enumeration f of \mathcal{U}, $A \leq_e f^{-1}(\mathcal{U})$.

Clearly $a \in CS(\mathcal{U})$ iff $a = d_e(A)$ for some admissible in \mathcal{U} set A. Every finite mapping of \mathbb{N} into \mathbb{N} is called *finite part*. For every finite part τ and natural numbers e, x, let

$$
\tau \vdash F_e(x) \iff x \in \Psi_e(\tau^{-1}(\mathcal{U})) \quad \text{and} \quad
\tau \vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \not\vdash F_e(x)).
$$

Definition. An enumeration f is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \vdash F_e(x) \vee \tau \vdash \neg F_e(x)$.

Ivan N. Soskov, Alexandra A. Soskova
Definition. A set A of natural numbers is *forcing definable in the structure* \mathcal{A} iff there exist finite part δ and natural number e s.t.

$$A = \{x | (\exists \tau \supseteq \delta)(\tau \models F_e(x))\}.$$

Theorem. Let $A \subseteq \mathbb{N}$ and $d_e(B) \in DS(\mathcal{A})$. Then the following are equivalent:

1. A is admissible in \mathcal{A}.
2. $A \leq_e f^{-1}(\mathcal{A})$ for all generic enumerations f of \mathcal{A} s.t. $(f^{-1}(\mathcal{A}))' \equiv_e B'$.
3. A is forcing definable.
Definition. A set A of natural numbers is *forcing definable in the structure* \mathcal{A} iff there exist finite part δ and natural number e s.t.

$$A = \{x | (\exists \tau \supseteq \delta)(\tau \models F_e(x))\}.$$

Theorem. Let $A \subseteq \mathbb{N}$ and $d_e(B) \in DS(\mathcal{A})$. Then the following are equivalent:

1. A is admissible in \mathcal{A}.
2. $A \leq_e f^{-1}(\mathcal{A})$ for all generic enumerations f of \mathcal{A} s.t. $(f^{-1}(\mathcal{A}))' \equiv_e B'$.
3. A is forcing definable.
Example. (Richter 1981) Let \(\mathcal{A} = (\mathbb{N}; <) \) be a linear ordering. Then \(DS(\mathcal{A}) \) contains a minimal pair of degrees and hence \(CS(\mathcal{A}) = \{ 0_e \} \). Clearly \(0_e \) is the co-degree of \(\mathcal{A} \). Therefore if \(\mathcal{A} \) has a degree \(a \), then \(a = 0_e \).

Definition. Let \(n \geq 0 \). The \(n \)-th jump spectrum of a structure \(\mathcal{A} \) is defined by \(DS_n(\mathcal{A}) = \{ a^{(n)} \mid a \in DS(\mathcal{A}) \} \). Set \(CS_n(\mathcal{A}) = co(DS_n(\mathcal{A})) \).

Example. (Knight 1986) Consider again a linear ordering \(\mathcal{A} \). Then \(CS_1(\mathcal{A}) \) consists of all \(\Sigma^0_2 \) sets. The first jump co-degree of \(\mathcal{A} \) is \(0'_e \).

Example. (Slaman 1998, Whener 1998) There exists an \(\mathcal{A} \) s.t. \(DS(\mathcal{A}) = \{ a : a \text{ is total and } 0_e < a \} \).

Clearly the structure \(\mathcal{A} \) has co-degree \(0_e \) but has not a degree.
Some examples

Example. (Richter 1981) Let $\mathcal{A} = (\mathbb{N}; <)$ be a linear ordering. Then $DS(\mathcal{A})$ contains a minimal pair of degrees and hence $CS(\mathcal{A}) = \{0_e\}$. Clearly 0_e is the co-degree of \mathcal{A}. Therefore if \mathcal{A} has a degree a, then $a = 0_e$.

Definition. Let $n \geq 0$. The n-th jump spectrum of a structure \mathcal{A} is defined by $DS_n(\mathcal{A}) = \{a^{(n)} \mid a \in DS(\mathcal{A})\}$. Set $CS_n(\mathcal{A}) = co(DS_n(\mathcal{A}))$.

Example. (Knight 1986) Consider again a linear ordering \mathcal{A}. Then $CS_1(\mathcal{A})$ consists of all Σ^0_2 sets. The first jump co-degree of \mathcal{A} is $0_e'$.

Example. (Slaman 1998, Whener 1998) There exists an \mathcal{A} s.t. $DS(\mathcal{A}) = \{a : a \text{ is total and } 0_e < a\}$.

Clearly the structure \mathcal{A} has co-degree 0_e but has not a degree.
Some examples

Example. (Richter 1981) Let $\mathcal{A} = (\mathbb{N}; <)$ be a linear ordering. Then $DS(\mathcal{A})$ contains a minimal pair of degrees and hence $CS(\mathcal{A}) = \{0_e\}$. Clearly 0_e is the co-degree of \mathcal{A}. Therefore if \mathcal{A} has a degree a, then $a = 0_e$.

Definition. Let $n \geq 0$. The n-th jump spectrum of a structure \mathcal{A} is defined by $DS_n(\mathcal{A}) = \{a^{(n)} \mid a \in DS(\mathcal{A})\}$. Set $CS_n(\mathcal{A}) = co(DS_n(\mathcal{A}))$.

Example. (Knight 1986) Consider again a linear ordering \mathcal{A}. Then $CS_1(\mathcal{A})$ consists of all Σ^0_2 sets. The first jump co-degree of \mathcal{A} is $0'_e$.

Example. (Slaman 1998, Whener 1998) There exists an \mathcal{A} s.t. $DS(\mathcal{A}) = \{a : a$ is total and $0_e < a\}$.

Clearly the structure \mathcal{A} has co-degree 0_e but has not a degree.
Example. (based on Coles, Dawney, Slaman - 1998) Let G be a torsion free Abelian group of rank 1, i.e. G is a subgroup of Q. There exists an enumeration degree s_G such that

- $DS(G) = \{ b : b \text{ is total and } s_G \leq_e b \}$.
- The co-degree of G is s_G.
- G has a degree iff s_G is total
- If $1 \leq n$, then $s_G^{(n)}$ is the n-th jump degree of G.

For every $d \in D_e$ there exists a G, s.t. $s_G = d$. Hence every principle ideal of enumeration degrees is $CS(G)$ for some G.
Example. Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathcal{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$
$$\sigma = \{\langle i, n \rangle : n = 2k + 1 \lor n = 2k \land i \in B_k\}.$$

Then $CS(\mathcal{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$.
Definition. Consider a subset A of D_e. Say that A is *upwards closed* if for every $a \in A$ all total degrees greater than a are contained in A.

Let A be an upwards closed set of degrees. Note that if $B \subseteq A$, then $\text{co}(A) \subseteq \text{co}(B)$.

Proposition. *(Selman)* Let $A_t = \{a : a \in A \& a \text{ is total}\}$. Then $\text{co}(A) = \text{co}(A_t)$.

Proposition. Let b be an arbitrary enumeration degree and $n > 0$. Set $A_{b,n} = \{a : a \in A \& b \leq_e a^{(n)}\}$. Then $\text{co}(A) = \text{co}(A_{b,n})$.
Specific Properties of Degree Spectra

Theorem. Let \mathcal{A} be a structure, $1 \leq n$ and $c \in DS_n(\mathcal{A})$. Then

$$CS(\mathcal{A}) = co(\{b \in DS(\mathcal{A}) : b^{(n)} = c\}).$$

Example. (Upwards closed set for which the Theorem is not true)

Let $B \nleq_e A$ and $A \nleq_e B'$. Let

$$D = \{a : d_e(A) \leq_e a\} \cup \{a : d_e(B) \leq_e a\}.$$

Set $A = \{a : a \in D \land a' = d_e(B')\}$.

- $d_e(B)$ is the least element of A and hence $d_e(B) \in co(A)$.
- $d_e(B) \nleq_e d_e(A)$ and hence $d_e(B) \notin co(D)$.
Theorem. Let \mathcal{A} be a structure, $1 \leq n$ and $c \in DS_n(\mathcal{A})$. Then

$$CS(\mathcal{A}) = \text{co}(\{b \in DS(\mathcal{A}) : b^{(n)} = c\}).$$

Example. (Upwards closed set for which the Theorem is not true)

Let $B \not\leq_e A$ and $A \not\leq_e B'$. Let

$$\mathcal{D} = \{a : d_e(A) \leq_e a\} \cup \{a : d_e(B) \leq_e a\}.$$

Set $A = \{a : a \in \mathcal{D} \& a' = d_e(B)'^{\prime}\}$.

- $d_e(B)$ is the least element of A and hence $d_e(B) \in \text{co}(A)$.
- $d_e(B) \not\leq d_e(A)$ and hence $d_e(B) \not\in \text{co}(\mathcal{D})$.
The minimal pair theorem

Theorem. Let \(c \in DS_2(\mathcal{A}) \). There exist \(f, g \in DS(\mathcal{A}) \) s.t. \(f, g \) are total, \(f'' = g'' = c \) and \(CS(\mathcal{A}) = co(\{f, g\}) \).

Notice that for every enumeration degree \(a \) there exists a structure \(\mathcal{A}_a \) s.t. \(DS(\mathcal{A}_a) = \{x \in \mathcal{D}_T | a < e, x\} \). Hence

Corollary. (Rozinas) For every \(b \in \mathcal{D}_e \) there exist total \(f, g \) below \(b'' \) which are a minimal pair over \(b \).

Not every upwards closed set of enumeration degrees has a minimal pair:
An upwards closed set with no minimal pair
Definition. Let \mathcal{A} be a set of enumeration degrees. The degree q is quasi-minimal with respect to \mathcal{A} if:

- $q \not\in \text{co}(\mathcal{A})$.
- If a is total and $a \geq q$, then $a \in \mathcal{A}$.
- If a is total and $a \leq q$, then $a \in \text{co}(\mathcal{A})$.

Theorem. If q is quasi-minimal with respect to \mathcal{A}, then q is an upper bound of $\text{co}(\mathcal{A})$.

Theorem. For every structure \mathcal{A} there exists a quasi-minimal with respect to $DS(\mathcal{A})$ degree.
Corollary. (Slaman and Sorbi) Let I be a countable ideal of enumeration degrees. There exist an enumeration degree q s.t.

1. If $a \in I$ then $a <_e q$.
2. If a is total and $a \leq_e q$ then $a \in I$.

Definition. Let $B \subseteq A$ be sets of degrees. Then B is a base of A if

$$(\forall a \in A)(\exists b \in B)(b \leq a).$$

Theorem. Let A be an upwards closed set of degrees possessing a quasi-minimal degree. Suppose that there exists a countable base B of A such that all elements of B are total. Then A has a least element.

Corollary. A total structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.
Corollary. *(Slaman and Sorbi)* Let I be a countable ideal of enumeration degrees. There exist an enumeration degree q s.t.

1. If $a \in I$ then $a \leq_e q$.
2. If a is total and $a \leq_e q$ then $a \in I$.

Definition. Let $B \subseteq A$ be sets of degrees. Then B is a base of A if

$$(\forall a \in A)(\exists b \in B)(b \leq a).$$

Theorem. Let A be an upwards closed set of degrees possessing a quasi-minimal degree. Suppose that there exists a countable base B of A such that all elements of B are total. Then A has a least element.

Corollary. A total structure \mathcal{A} has a degree if and only if $DS(\mathcal{A})$ has a countable base.
An upwards closed set with no quasi-minimal degree

\[a \quad b \]

Enumeration Degree Spectra and \(\omega \)-Degree Spectra of Abstract Structures
Definition. The n-th jump spectrum of a structure \mathcal{A} is the set

$$DS_n(\mathcal{A}) = \{a^{(n)} | a \in DS(\mathcal{A})\}.$$

If a is the least element of $DS_n(\mathcal{A})$ then a is called n-th jump degree of \mathcal{A}.

Proposition. For every \mathcal{A}, $DS_1(\mathcal{A}) \subseteq DS(\mathcal{A})$.

Is it true that for every \mathcal{A}, $DS_1(\mathcal{A}) \subset DS(\mathcal{A})$? Probably the answer is ”no”.

Ivan N. Soskov, Alexandra A. Soskova
Enumeration Degree Spectra and ω-Degree Spectra of Abstract Structures
Every jump spectrum is spectrum of a total structure

Let $\mathcal{A} = (\mathbb{N}; R_1, \ldots, R_n)$. Let $\bar{0} \not\in \mathbb{N}$. Set $\mathbb{N}_0 = \mathbb{N} \cup \{\bar{0}\}$. Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of \mathbb{N}_0 is a pair and \mathbb{N}^* be the least set containing \mathbb{N}_0 and closed under $\langle ., . \rangle$.

Definition. Moschovakis’ extension of \mathcal{A} is the structure

$$\mathcal{A}^* = (\mathbb{N}^*, R_1, \ldots, R_n, \mathbb{N}_0, G_{\langle ., . \rangle}).$$

Proposition. $DS(\mathcal{A}) = DS(\mathcal{A}^*)$

Let $K_{2\mathfrak{I}} = \{\langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \models F_e(x))\}$. Set $\mathcal{A}' = (\mathcal{A}^*, K_{2\mathfrak{I}}, \mathbb{N}^* \setminus K_{2\mathfrak{I}})$.

Theorem.
1. The structure \mathcal{A}' is total.
2. $DS_1(\mathcal{A}) = DS(\mathcal{A}')$.
Every jump spectrum is spectrum of a total structure

Let \(\mathcal{A} = (\mathbb{N}; R_1, \ldots, R_n) \).
Let \(\bar{0} \notin \mathbb{N} \). Set \(\mathbb{N}_0 = \mathbb{N} \cup \{\bar{0}\} \). Let \(\langle ., . \rangle \) be a pairing function s.t. none of the elements of \(\mathbb{N}_0 \) is a pair and \(\mathbb{N}^* \) be the least set containing \(\mathbb{N}_0 \) and closed under \(\langle ., . \rangle \).

Definition. Moschovakis’ extension of \(\mathcal{A} \) is the structure

\[
\mathcal{A}^* = (\mathbb{N}^*, R_1, \ldots, R_n, \mathbb{N}_0, G_{\langle ., . \rangle}).
\]

Proposition. \(DS(\mathcal{A}) = DS(\mathcal{A}^*) \)

Let \(K_{2\mathcal{A}} = \{\langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \models F_e(x))\} \).
Set \(\mathcal{A}' = (\mathcal{A}^*, K_{2\mathcal{A}}, \mathbb{N}^* \setminus K_{2\mathcal{A}}) \).

Theorem.

1. The structure \(\mathcal{A}' \) is total.
2. \(DS_1(\mathcal{A}) = DS(\mathcal{A}') \).
The Jump Inversion Theorem

Consider two structures \(\mathcal{A} \) and \(\mathcal{B} \). Suppose that

\[
DS(\mathcal{B})_t = \{ a | a \in DS(\mathcal{B}) \text{ and } a \text{ is total} \} \subseteq DS_1(\mathcal{A}).
\]

Theorem. There exists a structure \(\mathcal{C} \) s.t. \(DS(\mathcal{C}) \subseteq DS(\mathcal{A}) \) and \(DS_1(\mathcal{C}) = DS(\mathcal{B})_t \).

Corollary. Let \(DS(\mathcal{B}) \subseteq DS_1(\mathcal{A}) \). Then there exists a structure \(\mathcal{C} \) s.t. \(DS(\mathcal{C}) \subseteq DS(\mathcal{A}) \) and \(DS(\mathcal{B}) = DS_1(\mathcal{C}) \).

Corollary. Suppose that \(DS(\mathcal{B}) \) consists of total degrees greater than or equal to \(0' \). Then there exists a total structure \(\mathcal{C}' \) such that \(DS(\mathcal{B}) = DS(\mathcal{C}') \).
Theorem. Let $n \geq 1$. Suppose that $DS(\mathcal{B}) \subseteq DS_n(\mathcal{A})$. There exists a structure \mathcal{C} s.t. $DS_n(\mathcal{C}) = DS(\mathcal{B})$.

Corollary. Suppose that $DS(\mathcal{B})$ consists of total degrees greater than or equal to $0^{(n)}$. Then there exists a total structure \mathcal{C} s.t. $DS_n(\mathcal{C}) = DS(\mathcal{B})$.
Example. Let $n \geq 0$. There exists a total structure \mathcal{C} s.t. \mathcal{C} has a $n+1$-th jump degree $0^{(n+1)}$ but has no k-th jump degree for $k \leq n$.

It is sufficient to construct a structure \mathcal{B} satisfying:

1. $DS(\mathcal{B})$ has not least element.
2. $0^{(n+1)}$ is the least element of $DS_1(\mathcal{B})$.
3. All elements of $DS(\mathcal{B})$ are total and above $0^{(n)}$.

Consider a set B satisfying:

1. B is quasi-minimal above $0^{(n)}$.
2. $B' \equiv_e 0^{(n+1)}$.

Let G be a subgroup of the additive group of the rationales s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{a | d_e(S_G) \leq_e a \text{ and } a \text{ is total} \}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.
Example. Let $n \geq 0$. There exists a total structure \mathcal{C} s.t. \mathcal{C} has a $n + 1$-th jump degree $0^{(n+1)}$ but has no k-th jump degree for $k \leq n$.

It is sufficient to construct a structure \mathfrak{B} satisfying:

1. $DS(\mathfrak{B})$ has not least element.
2. $0^{(n+1)}$ is the least element of $DS_1(\mathfrak{B})$.
3. All elements of $DS(\mathfrak{B})$ are total and above 0^{n}.

Consider a set B satisfying:

1. B is quasi-minimal above 0^{n}.
2. $B' \equiv_e 0^{(n+1)}$.

Let G be a subgroup of the additive group of the rationales s.t. $S_G \equiv_e B$. Recall that $DS(G) = \{a | d_e(S_G) \leq_e a \text{ and } a \text{ is total}\}$ and $d_e(S_G)'$ is the least element of $DS_1(G)$.
Let $n \geq 0$. There exists a total structure \mathcal{C} such that
$DS_n(\mathcal{C}) = \{a|0^{(n)} <_e a\}$.
It is sufficient to construct a structure \mathcal{B} such that the elements of
$DS(\mathcal{B})$ are exactly the total e-degrees greater than $0^{(n)}$.
This is done by Whener's construction using a special family of sets:

Theorem. Let $n \geq 0$. There exists a family \mathcal{F} of sets of natural
number s.t. for every X strictly above $0^{(n)}$ there exists a recursive
in X set U satisfying the equivalence:

$$F \in \mathcal{F} \iff (\exists a)(F = \{x|(a, x) \in U\}).$$

But there is no c.e. in $0^{(n)}$ such U.
Let S be the set of all sequences of sets of natural numbers. For $\mathcal{B} = \{B_n\}_{n<\omega} \in S$ call the jump class of \mathcal{B} the set

$$J_\mathcal{B} = \{d_T(X) \mid (\forall n)(B_n \text{ is c.e. in } X^{(n)} \text{ uniformly in } n)\}.$$

A is ω-enumeration reducible to \mathcal{B} ($A \leq_\omega \mathcal{B}$) if $J_\mathcal{B} \subseteq J_A$

$A \equiv_\omega \mathcal{B}$ if $J_A = J_\mathcal{B}$.
Let \(B = \{ B_n \}_{n<\omega} \in S \).

Definition. A jump sequence \(P(B) = \{ P_n(B) \}_{n<\omega} \):

1. \(P_0(B) = B_0 \)
2. \(P_{n+1}(B) = (P_n(B))' \oplus B_{n+1} \)

Theorem. [Soskov, Kovachev] \(A \leq_\omega B \), if \(A_n \leq_e P_n(B) \) uniformly in \(n \).
\(d_\omega(B) = \{A \mid A \equiv_\omega B\}\)
\(D_\omega = \{d_\omega(B) \mid B \in S\}\).

If \(A \subseteq \mathbb{N}\) denote by \(A \uparrow \omega = \{A, \emptyset, \emptyset, \ldots\}\).

For every \(A, B \subseteq \mathbb{N}\):

\[A \leq_e B \iff A \uparrow \omega \leq_\omega B \uparrow \omega.\]

The mapping \(\kappa(d_e(A)) = d_\omega(A \uparrow \omega)\) gives an isomorphic embedding of \(D_e\) to \(D_\omega\).
Definition. For every $A \in S$ the ω-enumeration jump of A is

$A' = \{ P_{n+1}(A) \}_{n<\omega}$

Let $d_\omega (A)' = d_\omega (A')$.

$A^{(k)} = \{ P_{n+k}(A) \}_{n<\omega}$ for each k.

$d_\omega (A)^{(k)} = d_\omega (A^{(k)})$.
Let $\mathcal{A}_1, \ldots, \mathcal{A}_n$ be given structures.

Definition. The relative spectrum $\text{RS}(\mathcal{A}, \mathcal{A}_1 \ldots, \mathcal{A}_n)$ of the structure \mathcal{A} with respect to $\mathcal{A}_1, \ldots, \mathcal{A}_n$ is the set

$$\{d_e(f^{-1}(\mathcal{A})) \mid f \text{ is an enumeration of } \mathcal{A} \& \sum_{k \leq n} f^{-1}(\mathcal{A}_k) \leq_e f^{-1}((\mathcal{A})^{(k)})\}.$$

It turns out that almost all properties of the degree spectra remain true for the relative spectra.
Let $\mathcal{B} = \{B_n\}_{n<\omega}$ be a fixed sequence of sets.

Definition. The enumeration f of the structure \mathfrak{A} is acceptable with respect to \mathcal{B}, if for every n,

$$f^{-1}(B_n) \leq_e f^{-1}(\mathfrak{A})^{(n)}$$

uniformly in n.

Denote by $\mathcal{E}(\mathfrak{A}, \mathcal{B})$ - the class of all acceptable enumerations.

Definition. The ω-degree spectrum of \mathfrak{A} with respect to $\mathcal{B} = \{B_n\}_{n<\omega}$ is the set

$$\text{DS}(\mathfrak{A}, \mathcal{B}) = \{d_e(f^{-1}(\mathfrak{A})) \mid f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})\}$$
It is easy to find a structure \mathcal{A} and a sequence \mathcal{B} such that $\text{DS}(\mathcal{A}, \mathcal{B}) \neq \text{DS}(\mathcal{A})$.

The notion of the ω-degree spectrum is a generalization of the relative spectrum: $\text{RS}(\mathcal{A}, \mathcal{A}_1, \ldots, \mathcal{A}_n) = \text{DS}(\mathcal{A}, \mathcal{B})$, where $\mathcal{B} = \{B_k\}_{k < \omega}$,

- $B_0 = \emptyset$,
- B_k is the positive diagram of the structure \mathcal{A}_k, $k \leq n$
- $B_k = \emptyset$ for all $k > n$.
Proposition. \(\text{DS}(\mathcal{A}, \mathcal{B}) \) is upwards closed with respect to total e-degrees.

Definition. The \(k \)th \(\omega \)-jump spectrum of \(\mathcal{A} \) with respect to \(\mathcal{B} \) is the set

\[
\text{DS}_k(\mathcal{A}, \mathcal{B}) = \{ a^{(k)} \mid a \in \text{DS}(\mathcal{A}, \mathcal{B}) \}.
\]

Proposition. \(\text{DS}_k(\mathcal{A}, \mathcal{B}) \) is upwards closed with respect to total e-degrees.
For every $A \subseteq D_\omega$ let $co(A) = \{b | b \in D_\omega \& (\forall a \in A)(b \leq_\omega a)\}$.

Definition. The ω-co-spectrum of \mathcal{A} with respect to \mathcal{B} is the set

$$CS(\mathcal{A}, \mathcal{B}) = co(DS(\mathcal{A}, \mathcal{B})).$$

Definition. The kth ω-co-spectrum of \mathcal{A} with respect to \mathcal{B} is the set

$$CS_k(\mathcal{A}, \mathcal{B}) = co(DS_k(\mathcal{A}, \mathcal{B})).$$
Properties of the co-sets of omega degrees of upwards closed sets

Let $\mathcal{A} \subseteq D_e$ be an upwards closed set with respect to total e-degrees.

Proposition. $\text{co}(\mathcal{A}) = \text{co}(\{a : a \in A \& a \text{ is total}\})$.

Corollary. $\text{CS}(\mathcal{A}, \mathcal{B}) = \text{co}(\{a \mid a \in \text{DS}(\mathcal{A}, \mathcal{B}) \& a \text{ is a total e-degree}\})$.
Let $\mathcal{A} \subseteq \mathcal{D}_e$ be an upwards closed set with respect to total e-degrees and $k > 0$.

There exists $b \in \mathcal{D}_e$ such that

$$\text{co}(\mathcal{A}) \neq \text{co} \left(\{ a : a \in \mathcal{A} \& b \leq a^{(k)} \} \right).$$

Let $n > 0$. There is a structure \mathfrak{A}, a sequence \mathcal{B} and $c \in \text{DS}_n(\mathfrak{A}, \mathcal{B})$ such that

$$\text{CS}(\mathfrak{A}, \mathcal{B}) \neq \text{co}(\{ a \in \text{DS}(\mathfrak{A}, \mathcal{B}) \mid a^{(n)} = c \}).$$
Theorem. For every structure \mathcal{A} and every sequence $\mathcal{B} \in S$ there exist total enumeration degrees f and g in $DS(\mathcal{A}, \mathcal{B})$ such that for every ω-enumeration degree a and $k \in \mathbb{N}$:

$$a \leq_\omega f^{(k)} \& a \leq_\omega g^{(k)} \Rightarrow a \in CS_k(\mathcal{A}, \mathcal{B}) .$$
Corollary. $CS_k(\mathcal{A}, \mathcal{B})$ is the least ideal containing all kth ω-jumps of the elements of $CS(\mathcal{A}, \mathcal{B})$.

- $I = CS(\mathcal{A}, \mathcal{B})$ is a countable ideal;
- $CS(\mathcal{A}, \mathcal{B}) = I(f) \cap I(g)$;
- $I^{(k)}$ - the least ideal, containing all kth ω-jumps of the elements of I;
- (Hristo Ganchev)
 $I = I(f) \cap I(g) \implies I^{(k)} = I(f^{(k)}) \cap I(g^{(k)})$ for every k;
- $I(f^{(k)}) \cap I(g^{(k)}) = CS_k(\mathcal{A}, \mathcal{B})$ for each k;
- Thus $I^{(k)} = CS_k(\mathcal{A}, \mathcal{B})$.
Countable ideals of ω-enumeration degrees

There is a countable ideal I of ω-enumeration degrees for which there is no structure \mathcal{A} and sequence \mathcal{B} such that $I = CS(\mathcal{A}, \mathcal{B})$.

- $\mathcal{A} = \{0, 0', 0'', \ldots, 0^{(n)}, \ldots\}$;
- $I = I(\mathcal{A}) = \{a \mid a \in D_\omega \& (\exists n)(a \leq_\omega 0^{(n)})\}$ - a countable ideal generated by \mathcal{A}.

Assume that there is a structure \mathcal{A} and a sequence \mathcal{B} such that $I = CS(\mathcal{A}, \mathcal{B})$

Then there is a minimal pair f and g for $DS(\mathcal{A}, \mathcal{B})$, so $I^{(n)} = I(f^{(n)}) \cap I(g^{(n)})$ for each n.

- $f \geq 0^{(n)}$ and $g \geq 0^{(n)}$ for each n.

Then by Enderton and Putnam [1970], Sacks [1971]: $f'' \geq 0^{(\omega)}$ and $g'' \geq 0^{(\omega)}$.

Hence $I'' \neq I(f'') \cap I(g'')$. A contradiction.
Theorem. For every structure \mathcal{A} and every sequence \mathcal{B}, there exists $F \subseteq \mathbb{N}$, such that $q = d_\omega(F \uparrow \omega)$ and:

1. $q \notin \text{CS}(\mathcal{A}, \mathcal{B})$;
2. If a is a total e-degree and $a \geq_\omega q$ then $a \in \text{DS}(\mathcal{A}, \mathcal{B})$;
3. If a is a total e-degree and $a \leq_\omega q$ then $a \in \text{CS}(\mathcal{A}, \mathcal{B})$.
Questions:

- Is it true that for every structure \mathcal{A} and every sequence \mathcal{B} there exists a structure \mathcal{B}' such that $DS(\mathcal{B}') = DS(\mathcal{A}, \mathcal{B})$?
- If for a countable ideal $I \subseteq D_\omega$ there is an exact pair then are there a structure \mathcal{A} and a sequence \mathcal{B} so that $CS(\mathcal{A}, \mathcal{B}) = I$?
Thank you!