Degree Spectra and Conservative Extensions of Abstract Structures

Alexandra A. Soskova

joint work with

Ivan N. Soskov and Stefan V. Vatev

Faculty of Mathematics and Computer Science
Sofia University

October 7, 2011

1Supported by BNSF Grant No. D002-258/18.12.08.
Outline

- Degree spectra of structures
- Definability on structures
- Conservative \((k, n)\) Extensions
- Jumps of Structures
- Jump inversion theorem for structures
Let $\mathcal{A} = (A; P_1, \ldots, P_k)$ be a denumerable structure. Enumeration of \mathcal{A} is every one to one mapping of \mathbb{N} onto A.

Given an enumeration f of \mathcal{A} and a subset of X of A^a, let

$$f^{-1}(X) = \{\langle x_1, \ldots, x_a \rangle : (f(x_1), \ldots, f(x_a)) \in X\}.$$

Set $f^{-1}(\mathcal{A}) = f^{-1}(P_1) \oplus \cdots \oplus f^{-1}(P_k) \oplus f^{-1}(=) \oplus f^{-1}(\neq)$.

Definition. (Richter) *The Degree Spectrum of \mathcal{A} is the set

$$DS_T(\mathcal{A}) = \{d_T(f^{-1}(\mathcal{A})) : f \text{ is an enumeration of } \mathcal{A}\}.$$*
Definition. (Knight) The n-th jump spectrum of a structure \mathcal{A} is the set

$$DS_n(\mathcal{A}) = \{ a^{(n)} | a \in DS(\mathcal{A}) \}.$$

Proposition. (Knight) For every automorphically nontrivial structure \mathcal{A}, $DS_n(\mathcal{A})$ is an upwards closed set of degrees.

Theorem. (A. Soskova, I. Soskov) Every jump spectrum is a spectrum of a structure, i.e. for every countable structure \mathcal{A} there is a structure \mathcal{B} such that $DS_1(\mathcal{A}) = DS(\mathcal{B})$.

Theorem. (A. Soskova, I. Soskov) Let \mathcal{A} and \mathcal{C} be countable structures and $DS(\mathcal{A}) \subseteq DS_1(\mathcal{C})$. There exists a structure \mathcal{B} such that $DS(\mathcal{A}) = DS_1(\mathcal{B})$ and $DS(\mathcal{B}) \subseteq DS(\mathcal{C})$.

Alexandra A. Soskova

Degree Spectra and Conservative Extensions
Formally Σ_n^c-definable sets

Let L be the language of \mathfrak{A}. The computable Σ_n^c formulas in L are defined inductively:

- A computable Σ_0^c (Π_0^c) formula is a finitary quantifier-free formula in L.
- A computable Σ_{n+1}^c formula $\Phi(\overline{x})$ is a disjunction of c.e. set of formulas of the form
 \[
 (\exists \overline{Y})\psi(\overline{X}, \overline{Y})
 \]
 ψ is a finite conjunction of Σ_n^c and Π_n^c formulas
- Π_{n+1}^c formulas are the negations of the Σ_{n+1}^c formulas.
Consider $O = (\mathbb{N}; =)$ and $S = (\mathbb{N}; G_{\text{Succ}}; =)$, where G_{Succ} is the graph of the successor function.

$$DS(O) = DS(S)$$

The $\Sigma^c_1(O)$ are all finite and co-finite sets of natural numbers. But all c.e. set are formally Σ^c_1 definable on S. So, the structure S is more powerful than the O.
Consider $\mathcal{O} = (\mathbb{N}; =)$ and $\mathcal{S} = (\mathbb{N}; G_{\text{Succ}}; =)$, where G_{Succ} is the graph of the successor function.

$$DS(\mathcal{O}) = DS(\mathcal{S})$$

The $\Sigma_1^c(\mathcal{O})$ are all finite and co-finite sets of natural numbers. But all c.e. set are formally Σ_1^c definable on \mathcal{S}. So, the structure \mathcal{S} is more powerful than the \mathcal{O}.
Definition. The pair \(\alpha = (f_\alpha, R_\alpha) \) is an enumeration of the set \(X \subseteq A \), if \(R_\alpha \) is a set of natural numbers, \(f_\alpha \) is a partial one-to-one mapping of \(\mathbb{N} \) onto \(X \) and \(\text{dom}(f_\alpha) = f_\alpha^{-1}(X) \) is c.e. in \(R_\alpha \). We denote this by \(X \leq \alpha \).

Definition. The pair \(\alpha = (f_\alpha, R_\alpha) \) is an enumeration of \(\mathcal{A} \) if \(\alpha \) is an enumeration of \(A \) and \(f_\alpha^{-1}(\mathcal{A}) \) is computable in \(R_\alpha \). We denote this by \(\mathcal{A} \leq \alpha \).

For an enumeration \(\alpha = (f_\alpha, R_\alpha) \) of \(\mathcal{A} \) we denote by \(\alpha^{(n)} = (f_\alpha, R_\alpha^{(n)}) \).
The Degree Spectrum of \mathcal{A} is the set

$$DS(\mathcal{A}) = \{d_T(R_\alpha) \mid \mathcal{A} \leq \alpha\}.$$

Theorem. (Ash, Knigh, Manasse, Slaman, Chisholm)

For every set $X \subseteq A$,

$$X \in \Sigma^c_{n+1}(\mathcal{A}) \leftrightarrow (\forall \alpha)[\mathcal{A} \leq \alpha \rightarrow X \leq \alpha^{(n)}].$$
Let $\alpha = (f_\alpha, R_\alpha)$ and $\beta = (f_\beta, R_\beta)$ be enumerations of the structures \mathfrak{A} and \mathfrak{B} respectively. We write $\alpha \leq \beta$ if

(i) $R_\alpha \leq_T R_\beta$ and

(ii) the set $E(f_\alpha, f_\beta) = \{(x, y) \mid x \in \text{Dom}(f_\alpha) \& y \in \text{Dom}(f_\beta) \& f_\alpha(x) = f_\beta(y)\}$ is c.e. in R_β.
Definition. Let \mathcal{A} and \mathcal{B} be countable structures, possibly with different signatures and $A \subseteq B$.

(i) $\mathcal{A} \leq_{k}^{n} \mathcal{B}$ iff for every enumeration β of \mathcal{B} there exists an enumeration α of \mathcal{A} such that $\alpha^{(k)} \leq \beta^{(n)}$.

(ii) $\mathcal{A} \geq_{n}^{k} \mathcal{B}$ iff for every enumeration α of \mathcal{A} there exists an enumeration β of \mathcal{B} such that $\beta^{(n)} \leq \alpha^{(k)}$.

(iii) $\mathcal{A} \equiv_{n}^{k} \mathcal{B}$ if $\mathcal{A} \leq_{n}^{k} \mathcal{B}$ and $\mathcal{A} \geq_{n}^{k} \mathcal{B}$. We shall say that \mathcal{B} is a (k, n)-conservative extension of \mathcal{A}.

Note that the relation \equiv_{n}^{k} is not symmetric.
Proposition. Let \mathcal{A} and \mathcal{B} be countable structures with $A \subseteq B$.

(i) If $\mathcal{A} \leq^k_n \mathcal{B}$ then $\text{DS}_n(\mathcal{B}) \subseteq \text{DS}_k(\mathcal{A})$;
(ii) If $\mathcal{A} \geq^k_n \mathcal{B}$ then $\text{DS}_k(\mathcal{A}) \subseteq \text{DS}_n(\mathcal{B})$;
(iii) If $\mathcal{A} \equiv^k_n \mathcal{B}$ then $\text{DS}_k(\mathcal{A}) = \text{DS}_n(\mathcal{B})$;

Corollary.

(i) $k = 1, n = 0$:
 If $\mathcal{A} \equiv^1_0 \mathcal{B}$ then $\text{DS}_1(\mathcal{A}) = \text{DS}(\mathcal{B})$.
(ii) $k = 0, n = 1$:
 If $\mathcal{A} \equiv^0_1 \mathcal{B}$ then $\text{DS}(\mathcal{A}) = \text{DS}_1(\mathcal{B})$.

Alexandra A. Soskova
Theorem. Let for \mathcal{A} and $\mathcal{B} : A \subseteq B$. For all $k, n \in \mathbb{N}$,

(i) if $\mathcal{A} \leq^k_n \mathcal{B}$ then $(\forall X \subseteq A)[X \in \Sigma^c_{k+1}(\mathcal{A}) \rightarrow X \in \Sigma^c_{n+1}(\mathcal{B})]$;

(ii) if $\mathcal{A} \geq^k_n \mathcal{B}$ then $(\forall X \subseteq A)[X \in \Sigma^c_{n+1}(\mathcal{B}) \rightarrow X \in \Sigma^c_{k+1}(\mathcal{A})]$;

(iii) if $\mathcal{A} \equiv^k_n \mathcal{B}$ then $(\forall X \subseteq A)[X \in \Sigma^c_{k+1}(\mathcal{A}) \leftrightarrow X \in \Sigma^c_{n+1}(\mathcal{B})]$.
The opposite direction is not always true:

Example.
Consider $\mathcal{O}_A = (A; =)$ and take $\mathcal{A} = \mathcal{B} = \mathcal{O}_A$.
For every natural number n,
$X \subseteq A$ is $\Sigma^c_n(\mathcal{O}_A)$ iff X is a finite or co-finite subset of A.
Therefore $\Sigma^c_1(\mathcal{O}_A) = \Sigma^c_n(\mathcal{O}_A)$ and

$$(\forall n)(\forall X \subseteq A)[X \in \Sigma^c_{n+1}(\mathcal{O}_A) \rightarrow X \in \Sigma^c_1(\mathcal{O}_A)].$$

But $(\forall n)[\mathcal{O}_A \leq^n_0 \mathcal{O}_A]$ is evidently not true.
Let $\mathcal{A} = (A; P_1, \ldots, P_k)$ and $\bar{0} \notin A$.

Set $A_0 = A \cup \{\bar{0}\}$.

Let $\langle ., . \rangle$ be a pairing function s.t. none of the elements of A is a pair and A^* be the least set containing A_0 and closed under $\langle ., . \rangle$.

Let $0^* = \bar{0}$ and $(n + 1)^* = \langle \bar{0}, n^* \rangle$, $\mathbb{N}^* = \{n^* \mid n \in \mathbb{N}\}$.

The decoding functions: $L(\langle s, t \rangle) = s \& R(\langle s, t \rangle) = t$

$L(\bar{0}) = R(\bar{0}) = 0^*$ ($\forall t \in A)[L(t) = R(t) = 1^*]$.
Definition. Moschovakis’ extension of \mathcal{A} is the structure

$$\mathcal{A}^* = (A^*, P_1, \ldots, P_k, A_0, G_{\langle,\rangle}, G_L, G_R).$$

Proposition. $\mathcal{A} \equiv_n^n \mathcal{A}^*$ for every $n \in \mathbb{N}$.

Proposition. For every two structures \mathcal{A}, \mathcal{B} with $A \subseteq B$ and natural numbers n, k

$\mathcal{A} \equiv_n^n \mathcal{B}$ iff $\mathcal{A}^* \equiv_n^n \mathcal{B}^*$.
Theorem. (S. Vatev)

Let \mathcal{A} and \mathcal{B} be countable structures with $A^* \subseteq B$ and $k, n \in \mathbb{N}$. If $(\forall X \subseteq A^*) [X \in \Sigma^c_{k+1}(A^*) \rightarrow X \in \Sigma^c_{n+1}(B)]$ then $\mathcal{A} \leq_n^k \mathcal{B}$.

Corollary. For any two countable structures \mathcal{A}, \mathcal{B} with $A \subseteq B$ and $n, k \in \mathbb{N}$,

$$\mathcal{A} \leq_n^k \mathcal{B} \iff (\forall X \subseteq A^*) [X \in \Sigma^c_{k+1}(A^*) \rightarrow X \in \Sigma^c_{n+1}(B^*)].$$
A new predicate K_{2^1} (analogue of Kleene’s set).

For $e, x \in \mathbb{N}$ and finite part τ, let

$$
\tau \models F_e(x) \iff x \in W_e^{\tau^{-1}(2^1)}
$$

$$
\tau \models \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \not\models F_e(x))
$$

$$
K_{2^1} = \{ \langle \delta, e, x \rangle : (\exists \tau \supseteq \delta)(\tau \models F_e(x)) \}.
$$

$\mathcal{A}' = (\mathcal{A}^*, K_{2^1})$.

Theorem. $\text{DS}_1(\mathcal{A}) = \text{DS}(\mathcal{A}')$.

Proposition. $\mathcal{A} \equiv_0^{1} \mathcal{A}'$.
For every $e, x, n \in \mathbb{N}$ and for every finite part $\tau : \mathbb{N} \to A$, we define the forcing relations \Vdash_n:

\[
\begin{align*}
\tau \Vdash_0 F_e(x) & \iff x \in W_e^\tau^{-1}(\emptyset) \\
\tau \Vdash_{n+1} F_e(x) & \iff (\exists v)[\langle x, v \rangle \in W_e \land (\forall u \in D_v)[(u = \langle e_u, x_u, 1 \rangle \land \tau \Vdash_n F_{e_u}(x_u)) \lor (u = \langle e_u, x_u, 0 \rangle \land \tau \Vdash_n \neg F_{e_u}(x_u))]] \\
\tau \Vdash_n \neg F_e(x) & \iff (\forall \rho \supseteq \tau)(\rho \not\Vdash_n F_e(x)).
\end{align*}
\]
The set $K_{n}^{2\mathfrak{A}}$

Definition.

$$K_{n}^{2\mathfrak{A}} = \{ \langle \delta, e, x \rangle \mid (\exists \tau \supseteq \delta)[\tau \models_n F_{e}(x)] \}.$$

Proposition. (S. Vatev)

(i) $K_{n}^{2\mathfrak{A}} \in \Sigma_{n+1}^{c}(\mathfrak{A}^{*})$ and $A^{*} \setminus K_{n}^{2\mathfrak{A}} \in \Sigma_{n+2}^{c}(\mathfrak{A}^{*})$.

(ii) $K_{n}^{2\mathfrak{A}} \notin \Sigma_{n}^{c}(\mathfrak{A}^{*})$.
Definition. For every natural number n, we define the n-th jump of the structure \mathcal{A} in the following way:

$$\mathcal{A}^{(0)} = \mathcal{A} \text{ and } \mathcal{A}^{(n+1)} = (\mathcal{A}^*, K_n^{2n}).$$
Proposition. For every \mathcal{A} and natural number n,

(i) $\mathcal{A} \equiv_0^n \mathcal{A}^{(n)}$;

(ii) $\mathcal{A}^{(n)} \leq_0^0 \mathcal{A}^{(n+1)}$ and $\mathcal{A}^{(n)} \not\equiv_0^0 \mathcal{A}^{(n+1)}$.

Since $\mathcal{A} \equiv_n^k \mathcal{B}$ implies $DS_k(\mathcal{A}) = DS_n(\mathcal{B})$, we get the following.

Corollary. For every \mathcal{A}, $DS(\mathcal{A}^{(n)}) = DS_n(\mathcal{A})$.
The Jump Inversion Theorem

Theorem. Let \mathcal{A} and \mathcal{C} be countable structures and $DS(\mathcal{A}) \subseteq DS_1(\mathcal{C})$. There exists a structure $\mathcal{B} = \mathcal{A}^{\exists \forall} \oplus \mathcal{C}$ such that $DS(\mathcal{A}) = DS_1(\mathcal{B})$ and $DS(\mathcal{B}) \subseteq DS(\mathcal{C})$.

Remark. Similar results by:
- A. Montalban (2009) by different approach with complete set of Π_n^c formulas.
- A. Stukachev (2009) for Σ reducibility with Marker’s extentions.

Stukachev proves an analogue of this theorem for the semilattices of Σ-degrees of structures with arbitrary cardinalities.

Theorem. (Stukachev) Let \mathcal{A} be a structure such that $0' \leq_{\Sigma} \mathcal{A}$. There exists a structure \mathcal{B} such that $\mathcal{A} \equiv_{\Sigma} \mathcal{B}'$.

We can prove a similar to Stukachev’s result.
Proposition. If $O_A \leq_0^1 A$, then $A \equiv_1^0 A^\exists^A$.

Theorem. Let $O_A \leq_k^0 A$ for some $k \in \mathbb{N}$. There exists a structure $B = A^\exists^A$ such that $A \equiv_0^0 B^{(k)}$.

Remark. Note that $O_A \leq_0^k A$ iff the elements of $DS(A)$ are above $0^{(k)}$.
Proposition. Let $\mathcal{O}_A \leq_k^0 \mathcal{A}$ for some $k \in \mathbb{N}$. There exists a structure \mathcal{B} such that for every $n \in \mathbb{N}$, $\mathcal{A} \equiv^B_k \mathcal{B}^{(n)}$.

Corollary. Let $\mathcal{O}_A \leq_k^0 \mathcal{A}$ for some $k \in \mathbb{N}$. There exists a countable structure \mathcal{B} such that

$$(\forall n \in \mathbb{N})(\forall X \subseteq A)[X \in \Sigma^c_{n+1}(\mathcal{A}) \iff X \in \Sigma^c_{k+1}(\mathcal{B}^{(n)})].$$

Corollary. If $\mathcal{O}_A \leq_k^0 \mathcal{A}$ for some $k \in \mathbb{N}$ then for each $n \in \mathbb{N}$, there is a structure \mathcal{B} such that

$$(\forall X \subseteq A)[X \in \Sigma^c_{n+1}(\mathcal{A}) \iff X \in \Sigma^c_{k+1}(\mathcal{B})].$$
Some problems

- The definition of $\mathcal{A} \equiv^k_n \mathcal{B}$ is not symmetric since we suppose that $\mathcal{A} \subseteq \mathcal{B}$. How to define the similar relation more symmetric and for arbitrary \mathcal{A} and \mathcal{B}?
- How to relativize the Jump Inversion Theorem for structures?
- The Jump inversion Theorem for structures for arbitrary constructive ordinal α.

Alexandra A. Soskova
Degree Spectra and Conservative Extensions

Vatev, S.: Conservative Extensions of Abstract Structures, to appear in LNCS.