Quasi-minimal degrees for degree spectra

Spring Scientific Conference
16.03.2013

Alexandra Soskova

1This research was partially supported by Sofia University Science Fund and a NSF grant DMS-1101123.
Definition. We say that $\Gamma : 2^\mathbb{N} \to 2^\mathbb{N}$ is an enumeration operator iff for some c.e. set W_i for each $B \subseteq \mathbb{N}$

$$\Gamma(B) = \{ x | (\exists D)[\langle x, D \rangle \in W_i \& D \subseteq B] \}.$$

Definition. The set A is enumeration reducible to the set B ($A \leq_e B$), if $A = \Gamma(B)$ for some e-operator Γ. The enumeration degree of A is $d_e(A) = \{ B \subseteq \mathbb{N} | A \equiv_e B \}$. The set of all enumeration degrees is denoted by \mathcal{D}_e.

- $0_e = d_e(\emptyset) = \{ W | W \text{ is c.e.} \}$.
- $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- $\mathcal{D}_e = \langle \mathcal{D}_e; \leq; \oplus; 0_e \rangle$ is an upper semi-lattice with least element.
The enumeration reducibility

Definition. Given a set A, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$. A set A is called *total* iff $A \equiv_e A^+$.

Theorem. For any sets A and B:
1. A is c.e. in B iff $A \leq_e B^+$.
2. $A \leq_T B$ iff $A^+ \leq_e B^+$.

Theorem. ([Selman]) $a \leq_e b$ iff for all total c ($b \leq_e c \Rightarrow a \leq_e c$).
The enumeration jump

Definition. For any set \(A \) let \(K_A = \{ \langle i, x \rangle | x \in \Gamma_i(A) \} \). Set \(A' = K_A^+ \).

- Let \(d_e(A)' = d_e(A') \).
- The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding \(\iota : D_T \to D_e \) by \(\iota(d_T(A)) = d_e(A^+) \).
- \(A \) is \(\Sigma_{n+1} \) if \(A \leq_e (B^+)^{(n)} \).

Theorem. [Soskova] For every \(x \in D_e \) there exists a total e-degree \(a \geq x \), such that \(a' = x' \).
Let \(\mathcal{A} = (A; R_1, \ldots, R_k) \) be a countable structure. An enumeration of \(\mathcal{A} \) is every one to one mapping of \(\mathbb{N} \) onto \(A \).

Definition. *The degree spectrum of \(\mathcal{A} \) is the set of all Turing degrees which computes the diagram of an isomorphic copy of \(\mathcal{A} \).*

Given an enumeration \(f \) of \(\mathcal{A} \) and a subset of \(B \) of \(A^a \), let

\[
f^{-1}(B) = \{ \langle x_1, \ldots, x_a \rangle \mid (f(x_1), \ldots, f(x_a)) \in B \}.
\]

\[
f^{-1}(\mathcal{A}) = f^{-1}(R_1)^+ \oplus \cdots \oplus f^{-1}(R_k)^+.
\]
Definition. The degree spectrum of \mathcal{A} is the set

$$DS(\mathcal{A}) = \{ a \mid a \in \mathcal{D}_T \& (\exists f)(d_T(f^{-1}(\mathcal{A})) \leq_T a) \}.$$

If a is the least element of $DS(\mathcal{A})$ then we call a the degree of \mathcal{A}.
Definition. [Soskov] The co-spectrum of \mathcal{A} is the set

$$CS(\mathcal{A}) = \{ b : b \in D_e \land (\forall a \in DS(\mathcal{A}))(b \leq_e a) \}.$$

If a is the greatest element of $CS(\mathcal{A})$ then we call a the co-degree of \mathcal{A}.

Soskov proved that every countable ideal of enumeration degrees is a co-spectrum of a structure.
The admissible in \mathbb{A} sets

Definition. A set B of natural numbers is admissible in \mathbb{A} if for every enumeration f of \mathbb{A}, $B \leq_e f^{-1}(\mathbb{A})$.

Clearly $a \in CS(\mathbb{A})$ iff $a = d_e(B)$ for some admissible in \mathbb{A} set B.

Every finite one-to-one mapping of \mathbb{N} into A is called a finite part. For every finite part τ and natural numbers e, x, let

$$\tau \vdash F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathbb{A}))$$

and

$$\tau \vdash \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \not\vdash F_e(x)).$$

Definition. An enumeration f of \mathbb{A} is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \vdash F_e(x) \lor \tau \vdash \neg F_e(x)$.
Definition. A set B of natural numbers is admissible in \mathcal{A} if for every enumeration f of \mathcal{A}, $B \leq_e f^{-1}(\mathcal{A})$.

Clearly $a \in CS(\mathcal{A})$ iff $a = d_e(B)$ for some admissible in \mathcal{A} set B.

Every finite one-to-one mapping of \mathbb{N} into \mathcal{A} is called a finite part. For every finite part τ and natural numbers e, x, let

\[
\tau \models F_e(x) \iff x \in \Gamma_e(\tau^{-1}(\mathcal{A})) \text{ and } \\
\tau \models \neg F_e(x) \iff (\forall \rho \supseteq \tau)(\rho \not\models F_e(x)).
\]

Definition. An enumeration f of \mathcal{A} is generic if for every $e, x \in \mathbb{N}$, there exists a $\tau \subseteq f$ s.t. $\tau \models F_e(x) \lor \tau \models \neg F_e(x)$.
Definition. A set B of natural numbers is forcing definable in the structure \mathbb{A} iff there exist a finite part δ and a natural number e s.t.

$$B = \{x | (\exists \tau \supseteq \delta)(\tau \models F_e(x))\}.$$

Denote by $D(\mathbb{A})$ the diagram of \mathbb{A}.

Proposition. Let $\{B_i\}_{i \in \mathbb{N}}$ be subsets of \mathbb{N} be not forcing definable on \mathbb{A}. There exists a 1-generic enumeration f of \mathbb{A} satisfying the following conditions:

1. $f \leq_e D(\mathbb{A})'$.
2. $f^{-1}(\mathbb{A})' \leq_e f \oplus D(\mathbb{A})'$.
3. $B_i \not\leq_e f^{-1}(\mathbb{A})$ for every $i \in \mathbb{N}$.
Definition. A set B of natural numbers is forcing definable in the structure \mathcal{A} iff there exist a finite part δ and a natural number e s.t.

$$B = \{x | (\exists \tau \supseteq \delta)(\tau \models F_e(x))\}.$$

Denote by $D(\mathcal{A})$ the diagram of \mathcal{A}.

Proposition. Let $\{B_i\}_{i \in \mathbb{N}}$ be subsets of \mathbb{N} be not forcing definable on \mathcal{A}. There exists a 1-generic enumeration f of \mathcal{A} satisfying the following conditions:

1. $f \leq_e D(\mathcal{A})'$.
2. $f^{-1}(\mathcal{A})' \leq_e f \oplus D(\mathcal{A})'$.
3. $B_i \not\leq_e f^{-1}(\mathcal{A})$ for every $i \in \mathbb{N}$.
Definition. A Σ^c_1 formula with free variables among W_1, \ldots, W_r is a c.e. disjunction of existential formulae of the form $\exists Y_1 \ldots \exists Y_k \theta(\bar{Y}, \bar{W})$, where θ is a finite conjunction of atomic and negated atomic formulae.

Definition. A set $B \subseteq \mathbb{N}$ is formally definable on \mathcal{A} if there exists a recursive function $\gamma(x)$, such that $\bigvee_{x \in \mathbb{N}} \Phi_{\gamma(x)}$ is a Σ^c_1 formula with free variables among W_1, \ldots, W_r and elements t_1, \ldots, t_r of A such that the following equivalence holds:

$$x \in B \iff \mathcal{A} \models \Phi_{\gamma(x)}(W_1/t_1, \ldots, W_r/t_r).$$
Theorem. Let $B \subseteq \mathbb{N}$. Then

1. B is admissible in \mathcal{A} ($d_e(B) \in CS(\mathcal{A})$) iff
2. B is forcing definable on \mathcal{A} iff
3. B is formally definable on \mathcal{A}.

Corollary. If \mathcal{B} is an isomorphic structure of \mathcal{A} then a set $X \subseteq \mathbb{N}$ is forcing definable on \mathcal{A} if and only if X is forcing definable on \mathcal{B}.
Definition. The nth jump spectrum of \mathcal{A} is the set
\[DS_n(\mathcal{A}) = \{ a^{(n)} \mid a \in DS(\mathcal{A}) \}. \]

Definition. The nth jump co-spectrum $CS_n(\mathcal{A})$ of \mathcal{A} is the set
\[CS_n(\mathcal{A}) = \{ b \mid b \in D_e \& (\forall a \in DS_n(\mathcal{A}))(b \leq a) \}. \]
Definition. Let $B \subseteq A$ be sets of degrees. Then B is a base of A if

$$(\forall a \in A)(\exists b \in B)(b \leq a).$$

Theorem. A structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

Suppose that the sequence of e-degrees $\{b_i\}_i$ is a base for $DS(\mathfrak{A})$. Assume that no b_i is an e-degree of \mathfrak{A}. Then for every i, $b_i \notin CS(\mathfrak{A})$.

Let $B_i \in b_i$ for every $i \in \mathbb{N}$. Then all the sets B_i have no forcing normal form.

We can construct a generic enumeration f of \mathfrak{A}, omitting all B_i, i.e. $B_i \nleq_e f^{-1}(\mathfrak{A})$.

This contradicts with fact that $\{b_i\}_i$ is a base for $DS(\mathfrak{A})$.
An upwards closed set of degrees which is not a degree spectra of a structure
The minimal pair theorem

Theorem. [Soskov] There exist \(f, g \in DS(\mathcal{A}) \) such that

\[
(\forall b \in D_e)(b \leq f \ \& \ b \leq g \Rightarrow b \in CS(\mathcal{A})).
\]
The quasi-minimal degree

Definition. [Medvedev (1955)] An e-degree \(a \) is said to be quasi-minimal if

- \(a \neq 0_e \);
- \((\forall \text{ total } b)[b \leq a \rightarrow b = 0_e]\).

Definition. [Slaman, Sorbi] Given any \(I \subseteq D_e \), we say that an e-degree \(a \) is \(I \)-quasi-minimal if

- \((\forall c \in I)[c < a]\);
- \((\forall \text{ total } c)[c \leq a \iff (\exists b \in I)[c \leq b]]\).
Definition. Let \mathcal{A} be a set of enumeration degrees. The degree q is quasi-minimal with respect to \mathcal{A} if:

- $q \notin \text{co}(\mathcal{A})$.
- If a is total and $a \geq q$, then $a \in \mathcal{A}$.
- If a is total and $a \leq q$, then $a \in \text{co}(\mathcal{A})$.

From Selman’s theorem it follows that if q is quasi-minimal with respect to \mathcal{A}, then q is an upper bound of $\text{co}(\mathcal{A})$.

Theorem. [Soskov] For every structure \mathfrak{A} there exists a quasi-minimal with respect to $DS(\mathfrak{A})$ degree.
Let $\bot \not\in A$.

Definition. A *partial finite part* is a finite mapping of \mathbb{N} into $A \cup \{\bot\}$.

Let τ be a partial finite part and let f be a partial enumeration, by $\tau \subseteq f$ we denote that for all x in $\text{dom}(\tau)$ either $\tau(x) = \bot$ and $f(x)$ is not defined or $\tau(x) \in A$ and $f(x) = \tau(x)$.

Definition. A subset B of \mathbb{N} is *partially forcing definable* on \mathcal{A} if there exist an $e \in \mathbb{N}$ and a partial finite part δ such that for all natural numbers x,

$$x \in B \iff (\exists \tau \supseteq \delta)(\tau \vdash F_e(x)).$$

Lemma. Let $B \subseteq \mathbb{N}$ be partially forcing definable on \mathcal{A}. Then $d_e(B) \in CS(\mathcal{A})$.

Alexandra Soskova
Quasi-minimal degrees for degree spectra
The quasi-minimal degree

Proposition.

1. For every partial generic f, $f^{-1}(A) \nleq_e D(A)$. Hence $d_e(f^{-1}(A)) \notin CS(A)$.

2. There exists a partial generic enumeration $f \leq_e D(A)'$ such that $f^{-1}(A) \leq_e D(A)'$.

3. If $B \leq_e f^{-1}(A)$ for all partial generic enumerations f, then B is partially forcing definable on A.

Theorem. Let f be a partial generic enumeration of A. Then $d_e(f^{-1}(A))$ is quasi-minimal with respect to $DS(A)$.

Corollary. [Slaman and Sorbi] Let I be a countable ideal of enumeration degrees. There exists an enumeration degree q s.t.

1. If $a \in I$ then $a <_e q$.

2. If a is total and $a \leq_e q$ then $a \in I$.
Proposition. For every countable structure \(\mathcal{A} \) there exist continuum many quasi-minimal degrees with respect to \(DS(\mathcal{A}) \).

Suppose that all quasi-minimal degrees with respect to \(DS(\mathcal{A}) \) are \(q_0, q_1, \ldots, q_n, \ldots \) and let \(X_i \in q_i, \) for all \(i \in \mathbb{N} \). Then all \(q_i \) are not in \(CS(\mathcal{A}) \) and hence every \(X_i \) is not forcing definable on \(\mathcal{A} \). Then we could build a partial generic enumeration \(f \) of \(\mathcal{A} \) such that \(X_i \not\leq_e f^{-1}(\mathcal{A}) \). Thus \(d_e(f^{-1}(\mathcal{A})) \) is quasi-minimal with respect to \(DS(\mathcal{A}) \) and not in \(\{q_i\} \).
Theorem. [Ganchev] Let $B \subseteq \mathbb{N}$ and Q be a total set such that $B' \leq Q$. There exists a partial set F called quasi-minimal over B with the following properties:

1. $B < F$;
2. $F' \equiv Q$.
3. For every total $X \leq F$ we have that $X \leq B$.

Lemma. There exists a partial 1-generic enumeration f of \mathcal{A}, such that $f^{-1}(\mathcal{A})' \leq D(\mathcal{A})'$ and $\langle f \rangle \leq D(\mathcal{A})'$.

Theorem. The first jump spectrum of every structure \mathcal{A} consists exactly of the enumeration jumps of the quasi-minimal degrees.

Corollary. [McEvoy] For every total e-degree $a \geq_e 0'_e$ there is a quasi-minimal degree q with $q' = a$.

Alexandra Soskova

Quasi-minimal degrees for degree spectra
Proof.

- Let $g^{-1}(\mathcal{A})' \in DS_1(\mathcal{A})$. Denote by $B = g^{-1}(\mathcal{A})$.
- $\mathcal{B} = (\mathbb{N}, g^{-1}(R_1), \ldots, g^{-1}(R_n))$.
- There is a partial 1-generic enumeration f of \mathcal{B} such that $f^{-1}(\mathcal{B})' \leq B'$.
- There is a partial set F, such that $f^{-1}(\mathcal{B}) < F$, $F' \equiv B'$, $(\forall$ total $X)(X \leq F \Rightarrow X \leq f^{-1}(\mathcal{B}))$.
- Set $q = d_e(F)$.
- q is a quasi-minimal with respect to $DS(\mathcal{A})$.
Proposition. [Jockusch] For every total e-degree \(a \) there are quasi-minimal degrees \(p \) and \(q \) such that \(a = p \vee q \).

Theorem. For every element \(a \) of the jump spectrum of a structure \(\mathcal{A} \) there exists quasi-minimal with respect to \(DS(\mathcal{A}) \) degrees \(p \) and \(q \) such that \(a = p \vee q \).
Suppose that \(\mathcal{A} = (\mathbb{N}; R_1, \ldots, R_n) \).
Denote by \(\Delta \) the set of all finite parts.
For each \(\tau \in \Delta \) and \(x \in \mathbb{N} \) by \(\tau \ast x \) we denote an extension of \(\tau \)
such that \(\tau \ast x(\text{lh}(\tau)) = x \).
Let \(f : \Delta \rightarrow \Delta \) and \(\{y_n\}_n \) be a sequence of natural numbers.
If \(\tau_0 = \emptyset \), \(\tau_{n+1} = f(\tau_n \ast y_i) \), then we denote by \(f(\{y_n\}_n) = \bigcup_n \tau_n \).
Let \(P \) be a set of enumerations of \(\mathcal{A} \).

Lemma. [Ganchev] If \(f \) is computable in the total set \(Q \) and such
that for every sequence \(\{y_n\}_n \) computable in \(Q \), \(f(\{y_n\}_n) \in P \), then
there exist enumerations \(g, h \in P \) of \(\mathcal{A} \) such that \(Q \equiv_e \langle g \rangle \oplus \langle h \rangle \).
Let \(q \) be an enumeration of \(Q \) such that \(\langle q \rangle \leq_e Q \). We construct two sequences of finite parts \(\{\tau_n\}_n \) and \(\{\sigma_n\}_n \) by the following rule:

1. \(\tau_0 = \sigma_0 = \emptyset \);
2. \(y_n = \langle lh(\sigma_n), q(2n) \rangle \);
3. \(\tau_{n+1} = f(\tau_n \ast y_n) \);
4. \(z_n = \langle lh(\tau_n), q(2n + 1) \rangle \);
5. \(\sigma_{n+1} = f(\sigma_n \ast z_n) \).

Define \(g = f(\{y_n\}_n) \) and \(h = f(\{z_n\}_n) \).
A method of splitting a total set

Theorem. For every element \(a \) of the jump spectrum of a structure \(\mathcal{A} \) there exists quasi-minimal with respect to \(DS(\mathcal{A}) \) degrees \(p \) and \(q \) such that \(a = p \lor q \).

Proof.

- Let \(a = d_T(g^{-1}(\mathcal{A}')') \in DS_1(\mathcal{A}) \). Denote by \(B = g^{-1}(\mathcal{A}) \).
- \(\mathcal{B} = (\mathbb{N}, g^{-1}(R_1), \ldots, g^{-1}(R_n)) \).
- Construct a partial 1-generic enumeration \(f \) of \(\mathcal{B} \) such that \(f^{-1}(\mathcal{B}')' \leq B' \).
- Let \(P \) be the class of all partial generic enumerations \(g \) of \(\mathcal{A} \), s.t. \(\langle g \rangle \) is quasi-minimal over \(f^{-1}(\mathcal{B}) \), i.e \(f^{-1}(\mathcal{B}) \prec \langle g \rangle \), \(\langle g \rangle' \equiv B' \), \((\forall \text{ total } X)(X \leq \langle g \rangle \Rightarrow X \leq f^{-1}(\mathcal{B})) \).
- Applying the lemma there are \(p = d_e(\langle g \rangle) \) and \(q = d_e(\langle h \rangle) \) are quasi-minimal over \(f^{-1}(\mathcal{B}) \) and hence quasi-minimal for \(DS(\mathcal{A}) \) and \(a = p \lor q \).

Thank you!