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1
Elementary Micromechanics of

Heterogeneous Media

Konstantin Z. Markov

“St. Kliment Ohridski” University of Sofia
Faculty of Mathematics and Informatics
BG-1164 Sofia, Bulgaria

Abstract. The introductory and more elementary ideas and re-
sults of micromechanics of heterogeneous media are collected in the
survey. The central problem under discussion is “homogenization.”
It replaces such media by homogeneous ones, which behave macro-
scopically in the same way and possess certain gross effective prop-
erties. These properties are related in a complicated manner to the
prescribed internal structure of the medium and their evaluation, in
general, represents a profound challenge in any specific situation. A
brief historical survey is given, underlying the reappearance of es-
sentially the same “homogenization” quest in numerous guises and
contexts over the last two centuries. Within the framework of the
volume-averaging approach the basic notions are introduced and some
of the central, now classical, results are then derived and discussed
such as perturbation expansions, Hashin-Shtrikman’s bounds, varia-
tional estimates and Levin’s cross-property relation. A general “one-

1



2 Heterogeneous Media: Modelling and Simulation

particle” scheme for approximate evaluation of the effective properties
(in the static case) is detailed in its various implementations like self-
consistency, iterated limits and effective field. Illustrations concern
conductivity, elasticity, and absorption phenomena in heterogeneous
particulate media, as well as a simple self-consistent model for poly-
crystals’ homogenization.

1.1 Introduction

1.1.1 The Aim of Micromechanics

Continuum mechanics deals with ideal homogeneous materials. Its
aim is to describe their response to external exertions using appropri-
ate constitutive relations. The latter generally are specified by means
of macroscopical experiments without microstructural considerations.
It is a trivial statement, however, that any sample of material is mi-
croscopically inhomogeneous, even if it appears homogeneous at some
natural scale of observation. Inevitably, therefore, a description of
any material in terms of continuum mechanics is an approximation,
and any experimental determination of constitutive behavior yields,
in fact, a relationship between the “overall” properties measured in
the experiment. This observation leads us to a fundamental and
widespread problem of science and technology, concerning “micro-
macro” interconnection, i.e. a proper and reliable determination of
the macroscopic (or “large” scale) behavior of a medium which ex-
hibits microscopic (or “small” scale) heterogeneity, on the base of
the appropriate and available microstructural information. (The ex-
act meaning of “large” and “small” depends on the specific problems
and media under study.) The oldest problem of such a type, fun-
damental in statistical physics, is description of matter in terms of
its molecular constituents. Here “small” corresponds obviously to
molecular dimensions.

Micromechanics, in general, deals with heterogeneous media for
which “small” has a certain intermediate dimension ` which is large
compared to molecular dimensions, but is small in macroscale. The
length ` is connected with the characteristic size of the heterogeneities
in the medium, say, with mean radius of inclusions, voids, fibers, the
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size of a crystallite in polycrystalline aggregates, etc. Though the
molecular effects are not present, as a rule, in such a scale, many of
the methods used in the appropriate theories have their direct ori-
gin in statistical physics and statistical mechanics, as we shall point
out below. The aim of micromechanics is just to relate the gross
macroscopical behavior of heterogeneous media, characterized with
the above mentioned length scale `, to the details of their microscop-
ical constitution. The basic idea is that of homogenization, which
consists in a replacement of a piece of a microheterogeneous solid
by a homogeneous one which, from a macroscopical point of view
“behaves” in the same manner as this piece. This fundamental idea
will be briefly illustrated in the next subsection, before considering it
more rigorously and in needed detail in Section 1.2.

Note that an important class of heterogeneous media, extensively
treated by micromechanics, are the composites—man-made mixtures
mixtures of two or more constituents, firmly (as a rule, but not al-
ways) bonded together. Among other reasons, technological demands
have stimulated a very extensive bulk of studies, devoted to their
gross mechanical behavior, like elasticity, strength, etc., as predefined
by a specific microstructural arrangement. A considerable part of the
more fundamental works along this line will be discussed in what fol-
lows. There are, however, plenty of micromechanical problems not
directly concerned with mechanical properties, but representing par-
ticular cases of the same “micro-macro” interconnection quest, in
which the same idea of homogenization applies.1 An example is fur-
nished by the problem of describing propagation of electromagnetic
or acoustic waves through a heterogeneous solid or a turbulent fluid.
Another example is cooling of a heated body by means of a system of
tubes or holes, kept at a fixed temperature. Mathematically the lat-
ter problem is very closely connected to describing the gross behavior
of a diffusing species in a medium, containing absorbing sinks. The

1It is more precise perhaps to speak about “micro-physical” problems, instead
of micromechanical since, say, diffusion, electromagnetic waves, etc., have little to
do with mechanics in its classical sense. However, introducing the term physics
would inevitably enlarge this survey far beyond the admissible length and (more
important)—the author’s competence. In this connection it seems appropriate to
recall the Constitution of the International Society for the Interaction of Mechanics
and Mathematics (ISIMM), where one reads that “Mechanics is understood here
in the broad sense of the word, including relevant physical phenomena such as
electromagnetic and thermal fields.”
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third example to be specially mentioned concerns the viscous flow
through a porous solid (which itself could deform due to the flow).

1.1.2 The Idea of Homogenization

To illustrate the basic ideas of homogenization as simply as possible,
consider a (linear) elastic heterogeneous medium. Let, for example,
the tensile stress-strain behavior of the medium along the axis x1 be
under investigation. Imagine to this end that a large, say, cubical
specimen V with a side L is cut out from the medium; large means
here that L � `, where ` is the above mentioned microscale length.
Either the cube would be loaded to some level and its extension mea-
sured, or else it would be extended by some amount and the load
measured. Then the stress component σ11 would be taken as load
divided by area of the cross-section L2 and the strain component ε11
as extension divided by the original length L. These two ways to find
ε11 and σ11 are obvious, if the cube were homogeneous; the hetero-
geneity results, however, in non-homogeneous and rapidly oscillating
in the microscale fields of both stress and strain. The latter quanti-
ties, calculated from the experiment, thus represent, in fact, averages
of the actual forces and displacements in the cube. More precisely,
they are just the so-called volume (or spatial) averages, to be denoted
by overbar:

ε11 =
1
V

∫
V
ε11(x) dx , σ11 =

1
V

∫
V
σ11(x) dx ; (1.1)

hereafter V = volV is the volume of the region V.
In turn, the proportionality coefficient

EV11 = σ11 / ε11 (1.2)

defines the effective (or gross) Young modulus for the specimen (along
the axis x1). This means that the cube, through the relation (1.2),
is “homogenized” in the sense that its heterogeneity is smoothed out
and it is replaced by a homogeneous one, possessing the gross Young
modulus EV11.

If we now repeat the same procedure for other cubical samples of
the material, of the same size and orientation as the first, we shall in
general obtain slightly different values of EV11, since the interior phase
geometry will not be the same in full detail. This explains why the
superscript ‘V’ explicitly appeared in the notation EV11.
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To define a “true” material property from such experiments, i.e.
one that is connected with the heterogeneous medium and its internal
structure, independently of the specific choice of the subvolumes, two
natural procedures can be employed.

First, perform a great number, N , of experiments on differently
centered cubes (otherwise identical and identically oriented), and
measure the appropriate values EV

′
11 , EV

′′
11 , etc., for each one. Then,

to suppress the specimen’s dependence, it is natural to define

E∗11 =
1
N

(
EV

′
11 + EV

′′
11 + · · ·

)
, (1.3)

which is already a true material property. The right-hand side of
(1.3) is the simplest example of the so-called ensemble averaging.
The meaning is that to obtain information about the expected gross
behavior of a heterogeneous medium, we should deal with average
reaction of a whole ensemble of specimens of identical shape and size,
and apply identical external influence. (In the foregoing reasoning
these are simply the cubes taken from different parts of a big piece
of the medium.) The ensemble averaging is one of the basic notion
in the theory of heterogeneous media of random constitution, see e.g.
the book of Beran [BEi]. An elucidating introduction, together with
basic methods and ideas concerning homogenization for such random
media, can be found as well in the lectures of Willis [WIe].

We shall be concerned in the present survey, however, with more
elementary aspects of the theory, without invoking the proper math-
ematical framework for random internal constitution. That is why
only the volume averaging (1.1) will be used throughout. It appears
in a natural way, if a second kind of mental experiment is performed.
Take a cube with a fixed center and start increasing its side L (as-
suming the medium unbounded). Then it is equally natural to expect
that in the limit L/`→∞ the sample dependence will disappear:

EV11 = E∗11(1 +O(`/L)) as `/L→ 0 , (1.4)

where the same effective modulus E∗11, as in (1.3), shows up. Hence,
we shall be on the safe side, equating E∗11 with EV11, provided the
volume V is big enough compared to the typical inhomogeneity, i.e. if
L � `. But this was a basic assumption, already adopted for the
class of heterogeneous media under study at the beginning of this
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subsection. The importance of this assumption will be once more
emphasized in Section 1.2.1, when formulating Hashin’s MMM prin-
ciple.

Hereafter we shall consider only media for which the ensemble and
volume averages coincide; they are called ergodic.

A satisfactory proof of the statement that a medium is ergodic,
i.e. the two definitions (1.3) and (1.4) yield, in particular, one and the
same value of E∗11 is not a trivial matter. Such a statement amounts
to the so-called ergodic hypothesis. It can be rigorously justified
under certain additional conditions imposed on the microgeometry
of the media, the most important of which is the macroscopic (or
statistical) homogeneity, see again the book [BEi] for a brief, but
elucidating discussion.

Intuitively, the coincidence between the ensemble and volume av-
erages should not be a surprise, since E∗11 is to be specified by the
medium’s microgeometry solely. Any natural definition of the ho-
mogenization properties, in which sample dependence is somehow
eliminated, should then result in a true and unique material charac-
teristics.

Fully similar considerations can be repeated almost literally, using
different physical backgrounds, chosen and tailored by the personal
taste of the reader. For example, instead of elasticity, diffusion of a
solute through the same cube V can be considered, fixing the solute
concentration at a pair of opposite faces and, in the steady state,
measuring the total amount of the solute, passing through them, see
[HUa]. The dielectric context is also used very often, starting with
the classical works of Mossotti [MOc], [MOd], and Faraday [FAa];
the posing of the homogenization problem in this case is very clearly
explained and discussed, e.g. by Bergman [BEk]. A fully equivalent,
from a mathematical point of view, context concerns heat propaga-
tion which will be mainly used in what follows. That is why we should
recall here the well-known equations

∇ · q(x) = 0 , q(x) = κ(x)∇θ(x) , (1.5)

that govern the temperature field θ(x) in a medium at the absence of
body sources. In Eq. (1.5) q(x) is the flux vector, and κ(x) represents,
for the heterogeneous body under study, a rapidly fluctuating con-
ductivity coefficient, taking different values when the point x scans
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the medium. In the case of a two-phase (binary) material, which very
often appear in various applications,

κ(x) =
{
κ1, if x ∈ constituent ‘1’,
κ2, if x ∈ constituent ‘2’.

(1.6)

It should be emphasized that all the results, obtained below in the
heat conduction context, are equally well applicable in the contexts of
electrical conductivity, dielectric behavior and magnetic permeability.
A list of analogous quantities are conveniently summarized in a table
by Hashin [HAi, p. 496]. The reason is the obvious mathematical
similarity between between these problems: in all of them a solenoidal
vector field (say, the dielectric polarizability, or the heat flux, etc.)
is “proportional” to a potential vector field (the electric field, the
temperature gradient, etc.) with a proportionality coefficient (which
may be a tensor) rapidly varying throughout the medium.

The second context to be more extensively used in the present pa-
per is the already employed, for illustrative purposes, (linear) elastic-
ity problem (see Section 1.2.7 below). The basic ideas and conclusions
are the same in both cases, but their implementation in the heat con-
ductivity case is, however, simpler, since the basic quantities—the
heat flux and temperature gradient—are vectors. In the elasticity
case the respective quantities are tensors (the stress and strain ones)
which makes the calculations more cumbersome technically. That
is why we shall concentrate in what follows primarily on the scalar
conductivity problem; afterward, the elasticity counterparts of the
results will be discussed more concisely.

1.1.3 Brief Historical Remarks

The homogenization quest, due to its utmost importance, has kept
reappearing in various guises and contexts in the last two centuries,
attracting the interest and the efforts of some of the most illustrious
names in science. Here we shall try to collect some historical de-
tails, without any attempt or claim to be full and exhaustive.2 One
of our aims is to underline the common “micromechanical” origin

2We do not mention even the famous Darcy’s book [DAa] that initiated tremen-
dous research on flow in porous media, and on Darcy’s law, in particular. A great
number of recent developments in this field can be found in other papers of the
present volume.
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and nature of the appropriate problems, despite the widely different
scientific communities and contexts in which they have shown up.

1.1.3.1 Navier and Cauchy

It should be recalled above all that the origin and the base of the
modern continuum mechanics, as laid down by Navier and Cauchy,
is to a great extent “micromechanical.” The starting point of these
authors was the Newtonian picture of matter as an assemblage of
“material molecules” interacting by means of central forces. In a lan-
guage, used today, this is nothing but a “discrete” model and their
main and great contribution in this field is the “homogenization” of
such a model. More precisely, imaging the “molecules” as material
points and the interaction forces depending upon their displacement
from the equilibrium position, first Navier and then, almost in the
same time and in a more general form, now classical, Cauchy de-
rived3 the equations describing an elastic continuum, “spread over”
the discrete model—in the sense that it macroscopically behaves in
the same way as its underlying “molecular skeleton.” This discrete
model was then put aside for more than a century and the attention,
in continuum mechanics at least, was focused on the appropriate par-
tial differential equations that formed, together with the equations of
hydrodynamics, the core of research in the Mathematical Physics of
the previous century.

In a new guise and on a new level, similar “homogenization” prob-
lems reappeared in continuum mechanics almost a century later when
Einstein [EIa] in 1905 and Bruggeman [BRg] in 1937 considered hosts
of inclusions in a fluid and in an elastic medium, respectively. In both
cases the problems were again micromechanical, in the sense that ho-
mogeneous continua, spread over discrete arrays of inclusions, should
be constructed. The interpretation of “micro” was of course differ-
ent from the pioneering works of Navier and Cauchy, but the sense
of the “homogenization” quest was the same. However, the nature
of interaction between the inclusions exhibited a key new feature:

3According to Love [LOd] (see the historical survey in his introduction), the
Navier Mémoire was presented at the French Academy in May 1821, but was
published only in 1827 [NAa]. The Cauchy Mémoire was presented at the French
Academy in September 1821, but also appeared in 1827 and 1928 in his Exercises
de mathématique. The Cauchy derivation revisited can be found in Appendix B
of the same Love book [LOd].
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its magnitude already was not prescribed, like a simple elastic one,
say, but instead resulted from the local disturbances of the fields like
displacement, velocity, etc., generated by each single particle in the
medium.

1.1.3.2 Poisson and Mossotti

With elastic bodies “homogenized,” the micromechanical studies of
heterogeneous media for almost a century turned toward the gross
behavior of charged materials.4

In 1824 Poisson presented his first Mémoire on the theory of mag-
netism at a meeting of the French Academy [POa]. There he put
the basis of the theory of induced magnetism, assuming a model of
a nonconducting material (we would call it a matrix today) in which
small conducting particles are distributed. For magnetically isotropic
bodies Poisson took the particles spherical, isotropically arranged as
well, and noted that an adequate theory of magnetism can be con-
structed if one requires that each sphere is lying in a certain constant
external field. In his second Mémoire [POb], he treated anisotropic
magnetic solids as well, representing them as an array of thin aligned
three-axial conducting ellipsoids in a matrix. In these two Poisson’s
papers one can see not only the origin but the rudiments of the basic
models and ideas that prevailed in the theory of heterogeneous me-
dia for almost a century after their appearance, and are still useful
and applicable. In particular, the model of the so-called dispersion of
nonoverlapping spheres and ellipsoids seems to have emerged for the
first time in this particular (magnetic) context; the model, in gen-
eral, turned out very appropriate for many heterogeneous media of
particulate type (matrix-inclusion composites, say), and also in the
liquid-state theory.

It was Faraday in 1838 [FAa], who employed Poisson’s ideas to
dielectrics, proposing to treat them as an array of metallic spheres,
immersed into an insulating material (matrix) [FAa]. But a more
detailed analysis of this model was due to Mossotti [MOc] who spec-
ified the embedded particles as “material molecules,” modelled them
as little conducting spheres, and described the polarization of a sin-
gle one. The main contribution of Mossotti was however a method

4In the “electric” story we shall utilize a number of historical details, given by
Wiener [WIa], Brown [BRe], Landauer [LAc] and Trimarco [TRa].
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of interconnecting the micro- and macroproperties of the dispersion
which turned out to be the first of the so-called “cavity” approaches,
and this was the heart of his second paper [MOd]. The basic, and
extremely fruitful, idea of Mossotti was to remove a material region C
around a point in order to evaluate the (electric) force exerted on the
point, due to the interactions with the molecules outside C. In this
way the first of the “cavity” methods in theory of heterogeneous me-
dia emerged. The field acting on the cavity is the local (or effective,
or internal) field that differs from the applied macroscopic one, as a
consequence of the presence of the other molecules. In Section 1.5.3
below, when discussing the so-called effective field approach for evalu-
ating the effective properties, we shall specially outline its connection
with the “cavity” idea, see Section 1.5.5.2. As pointed out by Lan-
dauer [LAc], the Mossotti work [MOd] is based, however, on etherial
concepts and notions, typical for the epoch, which makes this clas-
sical paper difficult for a modern reader to follow. The idea of local
field was reintroduced and exploited by H. Lorentz around 1880. A
very clear and now classical exposition of this idea and its application
to dielectric and optical properties5 is given in his well-known book
[LOb, Section 117 and App. 54].

Almost at the same time Clausius in his book [CLa, pp. 67–77]
revisited Mossotti’s internal field approach in a concise way, much
easier for a modern reader to follow [LAc]. He cut each molecule
out of the medium and replaced the rest with a material possessing
the effective dielectric constant, reaching the explicit and now clas-
sical formula for the latter, given in Eq. (1.19) below. This is, as a
matter of fact, the first appearance of the so-called effective medium
idea that much later was successfully exploited by Bruggeman, Sko-
rohod, Hill, Budiansky et al. in the theory of heterogeneous solids,
see Section 1.5.2 below. As pointed out by Brown [BRe], Mossotti’s
paper does not contain explicitly the formula for the effective dielec-
tric constant; Clausius’ book does, and that is why H. Lorentz [LOb,
Section 124] attributes the formula (1.19) to Clausius and Mossotti,

5Recall that according to Maxwell, µ2 = κ, where κ is the dielectric constant
of a transparent medium and µ = c/v is its refractivity index (i.e. the ratio c/v
between the velocity of the light in the vacuum and in the medium). This clas-
sical formula of the electromagnetic theory explains the appearance of equivalent
formulae for the effective properties, containing refractivity instead of dielectric
properties.
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and it has come to be known as the Clausius-Mossotti’s one. But
several years before Clausius’ publication, an analogous formula in
conductivity had been given by Maxwell [MAj], whose reasoning will
be presented below.

Note also that L. Lorenz in three papers between 1869 and 1880
considered optical problems, concerned with propagation of electro-
magnetic waves (“optical vibrations” as he called them) [LOc]. He
assigned a refractive index to each molecule that differs from that
of the surrounding medium and then employed a scheme which re-
sembled very much what is now called the Coherent Potential Ap-
proximation. That is why the local field and its expression, to be
discussed in an appropriate context in Section 1.5.5.1, is often called
Lorenz-Lorentz’s field.

1.1.3.3 Maxwell

In his famous treatise [MAj] Maxwell addressed in passing the prob-
lem of predicting the overall behavior of a dispersion of spheres, im-
mersed into a matrix of different conductivity. We shall repeat here
his elegant and simple reasoning, since it contains a number of basic
ideas and drawbacks that have kept reappearing in the later works
for a long period afterward.

The basic building block in Maxwell’s study is the single sphere
field. Let a single spherical inhomogeneity Va, located at the origin,
be immersed into an unbounded matrix. Let the applied far-field
have a constant and prescribed gradient, i.e. θ∞(x) = G · x. The
temperature field, θ(x), is governed then by the equation:

∇ · (κ(x)∇θ(x)) = 0 , θ(x) → G · x as |x| → ∞ ,

κ(x) = κ1 + [κ]ha(x) , [κ] = κ2 − κ1 ,
(1.7)

where ha(x) is the characteristic function of the sphere Va, κ1 and κ2

are the conductivities of the matrix and of the sphere, respectively,
see Eqs. (1.5) and (1.6).

Since κ(x) is a step-constant function, the field θ(x) should be a
harmonic function both inside and outside the sphere; on the sphere
surface, |x| = a, it should be continuous together with the normal
component of the heat flux:

κ2
∂θ

∂r

∣∣∣∣
r=a−0

= κ1
∂θ

∂r

∣∣∣∣
r=a+0

, (1.8)
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as it follows directly from (1.7); here r = |x| is the radial coordinate,
a is the sphere’s radius.

The solution of Eq. (1.7) depends linearly on the far-field gradient
G. Together with the obvious geometrical symmetry, this suggests
to look for the needed solution in the form

θ(x) = G · ∇ϕ(r) . (1.9)

Since θ(x) is harmonic, Eq. (1.9) implies

∆θ(x) = G · ∇∆ϕ(r) = 0 , i.e. ∆ϕ(r) = const ,

and hence
ϕ(r) = 1

2C
′r2 − C ′′a/r + const . (1.10)

Obviously, the additive constant in the last formula does not influence
the solution (1.9). Inside the sphere C ′′ = 0, in order to have a
bounded everywhere solution there, so that

θ(x) = C ′G · x , |x| < a . (1.11)

Outside the sphere C ′ = 1, in order to meet the far-field condition in
Eq. (1.7), and hence

θ(x) = G · x
(
1− C ′′(a/r)3

)
, |x| > a . (1.12)

The continuity conditions for θ(x) and for the normal flux at |x| =
a, see Eq. (1.8), yield

C ′ = 1 + C ′′ , κ2C
′ = κ1(1− 2C ′′) ,

as it follows from Eqs. (1.11) and (1.12), and also from the simple
formula

∂θ

∂r
= er · ∇θ(x) = G · ∇∇ϕ(r) · er = ϕ′′(r)G · er , (1.13)

er = x/r, r = |x|, which holds for any function of the form (1.9).
The solution of the single inclusion problem (1.7) therefore reads

θ(x) = G · x
{
γ , if |x| < a ,
1− β(a/r)3 , if |x| > a ,

(1.14)

with the constants

β =
[κ]

κ2 + 2κ1
, γ = 1− β =

3κ1

κ2 + 2κ1
. (1.15)
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Remark 1.1 In Section 1.4.2 we shall find the solution of Eq. (1.7)
inside the sphere in a much simpler way, which works equally well
for an ellipsoidal inhomogeneity also. In Maxwell’s considerations
one needs, however, the field θ(x) outside the sphere, so that a more
lengthy analysis is required.

Remark 1.2 The formula (1.14) shows that if the temperature gra-
dient at infinity is constant, the same holds true for this gradient
inside a spherical inhomogeneity. This is a particular case of a more
general statement in which the sphere is replaced by an ellipsoidal in-
homogeneity. A similar statement holds for the elastic inhomogeneity
problem, see Section 1.4.4.

With the single-sphere solution found, we can go back to Maxwell’s
analysis. Consider a large sphere VA of the radius A and conductiv-
ity κ1, containing N identical and nonoverlapping small spheres of
conductivity κ2. (“Large” means here that A � a, where a is the
radius of the small spheres.)

Immerse the sphere VA into a homogeneous medium possessing the
same conductivity κ1 as that of the matrix. “Sit down” at the point
M , far away from the center O of the sphere, i.e. imagine R � A,
where R = |OM |. Assume again that the temperature gradient G at
infinity is constant. The presence of the inhomogeneous sphere VA

will disturb the field G·x that would have existed in the homogeneous
medium of conductivity κ1 at its absence. We shall evaluate this
disturbance in two different ways.

First, let us consider each small sphere within VA as a single and
pretend there are no other small spheres around it. Then, accord-
ing to Eq. (1.14), the disturbance, caused by any such sphere, is
−βa3/R3, and summing up all of them, gives

−Nβ a
3

R3
= −N a3

R3

κ2 − κ1

κ2 + 2κ1
; (1.16)

recall that the small spheres within VA are located practically at one
and the same distance R from our observation point M , since R� A.

Second, “looking” at the big sphere VA from a great distance, we
can “homogenize” it, neglecting its heterogeneous internal structure
and replacing it by a homogeneous sphere possessing a certain un-
known effective conductivity κ∗. The disturbance, caused by such a
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homogeneous sphere at the point M , is

−β∗A
3

R3
= −A

3

R3

κ∗ − κ1

κ∗ + 2κ1
, (1.17)

as it follows again from Eq. (1.14).
It is natural now to equate the disturbances (1.16) and (1.17),

calculated in these two different ways (which just reflects the above
mentioned idea of “homogenization”—replacement of the heteroge-
neous sphere VA by an equivalent homogeneous one; equivalent in the
sense that it behaves (i.e. disturbs) the temperature field in exactly
the same way). This results in the equation

−N a3

R3

κ2 − κ1

κ2 + 2κ1
= −A

3

R3

κ∗ − κ1

κ∗ + 2κ1
,

or
κ∗ − κ1

κ∗ + 2κ1
= φ2β , φ2 = N

Va

VA
= N

a3

A3
, (1.18)

so that φ2 is the volume fraction of the spheres in VA; Va = 4
3πa

3 and
VA = 4

3πA
3 are the volumes of the respective spheres. From (1.18) it

follows
κ∗

κ1
=

1 + 2βφ2

1− βφ2
, (1.19)

and this is exactly the formula, known now as Clausius-Mossotti’s (in
dielectric context) or Maxwell’s (in conductivity context), and also
Lorenz-Lorentz’s (in refractivity context, see the footnote on page 10).
Having derived (1.19), Maxwell remarked that it “may be obtained in
other ways, but that here given involves only repetition of the result
already obtained for a single sphere” [MAj, Section 314].

Due to the above explained reasons, and to the fact that we shall
deal mainly with conductivity problem in the sequel, we shall refer
to (1.19) as Maxwell’s formula. Its derivation possesses the obvious
drawback that each sphere is considered as single, so that the result
(1.19) is strictly valid only in the dilute limit φ2 � 1:

κ∗

κ1
= 1 + 3βφ2 + O(φ2) , (1.20)

when the spheres are sparse. This fact was entirely clear to Maxwell
himself (see the same Section 314 of his Treatise) and to his contem-
poraries. Lord Rayleigh [RAa], in order to check the exactness and
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applicability of (1.19) for higher values of φ2, considered a special kind
of internal constitution, assuming that the inclusions are spheres or
cylinders, forming a regular periodic array. (A vast number of stud-
ies concerning the properties of periodic media were initiated by this
classical paper.) The basic Rayleigh’s conclusion was that (1.19) does
hold for dilute to moderate concentrations φ2, but for closer packing
of spheres and cylinders, considerable deviations from the predicted
values are present.

The evaluation of the terms of higher orders in Eq. (1.20), e.g. the
one proportional to φ2

2, requires already that spheres’ interactions be
taken into account. If it is done properly, then the spatial statistics
of the sphere’ distribution should enter the result. The appropriate
problem appears very hard and had to wait exactly 100 years after
Maxwell, when Jeffrey [JEa], in 1973, derived the first exact formula
for the successive φ2

2-coefficient in the power expansion (1.20).

1.1.3.4 Einstein

The dawn of the 20th century witnessed the emergence of some new
micromechanical problems whose motivation was already different
from the mainly electrical “preoccupation” of the previous century
(a notable exception was the classical Voigt quest for the effective
elastic properties of a polycrystal [VOa]). In a pioneering paper on
viscosity of dilute suspensions Einstein [EIa], in his PhD dissertation,
addressed the question of experimental measurement of the size of
molecules. His simple and innovative reasoning may be summarized
as follows.

Consider a known amount of molecules, n, per unit volume of a
solvent. The molecules are identical, and each one is imagined as
a rigid sphere of an unknown radius a. Thus there exists a volume
concentration φ2 = nVa = n4

3πa
3 of particles in the solvent, i.e. a

liquid suspension is to be studied. Let the liquid be Newtonian,
of viscosity µ1. The presence of the rigid spheres will undoubtedly
make the suspension more “viscous,” so that it will possess a cer-
tain gross macroscopical viscosity µ∗. The micromechanical problem
consists in evaluating µ∗, provided µ1 and the volume fraction φ2

of the molecules are known. Einstein solved this problem for slow
motions (in the Stokesian approximation, that is) and in the dilute
case, when φ2 � 1 and hence the many-particle interactions can be
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neglected. Each sphere (molecule) can be then considered as single,
immersed into a given (shear, to be more specific) flow of the fluid at
infinity. The presence of the sphere, perturbing the flow, will increase
the energy dissipation, by a certain quantity ∆, proportional to the
spheres’ volume Va. Technically, the correct formula for ∆ was the
core of Einstein’s calculations. Since the interactions are neglected,
the total dissipation’s increase will be n∆, i.e. n times higher. This
increase, from a macroscopical point of view, can be attributed to the
change of the gross viscosity of the suspension, which has the needed
value µ∗, and this fact led him to the now famous formula

µ∗

µ1
= 1 + 2.5φ2 + O(φ2) , (1.21)

named after him.6 Though Einstein reasoning is based on some sim-
ple solutions of the Stokes equations, his derivation is quite technical
and will be omitted here. The classical formula (1.21) will be derived
in Section 1.5.2 below as a particular case of a more general result
(see Remark 5.6).

The term O(φ2), added in the right-hand side of Eq. (1.21), under-
lines the fact that it is strictly valid, similarly to the Maxwell’s one
(1.19), only in the dilute case φ2 � 1, when the spheres’ interactions
can be totally neglected.

Applying the formula Eq. (1.21) for sugar solutions and using
some viscosimetric data, Einstein was able to obtain experimentally
the volume concentration φ2 = nVa of the sugar molecules; for a
given n, it led him to a certain value of their radius a which turned
out to represent reasonable approximation of the latter. For our pur-
poses, however, much more interesting is the micromechanical prob-
lem, posed by Einstein, namely, how to evaluate a macroscopic prop-
erty (viscosity), using the available microscopic information, i.e., in
the dilute case, the viscosity of the solvent and the volume fraction
of the particles.

1.1.3.5 Smoluchowski

Another classical micromechanical problem was introduced in 1916
by Smoluchowski in his “Three papers on diffusion, Brownian motion

6As a matter of fact, Einstein introduced and used the so-called “energy”
definition of the effective properties; see Section 1.2.4 below.
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and coagulation in colloid solutions” [SMa]. There he considered, in
particular, a dilute array of fixed spheres that absorb a species diffus-
ing around. The question was what is the mean rate of absorption in
such a system of spheres, provided the concentration is kept constant
at infinity.

Since the array is dilute, each sphere (of the radius a) can be
treated as alone, located at the origin. In the steady-state limit the
species concentration c(x) is governed by the equation:

∆c(x) = 0 , c(x)
∣∣∣
r=a

= 0 , c(x) −→
r→∞

c0 , (1.22)

whose solution is obvious

c(r) = c0

(
1− a

r

)
, r ≥ a . (1.23)

The flux of the diffusing species within the sphere is

−
∫

r=a
j(x) · er dS ,

where j(x) = −D∇c(x) is the local flux vector (according to Fick’s
law) and D is the diffusing coefficient. Employing Eq. (1.23) gives the
value 4πaDc0 for this flux. If n is the number density of the spheres,
the total flux K due to all spheres, i.e. the total rate of absorption,
is n times bigger (recall the dilute assumption). Hence

K = k2
sc0 , k2

s = 4πanD =
3
a2
φ2D ; (1.24)

similarly to the foregoing analysis of fluid dispersions, φ2 = nVa is
the volume fraction of the spheres.

Thus there is a balance between creating diffusing species (in order
to keep its concentration, c0, at infinity fixed) and its “removal” due
to the spherical “traps” or “sinks.” The proportionality coefficient
between c0 and this removal rate, K, is just the so-called effective
reaction-rate constant or the effective absorption coefficient, denoted
by k∗2:

K = k∗2c0 , k∗2 = k2
s + O(φ2) . (1.25)

(k∗2 is also called trapping constant or sink strength.)
Similarly to the foregoing Einstein’s formula (1.21), O(φ2) is added

in the right-hand side of Eq. (1.25) to underline the fact that the
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Smoluchowski’s value k2
s is the dilute approximation of the effective

sink strength, strictly valid only when the spheres’ interactions are
totally neglected.

Smoluchowski’s paper initiated a broad and extensive research
activity, concerned with the so-called diffusion-controlled reactions—
chemical events whose rate decisively depends on the transport pro-
cesses, like diffusion, in a solution of reactant entities. For more de-
tails and different points of views and interpretations, concerning the
ideas, results and basic references in this important field the reader
is referred to the papers [FEa], [TAa], or to the survey of Calef and
Deutch [CAa]. For our aims here much more interesting, once again,
is the micromechanical problem, posed by Smoluchowski, namely,
how to evaluate a macroscopic property (the effective rate constant
now), using the available microscopic information, i.e. in the dilute
case, the volume fraction of the spheres.

1.1.4 Outline of the Survey
A number of the simplest ideas, methods and results, concerning ho-
mogenization procedures for heterogeneous media, are collected in the
present survey, with no pretense to give a full exposition. The aim
is much more modest—to provide a certain basic reading and a gen-
eral picture for a newcomer to gain some necessary knowledge, before
proceeding to more specific aspects and (extremely voluminous) spe-
cialized literature. Another aim lies also in underlying the common
nature and unity of the problems and approaches, spread through
many different communities, to mention only pure mathematics (ho-
mogenization of differential equations with periodic and random co-
efficients), solid mechanics (composite materials), hydromechanics
(liquid dispersion and emulsions, flows through porous media), geo-
physics (micromechanics of rocks), chemical physics (diffusion-absor-
ption reactions), and so on and so forth. Though the context, the
terminology, the way of thinking and “language” may widely vary, be-
hind many of the central, for these fields, problems lies one and the
same fundamental quest about the “micro-macro” interconnection.

The list of references, though extensive, by no means pretends to
be exhaustive. It includes some (but not all) of the basic works in the
fields and may provide a certain guide where to find further details
and references for interested readers. We have tried to mention as
well some of the earlier and perhaps not very well-known works in
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this field to demonstrate that the basic and classical ideas are old
and, typically for any classic, have been rediscovered many a time.

Only static behavior and static approaches will be discussed here.
A thorough and critical discussion of somewhat similar methods, us-
ing wave phenomena and, in particular, features of scattered fields by
single inclusions in a particulate medium, can be found in Berryman’s
papers [BEm], [BEn].

The volume-average approach is used throughout, which may ex-
plain the word elementary in the title. Though this approach pos-
sesses certain inherent inconsistencies at a closer look (underlined in
due course below), it seems more appealing to the author for introduc-
tory purposes and for a broader audience. The word elementary un-
derlines also the fact that in recent decades heterogeneous media have
been studied by means of new and much more refined methods. The
statistical modelling has already been mentioned, together with the
book [BEi] (see also [KRf]). The methods, based on various homoge-
nization procedures (such as two-scale expansions, G-convergence and
so on), have received special attention; see, e.g. the books [SAa] or
[ZHa]. The modelling aspects, concerned with determination of “op-
timal” micro-structures, should be specially mentioned as well. The
appropriate problems, ideas, and results in this field can be found in
[MIg]. The author hence believes that in view of the recent extensive
research activity, combining new mathematical tools and approaches,
the reasoning and the results, collected in the present survey, indeed
deserve to be called elementary.

The basic notions and definitions are introduced in Section 1.2;
there, as in the rest of the paper, the scalar conductivity context is
first used for illustration. The reason is that, being simpler formally,
it allows one to concentrate on the basic problems, unshaded by tech-
nical details that may appear in a similar elastic context. There are
two central results of the Section: (i) the equivalence of the energy
definition of the effective properties to the usual ones, under homo-
geneous boundary conditions; (ii) the Willis result of consistency,
stating that the effective conductivity and resistivity are the inverse
of each other. Moreover, the Willis reasoning, reproduced in a sim-
plified situation here, clarifies the special role of the homogeneous
boundary conditions and proclaims their “extremum” properties.

Some of the “evergreens” of the theory of heterogeneous media
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are collected in Section 1.3. This is the perturbation theory for
a weakly inhomogeneous materials, as initiated by Brown in 1955
[BRd]. The Bergman formula is then derived [BEk], which intercon-
nects the derivatives of the effective conductivity with respect to the
properties of the constituents with the mean “energies,” accumulated
within the latter. Only one of the simpler applications of this impor-
tant formula is exploited—the beautiful Matheron derivation [MAi] of
the Hashin-Shtrikman estimates on the effective conductivity, with-
out invoking the original variational arguments of Hashin and Shtrik-
man [HAk]. These bounds hold under the sole assumption that the
material is macroscopically isotropic. The Hashin assemblage [HAe]
is then constructed to demonstrate that the bounds are sharp, in the
sense that they cannot be improved. The Beran’s bounds are then
derived and simplified, after Torquato and Milton; the appearance
of three-point statistical parameters there indicates that the effective
properties depend in general on all details of the internal structure,
as reflected by the appropriate “multipoint” characteristics (correla-
tions) of a heterogeneous medium. The cross-property relations and
their “philosophy” are briefly discussed as well; the original deriva-
tion of the first such relation, due to Levin [LEa], is supplied: it
interconnects exactly the effective bulk modulus and thermal expan-
sion coefficient.

In Section 1.4 the single particle problem is discussed in various
contexts. The well-known Eshelby result [ESa] is first proved, stating
that the temperature gradient (or the strain) within an ellipsoidal in-
homogeneity immersed in a homogeneous matrix is constant provided
the applied gradient (or strain) at infinity is constant. The reason-
ing here is simplified, as compared to the original Eshelby’s one, and
follows, as a matter of fact, Wu [WUa].

The aim of Section 1.5 is to show how various “repetitions” (to cite
again Maxwell [MAj, Section 314]) of the single-inclusion solution of
Section 1.4 can be systematically utilized in order to derive the basic
and most widely used approximate (static) models for predicting the
effective properties of particulate media, like self-consistent, differen-
tial scheme and effective field. The starting point are the “concentra-
tion” factors, introduced in Section 1.2, and the representations, due
to Reynolds and Hough [REb] and Hill [HIb] of the effective proper-
ties, through these factors. Each approximation then corresponds to
a certain qualitative and intuitively appealing replacement of a con-
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centration factor by a quantity that stems out from the appropriate
solution for a single inhomogeneity.

Section 1.6 demonstrates, after Hershey [HEb] and Kröner [KRd],
the application of the self-consistent arguments for predicting the ef-
fective elastic moduli of polycrystals. As an illustration, the simplest
case of cubical symmetry of grains is treated at some length.

The survey is a (considerably) extended version of the course on
composite and heterogeneous media, read by the author in the last
years for graduate students in the Faculty of Mathematics and Infor-
matics at the “St. Kliment Ohridski” University of Sofia. (A number
of topics were included also in the author’s lectures presented in 1994
at the Department of Engineering Sciences of the Istanbul Technical
University and, in 1997, in the Department of Mathematics of Torino
Polytechnics.) As a consequence, the exposition is quite detailed with
no “incantations” of the kind “it is easily seen . . . ”. Besides a nat-
ural curiosity, nothing more than a basic knowledge of differential
equations, continuum mechanics and tensor calculus is required from
a reader.

As a rule, the bold-face lower-case letters e, x, y, etc., are used
for vectors. The upper-case such letters A, K, etc., are reserved for
second-rank tensors, the shadow symbols A, L, etc., denote fourth-
rank tensors. Dyadic notations are used, e.g. xy = x⊗y is the dyadic
product of the vectors x and y. The dot stands for a contraction
with respect to one pair of indices, and the colon—with respect to
two pairs, say,

(A ·B)ij = AiαBαj , (A : B)ijkl = AijαβBβαkl ,

in a Cartesian system, with the summation convention adopted
throughout.

1.2 The Homogenization Problem

The simplest point of view, already introduced and briefly discussed
on the examples in the previous Section, is that a heterogeneous
medium behaves macroscopically in the same way, as do its con-
stituents, but with different, effective, values of the appropriate ma-
terial constants. In the present Section we shall try to put this point



22 Heterogeneous Media: Modelling and Simulation

of view on a clearer framework, introducing and analyzing the defi-
nition of the effective properties.

1.2.1 The Representative Volume Element
A basic notion in micromechanics is the representative volume ele-
ment (RVE). Though it can be more rigorously defined, see e.g. [DRa],
it is appropriate to be imagined in the following manner [HIb]. This
is a volume which is small enough from a macroscopical point of view
and could be thus treated as a typical “point” of the heterogeneous
continuum under study. On the other hand, it should be large enough
in the microscopical scale, in order to contain a large number of single
inhomogeneities and therefore to be indeed typical “representative”
for the microstructure of the solid. A more detailed discussion of
RVE’s, together with certain criteria how to identify them, can be
found in the book [NEa, Chapters 1.3 and 2.5.4].

It is noted that the notion of RVE (as well as the volume averaging
procedure to be used in the sequel) was clearly and vividly described
already in the classical Lorentz’ book [LOb, Section 113]. The author
introduces there the mean value φ, over a ball S, of a microscopically
fluctuating quantity φ, and adds that the size of the ball should be
neither too big nor too small, in order to get a meaningful macroscopic
characterization of φ. Lorentz’s comments on the words “too big” and
“too small,” that followed in the same Chapter, is just what is now
understood as a RVE.

The foregoing “definition” of a RVE will undoubtedly leave un-
happy any reader with a more rigorous taste. It should be pointed
out, however, that this notion is very convenient on a heuristic and
elementary level of consideration, pursued in this survey, and allows
us to introduce and develop the basic ideas and some of the sim-
plest techniques of micromechanics, in general, and of mechanics of
composites, in particular. A more rigorous approach, say, for random
media, does not need the notion of RVE at all. Note that for periodic
media the RVE is unambiguously defined (this is simply the typical
unit cell of the structure). It is to be noted also that our RVE here
is just the well-known “material point” of a continuous medium—the
basic notion, which lies in the foundation of continuum mechanics.
The only difference is the size of inhomogeneities: for the latter they
often correspond to molecular or atomistic scales. For heterogeneous
solids this size is defined by the dimensions of a typical inclusion or
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of a monocrystal (in a polycrystalline aggregate).
The heterogeneous media considered here can be thus character-

ized, after Hashin [HAi], in the following manner. It is possible to
distinguish within them representative volume elements which are
small macroscopically. Their typical dimension defines the so-called
mini-scale. A RVE consists of a big amounts of much smaller inho-
mogeneities (inclusions, monocrystals, etc.), whose dimension defines
the micro-scale. The composite medium itself consists of many RVE;
its size defines, in turn, the macro-scale. For the very idea of homog-
enization to be sensible and to produce widely applicable results, the
following inequalities between the above defined three length scales
should hold:

MICRO � MINI � MACRO . (2.1)

After Hashin [HAi], we shall call (2.1) the MMM principle.
Note that though general, the violation of the MMM principle in

certain approximate homogenization schemes does not imply that the
resulting predictions are useless or should be immediately rejected.
It rather indicates that the internal structures, for which the schemes
may be applicable and useful, have little in common with the sim-
plified models (like dispersions of identical particles), utilized when
deriving the appropriate approximations for the effective properties
(see Section 1.5.3.1 below).

Remark 2.1 The MMM principle can be traced back as far as the
Poisson’s 1829 Mémoire [POc, p. 149], where he wrote: “The molecu-
les are so small and so close to one other that a portion of a body
containing an extremely large number of them can be still supposed to
be extremely small and to have an insensibly small volume.” (trans-
lation and citation after Arnold [ARb, p. 364]). As pointed out by
Arnold in the same paper, this statement is crucial to Poisson’s con-
ception of matter. In our context, the latter is but a heterogeneous
medium (with the “molecules” treated as certain inhomogeneities),
which we macroscopically observe and study as homogeneous on this
level.

Remark 2.2 The fact that only two length scales—micro and mini—
are considered hereafter, besides the macroscopic one, means that one
more assumption is tacitly adopted: namely, that the applied exter-
nal field is either macroscopically homogeneous or varies slowly. If
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this field varies rapidly, as it is the case with the wave propagation
problems, when the wave-length is of the order of the micro-length
`, the situation drastically changes. The homogenization can still be
performed (though ensemble averaging should be used from the very
beginning), but the macroscopic equations will be nonlocal. Any
discussion of nonlocality goes, however, far beyond the scope of the
present survey. It suffices to say only that in this case the stress,
e.g. in a “point” would depend on the strain within the entire body
through a certain integral operator. For details, discussion and ref-
erences, the reader is referred to the book [KUa], see also [WIe].

The position of a typical mini-element (a RVE) is identified by
X, so that all continuum quantities like temperature, flux, stress and
strain fields, etc., are functions of X. (Hereafter, stationary prob-
lems will be only discussed, and hence the time t is not present.) To
distinguish these fields from the same ones within the RVE which
exemplifies the internal structure of a typical continuum’s “point,”
the continuum fields are referred to as macro-fields, and those within
a RVE as micro-fields, respectively. That is, instead of saying, for ex-
ample, “the temperature within the continuum” or “the temperature
field within the RVE, that corresponds to the particle X,” the expres-
sions macrotemperature field and microtemperature field are used. In
a similar manner, the continuum displacement, mass-density, strain,
stress, and other physical quantities are identified by an appropriate
use of the prefix “macro,” and those within a RVE by the prefix “mi-
cro.” Again the analogy with the typical reasoning, contained at the
opening pages of textbooks on continuum mechanics, can be easily
observed: The only difference lies in the interpretation and in the size
of the “material point”—the RVE in our case.

The physical quantities of interest on the micro-level, i.e. within
the RVE, depend also on the local coordinate x, e.g. the temperature
θ = θ(X;x) varies both on macro- and micro-levels. (The depen-
dence of both macro- and micro-coordinates X and x indicates that
the internal fields in the medium vary, in general, in different ways
in different RVE’s.) The connection between the macro- and micro-
quantities is supplied by the volume averaging, with respect to the
micro-coordinate x, e.g.

θ(X) =
1
V

∫
V
θ(X;x) dx , etc. , (2.2)
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where V is the RVE, “attached” to the macro-point X, and V =
volV.

Since the point X spans the body, the quantities like θ(X) in
Eq. (2.2) are called moving averages. Such averages play a central
role in the elementary theory of effective properties, developed and
discussed below.

In what follows the analysis will be restricted to the important
class of statistically homogeneous materials. In the terminology of
moving averages it means, roughly speaking, that the macroscopic
properties of almost all RVE’s (more precisely, except those near the
macroscopic boundary of the solid) are one and the same, see [HAf]
and [NEa] for more details and comments.

The assumption of statistical homogeneity allows us to deal in
what follows with a single RVE, V. The latter indeed will be then
representative, in the sense that it will possess the same gross prop-
erties as all of the rest of such elements. These properties will then
coincide with those of the medium as a whole. That is why the
words RVE, the volume V and the medium will be used hereafter
interchangeably as synonyms.

In most of the cases, treated below, we shall assume that the
medium is statistically isotropic as well; again, without entering a
longer discussion, we shall only point out that the latter means that
the macroscopic properties under study are independent of direction.

1.2.2 Definition of the Effective Conductivity
Let V be a RVE. Consider the heat propagation problem (1.5) in V,
with the boundary condition

θ(x)
∣∣∣
∂V

= G · x , (2.3)

∂V is the boundary of V. If the RVE is homogeneous, then θ(x) ≡
G · x, ∀x ∈ V, and thus ∇θ ≡ G. That is why (2.3) will be called a
homogeneous boundary condition.

For a heterogeneous RVE, the field θ(x) fluctuates inside V. How-
ever, the boundary conditions (2.3) yield that

∇θ = G , (2.4)

as if the volume were homogeneous. This fact is a consequence of a
more general statement, see [HAh, Section 3.1] or [NEa], which we
shall first formulate in the simpler scalar case:
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Lemma 2.1 Whatever the composition and microstructure of the
RVE, the volume average of the temperature gradient is completely
determined by the temperature of the boundary ∂V.

Proof. Let θ(x) be a temperature field in V, attaining prescribed
boundary values θ0(x). Using the Gauss theorem, we have

∇θ =
1
V

∫
V
∇θ(x) dx

=
1
V

∫
∂V

nθ(x) dS =
1
V

∫
∂V

nθ0(x) dS ,

(2.5)

where n is the outward unit vector to the boundary ∂V. Eq. (2.5)
shows that the boundary values θ0(x) do specify the volume average
∇θ uniquely.

In particular, if θ0(x) = G · x, Eq. (2.5) implies

∇θ =
1
V

∫
∂V

nG · x dS

=
1
V

∫
V
∇(G · x) dx =

1
V

G ·
∫
V
∇x dx = G ,

(2.6)

which proves (2.4) (having used once more the Gauss theorem and
the fact that ∇x = I, where I is the unit second-rank tensor).

Consider now Eq. (1.5) with respect to the temperature field, i.e.

∇ · (κ(x)∇θ(x)) = 0 , (2.7)

with the boundary condition (2.3). Since κ(x) > 0, it can be easily
shown that the BVP problem (2.7), (2.3) possesses a solution, θ(x),
which is unique. The latter allows us to evaluate the mean heat flux
over the RVE under study

Q = q = κ(x)∇θ(x) =
1
V

∫
V
κ(x)∇θ(x) dx . (2.8)

Due to the obvious linearity of the boundary-value problem (2.3),
(2.7) with respect to G, the vector Q is a linear function of G, i.e.

Q = K∗ ·G , (2.9)
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where K∗ is the second-rank tensor of effective conductivity of V. In
the statistically isotropic case, this tensor is spherical, so that (2.9)
reduces to

Q = κ∗G , (2.10)

with κ∗ being the effective (or overall, or macroscopic) conductivity
of the volume V.

Eq. (2.9) means that we replace the micro-inhomogeneous volume
V by a homogeneous one, with conductivity K∗, which, from a micro-
scopical point of view, “reacts” in the same way. Thus, if we are not
interested in detailed microscopic fields within the RVE, but rather in
the macroscopically measured quantities like the volume averages q,
∇θ, etc., we can homogenize V, i.e. treat it as a homogeneous entity
possessing the overall conductivity κ∗. The problem then consists
in evaluating K∗ making use of appropriate information about the
microstructure of V. This is a typical and very difficult problem of
micromechanics of heterogeneous and composite media.

The fundamental reason that makes the evaluation of the effec-
tive properties so difficult, can be well seen from the very structure
of Eq. (2.7). At first glance, the BVP (2.7), (2.3) looks innocuous,
resembling the ones treated in the basic books on PDE’s. In these
books, however, the emphasis lies on the dependence of the solu-
tion upon the boundary data, which is obviously linear. Here the
boundary condition is fixed, and one should find the solution θ(x)
for given coefficients κ(x); the dependence of θ(x) upon the latter
is already nonlinear, as first pointed out by Kraichnan [KRa] (in a
physically entirely different context though). This gives rise to very
serious mathematical complications, common for all problems con-
cerning heterogeneous media and their homogenization. Typical and
very important among them is the fact that even the mean value of
the solution, like the one in Eq. (2.8), depends on all details of the
internal structures of the medium. More persuasive and specific ar-
guments in support of this statement will be given in Section 1.3.1.3
below, on the example of a weakly inhomogeneous medium.

Remark 2.3 If, by chance, the temperature gradient is constant
within V, i.e. θ(x) ≡ G · x, if x ∈ V, the effective conductivity
κ∗ is exactly the mean κ of the constituents’ conductivities. Hence
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for an N -phase medium

κ∗ = κ , κ =
N∑

i=1

φiκi , (2.11)

as easily seen from Eqs. (2.8) and (2.10); here φi = Vi/V is the volume
fraction of the ith constituent that occupies the volume Vi ⊂ V; κi is
its conductivity, i = 1, . . . , N .

The assumption that the temperature possesses a constant gradi-
ent within the medium was adopted, as a matter of fact, by Voigt
[VOa], in his study of elastic moduli of polycrystals (accordingly,
he proposed that the strain field is homogeneous within the poly-
crystalline sample). That is why the approximation (2.11) is called
Voigt’s and is designated by the superscript ‘v’, i.e. κv = κ.

It is noted that a temperature field with a constant gradient does
appear in a heterogeneous solid, provided it is a fiber-reinforced or
layered material, and the applied macroscopic gradient G is along the
fibers or layers, see Section 1.5.2. If however the gradient G is per-
pendicular to the laminae in the layered material, though the volume
fractions of the constituents remain the same, its effective conduc-
tivity κ∗ is already totally different. (In this case it coincides with
the Reuss’ value, see Eq. (2.18) and Remark 2.2 below.) This simple
observation demonstrates that κ∗ is indeed sensitive to the internal
structure of the medium. As a consequence any theory that tries to
predict the effective behavior on the base of the volume concentra-
tions and phases’ properties solely can serve, at the best, only as a
certain heuristic approximation.

1.2.3 Definition of the Effective Resistivity

Recall that the conduction through a solid can be alternatively stud-
ied, choosing as a basic variable the heat flux q(x) instead of tempera-
ture (this is the so-called dual formulation). Since q(x) is divergence-
free, ∇ · q(x) = 0, it can be represented by means of its vector-
potential Φ(x):

q(x) = ∇×Φ(x) , (2.12)

where ∇ × (·) = curl (·) is the curl of the respective vector field.
In turn, the curl of any potential field and, in particular, that of
∇θ(x) = k(x)q(x), vanishes. Here k(x) = 1/κ(x) is the so-called
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resistivity or (inspired by the elasticity terminology), the compliance
field of the medium.

Hence, the vector potential Φ(x) satisfies the equation

∇× (k(x)∇× Φ(x)) = 0 (2.13)

which is the counterpart of the basic Eq. (2.7) for the temperature
field.

Let us prescribe the heat flux on the boundary ∂V

qn
∣∣∣
∂V

= Q · n , qn = q · n , (2.14)

where Q is a given vector. For a homogeneous V, q(x) ≡ Q, for
all x ∈ V, and thus q = Q. That is why the boundary condition
(2.14) will be also called homogeneous (with respect to flux); it is the
counterpart of the homogeneous condition (2.3) for the temperature.

For a heterogeneous V the field q(x) fluctuates. However, the
boundary condition (2.14) implies that

q = Q , (2.15)

as if the volume V were homogeneous, similarly to Eq. (2.4). This
fact is again a consequence of a more general statement, “dual” to
Lemma 2.1, see [HAh, Section 3.1] or [NEa], which we shall formulate
once again in the simpler scalar case first:

Lemma 2.2 Whatever the composition and microstructure of RVE,
the volume average of the heat flux, at the absence of body sources,
is completely determined by its boundary values on ∂V.

Proof. Let q(x) be a heat flux field in V, attaining the prescribed
boundary values. Due to the assumed absence of body sources
∇ · q(x) = 0. In the Cartesian system xi, i = 1, 2, 3, we have, using
the Gauss theorem,

qi =
1
V

∫
V
qi(x) dx =

1
V

∫
V
δijqj(x) dx

=
1
V

∫
V
xi,jqj(x) dx =

1
V

∫
V
(xiqj(x)),j dx

− 1
V

∫
V
xiqj,j(x) dx =

1
V

∫
∂V
xiqn(x) dS ,

(2.16)



30 Heterogeneous Media: Modelling and Simulation

and hence q is indeed uniquely specified by the values qn | ∂V .
In particular, let qn = Q ·n on ∂V. To check the validity of (2.15),

we repeat almost literally the reasoning after Lemma 2.1, see (2.6).
Indeed, in virtue of Eq. (2.16),

q =
1
V

∫
∂V

xqn dS =
1
V

∫
∂V

xn ·QdS =
1
V

Q ·
∫
V
∇x dx = Q ,

which proves (2.15), since ∇x = I.
Consider next Eq. (2.13) for the potential Φ(x), together with

the boundary conditions (2.14). This BVP has a solution which is
unique in the class of solenoidal fields (∇ ·Φ(x) = 0). Thus the field
∇ × Φ(x) is uniquely defined, and we can evaluate the respective
mean temperature gradient

G = ∇θ = k(x)∇× Φ(x) = k(x)q(x) = k∗Q . (2.17)

The parameter k∗ that enters (2.17) is called the effective (or
overall, or macroscopic) resistivity of the volume V. (Recall that we
have assumed the medium isotropic. Otherwise the constant k∗ in
(2.17) should be replaced by the appropriate second-rank tensor of
effective resistivity.)

The interpretation of Eq. (2.17) is fully similar to that of Eq. (2.10);
it means that we “homogenize” the RVE, V, under study, replacing it
by a homogeneous one, with the resistivity k∗. The volume V, from
a macroscopical point of view, will behave then in the same way as
the heterogeneous one.

Remark 2.4 If, by chance, the heat flux is constant within V, i.e.
q(x) ≡ Q, x ∈ V, the effective resistivity is exactly the mean value
k of the constituents’ resistivities

k∗ =
1
κ∗

= k , k =
N∑

i=1

φiki =
N∑

i=1

φi

κi
, (2.18)

as easily seen from Eq. (2.17). Here, similarly to Remark 2.1, φi and
κi are the volume fraction and conductivity of the ith constituent,
i = 1, . . . , N .

The assumption of a constant flux is to be attributed to Reuss
[REa] who, similarly to Voigt, studied the elastic moduli of polycrys-
tals (accordingly, he proposed that the stress field is homogeneous
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within the polycrystalline sample). That is why the approximation
(2.18) is called hereafter Reuss’ and is designated by the superscript
‘r’, i.e. κr = (1/κ)−1.

It is noted that such a constant heat flux field does appear in a
heterogeneous solid, provided it represents a layered material, and
the applied macroscopic gradient Q is perpendicular to the layers,
cf. Section 1.5.2.

We shall conclude this section with a comment concerning the
dual formulation (2.13) of the heat conduction problem. Comparing
(2.13) with (2.7), one notices that Φ(x) is the exact counterpart of
the scalar potential θ(x) (the temperature), with divergence replaced
by the curl operator. One may feel tempted to extend this analogy to
the boundary conditions as well, and it seems at first glance natural
to combine Eq. (2.13) not with (2.14), but rather with the boundary
condition

Φ(x)
∣∣∣
∂V

= Φ0(x) = 1
2Q× x (2.19)

—the exact counterpart of (2.3). Indeed, if the volume V is homo-
geneous, then q(x) = 1

2∇ × (Q × x) ≡ Q, ∀x ∈ V, so that (2.19)
corresponds obviously to a constant heat flux Q throughout V. Then,
in particular, q ≡ Q.

For a heterogeneous RVE, both Φ(x) and q(x) fluctuate inside V.
However, the boundary conditions (2.19) yield the validity of (2.15)
as if the volume were homogeneous. This fact is a consequence of the
statement which is a direct counterpart of Lemma 2.1:

Lemma 2.3 Whatever the composition and microstructure of the
RVE, the volume average of the heat flux is completely determined
by the values, Φ0(x), of its vector potential Φ(x) at the boundary ∂V.

The proof literally repeats the one of Lemma 2.1, having replaced
∇θ(x) by ∇ ×Φ(x). In particular, if the function Φ0(x) on ∂V be
the one, given in Eq. (2.19), that corresponds to a constant heat flux
in a homogeneous volume V, then q = Q. Hence, the “homogeneous”
boundary condition (2.19) also assures the validity of (2.15), whatever
the internal constitution of the medium.

Similarly to the foregoing reasoning, we can solve Eq. (2.13) with
the boundary condition (2.19) and find the appropriate mean value of
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the temperature gradient G† = ∇θ, see Eq. (2.17). The so-obtained
G† is undoubtedly proportional to the prescribed mean heat flux Q:

G† = k∗†Q . (2.20)

We cannot claim however that the constant k∗†, as defined in
Eq. (2.20), coincides with the effective resistivity k∗, introduced in
Eq. (2.17). The reason is that the appropriate temperature gradients
G† 6= G, since they result from solutions of Eq. (2.13), corresponding
to different boundary conditions, respectively, to (2.14) and (2.19).
The question then arises why (2.14) was preferred when defining the
effective resistivity in Eq. (2.17). The answer will be given in Sec-
tion 1.2.5 below, when discussing the consistency of the definitions
of effective conductivity and resistivity, in the sense that they should
be each other’s inverse. Moreover, it will be shown there (Theorem
2.2) that the homogeneous boundary conditions (2.3) and (2.14) mini-
mize the appropriate energies of the RVE as compared to all plausible
boundary conditions that give rise to prescribed mean temperature
gradient and heat flux respectively. (This will imply in particular
that k∗† ≥ k∗.)

1.2.4 Energy Definition of the Effective Constants

Consider the “energy” of the RVE

W =W (x;∇θ(x)) = 1
2q(x) · ∇θ(x) ,

W (x;∇θ(x)) = 1
2κ(x)|∇θ(x)|2 .

(2.21)

Lemma 2.4 If the temperature on the boundary ∂V is G ·x, so that
∇θ(x) = G, then

W = 1
2q · ∇θ = 1

2κ
∗G2 . (2.22)

Proof. Let
∇θ(x) = G +∇θ′(x) , G = ∇θ ,

q(x) = Q + q′(x) , Q = q ,

so that ∇θ′(x) and q′(x) are the fluctuations of the indicated quan-
tities about their mean values G and Q respectively. Then

W = 1
2Q ·G + 1

2q′(x) · ∇θ′(x) . (2.23)
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But

q′(x) · ∇θ′(x) =
1
V

∫
V

q′(x) · ∇θ′(x) dx

= − 1
V

∫
V
θ′(x)∇ · q′(x) dx+

1
V

∫
∂V
q′n(x)θ′(x) dS = 0 ,

(2.24)

because
∇ · q′(x) = ∇ · (q(x)−Q) = ∇ · q(x) = 0 ,

and
θ′(x)

∣∣∣
∂V

= (θ(x)−G · x)
∣∣∣
∂V

= 0 .

It follows, in virtue of Eq. (2.23), that

W = 1
2Q ·G = 1

2κ
∗G2 , (2.25)

having used the definition (2.10) of the effective conductivity κ∗ of
the RVE.

It is noted that the above “energy” definition of the effective prop-
erties, used in a particular situation already by Einstein [EIa] (see the
footnote on page 16), appeared first in Hashin’s papers [HAc] and
[HAf] and, independently, in [HIb].

Remark 2.5 It is important to point out that in the linear case
under study, the function W (x;∇θ(x)) plays the role of a micropo-
tential, i.e.

q(x) =
∂W (x;∇θ(x))

∂∇θ(x)

in each point x ∈ V. Lemma 2.5 then means that

Q = q =
∂W (G)
∂G

= κ∗G ,

so that the average potential W (G) = 1
2κ
∗G2 plays the role of the

macropotential. In other words, averaging the micropotential we get
just the macropotential; in the latter, the rapidly fluctuating conduc-
tivity field κ(x) is “smoothed out” being replaced by the effective
conductivity κ∗ of the RVE.
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Consider now the “energy” of the RVE as a function of the dual
variable—the heat flux q(x), i.e.

Ψ = 1
2Ψ(x; q(x)) = 1

2q(x) · ∇θ(x) ,

Ψ(x; q(x)) = 1
2k(x)|q(x)|2 .

(2.26)

Note that the “energies” W and Ψ, as defined in Eqs. (2.21) and
(2.26), coincide, provided the appropriate fields are interconnected by
the Fourier law (1.5) and k(x) = 1/κ(x). We shall keep however these
different notations for them in order to underline that the “energy”
is considered as a functional of different arguments—the temperature
and the heat flux fields respectively.

Lemma 2.5 Let there be no body sources in the RVE. If the heat
flux qn on the boundary ∂V equals Q·n, so that q = Q, see Eq. (2.15),
then

Ψ = 1
2q · ∇θ = 1

2k
∗Q2 . (2.27)

Proof. We repeat the reasoning of the foregoing proof of Lemma 2.4.
In the case under study we have again q′(x) · ∇θ′(x) = 0, since now
q′n(x) = qn(x)−Q · n = 0 on ∂V. That is why

Ψ = 1
2Q ·G = 1

2k
∗Q2 , (2.28)

having used the definition (2.17) of the effective resistivity k∗ of
the RVE.

Remark 2.6 Similarly to Remark 2.1, it is noted that in the linear
case under study the function Ψ(x; q(x)) = 1

2k(x)|q(x)|2 plays the
role of a micropotential, i.e.

∇θ(x) =
∂Ψ(x; q(x))

∂q(x)

in each point x ∈ V. Lemma 2.4 then means that

G = ∇θ =
∂Ψ(Q)
∂Q

= k∗Q ,

so that the average potential Ψ(Q) = 1
2k
∗Q2 plays the role of the

macropotential. In other words, averaging the micropotential we get
just the macropotential; in the latter the rapidly fluctuating resistiv-
ity field k(x) is “smoothed out” and replaced by the effective resis-
tivity k∗ of the RVE.
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Remark 2.7 Let q(x) be an arbitrary divergence-free field (not nec-
essarily proportional to ∇θ(x)). The two Lemmas 2.4 and 2.5 imply
that

q(x) · ∇θ(x) = q · ∇θ , (2.29)

either for uniform temperature gradient θ(x) = G · x or for uniform
flux qn(x) = Q · n on the boundary ∂V. These two boundary condi-
tions, either of which implies the validity of (2.29), are often called
in the literature Hill’s.

Note also that Eqs. (2.22) and (2.27) can serve as alternative def-
initions of the effective conductivity and resistivity, respectively, of
the RVE. Their equivalence to the usual definitions (2.10) and (2.17)
has several important consequences. One of them will be explored
immediately in the next subsection.

1.2.5 Consistency of the Definitions of Effective Properties

The possibility to introduce the effective properties on the base of
“energy” notions allows, first of all, a demonstration of the consis-
tency for the definitions of the effective conductivity and the effective
resistivity, in the sense explained in the following important theorem:

Theorem 2.1 The effective conductivity and resistivity are each
other’s inverse, i.e.

k∗ =
1
κ∗
. (2.30)

Proof. Note first of all that the relations (2.22) and (2.27) do not
suffice to claim the validity of Eq. (2.30). The reason is the follow-
ing. When solving Eq. (2.7) with the boundary condition (2.3), we
shall obtain a certain heat flux field q(x) which is not uniform, in
general, on the boundary ∂V, i.e. qn(x) 6= Q · n, where Q = q. The
effective resistivity, on the other hand, is defined in Eq. (2.17) un-
der the assumption of homogeneous heat flux on the boundary, see
Eq. (2.19). The same remark holds true when considering the solu-
tion of the dual BVP (2.13), (2.19)—it generates a temperature field
whose temperature gradient does not conform in general with the
needed, in the definition (2.10) of the effective conductivity, bound-
ary condition (2.3). That is why the proof of Theorem 2.1 should
be preceded by appropriate comparisons between the energies of a
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RVE, corresponding to a homogeneous and to a certain inhomoge-
neous temperature gradients and heat fluxes on the boundary ∂V.7

Let first the heat flux be homogeneous on ∂V, i.e. qn = Q · n,
x ∈ ∂V, so that q = Q. The solution of the BVP (2.13), (2.14), gen-
erates a temperature field, denoted by θ(a)(x), whose mean gradient
is

G = ∇θ(a) = k∗Q .

Consider next a second temperature field, θ(b)(x), corresponding
to the uniform temperature gradient G · x on the boundary ∂V, i.e.
θ(b)(x) is the solution of the BVP (2.7), (2.3). Obviously, ∇θ(b) = G,
similarly to the field θ(a)(x). In order to compare the energies, stored
by these two fields, consider the difference:

W (b) −W (a) = W (x;∇θ(b)(x))−W (x;∇θ(a)(x))

≥
[
∇θ(b)(x)−∇θ(a)(x)

]
· ∂W (x;∇θ(a)(x))

∂∇θ(a)(x)
(2.31)

=
[
∇θ(b) −∇θ(a)

]
· q(a) = 0 , q(a)(x) =

∂W (x;∇θ(a)(x))
∂∇θ(a)(x)

.

Two facts have been used here. The first is Eq. (2.29) which holds
since in our case q(a)(x) corresponds to a uniform heat flux, see Re-
mark 2.7. The second is that the energy function W (x;∇θ(x)) is
convex with respect to ∇θ(x) provided κ(x) > 0; that is why one
of the well-known definitions of convexity is applicable. (Namely, a
smooth enough scalar function of a vector argument f(u) is convex,
iff f(v)− f(u) ≥ (v − u) · ∇f(u), ∀ u ,v.)

However, in the simplest case under study, when the flux is linearly
connected to the temperature gradient, the inequality, used in the
second line of Eq. (2.31), can be easily checked, without even referring
to convexity arguments. Indeed, in this case it reads

1
2κ(x)

[
|∇θ(b)(x)|2 − |∇θ(a)(x)|2

]
≥ κ(x)

[
∇θ(b)(x)−∇θ(a)(x)

]
· ∇θ(a)(x) ,

7In a much more general variational setting this problem has been comprehen-
sively studied by Willis et al. [TAc], [TOa], [WIf].
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i.e.

|∇θ(b)(x)|2 − |∇θ(a)(x)|2 ≥ 2∇θ(a)(x) · ∇θ(b)(x)− 2|∇θ(a)(x)| 2 ,

which immediately follows from the obvious inequality∣∣∣∇θ(a)(x)−∇θ(b)(x)
∣∣∣2≥ 0 .

Thus, Eq. (2.31) implies that W (b) ≥ W (a). But W (a) = 1
2k
∗Q2,

according to the definition of the effective resistivity and of the field
θ(a)(x), see Eq. (2.17), while W (b) = 1

2κ
∗G2, and therefore

1
2κ
∗G2 ≥ 1

2k
∗Q2 , i.e. κ∗k∗ ≥ 1 . (2.32)

Dually, let θ(x) = G · x on ∂V; through solving the BVP (2.7),
(2.3), we find the respective temperature field θ(x) such that∇θ = G;
this field generates the heat flux, denoted by q(a)(x). The mean value
of the latter is

Q = q(a) = κ∗G .

Consider next a second heat flux field, q(b)(x), corresponding to
the uniform heat flux Q · n on the boundary ∂V, i.e. the solution of
the BVP (2.13), (2.14). Obviously, q(b) = Q, similarly to the field
q(a)(x). In order to compare the energies, stored by these two fields,
consider again the difference:

Ψ(b) −Ψ(a) = Ψ(x; q(b)(x))−Ψ(x; q(a)(x))

≥
[
q(b)(x)− q(a)(x)

]
· ∂Ψ(x; q(a)(x))

∂q(a)(x)
(2.33)

=
[
q(b) − q(a)

]
· ∇θ(a) = 0 , ∇θ(a)(x) =

∂Ψ(x; q(a)(x))
∂q(a)(x)

.

We have used, in a manner fully similar to Eq. (2.31), the convexity
of the energy function Ψ(x; q(x)) with respect to q(x) (which surely
holds if k(x) > 0). Once again Eq. (2.29) was utilized, since in our
case ∇θ(a)(x) corresponds to a uniform temperature gradient on the
boundary, see Remark 2.7. Thus, Ψ(b) ≥ Ψ(a). But Ψ(a) = 1

2κ
∗G2,

according to the definition of the effective conductivity and of the
field θ(a)(x), see (2.10), while Ψ(b) = 1

2k
∗Q2, and therefore

1
2k
∗Q2 ≥ 1

2κ
∗G2 , i.e. κ∗k∗ ≤ 1 . (2.34)

Comparison of (2.32) and (2.34) proves (2.30).
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Remark 2.8 In the multitude of approximate theories of hetero-
geneous media, a minimum requirement, that each reasonable one
should meet, is the consistency of its predictions in the sense of
Eq. (2.30). In other words, if we perform the appropriate reason-
ing, say, for the effective conductivity and for the effective resistivity,
the results should be each other’s inverse. Without going into details
(which are purely technical) we should point out that all the “one-
particle” schemes, discussed in Section 1.5 below, are consistent. An
explicit check will be performed, for illustrative purposes, only for
the self-consistent theory of a polycrystal (see Section 1.6.2). More
detailed discussion can be found in [HAh] and [NEa].

Note that in the proof of the Theorem 2.1 the only fact we have
used for the second (“comparison”) fields θ(b)(x) and q(b)(x) is that
they comply with the conditions (2.4) and (2.15) respectively. That
is why, we can claim the validity of the following minimum principles:

Theorem 2.2
(i) Among all boundary data for the temperature that produce a field
θ(x) with a fixed mean gradient G, cf. Eq. (2.4), the uniform bound-
ary conditions (2.3) render the “energy” W an absolute minimum
Wmin; moreover Wmin = 1

2κ
∗G2.

(ii) Among all boundary data for a divergence-free (heat flux) field
that produce a fixed mean flux Q, cf. Eq. (2.15), the uniform bound-
ary conditions (2.14) render the “energy” Ψ an absolute minimum
Ψmin; moreover Ψmin = 1

2k
∗Q2.

These are the two basic minimum principles in the theory of het-
erogeneous media, based upon the notion of volume averaging. We
shall return to them in Section 1.3.4 in connection with the classical
variational principles of Dirichlet and Thompson.

Theorems 2.1 and 2.2 clarify the special role of the “homogeneous”
boundary conditions (2.3) and (2.14) as well as the reason why they
have been adopted when defining the effective conductivity and re-
sistivity. They also explain the reason why a preference was given to
to the boundary condition (2.14) when defining the effective conduc-
tivity in Eq. (2.17), and not to its “rival” (2.19) (which at first glance
looked equally appropriate, generating a homogeneous flux field in a
homogeneous medium).
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Remark 2.9 Obviously, the central point of the proof of Theorem 2.1
are the inequalities (2.31) and (2.33) which hold for any convex poten-
tial W and Ψ. Hence both theorems can be appropriately generalized
for mixtures of nonlinearly behaving media, provided the constitutive
relations for the constituents emerge from convex potentials (see the
book of Nemat-Nasser and Hori [NEa, pp. 47–49] for details and a
proof). Here, for the sake of simplicity, the linear scalar case has been
only treated. As pointed out by the authors [NEa, pp. 47–48], their
proof had been suggested by Willis in a private communication. It is
noted also that the above Theorems 2.1 and 2.2 are particular cases
of much more general results of Willis et al. [TAc], [TOa], [WIf],
which explains why they will be called Willis’.

1.2.6 The “Concentration” Factors
The effective constants can be conveniently represented by means of
the so-called “concentration” factors. Determination of these fac-
tors, to be defined below, is a problem, equivalent to that of the said
constants. However, the appropriate representations provide a natu-
ral and useful guide when constructing approximate formulae for the
effective properties, as we shall see in Section 1.5.

1.2.6.1 Ideal Thermal Contacts

Let again V be a RVE of a two-phase medium. Then V = V1 ∪ V2,
where V1 and V2 are the subvolumes, occupied by the constituent ‘i’,
respectively, i = 1, 2.

We shall begin with the scalar conductivity context again. Let
us first consider the most common case when an ideal contact takes
place, so that both temperature and heat flux remain continuous in
the whole volume. Then obviously

∇θ = φ1 〈∇θ〉1 + φ2 〈∇θ〉2 ,

q = φ1 〈q〉1 + φ2 〈q〉2 ,
(2.35)

throughout the volume V. (If the temperature and heat flux have dis-
continuities, as it is the case with nonideal contacts, additional terms
should be added to the right-hand sides of (2.35), see Eqs. (2.48) and
(2.51) below.) In Eq. (2.35)

〈·〉i =
1
Vi

∫
Vi

· dx , (2.36)
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i.e. 〈·〉i signify the spatial averages over the regions Vi, occupied by
the constituent ‘i’, Vi = volVi , i = 1, 2. According to the Fourier law
and the definition of the effective conductivity, see Eq. (2.10),

Q = q = K∗ · ∇θ , 〈q〉i = κi 〈∇θ〉i , i = 1, 2 . (2.37)

From (2.35) and (2.37) we can exclude the mean temperature gradient
in one the phases, say, in ‘1’:

Q = K∗ · ∇θ = q = φ1 〈q〉1 + φ2 〈q〉2

= φ1κ1 〈∇θ〉1 + φ2κ2 〈∇θ〉2

= κ1

(
∇θ − φ2 〈∇θ〉2

)
+ φ2κ2 〈∇θ〉2 ,

or
K∗ · ∇θ = κ1∇θ + φ2[κ] 〈∇θ〉2 ; (2.38)

recall that the square brackets denote the appropriate jumps in ma-
terial properties, e.g. [κ] = κ2 − κ1, [L] = L2 − L1, etc.

Let us prescribe, similarly to Section 1.2.2, the average value
G = ∇θ of the macroscopic gradient, having imposed the boundary
condition (2.3) for the temperature. The solution of the boundary
value problem (BVP) (2.7), (2.3) depends linearly on the vector G.
Then, in particular,

〈∇θ〉i = Ai ·G , i = 1, 2 , (2.39)

with certain concentration factors A1 and A2 that represent, in the
case under study, second-rank tensors. (In the scalar and isotropic
case the Ai’s reduce to constants, called in [REb] field factors.)

Note that the concentration factors Ai are simply interconnected:

φ1A1 + φ2A2 = I , (2.40)

see their definition (2.39) and the first line of Eq. (2.35).
Together with Eq. (2.39) (at i = 2), Eq. (2.38) yields the following

formula for the effective conductivity tensor of the composite:

K∗ = κ1I + φ2[κ]A2 , (2.41)

or, in an equivalent, but more symmetric form,

φ1(K∗ − κ1I) ·A1 + φ2(K∗ − κ2I) ·A2 = 0 , (2.42)

which follows from Eq. (2.40).
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Remark 2.10 An alternative and physically appealing starting point
can be the observation of Landau and Lifshitz [LAa] that the field
q(x)− κ1∇θ(x) is non-zero only within the inclusions. That is why
its average value,

q − κ1∇θ = Q− κ1G = [K∗ − κ1I] ·G ,

is proportional to the number density n of the inclusions, multiplied
by the average value of the same quantity within a “single” inclusi-
on W:

[K∗ − κ1I ] ·G = φ2 〈q − κ1∇θ〉W = φ2[κ] 〈∇θ〉W , (2.43)

having assumed the inclusions to be of the same shape W, φ2 = nW ,
W = volW. Eq. (2.43) obviously reproduces the basic formula (2.41),
if (2.39) is taken into account.

Both Eqs. (2.41) and (2.42) look exceptionally simple. But this
simplicity should not mislead the reader. The extreme difficulties in
the homogenization problem, already discussed in Section 1.1, are
not resolved by Eqs. (2.41) or (2.42); they are only moved from one
place to another. That is, instead of looking for the effective con-
ductivity, the quest is now for one of the tensors A1 or A2. The
specification of any one of them needs knowledge of the temperature
fields within the appropriate constituent, say, within all of the filler
particles. This means that, as a matter of fact, again the detailed so-
lution of the BVP, Eqs. (2.7) and (2.3), is needed. Hence, it is little
wonder that the concentration factors can be rigorously determined
in a very few cases; moreover, any such case leads to a remarkable
formula that gives the effective properties exactly, under minimum
assumptions about the internal structure of the heterogeneous solids.
Two such famous formulae will be discussed in the next Section 1.3.
The first one is the Hill expression for the bulk modulus of a two-
phase elastic medium, whose constituents possess equal shear moduli,
see Eq. (3.66). The other is Levin’s result that interconnects the ef-
fective bulk modulus with the effective thermal expansion coefficient,
see (3.76).

The formula (2.41) is very convenient, however, for obtaining ap-
proximate expressions for the effective properties. The basic idea
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is to replace the concentration factor A2 in Eq. (2.41) by an ap-
propriate tensor, stemming appropriately from the solution of a sin-
gle inhomogeneity problem, on the base of certain heuristic argu-
ments. The approximations, devised in such a manner, can be called
“one-particle”—they will be discussed in Section 1.5 having, to this
end, considered in needed detail the single-inclusion problem in Sec-
tion 1.4.

Remark 2.11 The simple and important formula (2.41) is usually
attributed to Hill [HIb]. However, in the scalar context it was derived
earlier by Reynolds and Hough [REb], who clearly understood and
demonstrated its key role in formulating some of the “one-particle”
approximations to be treated below.

1.2.6.2 The Wu Representation

An alternative expression of the effective properties through the con-
centration factors can be obtained, following a reasoning, sketched
by Wu [WUa].

Let q(x) be the flux in the heterogeneous volume V, under the “ho-
mogeneous” boundary conditions (2.14), and let ∇θ(x) = k(x)q(x)
be the temperature gradient that appears. Consider a “comparison”
(or a “reference”) medium with the resistivity k1 and impose men-
tally the same flux field q(x) there; as a result, a certain fictious
“temperature gradient” gc(x) will show up:

gc(x) = k1q(x) =


∇θ(x) , if x ∈ V1 ,
k2

k1
∇θ(x) , if x ∈ V2 .

(2.44)

By means of the field gc(x), rearrange the energy (2.26) as

Ψ =
1

2V

∫
V

q(x) · ∇θ(x) dx =
1

2V

∫
V

Q · gc(x) dx

+
1

2V

∫
V

[
q(x) · ∇θ(x)−Q · gc(x)

]
dx .

(2.45)

The Gauss theorem and the boundary conditions (2.14) yield∫
V

q(x) · ∇θ(x) dx =
∫
V

Q · ∇θ(x) dx .



1.2 Micromechanics of Heterogeneous Media 43

Also
Ψ = 1

2k
∗Q2 , gc = k1q = Q ,

see Eqs. (2.26) and (2.44). Hence from (2.45) it follows

1
2k
∗Q2 = 1

2k1Q
2 +

1
2V

∫
V

Q · p(x) dx ,

p(x) =∇θ(x)− gc(x) ,
(2.46)

where p(x) is the so-called polarization field. Obviously

p(x) = [κ(x)− κ1] q(x)

which vanishes in the phase ‘1’, see Eq. (2.44). That is why (2.46)
can be recast as

1
2k
∗Q2 = 1

2k1Q
2 + 1

2φ2[k]Q · 〈q〉2 .

But
〈q〉2 = κ2 〈∇θ〉2 , 〈∇θ〉2 = a2G ,

where A2 = a2I is the concentration factor (2.39) in the isotropic
case under study. In turn, G = k∗Q, and from the last formula the
simplest Wu representation emerges:

k∗ = k1 + φ2[k] k∗κ2a2 . (2.47)

The appropriate generalizations, concerning anisotropic constitu-
ents and/or internal alignment, as well as elastic behavior, are obvi-
ous. (Wu himself [WUa] considered the elastic case.) However, all
the obtained in such a way formulae will be unavoidably equivalent
to (2.41): if they are not, by chance, we would have two independent
relations for the effective tensor and for the concentration factor and
they would allow us to specify them both explicitly. The latter is
possible but for few simplest cases only such as laminate media, see
Remarks 2.1 and 2.2. (The equivalence of Eqs. (2.47) and (2.41) in
the isotropic case can be easily checked.)

The above simple considerations possess, however, the merit of
invoking the notions of reference media and polarization fields, and
that is why they have been included here. The polarization fields are
a useful tool in the theory of random heterogeneous media. One of the
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reasons is that the basic BVP problems, like (2.7), (2.3) can be easily
recast as integral equations with respect to the polarizations. These
equations can be then reformulated variationally in an obvious way
and in the result the important and very useful variational principles
of the so-called Hashin-Shtrikman type emerge, see the survey [WIc]
or [WUb].

Simple arguments, employing ingeniously appropriate reference
media, can be also utilized to construct the basic approximate schemes
of Section 1.5 for the effective properties of heterogeneous media. De-
tails can be found in the paper [BEo].

1.2.6.3 Nonideal Thermal Contacts

In the case of a nonideal contact the heat flux and/or the temper-
ature are discontinuous at the interphase boundaries S12 within the
volume V. Accordingly, there are two main types of such contacts—
superconducting and resistive, to be properly defined and briefly dis-
cussed in Section 1.4.3 below, having introduced the notion of a sin-
gular inclusion after Kanaun [KAc]. For the moment it suffices to
demonstrate only that the discontinuities of the flux or temperature
lead to the appearance of additional terms in Eqs. (2.35).

Indeed, let us start with a “superconducting” interphase, as in-
troduced in Section 1.4.3. Its exact definition is not important here;
we need only the fact that the temperature is continuous, but the
heat flux has jumps on S12 in this case, see (4.37). Application of
Eq. (2.16) then leads to the formula, given recently by Miloh and
Benveniste [MIa]

q =
1
V

∫
V

q(x) dx = φ1 〈q〉1 + φ2 〈q〉2 + q(12) ,

q(12) =
1
V

∫
S12

[qn]x dS ,
(2.48)

where q(i) is the flux in the phase ‘i’, i = 1, 2, and n is the unit
normal vector of the interphase surface, pointing from phase ‘2’ to
phase ‘1’; hence [qn] = q(1) · n − q(2) · n is the jump of the normal
component of the flux across S12. At the same time, the first line of
Eq. (2.35) remains unchanged due to continuity of the temperature
in the case under study.
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Similarly to Eq. (2.39), introduce the interphase or surface con-
centration factor, A(12), through the relation

q(12) = A(12) ·G . (2.49)

Repeating literally the elementary reasoning, that led us to (2.41),
produces its “superconducting” counterpart

K∗ = κ1I + φ2[κ]A2 + A(12) . (2.50)

A fully similar formula can be devised for the the other basic kind
of nonideal contact, called “resistance.” Again the exact definition,
given in Section 1.4.3 below, is not important in this moment; we
need only the fact that the heat flux is continuous in this case (so
that the second line of Eq. (2.35) remains now unchanged), but the
temperature field has a jump in this case. An application of the
Gauss theorem then yields

∇θ =
1
V

∫
V
∇θ(x) dx = φ1 〈∇θ〉1 + φ2 〈∇θ〉2 + Θ(12)

,

Θ(12) =
1
V

∫
S12

(
θ(1) − θ(2)

)
n dS ,

(2.51)

where θ(i) is the temperature field in the phase ‘i’, i = 1, 2, and n is
again the unit normal vector on the interphase surface S12, pointing
from phase ‘2’ to phase ‘1’, see [BEf] for a detailed derivation and
discussion. The counterpart of (2.49) is

Θ(12) = B(12) ·G , (2.52)

with B(12) representing the interphase concentration factor for the
“resistance” boundary under study. Repeating once again the fore-
going reasoning yields now

K∗ = κ1I + φ2[κ]A2 − κ1B
(12) . (2.53)

1.2.7 The Elastic Case

The generalization of the foregoing “scalar” reasoning to the elastic
case is straightforward, and will be outlined now.
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1.2.7.1 The Basic Equations

For a (linear) elastic solid the basic system Eq. (2.7) is replaced by
its tensorial counterpart

∇ · σ(x) = 0 ,

σ(x) = L(x) : ε(x) , ε = 1
2(∇u + u∇) ,

(2.54)

so that ε(x) is the strain tensor, generated by the displacement
field u(x), σ(x) is the stress tensor, L(x) is the fourth-rank tensor
of elastic moduli and the colon stands for contraction with respect
to two pairs of indices. The analogy with the scalar conductivity
case, Eq. (1.5), is obvious: temperature is replaced by displacement,
temperature gradient by strain tensor, heat flux by stress tensor,
conductivity coefficient κ(x) by the elastic moduli tensor L(x) and
the resistivity k(x) = 1/κ(x) by the tensor of elastic compliance
M(x) = L−1(x).

All scalar conductivity considerations of Sections 1.2.2 to 1.2.5
are straightforwardly extended to the elastic case. For instance, the
counterparts of Lemma 2.1 and its corollary, Eq. (2.6), read:

Lemma 2.6 Whatever the composition and microstructure of the
RVE, the volume average of the strain tensor is completely deter-
mined by the displacement field on the boundary ∂V.

Proof. Let u(x) be a displacement field in V, attaining the prescribed
boundary values u0(x). Using the Gauss theorem, we have

ε =
1
V

∫
V

ε(x) dx =
1
V

∫
V

(∇u + u∇) dx

=
1

2V

∫
∂V

(
nu0 + u0n

)
dS .

In turn, if u0(x) = ε0 · x = x · ε0, where ε0 is a symmetric tensor of
second-rank, then

ε =
1

2V

∫
∂V

(
nε0 · x + (ε0 · x)n

)
dS

=
1

2V

∫
V

(
ε0 · ∇x + ε0 · (x∇)

)
dx = ε0 ,

since ∇x = x∇ = I.
Similarly we have
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Lemma 2.7 Whatever the composition and microstructure of RVE,
the volume average of the stress tensor, at the absence of body forces,
is completely determined by the boundary values of the traction t0 =
σ · n on ∂V.

Proof. Let σ(x) be a stress field in V, with the prescribed boundary
values of the traction. Due to the assumed absence of body forces,
∇ · σ(x) = 0 In the Cartesian system xi, i = 1, 2, 3, we have, using
the Gauss theorem and the equilibrium equation,

σij =
1
V

∫
V
σij(x) dx =

1
V

∫
V
δik σkj(x) dx =

1
V

∫
V
xi,k σkj(x) dx

=
1
V

∫
V
(xi σkj(x)),k dx− 1

V

∫
V
xi σkj,k(x) dx =

1
V

∫
∂V
xi t

0
j (x) dS ,

which indeed is uniquely specified by the traction t0
n on the bound-

ary ∂V.
In turn, if t0

n = σ0 · n on ∂V, i.e. the traction is uniform on the
boundary,

σij =
1
V

∫
∂V
np σ

0
pjxi dS

=
1
V

∫
V
(σ0

pj xi),p dx =
1
V
σ0

pj

∫
V
xi,p σ

0
pjδip dx = σ0

ij ,

i.e. σ = σ0 .

1.2.7.2 The Effective Elastic and Compliance Tensors

Similarly to the scalar case, consider first the linear surface displace-
ments

u0(x)
∣∣∣
∂V

= ε0 · x , (2.55)

which assures that ε = ε0, due to Lemma 2.6.
The BVP (2.54), (2.55) possesses a solution which is unique (the

tensor field L(x) is positive-definite for all x ∈ V), which generates a
certain stress field σ(x). Then

σ =
1
V

∫
V

L(x) : ε(x) dx = L∗ : ε0 . (2.56)

The tensor L∗ that enters Eq. (2.56) is the effective elastic tensor of
the volume V.



48 Heterogeneous Media: Modelling and Simulation

Dually, the stress field σ(x) satisfies the equation

∇× ε(x)×∇ = ∇× (M(x) : σ(x))×∇ = 0 . (2.57)

Assume uniform boundary tractions:

t0
n(x) = σ(x) · n

∣∣∣
∂V

= σ(x) · n , (2.58)

which assures that σ = σ0, due to Lemma 2.7.
The BVP (2.57), (2.58) possesses a solution which is unique (the

compliance tensor M(x) = L−1(x) is positive definite for all x ∈ V,
once L(x) is such) which generates a certain strain field ε(x). Then

ε =
1
V

∫
V

M(x) : σ(x) dx = M∗ : σ0 . (2.59)

The tensor M∗ that enters Eq. (2.56) is the effective compliance tensor
of the volume V.

Let
W (x; ε(x)) = 1

2ε(x) : L(x) : ε(x)

be the elastic energy at the point x ∈ V. If the linear surface dis-
placements (2.55) are imposed, then

W = W (ε0) = 1
2ε(x) : L(x) : ε(x) = 1

2ε0 : L∗ : ε0 . (2.60)

Dually, let

Ψ(x;σ(x)) = 1
2σ(x) : M(x) : σ(x)

be the elastic energy at the point x ∈ V, considered as a function
of the local stresses. If the surface tractions are uniform, see (2.58),
then

Ψ = Ψ(σ0) = 1
2σ(x) : M(x) : σ(x) = 1

2σ0 : M∗ : σ0 . (2.61)

Eqs. (2.60) and (2.61) are the elastic counterparts of the appro-
priate “scalar” equations (2.22) and (2.27), see Lemmas 2.4 and 2.5.
Making use of them, one can show that

M∗ = L∗−1 , (2.62)
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i.e. the effective tensors of elasticity and compliance are each other’s
inverse; the proof repeats almost literally that of the foregoing The-
orem 2.1. The minimum properties of the “homogeneous” boundary
conditions (2.55) and (2.58) can be then formulated in a manner,
fully similar to the statements of Theorem 2.2.

1.2.7.3 The Elastic “Concentration” Factors

In the elastic case only ideal contacts will be treated for which both
displacement and normal tractions are continuous at the interphases.
In particular, the phases are assumed hereafter firmly bonded, hence
no slipping and/or delimination across the interphase boundaries are
allowed. The scalar considerations of Section 1.2.7.1 can be then
literally repeated, with the only difference that the second-rank con-
centrations factors Ai are to be replaced with fourth-rank tensors Ai

such that
〈ε〉i = Ai : ε0 , i = 1, 2 . (2.63)

These tensors satisfy the identity

φ1A1 + φ2A2 = I ,

where I is the “unit” fourth-rank tensor. In Eq. (2.63) ε0 is the pre-
scribed uniform strain, that stems from the homogeneous boundary
condition (2.55).

The effective elastic tensor, for a two-phase medium, now reads

L∗ = L1 + φ2 [L] : A2 , (2.64)

which is the counterpart of the scalar formula (2.41); L i are the
tensors of elastic moduli of the constituents, i = 1, 2.

Remark 2.12 Recall that any “realistic” tensor of the elastic mo-
duli should possess, besides the symmetry in the first and the second
pairs of indices, the “external symmetry”

Lijkl = Lklij , (2.65)

as a consequence of natural thermodynamical requirements. This
means that not any fourth-rank tensor can serve as a concentration
factor for a heterogeneous medium, even if it satisfies (2.65). The
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reason is that the “product” [L] : A2 of two tensors with such a sym-
metry is not obliged to comply with (2.65). Hence, a care is needed
when constructing approximate theories, based on the formula (2.64),
since they can violate (2.65) for some special internal constitutions
(say, certain three-phase media), see Section 1.5.5.2.

Remark 2.13 Nonideal contacts of the same “superconducting” and
“resistive” types can be considered in the elastic case as well, ex-
tending the reasoning of Section 1.2.6.3. The definition of such con-
tacts due to Kanaun et al. [KAc], [KAd] is outlined below, see Sec-
tion 1.4.3. An extensive survey of the approaches, results and ref-
erences, concerning nonideal interphases in elasticity and solid me-
chanics can be found in the book of Theocharis [THa], or in [EBa],
where the emphasis is more on their material science aspects.

1.2.8 The Effective Absorption Coefficient
Here we shall consider the homogenization quest for Smoluchowski’s
absorption problem in a heterogeneous medium (see Section 1.1.3.5).

Formally, it is more convenient and instructive to deal, following
Talbot and Willis [TAb], with the more general problem, described
by the equation

∆c(x)− k2(x) c(x) +K = 0 , x ∈ V . (2.66)

Additionally, the “no-flux” condition

∂c(x)
∂n

∣∣∣∣
∂V

= 0 (2.67)

is imposed on the boundary ∂V.
The problem (2.66), (2.67) describes, for example, the steady-

state diffusion of a species, created at the constant rate K within the
volume V, and absorbed there with variable intensity (defined by the
absorption coefficient field k2(x)). For a binary medium, to be only
treated here,

k2(x) =

{
k2

1, if x ∈ constituent ‘1’ ,
k2

2, if x ∈ constituent ‘2’ ,
(2.68)

similarly to the conductivity field in Eq. (1.6). Hence the species
is absorbed at different rates by the two constituents. Note that
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the units are chosen so that in Eq. (2.66) the diffusion coefficient
D = 1. The condition (2.67) guarantees that the species, created in
V, remains within V.

A variety of different physical phenomena can be modelled by the
system (2.66), (2.67). First, the above mentioned Smoluchowski’s
problem is recovered if one take the limits:

k2
1 → 0 , k2

2 →∞ . (2.69)

This limit, called by Willis hard (due, in particular, to the hard tech-
nical difficulties it involves), corresponds obviously to the situation
when one of the constituents (the matrix ‘1’) does not absorb at all,
while the inclusions (the phase ‘2’) are “perfect” absorbers. This
very important case is thoroughly reviewed in Torquato’s survey in
the present volume (Chapter 2), together with the most recent devel-
opments. Boundary conditions more general than (2.67) are discussed
there as well.

Note also that the limit (2.69) can be interpreted in terms of heat
removal of a solid in the steady-state limit, when a constant heating of
intensity K takes place, “competing” with a system of “coolers” (the
phase ‘2’) kept at the constant (zero) temperature, see, e.g. [KOa].

In the case of a general binary field k2(x) an important application
of Eq. (2.66) is supplied by the field of irradiation damage: When
a solid is subjected to intense, say neutron radiation, defects like
vacancies and intersitials are created. They diffuse in the medium and
either recombine or are absorbed (“trapped”) by the sinks like voids,
dislocations or grain boundaries. This leads to a considerable change
of the microstructure and, in particular, to swelling of the voids and
ultimate rupture. A deep review of this important interpretation and
application of Eq. (2.66) can be found in the survey of Brailsford and
Bullough [BRa].

To “homogenize” Eq. (2.66) average both sides over the volume V:

∆c(x)− k2(x)c(x) +K = 0 .

The Gauss theorem implies

∆c(x) =
1
V

∫
∂V

∂c

∂n
dS = 0 ,
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due to the no-flux condition (2.67). Hence

k∗2c = k2(x)c(x) = K , c =
1
V

∫
V
c(x) dx , (2.70)

which defines the effective absorption coefficient, k∗2, of the medium.
The sense of Eq. (2.70) is fully similar to that of the definition

(2.10) for the effective conductivity. It means, let us underline once
again, that from a macroscopic point of view the volume V looks ho-
mogeneous, with a certain effective absorption coefficient k∗2. The
latter specifies the rate of macroscopical absorption of the species,
i.e. the proportionality coefficient (the rate constant) between the
mean steady-state concentration c and the intensity K of their cre-
ation.

Remark 2.14 It is worth pointing out that a simple change of the
sign in the left-hand side of the Helmholtz equation (2.66), with a spe-
cial form of the source term, drastically changes the physical context.
Namely, we recall that the equation

∆Ψ(x) + k2
0n

2(x) Ψ(x) + δ(x) = 0 . (2.71)

describes the amplitude of a scalar wave, generated by a harmonic
point source in the origin, in a lossless, isotropic, time-independent
medium. In Eq. (2.71) k0 is the free-space wave-number and n(x) is
the fluctuating index of refraction. The “homogenization” of
Eq. (2.71) is an important and classical problem of micromechan-
ics and physics which cannot be discussed here. (The relevant lit-
erature is very extensive, see e.g. the survey of Frisch [FRc].) We
shall only add that many of the basic ideas and approaches for an
approximate evaluation of the effective properties, like self-consistent
scheme, effective field, etc., are very well adapted for wave propa-
gation in heterogeneous media and, in particular, for Eq. (2.71), as
discussed in detail in Kanaun’s paper in the present volume (Chap-
ter 3). Moreover, a considerable number of them have their direct
origin in the study of wave phenomena in such media, as initiated by
the works of Foldy [FOa] and Lax [LAd].

Note finally that the rate constant k∗2 can be expressed by means
of the appropriate concentration factors in a manner, fully similar to
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the conductivity and elastic cases. Indeed, from (2.70) it follows

c =
1
V

∫
V
c(x) dx = φ1 〈c〉1 + φ2 〈c〉2 ,

K = k∗2c = φ1k
2
1 〈c〉1 + φ2 〈c〉2 ,

(2.72)

with the same notations (2.36), cf. Eq. (2.35).
Eliminating 〈c〉1 from (2.72) gives

k∗2c = k2
1c+ φ2[k2] 〈c〉2 , [k2] = k2

2 − k2
1 . (2.73)

This exact relation is fully similar to Eq. (2.38). In the present con-
text it defines the effective sink strength k∗2 through the average
concentration 〈c〉2 within the inclusions (the phase ‘2’). Hence, if

〈c〉2 = A2c , (2.74)

then
k∗2 = k2

1 + φ2[k2]A2 , (2.75)

which is the “absorption” counterpart of Eqs. (2.41) and (2.64) and,
obviously, A2 is just the concentration factor for the problem under
study.

Similarly to the scalar and elastic cases, the formula (2.75) can
serve as a convenient starting point when deriving “one-particle” ap-
proximations for the effective constant k∗2. One of them (the self-
consistent one) will be considered in more detail in Section 1.5.7.

1.3 Some Basic Results

In this Section we shall collect several basic results for the effective
properties of heterogeneous media. The so-called weakly inhomo-
geneous medium will be first treated. Though straightforward, its
study clarifies why the homogenization problem is so difficult in gen-
eral: The main reason is that the effective parameters to be speci-
fied, though very simple-looking scalar (or tensor) quantities at first
glance, incorporate within them all details about the internal struc-
ture of the medium—a tremendous amount of information, that is.
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In practice we however know, as a rule, only a very limited part of
the latter. Hence the best we can hope about is, first, to find a cer-
tain interval within which the effective parameters should be located
(the narrower the better, of course). Such an interval is provided in
many cases (but not always, as we shall see) by appropriate varia-
tional principles; from them the so-called variational estimates for the
effective properties result. A brief account will be given below for the
classical such estimates, like those of Wiener, Hill, Hashin-Shtrikman
and Beran.

Second, with a limited information at hand, we can try to con-
struct certain approximate scheme, using heuristic arguments (like
the ones employed by Maxwell, see Section 1.1.3.3, when deriving
his famous formula (1.19)). A systematic way of constructing a wide
class of such approximate formulae will be discussed in Section 1.5.

1.3.1 Weakly Inhomogeneous Media

The weakly inhomogeneous media consist of phases whose properties
do not differ much. For simplicity’s sake, we shall additionally as-
sume that they are intermixed in such a manner that the mixture is
macroscopically isotropic.

1.3.1.1 The Definition

More precisely, let κ(x) be the varying conductivity field of the
medium. Represent it in the form

κ(x) = κ+ κ′(x) , (3.1)

where κ′(x) is the fluctuation of κ(x) about its mean value κ, so that
κ′ = 0. The medium is weakly inhomogeneous, if

max
x∈V

|κ′(x)|
κ

� 1 .

For the two-phase materials treated here, the equivalent condition,
to be used below, reads

|δκ| � 1 , δκ = [κ]/κ . (3.2)

It is clear from the definition (3.2) that weakly inhomogeneous
media are of very limited practical importance. However, the brief
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digression toward their study now is warranted by several facts of
primary importance in the general theory, developed in the sequel:

(i) A simple formula for κ∗, valid to the second-order (δκ)2 holds;
it will play a central role in deriving the famous Hashin-Shtrikman’s
estimates on κ∗, already applicable for arbitrary two-phase media,
see Section 1.3.3 below.
(ii) The performed analysis will clearly demonstrate that the effective
conductivity is indeed a quantity that depends, in general, on all
details of the internal constitution of a heterogeneous medium.
(iii) More precisely, it will be seen that macroscopically the internal
constitution shows up through certain specific integral parameters
that incorporate the so-called correlation functions for the medium.

1.3.1.2 The Perturbation Expansion and the Second-order
Approximation

The appearance of the small parameter, δκ, in the BVP (2.7), (2.3),
suggests to look, after Brown [BRd], for the solution as the formal
perturbation expansion

θ(x) = θ(0)(x) + θ(1)(x) + · · · , θ(0)(x) = G · x ,

θ(p)(x)
∣∣∣
∂V

= 0 , θ(p)(x) ∼ O ((δκ)p) ,
(3.3)

p = 1, 2, . . . . Then

κ∗ = κ+
∞∑

p=1

Bp , BpG = κ′(x)∇θ(p)(x) , (3.4)

p = 1, 2, . . . , as it follows from Eqs. (2.10), (3.1) and (3.3).
The terms of the series (3.3) are specified by means of the equa-

tions

κ∆θ(1)(x) + G · ∇κ′(x) = 0 , θ(1)(x)
∣∣∣
∂V

= 0 , (3.5)

κ∆θ(2)(x) + ∇ ·
(
κ′(x)∇θ(1)(x)

)
= 0 , θ(2)(x)

∣∣∣
∂V

= 0 ,(3.6)

etc., derived in a fully standard way.
Truncation of the series (3.3) after the first term, i.e. taking θ(x) ≡

G · x, results in the already discussed Voigt approximation (2.11).
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The simplest nontrivial case shows up, if the series (3.3) is truncated
after the second term. Then the perturbation θ(1)(x) is governed by
Eq. (3.5). In turn

q = κ∗G = κG + κ′(x)∇θ(1)(x) + O
(
(δκ)2

)
, (3.7)

cf. Eq. (2.10), which means that the performed truncation specifies
the effective conductivity κ∗ exactly to the order O

(
(δκ)2

)
, once the

mean value B1G = κ′(x)∇θ(1)(x) is found.
To find this value, it is noted that the solution of the BVP (3.5)

can be written as

θ(1)(x) = G ·
∫
V
∇x

κ′(y)
4πκ|x− y|

dy . (3.8)

This is clearly an approximation, since the Green function 1/(4π|x|)
for the Laplace equation in the unbounded space is used; in other
words, we have tacitly assumed, when solving Eq. (3.5), that the
RVE coincides with the whole space R3.

Eq. (3.8) allows us to represent now the quantity, needed in (3.7),
in the form

κ′(x)∇θ(1)(x) = G ·
∫
V
κ′(x)κ′(x− y)∇x∇x

1
4πκ|y|

dy . (3.9)

The assumptions of statistical homogeneity and isotropy, as discussed
in Section 1.2.1, imply in particular that the “two-point” average
κ′(x)κ′(y) depends only on the distance between x and y, excepts
for a thin layer near the boundary ∂V . To be consistent with usage of
the infinite-body Green function, we should neglect this layer, taking
in (3.9) the integration domain as the entire R3. Thus

B1G = κ′(x)∇θ(1)(x)

= G ·
∫
R3
M2(r)∇∇

1
4πκr

dx = −M2(0)
3κ

G ,
(3.10)

since the integral in the last formula represents an isotropic second-
rank tensor and ∆(1/(4π|x|)) = −δ(x), with δ(x) denoting the Dirac
delta-function. In Eq. (3.10)

M2(r) = κ′(0)κ′(z) , r = |z| . (3.11)
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Note that for any “binary” function a(x) that takes the values a1

and a2 in the phases V1 and V2, respectively, one has

a′2 = (a− a)2 = φ1φ
2
2[a]

2 ,

a′3 = (a− a)3 = φ1φ
2
2(φ1 − φ2)[a]3 ,

(3.12)

[a] = a2 − a1, as a simple check demonstrates.
Hence, for the two-phase medium under study,

M2(0) = κ′2 = φ1φ2[κ]2 , B1 = −φ1φ2[κ]2

3κ
. (3.13)

Together with (3.7) and (3.10), this gives the simple, but very impor-
tant formula,

κ∗

κ
= 1− 1

3φ1φ2

(
[κ]
κ

)2

+ O
(
(δκ)2

)
, (3.14)

which, in particular, will be needed in Section 1.3.2.4, when deriving
the Hashin-Shtrikman’s estimates on the effective conductivity.

To the best of the author’s knowledge, the formula (3.14) was
first given by Brown [BRd], and rederived by many authors afterward
(especially, see the book [LAa] for an alternative and more heuristic
derivation).

Remark 3.1 The central role of the formula (3.8), and of its con-
sequence (3.14) within the frame of the volume averaging approach,
is to be particularly emphasized. From them one can already rigor-
ously derive both Hashin-Shtrikman’s and Beran’s estimates, as we
shall see in a moment.

Remark 3.2 The “derivation” of (3.10) demonstrates in passing
that for a reader with a more rigorous taste, the approach adopted
here has profound inherent problems, connected with the employed
notion of “very big,” but still finite RVE’s V (see also the comments
of Willis [WIc, p. 15]). Much more consistent is the stochastic point of
view, employed in the pioneering Brown’s paper [BRd], in which the
fields like κ(x), θ(x), etc., are treated as random. But this approach,
as already pointed out, is not pursued here.



58 Heterogeneous Media: Modelling and Simulation

It is noted that the function M2(r), defined in Eq. (3.11) is the
so-called two-point correlation for the medium. The term can be
explained by the fact that, while the “one-point” average κ = φ1κ1 +
φ2κ2 provides information about the volume fractions φi only (at fixed
values of κi), the “two-point” average κ′(x)κ′(y) supplies already
much more detailed “two-point” information, concerning the spatial
distribution of the constituents within the heterogeneous medium.
It is a simple exercise to show that M2(r) is directly connected to
the average amount of the phase, say, ‘1’, located at the distance r
from the origin, provided the same phase is to be found there. In
stochastic terms M2(r) allows evaluation of the probability that if a
rod of length r is “thrown” into the medium, both its ends fall within
one and the same constituent, see [FRb], [BEi], [TOe] et al.

Remark 3.3 For the integral (3.10) to be convergent, we have tac-
itly assumed that M2(r) decays as r → ∞. The meaning of this
assumption is that there is no “long-range order” in the medium;
in the language of elementary probability theory the properties of
the medium at the points x and y and, in particular, the quantities
κ(x) and κ(y), become uncorrelated as the distance between them
increases, r = |x− y| → ∞.

The formula (3.14) shows that to the order O
(
(δκ)2

)
the effective

conductivity of a macro-isotropic medium does not feel specific de-
tails of the internal structure. Even the exact form of the two-point
correlation function M2(r) for r > 0 is not required. Only the value
of the latter at the origin, M2(0), that is the volume fractions φi,
affects κ∗ to this order. To the higher orders however, starting with
O
(
(δκ)3

)
, this is already not true.

1.3.1.3 The Third-order Approximation

Indeed, to see this it suffices to look at the equations that govern
the higher-order terms in the expansion (3.3). For example, let us
truncate (3.3) after the third term. Then

κ∗G =

(
κ− κ′2

3κ
+B2

)
G , B2G = κ′(x)∇θ(2)(x) . (3.15)

The function θ(2)(x) is governed by Eq. (3.6) and it can be easily
found, if we decide to employ Eq. (3.8) (replacing again the volume
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V with the entire R3). In particular,

B2 =
κ′3

3κ2 I
κ
3 , κ′3 = φ1φ2(φ1 − φ2)[κ]3 , (3.16)

cf. Eq. (3.12), so that

κ∗ = κ− κ′2

3κ
+
κ′3

3κ2 I
κ
3 + O

(
(δκ)3

)
. (3.17)

In the last formula

Iκ
3 =

1

κ′3

∫ ∫
Mκ

3 (x,y)∇∇ 1
4π|x|

: ∇∇ 1
4π|y|

dx dy (3.18)

is a dimensionless parameter that first appeared (in different nota-
tion) in Brown’s paper [BRd]. (The notation adopted here aims at
preserving similarity between the second- and third-order terms in
the expansion (3.17), cf. Eq. (3.9) as well.) Also, in Eq. (3.18)

Mκ
3 (x,y) = κ′(0)κ′(x)κ′(y) (3.19)

is the “three-point” counterpart of the function M2(r), defined in
Eq. (3.11). Naturally, Mκ

3 (x,y) can be called three-point correlation.
It supplies more detailed information about the internal structure of
the medium, as compared to the volume fraction and the two-point
correlation M2(r). (In probabilistic terms M3(x,y) allows evaluation
of the probability that if a triangle, two sides of which coincide with
the vectors x and y, is thrown into the medium, all its vertices fall
within one and the same constituent, see [BEi], [TOe] et al.)

Note that Iκ
3 is a very important characteristic of a two-phase het-

erogeneous medium: as we shall see, the same quantity will reappear
in a certain simple and natural Ritz’s type variational procedure for
bounding κ∗, proposed by Beran [BEg], see Section 1.3.4.3 below.

Hence, the truncation of the series (3.3) after the third term de-
termines the effective conductivity κ∗ exactly to the order O

(
(δκ)3

)
,

provided the parameter Iκ
3 is found. Its specification, however, needs

knowledge not only of the value M3(0, 0) at the origin, but of the
whole function M3(x,y) for all values of x and y (unlike the situa-
tion with the functionM2(r) and the corresponding to it second-order
term in the expansion (3.3)).
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The evaluation of the higher-order terms Bp, p > 2, in (3.4) is
fully similar: If the validity of Eq. (3.8) is accepted and the RVE
is taken unbounded, they can be found in a form, tantamount to
(3.17), containing in the integrands the “multi-point averages” (cor-
relation functions) κ′(x)κ′(y) · · ·κ′(w). Explicit formulae and details
are supplied by Hori et al. [HOa], [HOb]. (In [HOb], [HOc] it is
shown that the series (3.3) can be summed under certain additional
(and physically reasonable) conditions for the multipoint correlations,
corresponding to special kind of heterogeneous media.) The general
problem of convergence of the expansions of the type of (3.4) is ad-
dressed by Gambin and Kröner [GAa].

The foregoing results show that the effective conductivity κ∗, like
any other macroscopical property, depends on the whole infinite set
of all multipoint correlations, i.e. of the full information about the
internal structure of a heterogeneous medium. This very important
fact was first demonstrated and clearly stated by Brown [BRd]. The
general underlying reason was already pointed out in Section 1.2.1—
the nonlinear dependence of the solution of a PDE, like (2.7), upon
its coefficients.

As a consequence, any theory that tries to predict the macro-
scopic properties on the base of limited information is bound to be
only an approximation. Hence, a question of central importance for
such approximate theories is the existence and the type of realistic
heterogeneous media (if any), whose effective properties coincide with
those that the theories predict.

1.3.2 The Hashin-Shtrikman Estimates
With a limited information about the internal structure of a medium,
the best that one can do is to find an interval, spanned by the plau-
sible effective properties. The more we know, the narrower this in-
terval should be (“collapsing” to the exact value, in principle, if we
know “everything,” i.e. the full details of the microstructure). If
the medium is two-phase and the volume fractions are solely known,
this interval is supplied by the classical Wiener bounds. If we know
more—that the medium is also macroscopically isotropic—the Wiener
bounds can be narrowed to the Hashin-Shtrikman ones. These basic
and fundamental results in the theory of heterogeneous media will be
discussed here.
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1.3.2.1 The Bergman Formula

For a two-phase heterogeneous solid let us, at the fixed boundary
conditions (2.3), change the given conductivity field κ(x) to κ(x) +
δκ(x), with a small δκ(x), as compared to κ(x). (Or, in other words,
let us vary κ(x).) Note that

δκ(x) = χ1(x)δκ1 + χ2(x)δκ2 , (3.20)

where χ1(x) and χ2(x) are the characteristic functions of the regions
V1 and V2, occupied by the constituents ‘1’ and ‘2’ respectively, and
δκ1, δκ2 are the variations of their conductivity. As a result, the tem-
perature field will change by δθ(x), and the effective conductivity—
by δκ∗. Since both θ(x) and θ(x) + δθ(x) satisfy the same boundary
condition (2.3),

δθ(x)
∣∣∣
∂V

= 0 , (3.21)

which implies, in particular, that ∇θ = ∇θ +∇δθ = G.
According to the energy definition (2.21) of the effective conduc-

tivity

1
2(κ∗ + δκ∗)G2 = 1

2(κ(x) + δκ(x))|∇θ(x) + δ∇θ(x)|2

= 1
2κ(x)|∇θ(x)|2 + 1

2δκ(x)|∇θ(x)|2

+ κ(x)∇θ(x) · δ∇θ(x) ,

(3.22)

having neglected quantities of higher orders. The first term in the
right-hand side of Eq. (3.22) equals 1

2κ
∗G2, see (2.21). Applying the

Green formula for the last term there gives

κ(x)∇θ(x) · δ∇θ(x) =
1
V

∫
V
κ(x)∇θ(x) · δ∇θ(x) dx

= − 1
V

∫
V
δθ(x)∇ · (κ(x)∇θ(x)) dx

+
1
V

∫
S
κ(x)δθ(x)

∂θ(x)
∂n

dS ,

(3.23)

which vanishes, in virtue of (2.7) and (3.21). Hence

δκ∗G2 = δκ(x)|∇θ(x)|2 = δκ1χ1(x)|∇θ(x)|2 + δκ2χ2(x)|∇θ(x)|2 ,
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which means that

∂κ∗

∂κi
=

1
G2

χi(x)|∇θ(x)|2 , i = 1, 2 . (3.24)

The important formula (3.24) was first noticed (and exploited for
bounding the effective properties) by Bergman [BEk], and that is why
we shall refer to it as Bergman’s. In the foregoing reasoning we have
followed the more rigorous derivation of Bobeth and Diener [BOa],
who rediscovered it later on. One more independent derivation was
given recently by Matheron [MAi].

The formula (3.24) has a simple interpretation. Imagine that,
for a given two-phase medium, we start varying the properties κi

of the constituents. As a result, the effective conductivity will be-
come a function of κi, i.e. κ∗ = κ∗(κ1, κ2). The formula (3.24) then
means that the mean energy, accumulated within each one of the con-
stituents, i.e. χi(x)|∇θ(x)|2, is proportional to the partial derivatives
∂κ∗/∂κi, i = 1, 2.

1.3.2.2 The Matheron Inequalities

Since χi(x), as a characteristic function, takes only the values 0 and
1, χ2

i (x) = χi(x). Then∣∣∣∣∫
V
χi(x)∇θ(x) dx

∣∣∣∣ 2≤ ∫
V
χi(x) dx

∫
V
χi(x)|∇θ(x)|2 dx ,

as it follows from the Schwartz inequality. Obviously∫
V
χi(x) dx = Vi .

Recalling that φi = Vi/V , we get from (3.24) the inequalities

∂κ∗

∂κi
≥ 1
φiG2

(
χi(x)|∇θ(x)|

)2
, i = 1, 2 , (3.25)

pointed out by Matheron [MAi].
Following now the reasoning of the same Matheron’s paper [MAi],

note that for the two-phase medium under study one has

χ1(x) =
κ2 − κ(x)
κ2 − κ1

, χ2(x) =
κ(x)− κ1

κ2 − κ1
, (3.26)
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because κ(x), as a binary function, takes the values κi in the phase
‘i’, i = 1, 2. Using the definition (2.10) of the effective conductivity
together with (3.26) yields

χ1(x)∇θ(x) =
κ2 − κ∗

κ2 − κ1
G , χ2(x)∇θ(x) =

κ∗ − κ1

κ2 − κ1
G ,

in virtue of Matheron’s inequalities (3.25). Hence

∂κ∗

∂κ1
≥ 1
φ1

(
κ2 − κ∗

κ2 − κ1

)2

,
∂κ∗

∂κ2
≥ 1
φ2

(
κ∗ − κ1

κ2 − κ1

)2

. (3.27)

1.3.2.3 The Wiener Bounds

Note next that κ∗ is a homogeneous function (of first degree) of κ1

and κ2, i.e. κ∗(λκ1, λκ2) = λκ∗(κ1, κ2), ∀λ ≥ 0. Then

κ∗ = κ1
∂κ∗

∂κ1
+ κ2

∂κ∗

∂κ2
≥ κ1

φ1

(
κ2 − κ∗

κ2 − κ1

)2

+
κ2

φ2

(
κ∗ − κ1

κ2 − κ1

)2

.

The latter inequality can be simply factorized to give

(κv − κ∗)(κ∗ − κr) ≥ 0 , (3.28)

where κv and κr are the Voigt and Reuss approximations, see (2.11)
and (2.18). Since κr ≤ κv for all κi > 0, φ1 + φ2 = 1, Eq. (3.28) has
as a consequence

( 1/κ )−1 ≤ κ∗ ≤ k . (3.29)

Hence the Reuss and Voigt values supply an interval within which
the effective conductivity of the heterogeneous solid should always
lie, independently on the details of the internal (macroscopically
isotropic) constitution. In the scalar (dielectric, more precisely) con-
text this important fact has been first proved by Wiener [WIa], by
means of certain algebraic arguments. That is why the bounds (3.29)
are often called Wiener’s.

It is important to point out that the bounds (3.29) are sharp, in
the sense that there exist heterogeneous solids whose conductivity
equals the limiting values κr and κv. (Such solids are the simple
laminate or fiber media, already discussed in Remarks 2.1 and 2.2.)
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Remark 3.4 Both media whose effective conductivities (along cer-
tain directions) coincide with the Voigt and Reuss values are anisot-
ropic. If, additionally, it is required that the medium be macroscopi-
cally isotropic, then there exists an interval of admissible values of κ∗,
narrower than (3.29). This is one of the most remarkable facts in the
theory of heterogeneous media. The narrower interval is specified by
the so-called Hashin-Shtrikman’s bounds, to be derived in a moment.

1.3.2.4 The Hashin-Shtrikman Bounds

To get more restrictive bounds consider, again after Matheron [MAi],
the function

F (κ1) =
1

κ2 − κ∗
− 1
φ1(κ2 − κ1)

. (3.30)

Here, for the given two-phase medium, the conductivity κ2 of the
phase ‘2’ has been fixed, so that κ∗ depends on κ1 solely. The deriva-
tive

dF
dκ1

=
1

(κ2 − κ∗)2

[
∂κ∗

∂κ1
− 1
φ1

(
κ2 − κ∗

κ2 − κ1

)2
]
≥ 0 ,

as a consequence of the first of the inequalities (3.27). Therefore
F (κ1) is an increasing function of κ1 and, consequently, if κ1 > κ2,

F (κ1) ≥ F0 , F0 = lim
κ1→κ2+0

F (κ1) . (3.31)

(If κ1 < κ2, the opposite inequality holds.) The evaluation of the
limit F0 is straightforward, using the formula (3.14) and the final
result reads

F0 =
B1

φ2
1κ2

or F0 = − φ2

3κ2φ1
, (3.32)

having recalled the value of B1 from (3.14).

Remark 3.5 This is the only place in the reasoning, yielding the
Hashin-Shtrikman estimates, where the approximation (3.8) and its
consequence (3.14) are to be used, together with the value of B1 from
(3.13). If this value is left unspecified, from the considerations below
the appropriate HS bounds for a finite body can be derived as well.
However, the “finite-body” Green function should be then invoked.
As a result the explicit evaluation of B1 will be extremely difficult
even for the simplest regions V (say a ball), when this function is
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known. Moreover, the constant B1 will then “feel” both the details
of the internal structure (through the two-point correlation) and the
shape of the RVE, V.

Inserting F0 from the second equality of (3.32) in (3.31) gives

F (κ1) =
1

κ2 − κ∗
− 1
φ1(κ2 − κ1)

≥ − φ2

3κ2φ1

which can be recast in the more compact form

κ∗ ≥ κ− φ1φ2[κ]2

3κ2 − φ2[κ]
, if κ1 > κ2 . (3.33)

The opposite inequality holds, if κ1 < κ2.
In a fully similar manner, the function

F (κ2) =
1

κ∗ − κ1
− 1
φ2(κ2 − κ1)

can be considered, instead of (3.30), with κ1 being fixed. Application
of the second of the inequalities (3.27) will ensure that F (κ2) is de-
creasing. Hence, for κ1 > κ2, a lower bound on κ∗ shows up—it has
the same form as (3.33), but with indices ‘1’ and ‘2’ interchanged.
Hence, together with (3.33), we have

κ−HS ≤ κ∗ ≤ κ+
HS , if κ1 > κ2 ,

κ−HS = κ− φ1φ2[κ]2

3κ2 − φ2[κ]
, κ+

HS = κ− φ1φ2[κ]2

3κ1 + φ1[κ]
.

(3.34)

For κ1 < κ2, the same inequalities (3.34) hold, but with reversed
lower and upper values of the bounds.

The bounds (3.34) coincide with the ones derived by Hashin and
Shtrikman [HAl] by means of an original variational procedure. A
simple check demonstrates that they are more restrictive that the
Wiener bounds, given in (3.29).

Note that the upper bound in Eq. (3.34) can be easily recast in
a form, coinciding with the Maxwell formula (1.19). This means
that, whatever the internal structure of a (macroscopically isotropic)
medium, Eq. (1.19) always provides an upper estimate on the effective
conductivity, if the matrix is “stiffer” than the inclusions (κ1 > κ2)
and a lower one in the opposite case (κ1 < κ2).
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In principle, the generalization of the HS bounds to the elastic
case can be obtained in a similar manner, though the technical details
will be much more cumbersome. The original derivation, using the
Hashin-Shtrikman variational principle [HAk], can be found in the
paper [HAm], see also [WId]. For the bulk modulus, however, much
simpler derivation can be proposed, following certain Hill’s arguments
[HIb], as we shall see in Section 1.3.5 below (cf. Eq. (3.68)).

1.3.3 The Hashin Assemblage

The Hashin-Shtrikman (HS) bounds (3.34), apart from their extreme
simplicity, possess also the very important properties that they, simi-
larly to the Voigt and Reuss bounds, are sharp [HAe]. In other words,
they are the narrowest bounds on the effective conductivity that can
be constructed, provided we know that the medium is two-phase,
macroscopically isotropic, and has prescribed volume fractions φ1, φ2

of the constituents.
For a demonstration that the HS bounds are sharp it suffices to

construct special two-phase media whose conductivities coincide with
the values κ−HS and κ+

HS. These are the so-called Hashin’s assemblages
which look as follows [HAe].

The typical element of the assemblages is a composite sphere,
denoted by Va,b. It has an external radius b and contains a concentric
spherical inclusion of the radius a, whose conductivity is, say, κ2.
The coating around the latter, i.e. the region a < r < b, has the
conductivity κ1. If φ2 is the given volume fraction of the phase ‘2’,
we require that

a3/b3 = φ2 . (3.35)

Next we fill up the whole space (the RVE, more precisely), with
such composite spheres of different external radius b, from finite down
to infinitesimally small. The obtained two-phase medium is just the
Hashin assemblage.8 The condition (3.35) assures that the volume
fractions of the constituents equal the prescribed values φ2 and φ1 =
1− φ2.

Since the structural elements of the assemblage are fully similar,
and differ only in a scale factor, the temperature on their surfaces
will be the same, coinciding with the one imposed on the macroscopic

8It is noted in passing that the assemblage is an excellent example of a self-
similar or fractal-like structure which looks one and the same in all length scales.
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boundary, see Eq. (2.3). Thus, to find the effective conductivity of the
composite, it suffices to specify the temperature field within a single
composite sphere, i.e. to find the continuous function θ(x), such that

∆θ(x) = 0 , θ(x)
∣∣∣∣
r=b

= G · x ,

κ2
∂θ

∂r

∣∣∣∣
r=a−0

= κ1
∂θ

∂r

∣∣∣∣
r=a+0

.

(3.36)

The solution of the problem (3.36) has the form θ(x) = G · ∇ϕ(r),
cf. (1.9), with the potential function

ϕ(r) =

{ 1
2C1r

2, if r < a,
1
2C2r

2 − C3a
3/r, if a < r < b.

(3.37)

The boundary conditions (3.36) elementary specify the unknown
constants:

C1 =
(φ2 − φ1)β
1− φ1β

, C2 =
1

1− φ1β
, C3 = − β

1− φ1β
, (3.38)

with β given in Eq. (1.15).
The mean flux in the RVE coincides with its mean value over the

typical composite sphere Va,b:

q = κaG , q = 〈q〉Va,b
,

〈q〉Va,b
=

1
Va,b

∫
Va,b

q(x) dx =
1
Va,b

∫
Va,b

κ(x)∇θ(x) dx

=
1
Va,b

[
κ2

∫
r<a

∇θ(x) dx + κ1

∫
a<r<b

∇θ(x) dx

]
,

(3.39)

where κa is the effective conductivity of the assemblage under study.
Elementary calculations, eventually give

κa = κ1

(
1 + 2βφ2

1− βφ2

)
, (3.40)

having used that θ(x) = G · ∇∇ϕ(r), with ϕ(r) already found in
Eqs. (3.37) and (3.38), the isotropy of the integrals that enter
Eq. (3.39), as well as the condition (3.35).
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Eq. (3.40) obviously coincides with the Maxwell formula (1.19).
The latter, as already pointed out, is always one of the HS bounds
(3.34). To get the other of the bounds one should only reverse the in-
dices ‘1’ and ‘2’ of the phases (i.e. the phase ‘1’ will be now surrounded
by an appropriate concentric layer of ‘2’, such that a3/b3 = φ1,
cf. (3.35)). This observation completes the proof that, as far as
the scalar conductivity is concerned, the HS bounds (3.34) are in-
deed optimal for the given amount of information about the medium
(macroscopically isotropic two-phase mixtures with prescribed vol-
ume fractions).

1.3.4 The Variational Estimates

Consider now the standard variational principles for the transport
problems in heterogeneous media, again in the simplest context of
scalar conductivity. Their application for bounding the effective prop-
erties is a classical one, and will be briefly recalled and summarized.
Within the frame of the volume averaging approach, pursued here,
they turn out to be of very limited significance, since the boundary
values of the admissible fields are prescribed. Instead, the minimum
principle of Willis (Theorem 2.2), free of such “boundary” limitations,
will to be applied now.

1.3.4.1 The Dirichlet Principle

Let θ(x) be the actual temperature field in a heterogeneous solid,
i.e. the solution of Eq. (2.7) with the boundary condition (2.3). Con-
sider the class A of admissible (or trial) fields which are continu-
ous and almost everywhere differentiable, subjected only to the same
boundary condition (2.3). Let θ̃(x) ∈ A, then both θ̃(x) and θ(x)
satisfy the same condition (2.3), so that the variation δθ(x) should
vanish on ∂V:

δθ(x)
∣∣∣
∂V

= 0 , θ̃(x) = θ(x) + δθ(x) . (3.41)

The “energy” of an admissible field, as defined in Eq. (2.21), is a
functional over the class A. Its value, for a given field θ̃(x) ∈ A, is

W̃ =W [θ̃(x)] = 1
2κ(x)|∇θ̃(x)|2 = 1

2κ(x)|∇θ(x)|2

+ κ(x)∇θ(x) · δ∇δθ(x) + 1
2κ(x)|∇δθ(x)|2 .

(3.42)
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The middle term in the right-hand side of Eq. (3.42) vanishes, as
a consequence of the Gauss theorem, cf. Eq. (3.23). The last term
there is non-negative and therefore

W ≤ W̃ , W = 1
2κ
∗G2 , (3.43)

having recalled Eq. (2.25) as well. Hence the actual field in the
medium minimizes the “energy” functional W in the class A of ad-
missible fields.

The statement (3.43) represents the first of the standard varia-
tional principles for the BVP (2.7), (2.3). It is often called Dirichlet
principle (since, for a homogeneous medium, when κ(x) = const, it
states that the solution of the Dirichlet problem ∆θ(x) = 0, θ(x) | ∂V=
θ0(x), with a prescribed function θ0(x), minimizes the Dirichlet in-
tegral

∫
V |∇θ(x)|2 dx).

1.3.4.2 The Thompson Principle

Dually, let q(x) be the actual heat flux in the medium, i.e. the so-
lution of the BVP (2.13), (2.19). Consider the class B of admissible
flux fields q̃(x) which are continuous and almost everywhere differ-
entiable, such that

∇ · q̃(x) = 0 , q̃ · n
∣∣∣
∂V

= Q · n . (3.44)

Then, the variation δq(x) = q̃(x)− q(x) is divergence-free and van-
ishes on the boundary ∂V:

∇ · δq(x) = 0 , δq · n
∣∣∣
∂V

= 0 . (3.45)

The “energy” of an admissible field, as defined in Eq. (2.26), is
a functional over the class B. Its value, for an admissible flux field
q̃(x) ∈ B, is

Ψ̃ = Ψ[q̃(x)] = 1
2k(x)|q̃(x)|2 = 1

2k(x)|q̃(x)|2

+ k(x)q(x) · δq(x) + 1
2k(x)|δq(x)|2 .

(3.46)

The last term in the right-hand side of Eq. (3.46) is non-negative.
The middle term there vanishes, in virtue of Eq. (3.45):

k(x)q(x) · δq(x) =
1
V

∫
V
∇θ(x) · δ∇q(x) dx

= − 1
V

∫
V
θ(x)∇ · δq(x) dx +

1
V

∫
∂V
θ(x)δqn(x) dS ,
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having recalled that ∇θ(x) = k(x)q(x), and employing the Gauss
theorem. Therefore,

Ψ ≤ Ψ̃ , Ψ = 1
2k
∗Q2 . (3.47)

Hence the actual flux field in the medium minimizes the energy
functional Ψ in the class B of admissible fields, defined by means of
(3.44).

The statement (3.47) represents the second of the standard varia-
tional principles for the heat propagation in a heterogeneous media.
Often called Thompson principle, it specifies the extremum property
of the actual heat flux in such media.

1.3.4.3 The Beran Bounds

The principles (3.43) and (3.47) allow us to derive variational esti-
mates on the effective properties in a standard manner, using appro-
priate trial fields θ̃(x) ∈ A and q̃(x) ∈ B. Then (3.43) and (3.47)
yield

Q2

2Ψ̃
≤ κ∗ ≤ 2W̃

G2
, (3.48)

since k∗ = 1/κ∗, see (2.30).
Like many other disciplines, where variational principles are of

importance, the art of their applications lies, in general, in the con-
venient and skillful choice of trial fields. This means that the values
of the “energy” can be comparatively easily evaluated for them and
the resulting estimates (3.48) should be as close as possible.

As a simplest application of the variational principles (3.43) and
(3.47) let us choose as trial fields, respectively, θ(x) = G · x and
q(x) = Q. They both are admissible and reproduce the Wiener
bounds (3.29), in which only the volume fractions of the constituents
show up.

To get more restrictive bounds, broader classes of trial fields should
be invoked. For a big, but still finite RVE, a very serious problem
immediately arises in this connection, namely, the necessity that the
boundary conditions (3.41) and (3.44) be met. Then, if mathemat-
ical rigour is to be preserved, the application of the appropriate fi-
nite body Green function seems unavoidable, together with a careful
limiting passage to an unbounded volume V. That is why, strictly
speaking, the only application of the classical variational principles of
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Dirichlet and Thompson here, within the volume averaging approach,
is a rederivation of the Wiener bounds. Instead, the Willis minimum
principle (Theorem 2.2) should be employed, since it imposes no re-
strictions on the boundary values of the admissible fields.

To this end, recall the idea of Beran [BEg] to employ as trial
fields the truncated perturbation series (3.3), multiplying the terms
with adjustable scalars. (This is obviously a Ritz’s type variational
procedure, with basis functions ingeniously chosen as the terms of
the series (3.3).) In the simplest nontrivial case the class

θ̃(x) = G · x + λθ(1)(x) (3.49)

of trial fields shows up, where θ(1)(x) is defined in Eq. (3.8), and λ is
a certain adjustable constant.

For the trial fields (3.49), the energy (2.21) is a quadratic function
of λ

W̃ = W [θ̃(x)] = 1
2

(
A− 2Bλ+ Cλ2

)
G2 , (3.50)

with the coefficients

A = κ , B = − 1
G2

G · κ′(x)∇θ(1)(x) ,

C =
1
G2

[
κ |∇θ(1)(x) |2 + κ′(x) |∇θ(1)(x) |2

]
.

(3.51)

The quantity |∇θ(1)(x) |2 that appears in the coefficient C can
be evaluated, using the equation (3.5) for θ(1)(x). Indeed, multi-
ply both sides of Eq. (3.5) by θ(1)(x) and apply the Gauss theorem;
the boundary conditions for θ(1)(x) assure then disappearance of the
surface integral, thus yielding

|∇θ(1)(x) |2 = −κ′(x)∇θ(1)(x) ·G = −B1G
2 . (3.52)

For the second term in the coefficient C, we employ in a similar
manner the equations for the functions θ(1)(x) and θ(2)(x), see (3.5)
and (3.6). The final result is

κ′(x) |∇θ(1)(x) |2 = G · κ′(x)∇θ(2)(x) ,

and hence
C = B2 −B1 , B = −B1 ; (3.53)
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the second equality is obvious from Eqs. (3.10) and (3.52).
Minimizing the right-hand side of Eq. (3.50) with respect to λ

gives the estimate

κ∗ ≤ κ+
B , κ+

B = A− B2

C
= κ− B2

1

B2 −B1
. (3.54)

on the effective conductivity. Eq. (3.54) is a consequence, let us
point out once again, of the Willis minimum principle. That is why
this estimate, as a result, does not need the explicit form of the
perturbation coefficients B1 and B2 from the series (3.4). It holds
therefore for a finite volume V as well. (But these coefficients will be,
in general, “form-dependent,” since the finite-body Green function,
corresponding to the RVE, V, should be exploited in their evaluation;
moreover, even in the macro-isotropic case B1 will depend on the
“whole” two-point correlation function.)

For an unbounded RVE, using the approximation (3.8) and, ac-
cordingly, the formulae (3.10) and (3.17) for B1 and B2, respectively,
the bound (3.54) takes already the explicit (“form-independent,” so
to say) form, due to Beran [BEg]:

κ∗ ≤ κ+
B , κ+

B = κ

{
1− 1

3

κ′2

κ2

/(
1 +

κ′3

κκ′2
Iκ
3

)}
. (3.55)

In a fully similar manner the lower Beran bound can be deduced,
using the Willis principle. The final result, skipping the purely tech-
nical details, reads

κ−B ≤ κ∗ , κ−B = κr

{
1− 2

3

k′2

k
2

/(
1 + 1

2

k′3

k k′2
(1 + Ik

3 )

)}−1

,

(3.56)
where κr = (1/κ)−1 is the Reuss approximation (2.18) and k(x) =
1/κ(x) is the resistivity field for the medium. The parameter Ik

3 has
exactly the same form as Iκ

3 in Eq. (3.18), but with κ(x) replaced by
k(x).

For a two-phase medium it is easy to show that Iκ
3 = Ik

3 , i.e. the
upper and lower Beran bounds depend on a single parameter Iκ

3 . The
latter reflects in a certain integral way the internal structure of the
medium, by means of the three-point correlation function Mκ

3 (x,y),
see (3.19). In this sense the Beran bounds are three-point bounds.
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It is noted that the foregoing derivation of the Hashin-Shtrikman
bounds (3.34) implies that they are two-point because only the two-
point correlation M2(r) is needed for their evaluation. (This is the
assumption of macro-isotropy that, happily, has left only the value
M2(0) of the latter in the final result.)

Moreover, for a weakly inhomogeneous medium the Beran bounds,
κ−B and κ+

B coincide with the exact value of the effective conductivity,
as given in Eq. (3.17), to the order O

(
(δκ)3

)
. This means that

κ∗ ≈ κ+
B ≈ κ−B = κ− κ′2

3κ
+
κ′3

3κ2 I
κ
3 + O

(
(δκ)3

)
. (3.57)

The sign ≈ indicates here that the appropriate quantities differ in the
order O

(
(δκ)3

)
. In this sense the Beran bounds are third-order ones.

The formula (3.57) well illustrates a basic and well-known fea-
ture of variational estimates (that holds not only in the context of
heterogeneous media). Namely, the more structural information is
incorporated, the narrower the bounds become. Indeed, for the sim-
plest Wiener’s bounds (3.29), when the volume fractions are only
known in a binary medium

κv − κr = φ1φ2[κ]2 / κ̃ ,

where κ̃ is defined in (3.62) below. Hence κv and κr coincide to the
order O (δκ); they are therefore first-order. The HS bounds (3.34) in-
corporate the additional information that the medium is statistically
isotropic. Accordingly

κ+
HS − κ−HS =

2φ1φ2[κ]3

(2κ1 + κ)(2κ1 + κ̃)
,

so that the coincidence is to the order O
(
(δκ)2

)
; they are therefore

second-order. Finally, incorporating some (but not full) “three-point”
information in the Beran bounds (3.55), (3.56) makes them third-
order, as already pointed out.

To conclude the story about Beran’s bounds, let us return to the
series (3.4). It is obviously the Taylor expansion of the effective con-
ductivity κ∗ treated as a function of the parameter δκ = [κ]/κ, see
Eq. (3.2). (That is, with the geometry of the two-phase medium be-
ing fixed, we vary the conductivity of one of the constituents, say
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κ2, having fixed κ1.) This parameter need not be small, in gen-
eral, for the series to converge. Moreover, it is not even necessary
to assume it real—the conductivities can well be complex numbers
which, physically, may account for the possible dielectric losses in the
medium. Then (3.4) defines a function in the complex plane, which
possesses a number of important and beautiful properties. Such
a complex-analytical viewpoint was introduced by Bergman [BEk],
[BEl], who, having recognized these properties, employed them for
deriving bounds on the effective conductivity that hold both in real
and complex cases, see also Milton’s papers [MIc], [MId]. The rea-
soning of Bergman and Milton was put on a rigorous base by Golden
and Papanicolaou [GOa]—they proved that the function κ∗ = κ∗(δκ)
in the complex region can be represented as a certain Stieltjes inte-
gral. This representation opened the way for systematic derivation of
bounds on κ∗, using truncation of the Taylor series and the so-called
Padé approximants, whose definition and a simple application will be
very briefly discussed below. Any details of this beautiful theory are
beyond the scope of the present elementary survey (see, e.g. [MIh] for
a very clear summary of the basic ideas). But, we have accumulated
until now some basic results, happily, that will suffice for a small
illustration.

Let us truncate the Taylor series (in the point z = 0) of a func-
tion f(z) after the zp+q+1-term. The rational function P (z)/Q(z) is
called (p, q)-Padé approximant for f(z), if its Taylor expansions co-
incides to the order zp+q+1 with the said truncation; here P (z) and
Q(z) are polynomials of degrees p and q, respectively, and Q(0) = 1.
(The origin, importance, theory and numerous applications of such
approximations are clarified and collected, e.g. in the book [BAa].)

To apply a Padé’s approximant in the study of effective conduc-
tivity κ∗, observe that we already know the Taylor expansion (3.4)
of the latter, treated as a function of δκ, to the order O

(
(δκ)3

)
,

cf. Eq. (3.57). The simplest nontrivial approximant will be then of
the order (1,2) and it should have the form

κ∗ = κ+ (δκ)2
a0

1 + b1δκ
, (3.58)

as it follows from (3.14). The coefficients a0 and b1 are specified
by the condition that the Taylor expansion of the function (3.58)
coincides to the order O

(
(δκ)3

)
with that in (3.57). The result, as
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immediately seen, reproduces the Beran bound (3.55). Hence, this
bound is nothing but a simplest Padé approximant for the function
κ∗ = κ∗(δκ).

Remark 3.6 In a purely formal manner, consider κ∗ = κ∗(φ2) as a
function of the volume fraction φ2 of one of the constituents.9 For a
dispersion of spheres the Taylor expansion of this function is known to
the order φ2, due to Maxwell, see (1.20). We can try to approximate
κ∗(φ2) by a simple Padé’s like function:

κ∗(φ2) ≈ κ1
1 + a1φ2

1 + b1φ2
. (3.59)

To fix the constants in (3.59), we require that it coincides with (1.20)
to the order φ2 and has the value κ2, if φ2 = 1. A simple check shows
that the right-hand side of Eq. (3.59) reproduces then the Maxwell
(1.19) or which is the same, one of the Hashin-Shtrikman bounds
(3.34). The author cannot provide any explanation of this fact which
could be only a fortunate coincidence. At first glance it is strange as
well that starting with the formula (1.20), valid for spherical shape
of the inclusions in a dispersion, one gets the HS-bound out of the
approximation (3.59), already valid for arbitrary (macro-isotropic)
internal geometry.

1.3.4.4 The Torquato-Milton Parameter

The Beran bounds have been considerably simplified by Torquato
[TOb] and Milton [MIc]. They introduced the so-called ζ-parameter
which, in term of the above defined parameter Iκ

3 , can be defined
through the relation:

3(φ2 − φ1)Iκ
3 = 2ζ1 + 3φ1 − φ2 , ζ2 = 1− ζ1 . (3.60)

9The function κ∗ = κ∗(φ2) is very often considered and approximated in the
literature on composite media, together with its expansions in powers of φ2 (called
virial, borrowing the terminology from the theory of dense gases); see Section 1.5
below. Despite this, the reader should be warned that it has in general no exact
meaning, if the internal structure is not carefully predefined. The point is that
for a given volume fraction φ2 there exist (infinitely) many internal constitutions;
changing φ2 by an infinitesimal amount only, this constitution can be drastically
changed and rearranged.
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By means of ζ’s, the Beran bounds (3.55) and (3.56) adopt the
amazingly simple and symmetric form:k − 2k′2

2〈k̃〉+ 〈k〉ζ


−1

≤ κ∗ ≤ κ− κ′2

〈κ̃〉+ 2 〈κ〉ζ
, (3.61)

with the notations

〈k̃〉 = φ1k2 + φ2k1 , 〈k〉ζ = ζ1k1 + ζ2k2 , (3.62)

and similarly for any other quantity instead of k, see [MIc].
The bounds (3.61) should be more restrictive than the elementary

Wiener’s bounds (since the appropriate functionals are minimized
over broader classes of trial fields). This implies that the denomina-
tors in the both fractions in (3.61) should be non-negative, whatever
the properties of the constituents κ1, κ2 ≥ 0, which immediately
yields

0 ≤ ζ1, ζ2 ≤ 1 . (3.63)

The limiting values ζ1 or ζ2 = 0, 1 reproduce one of the HS-bounds
(3.34). Together with (3.63), this fact implies that the Beran bounds
are always more restrictive than the Hashin-Shtrikman’s ones (some-
thing which becomes clear only after the simplification (3.61) of the
former). This sounds natural, but by no means is obvious (since the
Beran bounds make use of the three-point information only partially,
and this does not suffice to claim in general that they are better than
any two-point ones, like Hashin-Shtrikman’s).

The evaluation of the ζ-parameter is a nontrivial and complicated
task for a given heterogeneous medium; the formula (3.18) for Iκ

3

and the definition (3.60) imply that ζ represents in general a six-fold
integral with a singular kernel. The latter should be first drastically
simplified before trying to apply numerical or analytical methods.

Considerable efforts have been dedicated to this end, starting per-
haps with the series of Corson’s papers, see [COa] and the ensuing
pages of the same issue of J. Appl. Phys. There the needed parameter
(ζ as a matter of fact) has been evaluated numerically using the out-
come of extensive experimental work, concerned with measurement
of two- and three-point correlations of a real two-phase alloy (based
on a Buffon’s kind of “needle” and “triangle” games).
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For special (and perhaps idealized) models of heterogeneous media
the parameter ζ was analytically found. For example, one of the first
and simplest models due to Miller [MIb], can be recalled here. This
is the so-called cell material, constructed through dividing the space
R3 into cells. Each cell is supplied afterward with conductivity κ1

and κ2 with probability φ1 and φ2, respectively, independently of the
properties of the surrounding cells. For this model both the two- and
three-point correlations are quite simple and it turns out, for example,
that ζ1 = φ1, in the case of spherical cells, see [MIb], [HOa] et al. For
other, more realistic and complicated models of heterogeneous media,
details and extensive references, concerning the evaluation of the ζ-
parameter, are given in Torquato’s survey [TOc], see also the recent
paper of Jeulin [JEc].

1.3.5 The Bounds in the Elastic Case
All “scalar” considerations, performed until now, can be generalized
to the elastic case in an obvious manner. The derivation of the ap-
propriate expansions like (3.17) will be considerably more tedious,
due to the tensorial nature of the basic quantities (strain and stress
tensors).

There is however another, more important, complication for an
elastic heterogeneous solid, namely, the fact that there exist at least
two small parameters, say, δk and δµ in the isotropic case, instead of
the single parameter (3.2) of the scalar case. Both these parameters
will be small for a weakly inhomogeneous solid, δk, δµ� 1, but they
may be small of different orders. Details can be found, e.g., in the
papers [MOa] and [LOa]. One of the central “perturbation” results
of these works is Eq. (3.67) below. It is however a simple particular
case of the general formula of Hill, see (3.66).

The Hashin-Shtrikman’s bounds (3.34) can be generalized to the
elastic case extending the arguments of Section 1.3.2, once the per-
turbation expansions of the moduli (to the second order of δk and
δµ) are known. The original derivation of these bounds employs the
appropriate variational principle [HAl], [HAm], see also [WId]. It will
be omitted here, due to the number of technical details it employs.
Instead only the bound on the effective bulk modulus will be derived
below in a different (non-variational) way, following Hill [HIb].

The classical variational principles, based on minimization of the
energy of a RVE, V, are formulated in a straightforward manner for
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an elastic medium. Following Hill [HIa] (who dealt with polycrystals,
to be precise), the simplest trial fields of homogeneous strain and
stress within the volume V produce the counterpart of the Wiener’s
bounds (3.29), namely:

Lr ≤ L∗ ≤ Lv ,

Lv = L(x) , Lr = ( L−1)−1 ,
(3.64)

where Lv and Lr are the Voigt and Reuss approximations for the
tensors of the effective moduli, respectively. That is why the bounds
(3.64) are often called Hill’s. For elastic (two-phase) composites their
derivation is due also to Paul [PAc], so that sometimes they are re-
ferred to as Paul’s bounds as well.

The generalization of the Beran’s bounds to the elastic case is, in
principle, straightforward, though again considerably more cumber-
some. For the effective bulk modulus k∗, when the applied macros-
train is spherical, the appropriate bounds are due to Beran and
Molyneux [BEj]. They contain the same statistical parameter ζ, that
appeared in the scalar bounds (3.61), but this became clear only when
Milton [MIc] drastically simplified the original Beran-Molyneux esti-
mates, recasting them as1/k − 4(1/k)′2

4〈1̃/k〉+ 3 〈1/µ〉ζ


−1

≤ k∗ ≤ k − 3k′2

3〈k̃〉+ 4 〈µ〉ζ
(3.65)

Obviously, (3.65) resembles very closely (3.61). (It is recalled that
for any binary quantity that takes the values, say, a1 and a2 in the
constituents, a′2 = (a− a)2 = φ1φ2(a1 − a2)2, cf. (3.13).)

Remark 3.7 We shall call Hill’s medium an elastic binary mixture
of isotropic constituents with the same shear moduli, µ1 = µ2 = µ,
which is macroscopically isotropic. For such a medium 〈µ〉ζ = µ,
〈1/µ〉ζ = 1/µ so that the parameter ζ disappears from the bounds
(3.65). Moreover, a simple check shows that the bounds coincide,
yielding the exact value of the effective bulk modulus

k∗ = k − k′2

k + 4
3µ+ k′3 /k′2

. (3.66)
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This is a remarkable result due to the fact that it holds independently
on the internal structure of the medium, under the only assumptions
of macroscopical isotropy and equal shear moduli.

The formula (3.66) is due to Hill [HIb]. His original reasoning,
which does not make use of any variational arguments, is based on
an ingenious guess for the real displacement field in the medium.
This field turns out to be a linear combination of a pure dilatation
and of the gravitational force generated by uniform distribution of
mass within one of the constituents; the dilatation it generates is
piece-wise constant.10

Remark 3.8 In the weakly inhomogeneous Hill’s medium (µ1 = µ2)
the perturbation expansion of the type (3.14) reads

k∗ = k − k′2

k + 4
3µ

+ O
(
(δk)2

)
, δk =

[k]
k
, (3.67)

and it immediately follows from the general formula (3.66). Moreover
Eq. (3.66) specifies easily the perturbation expansion to any order of
δk. The particular case (3.67) was found independently in [MOa],
[LOa] directly, though the needed calculations are quite tedious.

For the effective shear modulus µ∗ the evaluation of the Beran
type bounds is due to McCoy [MCa] and it is much more involved
than the ones for the conductivity and bulk modulus. Moreover, the
bounds include a second statistical parameter of the kind of ζ (the
so-called η-parameter of Torquato and Milton, which shows up as a
consequence of the tensorial structure of the Green function in the
elastic case). A much simpler form, similar to (3.61) and (3.65), of
the McCoy bounds on µ∗ can be found again in [MIc].

It is to be noted finally in this subsection that the Hill formula
(3.66) allows to obtain easily the Hashin-Shtrikman bounds on the
bulk modulus of a binary mixture. Indeed, following Hill [HIb], con-

10Strictly speaking, the Hill analysis only proves that the right-hand side of
Eq. (3.66) is an upper bound on k∗. The reason is that the displacement field,
devised by him, does not satisfy the homogeneous boundary condition (2.55)
exactly, and hence this can be only one of the trial displacement fields in the
minimum principle of Willis (Theorem 2.2). The mean dilatation is prescribed, but
nothing is known about the exact values of the displacement on the boundary ∂V.
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sider a more general case of an elastic mixture, when µ2 < µ1 and
k2 < k1. (Note that this is a particular case of the so-called “well-
ordered” mixture, when (µ2 − µ1)(k2 − k1) > 0; the “badly-ordered”
one corresponds to the inequality (µ2 − µ1)(k2 − k1) < 0.) Keeping
the modulus k1 fixed, let us start increasing mentally µ2 until it coin-
cides with µ1. In this process the effective bulk modulus will increase
as well and its value will be the one, given in Eq. (3.66) when µ2

“reaches” µ1. Hence (3.66) will provide an upper bound on k∗ in
the case under study. In a similar way we can decrease µ1 until it
coincides with µ2; then (3.66) will give a lower bound on k∗, i.e.

k − k′2

k + 4
3µ2 + k′3 /k′2

≤ k∗ ≤ k − k′2

k + 4
3µ1 + k′3 /k′2 .

(3.68)

If µ2 > µ1 and k2 > k1, the inequality signs are to be changed in
(3.68). The same inequalities (3.68) were derived by Hashin and
Shtrikman [HAm] by means of variational arguments; these authors,
however, were able to find estimates of a similar kind for the effective
shear modulus as well.

1.3.6 Cross-Properties Relations: The Levin Formula
Consider again a two-phase medium. Geometrically, this is simply a
division (in general, extremely complicated of course) of a region V
into two parts, V1 and V2, that represent the subregions occupied by
the phases, V = V1 ∪ V2. Such a division, purely geometrical in this
moment, can be materialized in many different ways and contexts,
in the sense that we can fill up the phases with materials of different
conductivities, elasticity constants, absorption abilities, etc. We can
as well let a fluid penetrate the volume through one of the phases,
assuming the other to be a rigid or deformable skeleton and so on
and so forth. In any of the cases, pursuing the appropriate homoge-
nization problem, we can evaluate, in principle, the specific effective
properties. The fact that behind any one of these problems, a fixed
and common for all of them geometrical “structure” is hidden (the
given division of the volume V into two subregions V1 and V2) sug-
gests that the effective properties, no matter how different in context
and interpretation, should be interconnected. Such interconnections
are often called cross-properties relations.

The simplest cross-properties relations appear due to an obvious
mathematical analogy between the equations that govern different
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phenomena. The already mentioned examples of dielectric perme-
ability, magnetic permittivity, diffusion, heat conduction, etc., pro-
vide such examples of full formal analogy; that is why it suffices to
get results for one of these phenomena, for the rest only the inter-
pretation should be changed. An analogy of this kind will be used
in Section 1.5.2, when deriving the Einstein formula (1.21) from a
study of an elastic dispersion of spheres. In some cases, however, the
mathematical analogy, though present, is not that obvious and some
efforts are needed to clarify it. An example is provided by the the heat
propagation in a fiber-reinforced medium, transverse to the axes of
fibers (assumed parallel cylinders) and the shear straining along the
fibers. As shown by Hashin [HAh, Chapter 5.5.1], the appropriate
effective parameters coincide, due to the same governing equations
for these two phenomena.

Much more nontrivial cross-properties relations are however those
where there is no direct mathematical analogy, and the relations re-
sult from the same underlying internal structure of the medium. Here
we shall present only the first and maybe the most famous relation of
this kind—the so-called Levin formula which ties the effective ther-
mal expansion coefficient with the bulk modulus of a two-phase solid
[LEa].

Following Levin himself [LEa], consider two types of straining of
a thermoelastic solid: the first, due to given surface traction at fixed
temperature, the other—due to temperature change with no such
tractions.

More specifically, let ε(x) and σ(x) be the strain and stress fields
that appear in the volume V at fixed temperature T = 0 and under
the homogeneous boundary conditions (2.58). These conditions imply

σ = σ0 , ε = M∗ : σ0 , (3.69)

cf. Lemma 2.7, where M∗ is the effective compliance tensor of the
medium.

Consider a second pair of strain and stress fields in the medium,
ε(t)(x) and σ(t)(x), due solely to the change T of the temperature,
with no boundary tractions; let u(t)(x) be the appropriate displace-
ment field. These fields appear as a consequence of the inhomogene-
ity of the thermal expansion coefficient α(x) which takes the different
values, α1 and α2, in the phases ‘1’ and ‘2’ respectively. According
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to the basic thermoelastic law, we have

ε(t)(x) = M(x) : σ(t)(x) + α(x)TI . (3.70)

Moreover,

ε(t) =
1
V

∫
V

ε(t)(x) dx = α∗TI , (3.71)

which is just the definition of the effective thermal expansion co-
efficient α∗ of the medium (having assumed, for simplicity’s sake,
isotropy of thermal expansion effects as well).

Note first the identity

1
V

∫
V

σ(x) : ε(t)(x) dx =
1
V

∫
V
∇ ·

(
σ(x) · u(t)(x)

)
dx

=
1
V

∫
S

n · σ(x) · u(t)(x) dS = σ0 : ε(t) = α∗T Trσ0 ,

(3.72)

which easily follows from Gauss’ theorem, the boundary conditions
(2.55), the self-equilibrium of the field σ(x) and the definition (3.71)
of the effective thermal expansion constant.

The second identity that we shall need reads∫
V

σ(t)(x) : ε(x) dx =
∫
V

σ(t)(x) : M(x) : σ(x) dx = 0 , (3.73)

since the field σ(t)(x) is “temperature-induced,” with no surface trac-
tions involved, cf. the derivation of (3.72).

Introduce now the Hooke law (3.70) into the first integral of (3.72)

1
V

∫
V

σ(x) :
[
M(x) : σ(t)(x) + α(x)TI

]
dx

=
1
V
T

∫
V
α(x) Tr σ(x) dx = α∗T Trσ0 ,

(3.74)

having used (3.73). Since α(x) is step-constant, Eq. (3.74) gives

α1φ1 〈Trσ〉1 + α2φ2 〈Trσ〉2 = α∗Trσ0 . (3.75)

It remains to combine now (3.75) with the obvious formulae

Trσ0 = φ1 〈Trσ〉1 + φ2 〈Trσ〉2 ,

Tr ε0 = φ1 〈Tr ε〉1 + φ2 〈Tr ε〉2 ,

Trσ0 = 3k∗Tr ε0 , 〈Trσ〉i = 3ki 〈Tr ε〉i , i = 1, 2 ,
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cf. Eq. (2.35), which allow to exclude all the traces of the stress and
strain tensors. The final result reads

α∗ =
α2(1/k∗ − 1/k1)− α1(1/k∗ − 1/k2)

1/k2 − 1/k1
(3.76)

and this is just the Levin formula.

Remark 3.9 Almost at the same time Levin’s formula was rediscov-
ered and generalized by Rosen [ROb], Shapery [SHa] et al., see also
[ROc], [KRb] and the book [CHd, Chapters 9.3 and 9.4]. The general
“philosophy” of deriving various cross-properties relations was re-
cently developed and implemented by Grabovsky and Milton [GRa],
[MIf]. Torquato and co-authors have discovered another class of very
interesting and unexpected such relations, involving, e.g. fluid per-
mittivity of a medium; details and references can be found again in
Torquato’s survey in the present volume (Chapter 2).

1.3.7 The Elementary Bounds on the Effective Absorption
Coefficient

The variational principles of classical type for the absorption prob-
lem (2.66) can be easily formulated, together with their modification
[TAb]. Other more refined variational procedures in the hard limit
(2.69), that corresponds to the Smoluchowski problem, are presented
in Torquato’s survey in this volume. Here we shall only derive the
elementary estimates of Wiener’s type on the effective rate constant
k∗2 without engaging directly variational arguments. The reasoning
that follows is a reminiscent of a Beran’s one for the conductivity
case [BEh].

Let us multiply both sides of Eq. (2.66) by c(x) and average the
result over the volume V:

Kc =
1
V

∫
V

[
|∇c(x)|2 + k2(x)c2(x)

]
dx , (3.77)

having used that ∫
V
c∆cdx = −

∫
V
|∇c|2 dx ,
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in virtue of the boundary condition (2.67). Let c(x) = c + c′(x), so
that c′(x) is the fluctuating part of c(x), c′ = 0. Then

Kc =
1
V

∫
V

{
|∇c′(x)|2 + k2(x)

[
c2 + 2cc′(x) + |c′(x)|2

]}
dx

≥ k2 c2 +
2c
V

∫
V
k2(x)[c(x)− c] dx = −k2 c2 + 2c k2(x)c(x)

i.e. k2 c ≥ K = k∗2c. In virtue of Eq. (2.70), we thus have

k2 c ≥ K = k∗2 c , i.e. k∗2 ≤ k2
v ,

k2
v = k2 = φ1k

2
1 + φ2k

2
2 .

(3.78)

Fully similar manipulations, omitted here, lead to the conclusion
that the Reuss type approximation k2

r , defined as

1
k2

r

=
φ1

k2
1

+
φ2

k2
2

, (3.79)

provides a lower bound on the effective absorption coefficient. To-
gether with Eq. (3.77), this means that

k2
r ≤ k∗2 ≤ k2

v , (3.80)

whatever the (macroscopically isotropic) internal constitution of the
medium. This conclusion is obviously the exact absorption counter-
part of the Wiener (3.29) or Hill’s (3.64) bounds in the scalar and
elastic contexts, respectively.

Similarly to these bounds, the estimates (3.80) are also sharp, in
the sense that they cannot be improved (see Section 1.5.7). However,
the particular constitution which realize the bounds (more precisely,
approximate them as closely as we wish), are here isotropic. There-
fore, the fact that a binary mixture is macro-isotropic, does not allow
us to narrow (3.80) for given volume fractions, unlike the scalar con-
ductivity case treated in Section 1.3.4. Bounds of Hashin-Shtrikman’s
type here also exists but the full two-point correlation function en-
ters them through a certain integral parameter, see [TAb] and also
the recent author’s paper [MAg] for details.
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1.4 The Single Inclusion Problem

In this Section the so-called single inclusion problem is treated. It
concerns determination of temperature and/or displacement fields in
a solid, containing an inhomogeneity whose thermal and/or elastic
properties differ from those of the surrounding medium. Having in
mind the application to heterogeneous solids, the main interest for
us is the temperature and/or displacement gradient within the in-
homogeneity. This gradient turns out to be constant for ellipsoidal
shape. The most important particular cases—sphere, fiber, layer or
disk—are elaborated as examples and explicit results are listed first
in conductivity and then in elastic contexts.

The application of the obtained results will be postponed until
Section 1.5. There they will serve as a basic building block when
deriving approximate formulae for the effective properties of hetero-
geneous media.

1.4.1 Scalar Conductivity—Integral Equation

Consider an infinite body (matrix), with the conductivity tensor K1,
containing an inhomogeneity W (a filler particle), with a different
conductivity tensor K2. For the moment both tensors K1 and K2 are
symmetric second-rank tensors, though the main attention in what
follows will be concentrated on the isotropic case when Ki = κiI,
i = 1, 2. The conductivity field of the inhomogeneous solid under
study is

K(x) = K1 + [K]hw(x) , [K] = K2 −K1 , (4.1)

where hw(x) is the characteristic function of the inhomogeneity W.
At the absence of body sources, the temperature field θ(x) in the
solid obeys the equation

∇ · {K1 · ∇θ(x)}+∇ · {hw(x)[K] · ∇θ(x)} = 0 , (4.2)

as it follows from Eqs. (1.5) and (4.1).
Let G(x) be the Green function for the matrix, i.e.

∇ · {K1 · ∇G(x)}+ δ(x) = 0 ,
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which represents the temperature field, generated by a (unit) point
source, located at the origin x = 0. The Green function allows us to
recast Eq. (4.2) as

θ(x) = θ∞(x) +
∫
G(x− x′)∇ ·

{
hw(x′)[K] · ∇θ(x′)

}
dx′ (4.3)

(the integral is over the whole R3), or

∇θ(x) = ∇θ∞(x) +
∫
W

Γ(x− x′) · [K] · ∇θ(x′) dx′ , (4.4)

where
Γ(x) = ∇∇G(x) . (4.5)

Eq. (4.4) is the basic integral equation which governs the temper-
ature gradient in the solid with a single inhomogeneity, provided the
temperature gradient at infinity is prescribed. In the elasticity con-
text it has been derived by a number of authors, see, e.g. [KUb]. Note,
however, that the kernel Γ(x) has the singularity |x|−3 at |x| → 0,
so that the integration in Eq. (4.4) should be understood in the sense
of generalized functions, see [KUa].

1.4.2 Scalar Conductivity—Ellipsoidal Inhomogeneity

As seen from the analysis of Section 1.2.6 and the definition of the
concentration factors, the main interest when modelling effective con-
ductivity of heterogeneous media, is the temperature gradient within
the inhomogeneity W. The latter can be easily found from the in-
tegral equation (4.4) for ellipsoidal inhomogeneities directly, without
using the elegant but longer considerations of Eshelby [ESa], con-
cerned with the eigenstrains and eigenstresses in an inclusion. The
reasoning to be used follows the basic idea, sketched very concisely
by Wu [WUa]. (More details and many particular cases have been
explicitly treated by the author later on [MAd].)

Let G∞ = ∇θ∞(x) be a constant vector; it is easily seen that a
simple solution of Eq. (4.4) within W can be found, if the tempera-
ture gradient ∇θ(x) is also constant in W. To simplify the technical
details, assume that the matrix is isotropic. Then

G(x) =
1

4πκ1|x|
. (4.6)
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The field ∇θ(x) will be constant in W if and only if

P (x) = −
∫
W

Γ(x− x′) dx′ = − 1
κ1
∇∇ϕw(x) (4.7)

is constant within the inhomogeneity W. Here

ϕw(x) =
∫
W

dx′

4π|x− x′|
(4.8)

denotes the Newtonian potential for the region W. Recall that the
latter solves the equation

∆ϕw(x) + hw(x) = 0 , (4.9)

which will be used repeatedly in what follows.
Thus, to have a simple solution of Eq. (4.4), the potential ϕw(x)

should be a quadratic function within W, which is true if W is ellip-
soidal [ESa], [MUa]. Therefore, if the temperature gradient is con-
stant at infinity and the matrix is isotropic, this gradient is also con-
stant within any ellipsoidal inhomogeneity, whatever the anisotropy
(i.e. the tensor K2) of the latter.11 That is why, Eq. (4.4) implies

∇θ(x) = 〈∇θ(x)〉w =
1
W

∫
W
∇θ(x′) dx′ = Aw(κ1,K2) ·G

Aw(κ1,K2) =
(
I + P · [K]

)−1
, (4.10)

[K] = K2 − κ1I , x ∈ W .

The tensor Aw, that appeared in Eq. (4.10), plays a central role in
the elementary models of composite media, as it will be seen below.
That is why we shall specify it now for the ellipsoidal shape of W
and its particular cases—sphere, fiber, layer or disk.

11This fact holds true for an anisotropic matrix as well. We shall not consider
however such a matrix, since the technical details are cumbersome, even in the
scalar context. Moreover, both in scalar conductivity and elasticity contexts,
the “polynomial conservation” property holds. This means that if the applied
temperature gradient or strain field at infinity is a polynomial of a degree n,
these fields are also polynomials, of the same degree n, within the ellipsoidal
inhomogeneity; see [KUb] or [KUa, Section 4.9].
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• Let W be a sphere. The potential ϕw(x) is spherically sym-
metric then, so that ∇∇ϕw(x) = αI is an isotropic tensor, ∀x ∈ W.
Making a contraction and invoking Eq. (4.9), one finds α = 1/3, i.e.

∇∇ϕw(x) = −1
3 I , P =

1
3κ1

I , x ∈ W , (4.11)

and thus

Aw(κ1,K2) =
(

I +
1

3κ1
[K]

)−1

. (4.12)

If the inhomogeneity is also isotropic, then K2 = κ2I and Eq. (4.12)
yields the already known result (1.14), (1.15),

Aw(κ1, κ2) = γI , γ =
3κ1

κ2 + 2κ1
(sphere) , (4.13)

found directly in Section 1.1.4.

• Let the inhomogeneity be a circular fiber along the axis x3.
The potential ϕw(x) then depends on the x1, x2 coordinates only
and the same symmetry arguments, as those utilized above for the
sphere, give

∇∇φw(x) = −1
2 (e1e1 + e2e2) , P = 1

2κ1 (e1e1 + e2e2) , (4.14)

x ∈ W. Hence, for an isotropic fiber,

Aw =
2κ1

κ1 + κ2
(e1e1 + e2e2) + e3e3 (fiber) . (4.15)

• Let the inhomogeneity be a layer −h ≤ x3 ≤ h, perpendicular
to the x3-axis. The potential ϕw(x) then depends on x3 solely, so
that ϕ,ij = −δ3iδ3j , i.e.

∇∇ϕw(x) = −e3e3 , P =
1
κ1

e3e3 , x ∈ W , (4.16)

and hence, for an isotropic layer,

Aw = e1e1 + e2e2 +
κ1

κ2
e3e3 (layer) . (4.17)
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Remark 4.1 The tensors Aw for the simplest shapes, treated until
now (sphere, fiber and layer), can be extracted as particular cases
of the more general result below, valid for an arbitrary spheroid W.
However, the evaluation of Aw in these cases is extremely simple,
utilizing obvious symmetry arguments for the potentials’ gradients
in the appropriate regions; the use of the classical, but not that el-
ementary formula (4.20) below, is totally avoided in this way. The
same remark holds true for the elastic case, as we shall see in the
next subsection.

• Let the inhomogeneity W be an ellipsoid with the semiaxes a,
b and c along the Cartesian axes x1, x2 and x3, respectively. Then

∇∇ϕw(x) = −(M1e1e1 +M2e2e2 +M3e3e3) , x ∈ W , (4.18)

where ei are the unit vectors along the axes xi, i = 1, 2, 3.
The coefficients Mi in the latter formula are often called in the

physical literature depolarizations (the quantities 4πMi in magnetic
theory are referred to as demagnetizing factors). They have been
extensively tabulated, see, e.g. [BRe, p. 28]. Obviously

M1 +M2 +M3 = 1 ,

as it follows from Eq. (4.9). The factors Mi are expressed as the
classical elliptical integrals, cited here for the sake of completeness:

M1 = 1
2abc

∫ ∞

0

du
(a2 + u)

√
(a2 + u)(b2 + u)(c2 + u)

, (4.19)

and similarly for M2 and M3 with a cyclic change 1 → 2 → 3 → 1. A
clear and concise derivation of (4.19), using the appropriate ellipsoidal
coordinate system, can be found in the opening pages of Landau and
Lifshitz’s book [LAa], see also the book of Stratton [STa, pp. 207–215,
257–258].
• For our purposes it suffices however to consider only spheroids,

i.e. rotational ellipsoids with the semiaxes a = b 6= c. Then

M⊥ =M1 = M2 = 1
2a

2c

∫ ∞

0

du
(a2 + u)2

√
c2 + u

,

M =M3 = 1
2a

2c

∫ ∞

0

du
(a2 + u)(c2 + u)3/2

.
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Both integrals can be elementary evaluated:

M =


1
e2

(
1−

√
1− e2

e
arcsin e

)
, if c < a (oblate) ,

1− e2

2e3

(
ln

1 + e

1− e
− 2e

)
, if c > a (prolate) ,

M⊥ = 1
2(1−M) , ξ =

{
c/a, if c < a (oblate) ,
a/c, if c > a (prolate) ,

(4.20)

e =
√

1− ξ2 is the eccentricity of the ellipsoid, see again the book
[LAa]. The type of the spheroid is indicated as well in Eq. (4.20).

If both matrix and inhomogeneity are isotropic, Eqs. (4.10) and
(4.20) yield

Aw(κ1, κ2) =
(
I + P · [K]

)−1
=
(
I − [κ]

κ1
∇∇φw

)−1

=
[
I +

[κ]
κ1

(
M⊥(e1e1 + e2e2) +Me3e3

)]−1

=
[(

1 +
[κ]
κ1
M⊥

)
(e1e1 + e2e2) +

(
1 +

[κ]
κ1
M

)
e3e3

]−1

,

since I = e1e1 + e2e2 + e3e3. Thus

Aw(κ1, κ2) =
κ1

κ1 + [κ]M⊥
(e1e1 + e2e2)

+
κ1

κ1 + [κ]M
e3e3 (spheroid) .

(4.21)

Remark 4.2 The above considered, in an elementary way, cases of
a sphere, fiber and layer, can be easily extracted from the general
formula (4.21). Indeed, in these cases ξ = c/a = 1, ξ → ∞ and
ξ → 0, respectively, i.e. the spheroid is a sphere or degenerates into
a fiber or a flat disk (layer). The depolarization factors M⊥ and M ,
defined in Eq. (4.20), then become

M⊥ =M = 1
3 (sphere) ,

M⊥ = 1
2 , M = 0 (fiber) ,

M⊥ = 0 , M = 1 (disk) .

(4.22)
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When inserting these values in (4.21), the particular cases (4.13),
(4.17), (4.15) will immediately appear one after another.

• Let the spheroid be randomly (and uniformly) oriented, then

〈Aw〉Ω = γΩI ,

γΩ = 1
3

(
2κ1

κ1 + [κ]M⊥
+

κ1

κ1 + [κ]M

)
,

(4.23)

where 〈Aw〉Ω denotes the value of the tensor Aw averaged with re-
spect to all possible orientations of the axes xi; in deriving Eq. (4.23)
we have used that the tensor 〈Aw〉Ω should obviously be isotropic.

Note that the above mentioned limiting cases ξ = c/a → ∞ and
ξ → 0, when combined with the previous formula (4.23), can be
interpreted as the situations, in which the inclusion is either a ran-
domly oriented needle or a randomly oriented disk, respectively. Us-
ing Eq. (4.22) in (4.23) yields the simple formulae in these two cases

〈Aw〉Ω =
5κ1 + κ2

3(κ1 + κ2)
I (needle) ,

〈Aw〉Ω =
κ1 + 2κ2

κ2
I (disk) .

(4.24)

Remark 4.3 The foregoing analysis concentrated on the tempera-
ture gradient within the ellipsoidal inclusion, i.e. on the tensor Aw,
defined in Eq. (4.10). However, once the tensor Aw is known the tem-
perature field outside the inclusion can be immediately found, using
the integral equation (4.3). Indeed, for an isotropic matrix, with the
Green function given in (4.6), this equation yields

θ(x) = G · x +
1
κ1
∇ϕw(x) · [K] ·Aw ·G (4.25)

after an obvious integration by parts. If the gradients of both sides
of (4.25) are taken, the result will reproduce the formula (4.10) for
the tensor Aw, provided x ∈ W.
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1.4.3 Singular Inclusions and Nonideal Contacts

The assumption of ideal contact between the phases, adopted until
now, is a starting point in the great majority of works on heteroge-
neous media. Under this idealization, the temperature field and the
normal component of the heat flux are to be continuous at phase inter-
faces. Imperfect interfaces are however a fact in many circumstances
and reflect themselves either in a discontinuity of the temperature
field or of the normal component of the heat flux. More details can
be found in the papers, cited below and in the references they contain.

1.4.3.1 Singular Inclusions

A convenient way to treat nonideal contacts is based on the notion
of singular inclusions, as introduced by Kanaun [KAc], see also the
earlier paper [SOa]. Though in [KAc] the elasticity context was used,
the underlying idea is simple, appealing and general.12

Let one of the inclusion’s dimensions be of the order δ, small
as compared to the other two. Let, at the same time, its material
property like conductivity κs or resistivity ks = 1/κs be of the order
1/δ. Then the limit δ → 0 produces the two models of a singular
inclusion.

In the first model κs →∞, being of the order 1/δ, as δ → 0. Then
the limit

CI =
1
aκ1

lim
δ→0

κs→∞
δκs (4.26)

remains finite. Here, to make CI dimensionless, the conductivity κ1

of the matrix is employed, together with a certain characteristic size,
a, of the inclusion under study. For simplicity sake, we assume that
CI = const, though in general CI can be an arbitrary function, defined
on the surface of the inclusion Σ. (To this end it suffices to take the
inclusion inhomogeneous, with conductivity κs = K(x)/δ +O(1) as
δ → 0, where K(x) is a prescribed function on this surface.)

12In a particular case, the same idea was formulated clearly by Pham Huy
and Sanchez-Palencia [PHa]. The authors treated conductivity problems in the
presence of a superconducting singular inclusion (in the terminology introduced
below, see (4.26)) and proved the appropriate existence theorems using functional
analysis arguments. Note that one of the motivation of [PHa] came, in particular,
from a diffraction problem, where the electromagnetic wave field is disturbed by
the presence of a very thin screen, possessing very high electric conductivity.
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The so-obtained singular inclusion can be called “superconduct-
ing.” The temperature remains continuous everywhere, but the heat
flux suffers a jump when crossing its surface Σ. We shall illustrate
these facts below, when treating nonideal contact of a spherical in-
homogeneity in a matrix.

In the elastic context the superconducting inclusion is somewhat
similar to a rigid “flake” (membrane) in the medium. The displace-
ment is continuous, but the normal stress component has a jump on
the flake. An integral equation on the surface Σ, which specifies the
stress field in an unbounded elastic medium with such an inclusion,
has been derived by Kanaun [KAc].

In the second model the resistivity ks = 1/κs → ∞, being of the
order 1/δ, as δ → 0. Then the limit

CII =
1
ak1

lim
δ→0

ks→∞

δks (4.27)

remains finite. Here, to make CII dimensionless, the compliance k1

of the matrix is employed; again a is a certain characteristic size
of the inclusion. Once more we have assumed, for simplicity, that
CII = const, though in general it can be an arbitrary function, defined
on the surface of the inclusion Σ. (See the comment after Eq. (4.26).)

The so-obtained singular inclusion can be called “resisting.” Here
the heat flux remains continuous, but the temperature suffers a jump
when crossing the surface Σ. Again, we shall illustrate these facts
below, when treating the appropriate nonideal contact of a spherical
inhomogeneity in a matrix.

In the elastic context the resisting inclusion is somewhat similar to
a crack. (The reader should be warned that the crack itself, as treated
in solid mechanics, is only a special particular case of the inclusion
under study, see [KAc].) The displacement has a jump, but the nor-
mal stress component is continuous on Σ. An integral equation on
the surface Σ, which specifies the strain field in an unbounded elastic
medium with such an inclusion, has been also derived by Kanaun
[KAc].

1.4.3.2 Nonideal Contacts

After Kanaun et al. [KAd], [KAe], we shall treat nonideal contacts as
singular inclusions, spread over the surface of a bulk inhomogeneity.
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For an illustration consider, following Torquato and Rintoul [TOd],
the simplest case of a spherical inhomogeneity of radius a and con-
ductivity κ2. It is coated with a thin concentric layer with thickness
δ and conductivity κs, such that δ � a, κs � κ1. The so-obtained
“composite” sphere is then immersed into a homogeneous matrix of
conductivity κ1. The distinguished limit is just (4.26), with a finite
C = CI. This is the definition of the “superconducting” interphase,
as adopted in [TOd]. Obviously, such an interphase is nothing but a
superconducting singular inclusion, spread over the surface r = a of
the spherical inhomogeneity.

In the second case let the conductivity of the thin layer κs be
vanishingly small. The distinguished limit is now (4.27), which we
shall write, after Torquato and Rintoul [TOd], in the equivalent form

R =
κ2

a
lim
δ→0

κs→0

δ

κs
, (4.28)

with a finite R. This is the definition of the “resistive” interphase
[TOd]. Again it is clear that such an interphase is nothing but a
resisting singular inclusion, spread over the surface r = a of the
spherical inhomogeneity.

1.4.3.3 The “Superconducting” Spherical Inhomogeneity

Consider a spherical inhomogeneity with a “superconducting” in-
terphase. At infinity, the same condition as in Eq. (1.7) applies,
i.e. θ(x) → G · x as |x| → ∞.

The solution of such a single inclusion problem is very simple
due to the assumed spherical shape. (For the ellipsoidal shape the
problem is much more complicated and the full analytical solution
has been only recently given by Miloh and Benveniste [MIa].) In-
deed, consider, before passing to the limit (4.26), the above composite
sphere. The temperature field has the form (1.9), with

ϕ(r) =



1
2C1r

2 , if r < a ,

1
2C2r

2 − C3
a3

r
, if a < r < b ,

1
2r

2 − C4
a3

r
, if b < r <∞ ,

(4.29)
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where b = a + δ. The continuity of θ(x) and dθ/dr at r = a and
r = b implies the following system for the unknowns C1 to C4:

C1 = C2 + C3 ,

C2 +
(
a

b

)3

C3 = 1 +
(
a

b

)3

C4 ,

κ2C1 = κs(C2 − 2C3) ,

κs

(
C2 − 2

(
a

b

)3

C3

)
= κ1

(
1− 2

(
a

b

)3

C4

)
,

(4.30)

cf. Eqs. (1.12) and (1.13).
In the superconducting case under discussion, the solution of (4.28)

has the form

Ck = C0
k +O

(
δ

a

)
, k = 1, . . . , 4 .

In the limit κs →∞, the first three of the equations (4.30) give

C0
2 + C0

3 = 1 + C0
4 , C0

2 = 2C0
3 , C0

1 = 3C0
3 . (4.31)

Note next that (
a

b

)3

= 1− 3
δ

a
+ O

(
δ

a

)
, (4.32)

(since δ = b − a) which, when employed in the last of the equations
(4.30), yields

κ2C
0
1 + 6κ1CC

0
3 = κ1(1− 2C0

4 ) , (4.33)

having taken the limit (4.26), with (4.31) taken into account, and
recalling that C = CI.

The relations (4.31) and (4.33) specify the needed constants C0
1

to C0
4 in the superconducting limit:

C0
1 =

3κ1

κ2 + 2(1 + C)κ1
, C0

2 = 2C1/3 ,

C0
3 = C1/3 , C0

4 = C0
1 − 1 =

κ1(1− 2C)− κ2

κ2 + 2(1 + C)κ1
.

(4.34)
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Hence, in the conductance case under study, the solution of the
spherical inclusion problem has the same form (1.14) as that for the
ideal contact, cf. Eq. (1.14), namely,

θ(x) = G · x
{
γs , if |x| < a ,
1− βs(a/r)3 , if |x| > a ,

(4.35)

with the constants

γs = C0
1 = 1− βs =

3κ1

κ2 + 2(1 + C)κ1
, βs = −C0

4 . (4.36)

The temperature field (4.35) is obviously continuous at the inclusion
surface r = a, but the heat flux suffers a jump in this case

[qn]
∣∣∣
r=a
6= 0 , [qn]

∣∣∣
r=a

= κ1
∂θ

∂r

∣∣∣∣
r=a+0

−κ2
∂θ

∂r

∣∣∣∣
r=a−0

.

Its value can be easily found, using Eqs. (4.35) and (4.36):

[qn]
∣∣∣
r=a

=
(
κ1(1 + 2βs)− κ2γ

s
)
G · er

=
6κ2

1C

κ2 + 2(1 + C)κ1
G · er .

(4.37)

The surface concentration factor A(12)
s , for a single sphere (we

underline this adding the subscript ‘s’), can be now easily evaluated:

q(12) =
1
Va

∫
r=a

[qn]x dS = A(12)
s (κ1, κ2) ·G ,

A(12)
s (κ1, κ2) =

6κ2
1C

κ2 + 2(1 + C)κ1
I ,

(4.38)

cf. Eq. (2.49).

1.4.3.4 The “Resistive” Spherical Inhomogeneity

The solution of the spherical inhomogeneity problem with a “resist-
ing” interphase is fully similar to the “superconducting” considera-
tions, presented in the previous subsection.

Indeed, the temperature field in this case, before passing to the
limit (4.28), has the same form (1.9), (4.29), so that the system (4.30)
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for the Ci’s remains the same. When δ/a→ 0, the unknowns can be
expanded as

C1 = C0
1 +O

(
δ

a

)
, C4 = C0

4 +O
(
δ

a

)
,

C2 =D
a

δ
+ C0

2 +O
(
δ

a

)
, C3 = −D a

δ
+ C0

3 +O
(
δ

a

)
,

(4.39)

retaining only the terms that matter in the limit (4.28). Taking this
limit yields

C0
1 =

3D
R

, C0
1 + 3D = 1 + C0

4 ,

κ2C
0
1 = κ1(1− 2C0

4 ) , C0
1 = C0

2 + C0
3 ,

(4.40)

having recalled Eq. (4.32). The constants C0
2 and C0

3 remain un-
defined; they however describe the solution within the disappear-
ingly thin coating. Moreover, only their sum, i.e. C0

1 , matters, see
Eq. (4.40). Solving the system (4.40) is elementary: the single sphere
field in the resistance case has again the familiar form (1.14), namely,

θ(x) = G · x
{
γr , if |x| < a ,
1− βr(a/r)3 , if |x| > a ,

(4.41)

with the constants

γr = C0
1 =

3κ1

κ2 + 2(1 +R)κ1
,

βr = − C0
4 =

κ2 − (1 +R)κ1

κ2 + 2(1 +R)κ1
.

(4.42)

The temperature field (4.41) jumps at the inclusion surface r = a:

[θ]
∣∣∣
r=a

=
(
θ(1) − θ(2)

) ∣∣∣
r=a

=RC0
1 G · x =

3Rκ1

κ2 + 2(1 +R)κ1
G · x .

(4.43)

Hence the interphase concentration factor B(12)
s , for a single sphere
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(we again underline this adding the subscript ‘s’), is

Θ(12)
s =

1
Va

∫
r=a

[θ]n dS = B(12)
s (κ1, κ2) ·G ,

B(12)
s (κ1, κ2) =

3Rκ1

κ2 + 2(1 +R)κ1
I ,

(4.44)

cf. Eq. (2.52).
Note that at r = a the heat flux, being continuous, is proportional

to this jump:

κ1
∂θ(1)

∂r
= κ2

∂θ(2)

∂r
=

κ2

aR

(
θ(1) − θ(2)

)
at r = a . (4.45)

The boundary condition (4.45) corresponds to the so-called skin ef-
fect, and the proportionality coefficient in it, κ2/(aR), is the skin con-
stant.13 The skin effect reflects the phenomenon, known as Kapitza’s
resistance of an interphase boundary, see, for example, the papers
[BEb], [BEf], [TOd], [MIa] et al. and the references therein, as well
as the original Kapitza’s work of 1941, translated in [KAh, p. 561].
(This kind of resistance is well pronounced at very low temperatures,
increasing dramatically at temperatures T < 20 K.) Note also that
the more general ellipsoidal inclusion problem for the resistance case,
i.e. under the boundary condition (4.45), is much more complicated
than that for the ideal contact. The analytical solution is obtained
in the paper of Benveniste and Miloh [BEf]; our elementary formula,
Eqs. (4.41) and (4.42), for spherical shape is given there as a particu-
lar case (cf. their Eq. (82)); the skin constant is denoted in this paper
as β (so that β = κ2/(aR) in our notations).

Remark 4.4 It is worth noting that the exact counterpart of the
Kapitza resistance in elasticity context is the so-called “Hooke law”
for a thin inhomogeneity, spread along the 2-D surface Σ [SOa]. More
precisely, for a “crack-like” inclusion, when the stress vector σn is
continuous on Σ, one has

σn(x) = λ(x) · [u(x)] , x ∈ Σ , (4.46)
13Often the condition (4.45) is associated with the interfacial thermal barrier

resistance; in composites this effect arises due to poor mechanical or chemical
adherence, mismatch of the coefficients of thermal expansions leading to interfacial
gaps (microcracks). For more details and references see the papers of Hasselman
et al. [HAo], [HAp].
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which means that the “opening” of the inclusion, [u(x)], is propor-
tional to the normal stress vector σn(x) on the surface Σ. The second-
rank tensor λ(x) in (4.46) is just the “Hooke tensor” for the inclusion,
see [SOa], [KAc] for more details and discussion.

1.4.4 Elastic Case
In this case the counterpart of Eq. (4.1) reads

L(x) = L1 + [L]hw(x) , [L] = L2 − L1 , (4.47)

where hw(x) is again the characteristic function of the inhomogene-
ity W, L1 and L2 are the tensors of the elastic moduli of the matrix
and of the inhomogeneity, respectively. At the absence of body forces,
the displacement field u(x) in the solid obeys the equation

∇ · {L1 : ∇u(x)}+∇ · {hw(x)[L] : ∇u(x)} = 0 , (4.48)

see Eqs. (2.54) and (4.47).
Similarly to the scalar case (Section 1.4.2), the basic integral equa-

tion which governs the strain tensor field in the solid with a single
inhomogeneity, follows directly from Eq. (4.48). In a Cartesian sys-
tem it has the form

εin(x) = ε∞in(x) +
∫
W

Gipjn(x− x′) [L]pjkl εkl(x′) dx′ , (4.49)

where
Gipjn(x) = 1

2 (Gip,jn(x) +Gnp,ji(x)) (4.50)

is the counterpart of the kernel (4.5), with Gij(x) denoting the com-
ponent of the Green tensor for an unbounded matrix.

For an isotropic matrix the Green tensor is well-known

Gij(r) =
1

4πµ1

(
1
r
δij + κ1r,ij

)
, κ1 = − 1

4(1− ν1)
, (4.51)

r = |x|, where µ1 and ν1 are the shear modulus and the Poisson ratio
of the matrix.

Let ε∞ = const; from Eq. (4.49) it is easily seen that the strain
within the inhomogeneity W will be also constant, if the tensor field

Pipjn(x) = −
∫
W

Gipjn(x− x′) dx′

= − 1
µ1

[
1
2(ϕ,jn(x)δ,ip + ϕ,ji(x)δ,np) + κ1ψ,ipjn

] (4.52)
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is constant within the inhomogeneity W; here ϕ = ϕw(x) is the
Newtonian potential (4.8) and

ψ(x) = ψw(x) =
1
4π

∫
W
|x− x′|dx′ (4.53)

is the biharmonic potential for the region W; recall that the latter
solves the equations

∆ψw(x) = 2ϕw(x) , ∆∆ψw(x) + 2hw(x) = 0 . (4.54)

In turn, P will be constant within W, if ϕw(x) is a quadratic function
and ψw(x) is a polynomial of fourth degree there. The latter is again
true for an ellipsoidal inhomogeneity. We can thus conclude, similarly
to the scalar case, that if the strain tensor at infinity is constant, it
will be also constant within any such inhomogeneity, see e.g. [ESa],
[KUb], [CHd], etc. Moreover, as it follows from Eq. (4.49),

Aw =
(
I + P : [L]

)−1
, (4.55)

where I is the “unit” fourth rank tensor with the Cartesian compo-
nents Iijkl = 1

2(δikδjl + δilδjk).
The tensor Aw in Eq. (4.55), that interconnects the constant strain

at infinity with the constant strain in the ellipsoid, is often called in
the literature Wu’s. (Wu was the first who specified this tensor for
a spheroid, averaged over all possible orientations, and then treated
the limiting cases of a disk and fiber in order to clarify the influence
of the shape upon the effective elastic properties [WUa].)

Remark 4.5 Note, without going into details, that once the strain
tensor within the inclusion is found, i.e. the tensor Aw is specified,
the displacement and strain fields outside the inclusion can be im-
mediately obtained by means of the basic integral equation (4.49),
cf. Remark 4.3, where the similar question was discussed in the scalar
case.

Consider first, similarly to the scalar case, the most important
particular shapes of the inclusion W.
• Let the inhomogeneity W be a sphere. Both tensors ∇∇ϕw(x)

and ∇∇∇∇ψw(x) are then constant and isotropic, if x ∈ W;
∇∇ϕw(x) is given in Eq. (4.11) and

ψ,ijkl = αHijkl , Hijkl = δijδkl + δikδjl + δilδjk , x ∈ W , (4.56)
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since ψ,ijkl should be completely symmetric with respect to its indices.
Making a full contraction in (4.56) and utilizing Eq. (4.54)2, we find
α = −2/15, so that

∇∇∇∇ψw(x) = − 2
15 H , x ∈ W . (4.57)

Eqs. (4.11), (4.57) and (4.52) now specify the needed tensor Aw:

Aw =
k1

k1 + α1[k]
I′+

µ1

µ1 + β1[µ]
I′′ (sphere) ,

I′ijkl = 1
3δijδkl , I′′ijkl = 1

2

(
δijδkl + δilδjk − 2

3δijδkl

)
,

α1 =
3k1

3k1 + 4µ1
=

1 + ν1

3(1− ν1)
,

β1 =
6
5
k1 + 2µ1

3k1 + 4µ1
=

2
15

4− 5ν1

1− ν1
,

(4.58)

with k1 = λ1 + 2
3µ1 denoting the bulk modulus of the matrix.

• Let the inhomogeneity W represent a circular fiber along the
axis x3. The second gradient ∇∇ϕw in this case has been found in
Eq. (4.14). We introduce the 2-D counterparts D = ‖Dijkl‖ of the
fully symmetric tensor H from Eq. (4.56), i, j = 1, 2. Then ψ,ijkl =
αDijkl; using Eqs. (4.54) and (4.53) gives α = −1/4 and hence

∇∇∇∇ψw = −1
4 D . (4.59)

Let us recall the short-hand notation of Hill [HId]. If a pair of
symmetric second-rank tensors Σ, T with the Cartesian components
‖sij‖ and ‖tij‖, respectively, are interrelated in the same Cartesian
system as

1
2

(
s11 + s12

)
= a(t11 + t12) + b′t33 ,

s33 = b′′(t11 + t12) + ct33 , s11 − s12 = 2d(t11 − t22) ,

s12 = 2dt12 , s13 = 2et13 , s23 = 2et23 ,

(4.60)

then the transversely isotropic fourth-rank tensor A (with the sym-
metry axis x3), such that Σ = A : T , is symbolically written as

A = (2a, b′, b′′, c, 2d, 2e) . (4.61)
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Using these notations and the already found gradients of the po-
tentials ϕw and ψw, see Eq. (4.59), we have eventually

Aw = (2A,B′, B′′, C, 2D, 2E) (fiber),

2A =
λ1 + 2µ1

λ2 + µ2 + µ1
, 2B′ = − [λ]

λ2 + µ2 + µ1
,

B′′ = 0 , C = 1 , 2D =
4(1− ν1)

1 + (3− 4ν1)g
,

2E =
2µ1

µ2 + µ1
, g =

µ2

µ1
, [λ] = λ2 − λ1 .

(4.62)

• Let the inhomogeneity be a layer −h ≤ x3 ≤ h, perpendicular
to the x3-axis. The potential ϕ and ψ will then depend on x3 solely
and utilizing once again simple symmetry arguments yields

ϕij = −δ3iδ3j , ψijkl = −2δ3iδ3jδ3kδ3l .

These expressions, together with Eqs. (4.55) and (4.52), give eventu-
ally

Aw = (2A,B′, B′′, C, 2D, 2E) (layer) ,

2A = 1 , B′ = 0 , B′′ = − [λ]
λ2 + 2µ2

,

C ′ =
λ1 + 2µ1

λ2 + 2µ2
, 2D = 1 , 2E =

µ1

µ2
.

(4.63)

• Consider next the more general case of a spheroidal inhomo-
geneity W. The needed second gradient of the Newtonian potential is
given in Eq. (4.20). In turn, using Hill’s notations (4.60) and (4.61),
and appropriate results, listed in the books of Mura [MUa] or Mura-
tov [MUb], we have, for x ∈ W,

∇∇∇∇ψw(x) = −(4C ′, C ′′, C ′′, 3D′, 2C ′, 2C ′′) ,

C ′ = 1
4

(
1− 2M

)
+ 3

8D
′ , C ′′ = M − 3

2D
′ ,

D′ =


−1− 3M

3e2
, if c < a ,

(1− e2)
1− 3M

3e2
, if c > a ,

(4.64)
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where M , M⊥, ξ and the eccentricity e, let us recall, are defined in
Eq. (4.20).

In the isotropic case under study it remains to introduce Eqs. (4.20)
and (4.64) into Eq. (4.55) in order to find the needed fourth-rank ten-
sor Aw that transforms the strain in infinity into the strain within
the spheroidal inhomogeneity. After some algebra, the eventual result
reads

Aw = (2A,B′, B′′, C, 2D, 2E) (spheroid) ,

2A =
1

2Λ

{
1 +

1
γ1

(
M [γ] + 2χ1C

′′[µ]
)}

,

2B′ = − 1
Λγ1

{
M⊥[λ]− χ1C

′′[µ]
}
,

2B′′ = l − 1
Λγ1

{
M [λ]− χ1C

′′[µ]
}
,

C =
1

2Λ

{
1 +

1
γ1

(
2M⊥[λ] + ([µ] + χ1C

′′)[µ]
)}

, (4.65)

2D =
µ1

µ1 + 2(M⊥ + 2κ1C ′)[µ]
,

2E =
µ1

µ1 + (M +M⊥ + 4κ1C ′′)[µ]
,

2Λ = 1 +
1
γ1

{
[k] +

(
3χ1C

′′ +M + 1
3

)
[µ]
}

+
3
γ2

1

(
χ1C

′′ + 2MM⊥
)
[k][µ] , χ1 =

λ1 + µ1

µ1
=

1
1− 2ν1

,

γi = λi + 2µi, i = 1, 2.

Remark 4.6 Once again, for the particular values of the parame-
ters M⊥ and M , as listed in Eq. (4.22), the particular forms of the
tensor Aw are recovered from (4.65) for a sphere, fiber and layer,
cf. Eqs. (4.58), (4.62) and (4.63), respectively.

• Let the spheroid be randomly (and uniformly) oriented in the
space. Then

〈Aw〉Ω = a′ I′ + a′′ I′′ , (4.66)

where 〈Aw〉Ω denotes the value of the tensor Aw averaged with respect
to all possible orientations of the axes xi of the spheroid; the isotropic
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tensors I′ and I′′ are defined in Eq. (4.58). After some algebra, it
appears eventually

a′ = 1
3

(
4A+ 2B′ + 2B′′ + C

)
=

1
2Λ

{
1 +

1
γ1

(
M + 1

3 + 3χ1C
′′[µ]

)}
,

a′′ = 1
15

(
2A− 2B′ − 2B′′ + 2C + 12D + 12E

)
.

(4.67)

Unlike a′, we were not able to find a simpler expression for the
coefficient a′′.

The quantities a′ and a′′ have been first calculated by Wu [WUa],
and also by Kuster and Toksöz [KUc], some misprints are corrected
in [BEm]. A simple check shows that though different functions are
used (e.g. arcsinh ξ), the basic parameter θ, used in the papers [WUa],
[BEm] is simply 1 −M , where M is the depolarization factor from
Eq. (4.20).

• The “Crack” Limit. In Section 1.5, when dealing with the
effective properties of microcracked solids, we shall need information
about the asymptotic behavior of the tensor Aw, given in Eq. (4.65),
when the ratio ξ = c/a → 0. The reason is that the cracks will be
treated as degenerating spheroids, in the sense that while two of the
axes a = b are kept fixed, the third one, c, becomes negligibly small,
i.e. c/a → 0. From the definitions of the respective parameters, see
Eqs. (4.20) and (4.65), it is easily checked that the following formulae
hold as ξ → 0, namely,

M = 1− π

2
ξ + O(ξ) , M⊥ =

π

4
ξ + O(ξ) , C ′ = 0.0625πξ + O(ξ) ,

C ′′ =
π

4
ξ + O(ξ) , D′ = 2

3 −
π

2
ξ + O(ξ) , γ =

2
3π

1
ξ

+O(1) ,

Λ = Λ0ξ + O(ξ) , Λ0 =
π

8
1− 2ν1

(1− 2ν1)2
,

A =
1
4

1− 2ν1

1− 2ν1

1
ξ

+O(1) , B′ = −1
4(1− ν1) +O(ξ) , (4.68)

C =
4
π

1− 2ν1

1− 2ν1

1
ξ

+O(1) , B′′ =
4
π

ν1(1− ν1)
1− 2ν1

1
ξ

+O(1) ,
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D = 1
2 + πξ

(
1− 0.0125

1− ν1

)
+ O(ξ) , E =

2
π

1− ν1

2− ν1

1
ξ

+O(1) ,

a′ = 1
3(4A+ 2B′ + 2B′′ + C) =

4
3π

1− ν2
1

1− 2ν1

1
ξ

+O(1) ,

a′′ = 1
15(2A− 2B′ − 2B′′ + 2C + 12D + 12E)

=
8

15π
(1− 2ν1)(5− ν1)

2− ν1

1
ξ

+O(1) .

1.5 One-Particle Approximations

For simplicity, we shall consider the so-called particulate media, in
which one of the constituents, called matrix, is connected. Through-
out the latter particles of a second constituent (filler), with a well-
defined, in general, shapes are distributed. The properties of the
matrix and of the filler are denoted, similarly to the previous section,
by ‘1’ and ‘2’, respectively, so that, e.g. κ1 and κ2 are the appropriate
conductivities, etc. Such a material is called also a dispersion (to be
thus distinguished from the case of suspension, when the particles are
immersed into a liquid and hence their relative positions are not fixed
due to the flow—a fact that tremendously complicates any theoretical
study).

Our aim here will be to demonstrate how various “repetitions”
(to cite again Maxwell [MAj, Section 314]) of the single-inclusion
solutions of Section 1.1.3.3 can be systematically utilized in order
to derive the basic and most widely used approximate models for
predicting the effective properties of particulate media.

The basic idea is to invoke formulae like (2.41) that interconnect
the effective properties with the appropriate concentration factors, as
introduced in Sections 1.2.6—1.2.8. The latter are in turn approxi-
mated by the appropriate solutions of the single-inclusion problem.

Two natural possibilities are then opened. They can be summa-
rized as follows:

(i) Each inclusion is treated as single, immersed into a homoge-
neous medium. The latter, as a consequence of the presence



106 Heterogeneous Media: Modelling and Simulation

of the host of other inclusions, possesses the unknown effective
properties (the effective medium idea).

(ii) Each inclusion is again treated as single, but now immersed into
the matrix. The presence of the rest of inclusions is accounted
for by imaging that the inclusion is subjected to a certain ex-
ternal field that differs from the applied macroscopic one (the
effective field idea).

We shall consider below some of the simplest implementations of
the assumptions (i) and (ii), within the frame of the static behavior of
heterogeneous media. Their application and generalization for wave
propagation problems in such media are discussed and treated in
detail in Chapter 3 of this volume.

1.5.1 Dilute Filler Fraction—Scalar Conductivity

Let us start with the simplest case, when there is no need either to
modify the medium’s properties or to change the applied field.

Namely, let the dispersion contain identical particles, of a fixed
shape W, aligned throughout the matrix. We assume that the dis-
persion is dilute, in the sense that the volume fraction, φ2, of the
particles is small, φ2 � 1, and hence their mutual influence can be
neglected. Each particle can be thus imagined as single, immersed
into an unbounded matrix, and the “concentration factor” A2 is sim-
ply the single-inhomogeneity tensor Aw(κ1, κ2), defined in Eq. (4.10).
Thus, as it follows from (2.41),

K∗ = κ1I + φ2[κ]Aw(κ1, κ2) + O (φ2) (5.1)

—both constituents are assumed isotropic but, due to the alignment
and nonspherical, in general, shape of the particles, the effective ten-
sor K∗ may be anisotropic. As underlined in (5.1), the formula is
correct to the order O (φ2) only, providing however in this case an ex-
act expression (since the particle interactions are totally neglected).
To get the successive terms of order φ2

2 and higher, these interactions
should be somehow accounted for. But, naturally, all schemes con-
sidered below, that try to incorporate the interactions, agree in the
dilute limit. More precisely, they all reproduce the formula (5.1) in
this case.
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Remark 5.1 Note that the approximation (5.1) has been used in
many of the earlier works on conductivity of two-phase media also in
the non-dilute case, see [REb] for some references. Perhaps its origin
can be traced back to Laplace himself: According to Lorentz’ [LOb,
Section 123], considering the connection between the density, ρ, of
a transparent solid and its refraction index, µ2, Laplace reached the
formula

µ2 − 1
ρ

= const . (5.2)

But µ2 is just the dielectric constant of the medium, as already
pointed out (see the footnote on page 10), and the density ρ is pro-
portional to the volume fraction of the dielectric spheres contained
in the medium. Then (5.2) can be interpreted, somewhat loosely of
course, as the dilute approximation of the type (5.1) for the effective
dielectric constant of a dispersion.

Remark 5.2 “Dilute” formulae like (5.1) can be derived for hetero-
geneous media in different physical context (see, e.g. Section 1.5.7
below where the absorption problem is addressed). The so-obtained
results will make sense, however, only if the solution of the appropri-
ate single-inclusion problem exists and is finite, like the tensor Aw

in Eq. (5.1). There are, unfortunately, situations when this solu-
tion does not exist (say, for the same absorption problem in 2-D, see
again the same Section 1.5.7). Then the appropriate effective prop-
erties have no representation of the type (5.1); nonanalytic functions,
like lnφ2, may emerge for small φ2 � 1 instead.

Consider in more detail the most important particular cases of the
formula (5.1).
• Assume the inhomogeneities are spheres. From Eqs. (4.13) and

(5.1) it follows

κ∗

κ1
= 1 + 3βφ2 + O(φ2) , β =

[κ]
κ1 + 2κ2

, (5.3)

which, naturally enough, reproduces the dilute limit (1.20) of the
Maxwell prescription for κ∗.
• Consider a fiber-reinforced material, in which inhomogeneiti-

es are parallel circular cylinders (along the axis x3). The effective
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conductivity tensor is transversely isotropic

K∗ = κ∗11(e1e1 + e2e2) + κ∗33e3e3 , (5.4)

where

κ∗11 = κ∗22 = κ1

(
1 +

2[κ]
κ1 + κ2

φ2

)
+ O(φ2) ,

κ∗33 = κ = φ1κ1 + φ2κ2 ,

(5.5)

see (5.1) and (4.15). The coefficients κ∗11 = κ∗22 represent the trans-
verse conductivity of the fiber-reinforced medium, for dilute fiber
concentration φ2 � 1, in the case when the applied temperature
gradient is perpendicular to fibers’ axes. The conductivity compo-
nent κ∗33 along the x3-axis is exactly the arithmetic mean κ, which
explains why the higher order correction O(φ2) is missing in the sec-
ond formula of (5.5). The reason is that the temperature field in
the medium is just θ(x) ≡ G3x3, if the applied gradient is along the
fibers, i.e. if G = G3e3—a situation already discussed in Remark 2.1,
see Eq. (2.11).

• Consider a layered material that consists of laminae, perpen-
dicular to the axis x3. The appropriate tensor Aw is given in (4.17),
so that Eq. (5.1) implies

κ∗11 = κ∗22 = κ1 + φ2[κ] + O(φ2) , κ∗33 = κ1 + φ2[κ]
κ1

κ2
+ O(φ2) .

However, for such an exceptionally simple internal constitution the
following exact formulae for the effective conductivities hold

κ∗11 = κ∗22 = κ , i.e. 1/κ∗ = 1/κ = φ1/κ1 + φ2/κ2 . (5.6)

The reason is that the temperature gradient remains constant within
the volume V, if G is along the laminae. If G is along the axis x3, i.e.
perpendicular to the laminae, the heat flux is constant within V; in
this case the effective compliance k∗ = 1/κ∗ is the arithmetic mean
of the constituents’ compliances, see Remark 2.2 and Eq. (2.18).

• Let the inhomogeneities be identical and isotropic spheroids,
aligned along the x3-axis, with the semiaxes c and a, c 6= a = b.
In this case the tensor Aw is given in Eq. (4.21), the medium is
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transversely isotropic, with symmetry axis x3, and its effective con-
ductivity tensor K∗ is

K∗ = κ∗11(e1e1 + e2e2) + κ∗33e3e3 ,

κ∗11 = κ∗22 = κ1

(
1 + φ2

[κ]
κ1 + [κ]M⊥

)
+ O(φ2) ,

κ∗33 = κ1

(
1 + φ2

[κ]
κ1 + [κ]M

)
+ O(φ2) .

(5.7)

For the particular values of the parameters M and M⊥, as listed
in Eq. (4.22), the already given formulae (5.3), (5.5) and (5.6) for
the effective conductivities in the cases of spheres, fibers and layers,
respectively, show up.
• Let the inhomogeneities be again identical, but randomly ori-

ented and isotropic spheroids, with the semiaxes c and a. In this
case the tensor Aw = 〈Aw〉Ω is given in Eq. (4.23), the medium is
macroscopically isotropic and its effective conductivity reads

κ∗

κ1
= 1 +

[κ]
3κ1

(
2κ1

κ1 + [κ]M⊥
+

κ1

κ1 + [κ]M

)
φ2 + O(φ2) . (5.8)

The parameters M and M⊥ depend on the eccentricity of the sphe-
roids, see Eq. (4.20).
• Let the spheroids, again randomly oriented in the space, de-

generate into penny-shaped cracks. In this case κ2 = 0 and the term
in the brackets in the right-hand side of (5.8) has the asymptotic

m =
2

1−M⊥
+

1
1−M

=
2
π

1
ξ

+ O(ξ) , ξ = c/a→ 0 , (5.9)

as it follows from Eq. (4.68). Eq. (5.8) now yields

κ∗

κ1
= 1− n4

3πa
2cm = 1− (na3) 4

3π
c

a
m

= 1− ε4
3πξm+ O(ξ)−→

ξ→0
1− 8

9ε ,

(5.10)

in virtue of Eq. (5.9). Here n is number density of the spheroids
(i.e. their number per unit volume), so that φ2 = nV , V = 4

3πa
2c is

the volume of the single spheroid, and

ε = na3 (5.11)
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is the so-called crack density parameter—the counterpart of the vol-
ume fraction of the inclusions in the case of cracked solids (as in-
troduced and very often employed for such solids, see the survey of
Kachanov [KAa]). Thus the effective conductivity of a solid, contain-
ing a dilute population of randomly oriented penny-shaped cracks, is

κ∗

κ1
= 1− 8

9ε+ O(ε) , (5.12)

1.5.2 Dilute Filler Fraction—Elastic Case

In the elastic case and for a dilute particle concentration we have, as
a consequence of Eq. (2.64),

L∗ = L1 + φ2[L] : Aw(L1,L2) + O(φ2) , (5.13)

where Aw is the fourth-rank tensor that comes out from the solution
of the elastic single inclusion problem, see Section 1.4.4.

Remark 5.3 Since the formula (5.13) is exact, the tensor

[L] : Aw(L1,L2)

possesses the needed “external” symmetry (2.65), whatever the shape
of the inclusions W.

Similarly to the previous subsection, consider the most interesting
particular cases of the formula (5.13).
• For an isotropic dispersion of spheres the tensor Aw is given

in Eq. (4.58) and hence

k∗

k1
= 1 +

[k]
k1 + α1[k]

φ2 + O(φ2) ,

µ∗

µ1
= 1 +

[µ]
µ1 + β1[µ]

φ2 + O(φ2) ;

(5.14)

α1 and β1 depend on the Poisson ratio, ν1, of the matrix, see the
same Eq. (4.58).

Remark 5.4 The formulae (5.14) have been first derived by Brugge-
man [BRg]. (Though, as pointed out in [ESa], his result for the shear
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modulus is apparently incorrect, since the Poisson ratio of the matrix
does not appear.) The correct formula for µ∗ was given by Dewey
[DEb]. The particular case of (5.14) for rigid particles was found
by Hashin [HAc]. Eshelby [ESa] obtained them as a consequence
of his well-known solution for the ellipsoidal inhomogeneity prob-
lem. Hashin [HAd] rederived independently the same formulae and,
on their base, proposed a method how the nondilute case could be
treated. In the wave propagation problem for a dilute dispersion,
the same formula (5.14) reappeared as a zero-frequency limit [CHa],
[MAb]. (In the Russian literature Eqs. (5.14) are often attributed to
Krivoglaz and Cherevko [KRc].) As it seems, Eqs. (5.14) are one of
the most often rederived formulae in the elasticity of two-phase media
for a period at least of forty years (1937–1957); the author suspects
that the foregoing list of references is far from exhaustive.

Remark 5.5 For a porous solid (k2 = µ2 = 0), the formulae (5.14)
simplify

k∗

k1
= 1− 3

2
1− ν1

1− 2ν1
φ2 + O(φ2) ,

µ∗

µ1
= 1− 15

1− ν1

7− 5ν1
φ2 + O(φ2)

(5.15)

—in this case they are due to Mackenzie [MAa].

Remark 5.6 Let the matrix be incompressible, so that k1 = ∞,
ν1 = 0.5, and the spherical particles are rigid, k2 = µ2 = ∞. The
shear modulus of such a mixture is then

µ∗

µ1
= 1 + 2.5φ2 + O(φ2) ,

which is exactly the Einstein formula (1.21) for the viscosity of a
dilute dispersion. (Observe the full mathematical analogy between
the slow (Stokesian) flow of the dispersion, with fixed position of the
rigid particles, and the elastic deformation of a solid with the same
particles distribution, provided both fluid and solid are incompress-
ible.) In the other limiting case of voids in an incompressible matrix,
the second of Eqs. (5.15) yields

µ∗

µ1
= 1− 5

3 φ2 + O(φ2) .
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—the counterpart of the Einstein’ formula, giving the viscosity of a
dilute bubbly liquid in the Stokesian approximation. This result is
attributed to Taylor [TAd].

• Let the inhomogeneities be identical but randomly oriented
spheroids. Then the material is macroscopically isotropic and (5.13)
implies

k∗

k1
= 1 +

[k]
k1

a′φ2 + O(φ2) ,
µ∗

µ1
= 1 +

[µ]
µ1

a′′φ2 + O(φ2) , (5.16)

with the coefficients a′ and a′′, given in Eq. (4.67).
• Let κ2 = 0 and the spheroids, again randomly oriented in the

space, degenerate into penny-shaped cracks. Using the asymptotic
(4.68) of the coefficients a′ and a′′ in the “crack” limit, together with
Eq. (5.16), one gets

k∗

k1
= 1− 16

9
1− ν2

1

1− 2ν1
ε+ O(ε) ,

µ∗

µ1
= 1− 32

45
(1− ν1)(5− ν1)

2− ν1
ε+ O(ε) ,

(5.17)

having recalled the definition (5.11) of the crack density parameter ε.
The formulae (5.17) have been independently proposed by Bristow

[BRc] and Walsh [WAa].

Remark 5.7 Treating the crack as a vacuous oblate spheroid of ec-
centricity approaching zero is very convenient. To the best of the
author’s knowledge it was first employed by Willis [WIb]. The reason
is that it allows one to derive straightforwardly the needed formula
for a microcracked solid, passing (with a due care) to the appropri-
ate limits in the general formulae, concerning ellipsoidal inclusions.
The usefulness of this idea was already demonstrated in deriving
Eqs. (5.12) and (5.17). In the elastic context an alternative deriva-
tions employ specific notions and results from fracture mechanics, like
stress-concentration factors, energy release rate, etc. Such a deriva-
tion, employed in particular in the original Bristow’s paper [BRc], or
in [BEc], is often difficult for a “fracture outsider” to follow.
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1.5.3 Self-Consistent Scheme
When the volume fraction becomes higher (say, φ2 ≥ 0.05) it is not
already realistic to imagine the inclusions isolated. Somehow their
mutual interactions should be accounted for. The simplest way to
do this, at least qualitatively, is the application of the self-consistent
idea that appeared, in a certain form, already in the Clausius deriva-
tion [CLa] of the Maxwell formula, mentioned in Section 1.1. Next
it showed up as a very useful and natural tool in solid-state physics
and, more specifically, in the wave mechanics of atoms, as originated
by Hartree [HAb]. In the context of effective properties of heteroge-
neous media the self-consistent approach seems to be first employed
by Bruggeman [BRf], [BRg], see also [FRd], [LAb]. In the quest of
the elastic constants of polycrystals, the method is attributed to Her-
shey [HEb] and Kröner [KRd]. (In Section 1.6 below we shall present
in more details the reasoning and some results of these two authors.)

1.5.3.1 The Basic Idea

The basic idea of the self-consistent scheme (SCS) is to treat each
particle again as isolated, but immersed into a matrix possessing the
unknown effective properties of the composite. This means that we
should replace Eq. (5.1) and its elastic counterpart (5.13) by the
equations

K∗ = κ1I + φ2[κ]Aw(κ1,K
∗) (scalar case) ,

L∗ = L1 + φ2[L] : Aw(L1,L∗) (elastic case) .
(5.18)

In each particular case, Eqs. (5.18) will yield appropriate algebraic
equations for the unknown effective properties of the composite.

To demonstrate this, consider the simplest example when the in-
clusions are spheres. In the scalar context, Eq. (4.13) is to be intro-
duced into the first equation of (5.18):

κ∗

κ1
= 1 +

[κ]
κ1

3κ∗

κ2 + 2κ∗
φ2 (5.19)

which represents, obviously, a quadratic equation with respect to the
effective conductivity.

Eq. (5.19) was proposed by Bruggeman [BRf], see also [LAb], in
the equivalent form

φ1
κ1 − κ∗

κ1 + 2κ∗
+ φ2

κ2 − κ∗

κ2 + 2κ∗
= 0 . (5.20)
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Note the symmetry of the latter with respect to the constituents’
characteristics, that is under the simultaneous interchange κ1 ↔ κ2

and φ1 ↔ φ2. That is why Eq. (5.19) is often called symmetric
effective medium approximation (EMA), or First Bruggeman’s sym-
metric EMA—a term, introduced by Landauer [LAc]. Thus each
phase should be treated on the same footing, as pointed out by Davies
[DAb]; in the above reasoning however one of the phase was imagined
continuous, and the second in the form of distributed inclusions; this
already implies an inherent logical inconsistency of the SCS. More
fundamental, however, is the inconsistency, very clearly exposed by
Hashin [HAi], namely, the violation of the basic MMM principle, for-
mulated in Section 1.2.1. The point is that a single sphere in the
dispersion is the basic micro element and as such it can only “see”
the other spheres (micro-elements) around, but not the mini-element
(the homogenized medium) as a whole, whose properties result from
averaging over the multitude of all the micro-elements within it. Or,
as Hashin put it: SCS assumes that a tree sees the forest—but a tree
sees only other trees.

The foregoing does not imply however that the SCS is useless and
should be rejected. It simply suggests that if the scheme is realistic,
the appropriate two-phase geometries cannot resemble a dispersion
of equi-sized spheres. That this is indeed the case follows from an
important result of Milton [MIe]. It states that the SCS (more pre-
cisely, Eq. (5.19) or Eq. (5.20)) is a realizable approximation in the
sense that there exists a special, ingeniously devised, internal geom-
etry of a two-phase medium whose effective elastic moduli coincide
exactly with the SCS predictions of Eq. (5.19). The reader is referred
to the original Milton’s work since the details and proofs cannot be
elementary summarized. We can only add that, like Hashin’s assem-
blage (Section 1.3.4), the “SCS-geometry” of Milton is of fractal-type
(self-similar in all length-scales, that is), comprising inclusions of all
possible sizes, from finite down to infinitesimally small. Due to the
foregoing remarks, it is a little wonder that such a geometry has
nothing in common with equi-sized particles like spheres, distributed
throughout a matrix.

Remark 5.8 The choice of the basic element, to be inserted into the
effective medium, is not unique in the SC scheme. In the foregoing,
the simplest possibility was chosen, when this is just the filler parti-
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cle. This is however not the only choice; more complicated elements
can be devised as well. For example one can take a “composite”
sphere, with a kernel of phase ‘1’, coated by a layer of phase ‘2’,
as first suggested by Kerner [KEa]. A detailed and critical analysis
of such a SCS modification can be found in [HAg]; for generaliza-
tions in the elastic case, see [CHe] or [CHd, Chapter 2.3]. This kind
of modification of the self-consistent method are usually referred to
as Generalized Self-Consistent-Schemes (GSCS), but their discussion
goes beyond the frame of the present survey. It should be only noted
that without detailed morphological information, no theoretical ar-
guments can be given for any specific choice of a basic element in a
binary medium. (The “composite” sphere was used in [CHe] or [CHd]
because the appropriate model provided better agreement with cer-
tain precise experimental data; though no guarantee exists whether
it will work equally well for other sets of experiments.) For polycrys-
tals, however, the basic element is naturally predetermined from the
very internal structure—this is just the single grain (see Section 1.6).
The latter perhaps explains why the SCS provides as a rule more
accurate predictions for the effective properties of polycrystals than
of particulate media.

Note finally that the self-consistent method can be employed in an
obvious manner to multiphase media as well. However, its predictions
will possess the needed symmetry (2.65) only when the dispersed
inclusions are aligned and of similar shape, see the paper [BEe] for
details, examples and comments on this important fact.

1.5.3.2 An Alternative Derivation

Eq. (5.20) can be also recast as

κ(x)− κ∗

κ(x) + 2κ∗
= 0 , (5.21)

where the overbar indicates, let us recall, averaging over the RVE,
and κ(x) is the function that takes the values κ1 or κ2 depending on
whether x lies in the constituent ‘1’ or ‘2’, respectively. Eq. (5.21) has
a simple and clear interpretation. Namely, imagine that the RVE, V,
is filled with spherical particles, whose sizes vary from finite down to
infinitesimal. The spheres have conductivity κ1 or κ2. Imagine each
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sphere lying in a homogeneous medium with the effective conductivi-
ties κ∗; at infinity the prescribed temperature gradient G is imposed.
The deviation from this gradient within the sphere, due to the fact
that its properties differ from those of the surrounding material, is
just

κ(x)− κ∗

κ(x) + 2κ∗
G , (5.22)

cf. Eqs. (1.14) and (1.15). (In the electrostatic context, the latter
value is proportional to the so-called polarization of the sphere.)
Since the volume V is considered as macroscopically homogeneous,
we should have, accordingly, no macroscopical polarization. The
mean value of the “local” polarizations (5.22) should then vanish,
as claimed in Eqs. (5.20) and (5.21).

The above reasoning can be interpreted as well in the following
manner, that represents a modification of the original Maxwell argu-
ments of Section 1.1.3.3. Cut again a big sphere of the radius A (the
“Maxwell sphere”) from the heterogeneous medium and immerse it
into unbounded homogeneous host material whose conductivity κ+

will be appropriately chosen (or, so to say after Berryman [BEm],
“tuned”). “Sit down” at the point M far away, i.e. at the distance R
from the center of the sphere, R� A. Let the temperature field G ·x
be applied at infinity. Each piece of the phases ‘1’ or ‘2’, located in
the vicinity of x, will create at the point M the disturbance

a3

R3

κ(x)− κ+

κ(x) + 2κ+
G , (5.23)

—since we are far from the piece under consideration, it can be taken
as spherical with a radius a. Averaging (5.23) over the big heteroge-
neous sphere will give a quantity, proportional to

κ(x)− κ+

κ(x) + 2κ+
. (5.24)

Comparing (5.24) with (5.21) shows that if we “tune” the host medium
so that κ+ = κ∗, the presence of the heterogeneous sphere will not
be “felt” at the point M ; in other words this sphere will become
“transparent” for us.

The above arguments represent a “static” (and scalar) implemen-
tation of Berryman’s idea [BEm]: this author dealt with the long-
wave length limit for a harmonic wave, scattered by the “Maxwell
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sphere,” and “tuned” the properties of the host medium in such a
way that the total scattering is zero—in other words, the sphere be-
comes indeed invisible for us. Similar arguments in the language of
the so-called T -matrix were employed in [GUa], [KOa].

Remark 5.9 Sometimes the SC scheme is called the Coherent Po-
tential Approximation due to the similarity of its implementation
(cf. Eq. (5.24)) to a certain approach, used in the theory of elec-
tronic properties of imperfect crystals and alloys, see [PAb] or the
excellent exposition in Ziman’s book [ZIa].

1.5.3.3 The Percolation Phenomenon

Going back to to the simplest SCS equation (5.19), note that it pos-
sesses the simple solutions

κ∗

κ1
=


1

1− 3φ2
, if κ2/κ1 = ∞ ,

1− 3
2φ2 , if κ2/κ1 = 0 ,

(5.25)

in the two limiting cases of ideally conducting particles (κ2/κ1 = ∞)
or non-conducting particles (κ2/κ1 = 0), respectively.

Hence, a dispersion of ideally conducting spheres becomes ideally
conducting, if the volume fraction φ2 ≥ 1/3, whatever the conduc-
tivity of the matrix, the spatial distribution of the spheres and their
sizes. This is just an exhibition of the so-called percolation phe-
nomenon and the value φp

2 (1/3 for the adopted SCS) is the perco-
lation threshold. The essence of the phenomenon is the following:
when an ideally conducting constituent ‘2’ is added to a poorly con-
ducting matrix, it is most possible that it will be in the form of
separated particles, if the volume concentration φ2 is small enough.
When increasing φ2, the particles start touching each other, forming
more complicated aggregates. At certain critical (threshold) value
φp

2 , the constituent ‘2’ forms a continuous skeleton penetrating the
whole body of the mixture and as a result it becomes ideally conduct-
ing as well. A similar percolation phenomenon appears obviously in
the case when a nonconducting phase (κ2 = 0) is added to a conduct-
ing matrix. In this case the threshold concentration φp

2 = 2/3, again
independently of microstructural details, see Eq. (5.25).
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It is noted that the percolation phenomena are very important
in solid state physics, in general, and in many of its applications.
The appropriate discussion goes however far beyond the scope of the
present work (see the survey [LAc] or [KIa] for basic ideas, results
and classical references).

Remark 5.10 In the literature the presence of a percolation thresh-
old is sometimes considered as a virtue of an approximate model,
while its lack (in the differential scheme below, for example) is viewed
as a drawback (or vice versa, depending on author’s taste). It should
be noted that the threshold’s presence (or lack) has nothing in com-
mon with the validity of the model. It only informs us that for the
geometry that realizes the model (like Milton’ SCS-geometry), there
is (or there is not) a threshold. Hence this is a conclusion concern-
ing above all a specific two-phase geometry, but not a model or its
applicability.

1.5.3.4 Some Particular Cases

Consider now, for illustration, several particular cases of the SCS
equations (5.18).

• For randomly oriented and isotropic spheroids, in the scalar
conductivity case,

κ∗

κ1
= 1 +

[κ]
3κ1

(
2κ∗

κ∗ + (κ2 − κ∗)M⊥
+

κ∗

κ∗ + (κ2 − κ∗)M

)
φ2 , (5.26)

cf. Eqs. (4.21) and (5.18). When the spheroids are spheres, M =
M⊥ = 1

3 , and (5.26) reproduces (5.19).

• Let κ2 = 0, and the spheroids degenerate into penny-shaped
cracks. The effective conductivity κ∗ is then eliminated from the
right-hand side of Eq. (5.26) and Eq. (5.12) is recovered, but with-
out the correction term O(ε), cf. Eq. (5.9). Hence the self-consistent
scheme predicts the linear dependence

κ∗

κ1
= 1− 8

9ε (5.27)

of κ∗ upon the crack density parameter.
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The results in the elastic case are obtained in a fully similar way,
and we shall only list some of the basic ones.
• For an isotropic elastic dispersion of spheres, the self-consistent

scheme yields

k∗ = k1 + k∗
k2 − k1

k∗ + α∗(k2 − k∗)
φ2 ,

µ∗ = µ1 + µ∗
µ2 − µ1

µ∗ + β∗(µ2 − µ∗)
φ2 ,

α∗ =
3k∗

3k∗ + 4µ∗
, β∗ =

6
5
k∗ + 2µ∗

3k∗ + 2µ∗
,

(5.28)

see Eqs. (5.18) and (4.58). This is an algebraic system with respect
to the unknown effective moduli k∗ and µ∗ which allows a convenient
numerical solution (by a straightforward iterative procedure).

The system (5.28) is usually attributed to Budiansky [BUa] and
Hill [HIe], see also [WUa]. (These authors were apparently not aware
of the earlier Skorohod’s paper [SKa], where the same classical self-
consistent reasoning was employed to derive (5.28).)

Very simple closed form solutions (5.28) can be found, if ν1 = ν2 =
0.2. Then, as pointed out by Budiansky [BUa], the Poisson ratio of
the medium is also 0.2, α∗ = β∗ ≡ 0.5.

Other simple solutions exist if the Poisson ratio of the matrix is
again ν1 = 0.2, but the inclusions are rigid or represent voids. In
particular, for spherical voids in a matrix of Poisson ratio ν1 = 0.2,
the solution of (5.28) is extremely simple

κ∗

κ1
=
µ∗

µ1
= 1− 2φ2 (k2 = µ2 = ∞) ,

κ∗

κ1
=
µ∗

µ1
=

1
1− 2φ2

(k2 = µ2 = 0) ,

(5.29)

and hence ν∗ ≡ 0.2 in both cases.
The foregoing facts suggest that the value 0.2 of the Poisson ratio

is something special in the “one-particle” models of particulate me-
dia.14 A certain explanation can be sought perhaps in the fact that

14It was Hashin [HAc] who first pointed out the “curious” fact that ν∗ ≡ 0.2 in
a dilute dispersion of rigid spheres in a matrix for which ν1 = 0.2.
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at ν1 = 0.2 the concentration factor for a single spherical inclusion—
the tensor Aw, as given in Eq. (4.58), is proportional to the unit
fourth-rank tensor I.

Eq. (5.29) means that for a dispersion of spheres, in a matrix with
ν1 = 0.2, the percolation threshold, as predicted by SCS, is φp

2 = 0.5.
At sphere fractions, higher than 0.5, the solid either become rigid or
cannot sustain load. Again, this fact is neither a merit or a fault of
the SCS, but just a property of the special Milton’s SCS-geometry
that “lies” behind the scheme.

Another simple solution of (5.28) emerges for the Hill medium,
when the shear moduli of the phases coincide, µ1 = µ2 = µ. Then,
from the first equation, one has

k∗ − k1

k2 − k1
= φ2

3k∗ + 4µ
3k2 + 4µ

. (5.30)

which reproduces the Hill formula (3.66). Hence the SCS gives the
exact value of the effective bulk modulus in the case of spherical
particles. (Recall, however, that the Hill results (5.30) holds for an
arbitrary two-phase geometry, which is macroscopically isotropic.)

• For an isotropic elastic solid, containing randomly oriented
penny-shaped cracks, we get formally the same system (5.17), with
the only difference that the Poisson ratio of the matrix, ν1, is replaced
by this ratio of the composite medium, ν∗:

k∗

k1
= 1− 16

9
1− ν∗2

1− 2ν∗
ε ,

µ∗

µ1
= 1− 32

45
(1− ν∗)(5− ν∗)

2− ν∗
ε .

(5.31)

This is exactly the self-consistent system of Budiansky and O’Connell
[Bub] for the effective moduli of a microcracked solid (cf. their Eqs.
(36) and (44′)).

1.5.4 The Differential Scheme

The differential scheme (DS) is a kind of an “infinitesimal” imple-
mentation of the self-consistent idea. It was initiated by Bruggeman
[BRf], [BRg] and used in fifties for media containing rigid particles
(by Brinkman [BRb] for the viscosity of a fluid suspension, and by
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Roscoe [ROa] in the elastic case). More recently it was elaborated by
McLaughlin [MCb], Norris [NOa], Zimmerman [ZIc] et al. A detailed
discussion can be found in the survey [CLb].

1.5.4.1 The Basic Idea

Imagine the small concentration δΓ of particles is added to an initially
homogeneous medium. Replace mentally the so obtained mixture by
a homogeneous medium of the effective conductivity K∗ = K∗(δΓ).
In the latter a new concentration δΓ of particles is inserted; the
new medium again is replaced by a homogeneous one of conductiv-
ity K∗(2δΓ), and so forth. As a result, the effective conductivity
will be a certain function of the total amount Γ of inserted particles,
K∗ = K∗(Γ). Since at each step a small concentration of particles is
added, δΓ � 1, the dilute approximation (5.1) applies

K∗(Γ + δΓ) = K∗(Γ) + δΓ (κ2I −K∗(Γ)) ·Aw(K∗(Γ), κ2) .

In the limit δΓ → 0, this yields the differential equation

dK∗

dΓ
= (κ2I −K∗(Γ)) ·Aw(K∗(Γ), κ2) (5.32)

for the unknown function K∗ = K∗(Γ), which should be solved to-
gether with the natural initial condition

K∗(0) = κ1I .

The reasoning in the elastic case is fully similar, and will be omit-
ted.

It is very important to point out, after McLaughlin [MCb], that
the total concentration Γ of particles, introduced into the matrix,
does not coincide with the volume concentration φ2 of the second
phase. The reason is that when adding a new portion δΓ of particles,
some of them will “fall” within the region, occupied by the previously
deposited ones. Only the part φ1δΓ, that “falls” within the matrix,
will increase φ2. Thus, in the limit δΓ → 0 again,

dφ2 = (1− φ2) dΓ or Γ = − ln(1− φ2) , (5.33)

because, obviously, Γ = 0 at φ2 = 0. From (5.33) it follows that

Γ = φ2 + 1
2φ

2
2 − · · · ,
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which means that Γ ≈ φ2 for φ2 � 1. Hence only for small values of
φ2 one can choose Γ = φ2.

Remark 5.11 In some of the earlier papers [HEa], [ZIb], the differ-
ential scheme was applied without distinguishing between the quan-
tity Γ and the fraction φ2. One of the motivation was Mackenzie’s
treatment of a porous solid [MAa], in which a new single pore is added
at the center of a sphere, cut from the homogenized medium, and sub-
jected to hydrostatic pressure. As just pointed out, taking Γ = φ2

is safe only in the dilute case; for higher values of φ2 the deviations
from the differential scheme’s predictions is already considerable.

Obviously, the phases do not enter symmetrically in the Eqs. (5.32)
and (5.33), unlike the self-consistent scheme. On the other hand again
the effective medium surrounding of the inclusion is imagined at each
step of the DS procedure. That is why the DS is often called, after
Landauer [LAc], the Second Bruggeman’s unsymmetrical Effective
Medium Approximation. Also the term iterated dilute limit approx-
imation is sometimes used, which reflects well the reasoning that has
led us to the formulae (5.32) and (5.33).

The differential scheme, similarly to the self-consistent one, is a re-
alizable approximation in the sense that there exist special two-phase
media whose effective behavior coincides exactly with the predictions
of the scheme. This important fact was first demonstrated by Norris
et al. [NOa], [NOb], [NOc], see also [AVa].

1.5.4.2 Some Particular Cases

Consider now in more detail the system (5.32) and (5.33) in several
particular cases.
• For spherical inclusions in the scalar conductivity context the

tensor K∗ = κ∗I is isotropic and Aw is given in (4.13). Eq. (5.32)
then becomes

df
dφ2

=
3(α− f(φ2))f(φ2)

(1− φ2)(α+ 2f(φ2))
, κ∗/κ1 = f(φ2) , (5.34)

α = κ2/κ1. Similarly to the self-consistent scheme, Eq. (5.34) allows
simple solutions

κ∗

κ1
=


1

(1− φ2)3
, if κ2/κ1 = ∞ ,

(1− φ2)3/2 , if κ2/κ1 = 0 ,
(5.35)
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in the two limiting cases of ideally conducting particles (κ2/κ1 = ∞)
or non-conducting particles (κ2/κ1 = 0), respectively. Hence, there
is no percolation in the differential scheme—the values of κ∗ remain
finite and positive for all φ2 ∈ (0, 1).

• For spherical inclusions in the elastic case the DS supplies the
system

1
k∗

dk∗

dφ2
=

(3k∗ + 4µ∗)(k2 − k∗)
(1− φ2)k∗(3k2 + 4µ∗)

,

1
µ∗

dµ∗

dφ2
=

5(3k∗ + 4µ∗)(µ2 − µ∗)
(1− φ2)(6µ∗(k∗ + 2µ∗) + (9k∗ + 8µ∗)µ∗)

,

(5.36)

coupled with the obvious initial conditions k(0) = k1, µ(0) = µ1.
The system (5.36) was derived by McLaughlin [MCb] who showed, in
particular, that its solution meets the HS bounds.15

A detailed analysis of the system (5.36) was performed by Zim-
merman [ZIc]. He observed that (5.36) is autonomous, with the pa-
rameter Γ, see Eq. (5.33), playing the role of time. This suggests
to divide the equations of (5.36) and the result will be an explicit,
though complicated, expression of φ2 through the ratio k∗/µ∗ (or
which is the same, through the effective Poisson ratio ν∗). Simpler
solutions exist in the limiting cases of rigid and vacuous inclusions.
The equation for ν∗ that follows from (5.36) has in these cases the
form

dν∗

dΓ
= F (ν1)(1− 5ν1) .

Though the function F (ν1) is different for rigid and vacuous inclu-
sions, the presence of the multiplier 1−5ν1 in both cases assures that
ν∗ ≡ 0.2, if ν1 = 0.2—something that is identical with the predictions
of the SCS. Moreover, the value 0.2 of the Poisson ratio is an attrac-
tor or a fixed point, in the sense that the function ν∗ = ν∗(φ2) is
monotonically increasing, if ν∗(0) = ν1 < 0.2, and monotonically de-
creasing, if ν∗(0) = ν1 > 0.2. In both cases ν∗(φ2) → 0.2 as φ2 → 1.
The same attractor’s type behavior has been observed in the SCS by
the author [MAd].

15Once an approximate scheme is realizable, its predictions always satisfy the
HS bounds, due to the optimality of the latter; see Section 1.3.3.
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Remark 5.12 It is curious to understand whether the peculiarity of
the value 0.2 for the Poisson ratio is something that indeed exists in
real heterogeneous solids, or it is a mathematical artifact produced
by the models. This intriguing question explains the considerable
interests in the last 15 years in studying the so-called Poisson ratio
flow diagrams i.e. the effective Poisson coefficient as a function of
the volume fraction φ2 of the inclusions. It turned out that if the
inclusions are voids, the fixed points on such diagrams (like the above
value 0.2) do exist, and this was demonstrated both analytically (see,
e.g. [CHb] in 2-D) and numerically by a number of authors. Details,
discussion and many references can be found in the recent paper
[CHf].

For rigid inclusions it seems as if there are no fixed points for
the Poisson ratio, as numerical experiments suggest, see again [CHf].
The apparent discrepancy between voids and rigid inclusions may be
however a by-product of the numerical procedures, employed by the
authors. After Zimmerman [ZId], one can point out that calculations
for a medium with “vacuous pores” can be performed simply putting
the elastic moduli κ2 = µ2 = 0 in the appropriate equations and
numerical schemes. But the analogous calculations for rigid inclusions
are performed taking the moduli κ2, µ2 very large, but still finite.
One should be very careful, dealing with limit of moduli, tending
both to zero and to infinity. The problem arises because, when taking
either limit 0 or∞, any references of the Poisson ratio may be lost. In
fact, one can construct paths κ2, µ2 → 0 or∞ in (κ2, µ2)-space so that
the Poisson ratio can have any value. For more details, concerning
this subtle situation, the reader is referred to the original paper [Zid].

Another similarity with the SCS is the existence of the simple solu-
tions of (5.36), when ν1 = 0.2, for the two limiting types of inclusions,
namely

k∗

k1
=
µ∗

µ1
= (1− φ2)2 (voids) ,

k∗

k1
=
µ∗

µ1
=

1
(1− φ2)2

(rigid inclusions) ,

(5.37)

cf. Eq. (5.35).

Remark 5.13 Relations of the type (1 − φ2)m for the decrease of
a certain effective property of a porous solid as a function of the
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void ratio φ2 are very popular and useful in some applications like
micromechanics of microporous rocks. (In this context m is known
as the cementation exponent and its value supplies additional mi-
crostructural information, see [SEa] for details and references.) They
are often called Archie’s after the work [ARa]. The reappearance
of the phenomenological Archie’s law within the DS, cf. (5.35) and
(5.37), cannot be interpreted, however, as a kind of justification of
the scheme or as an indication of its superiority as compared to other
approximate theories. It means solely that the specific two-phase
Norris’ microgeometry that “lies” behind the DS, exhibits Archie’s
type behavior of its effective conductivity and elasticity (for ν1 = 0.2
in the latter case).

Another particular case, in which the system (5.36) possesses a
very simple solution, is when both the matrix and spheres are rigid.
Then k1 = k2 = k∗ = ∞ and

µ∗

µ1
=

1
(1− φ2)5/2

(5.38)

which reproduces the Einstein formula (1.21) in the dilute limit (re-
calling once again the full mathematical analogy between an incom-
pressible elastic solid and a fluid in Stokesian approximation). The
formula (5.38) was proposed by Brinkman [BRb] for the viscosity of
a fluid suspension, within his attempt of extending the Einstein for-
mula (1.21) in nondilute case. To this end the author has utilized
literally the same DS reasoning of Section 1.5.4.1.

We shall skip further study of the DS model and equations, re-
ferring to the already cited papers of McLaughlin, Norris et al. and
Zimmerman. Also the application of the DS to the microcracked
solids will not be discussed (in this case some care is needed, due
to the “degenerated” nature of the inclusions). Details and further
references can be found in the Hashin paper [HAj], see also [HEa].

1.5.5 The Effective Field

Here again each particle is treated as single. However, we imagine
it immersed now into a homogeneous medium possessing the prop-
erties of the matrix. The influence of the rest of the particles is
accounted for through the assumption that the particle lies within
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a certain external field—the effective field—that differs from the ap-
plied macroscopic one. Similarly to the self-consistent scheme, this
is an old approach that goes back to the Mossotti cavity idea and to
the Lorenz-Lorentz local field, as we shall point out below.

1.5.5.1 The Basic Idea

We shall first implement the effective field idea again in the scalar
case. Let G∗ be the local (effective, or Lorenz-Lorentz’ in the dielec-
tric context) field that acts on each particle; in this simplest version
it is assumed that G∗ is a constant.

Since each particle is lying as single in the field, it is natural also
to assume that

〈∇θ〉1 = G∗ . (5.39)

As a matter of fact, this is the basic assumption of the simplest
version of the effective field method—it states that each particle un-
dergoes an external field that coincides with the mean field in the
matrix phase.

In turn, G∗ should depend linearly on the applied macroscopic
gradient G = ∇θ

G∗ = B ·G , (5.40)

with a certain second-rank tensor B. The latter is specified by means
of (5.39) and the first equation of (2.35):

G =∇θ = φ1 〈∇θ〉1 + φ2 〈∇θ〉2

= φ1G
∗ + φ2Aw(κ1,K2) ·G∗

= (φ1I + φ2Aw(κ1,K2)) ·G∗ ;

(5.41)

we have used that 〈∇θ〉2 = Aw(κ1,K2) · G∗ since each particle is
treated as single in the far-field G∗, according to the basic assump-
tion. Hence

B = (φ1I + φ2Aw(κ1,K2))
−1 , (5.42)

which gives explicitly the tensor B that interconnects the applied
macroscopic field and the resulting local one.

The concentration tensor can be easily found now by means of
(5.41) and (5.42):

〈∇θ〉2 = Aw(κ1,K2) ·G∗

= Aw(κ1,K2) ·B ·G = A2 ·G ,
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so that, in virtue of (5.42),

K∗ = κ1I + φ2Aw(κ1,K2) · (φ1I + φ2Aw(κ1,K2))
−1 (5.43)

which is the effective field approximation for the bulk conductivity of
the medium.

In the elastic case, fully similar arguments produce the formula

L∗ = L1 + φ2Aw(L1,L2) : (φ1I + φ2Aw(L1,L2))
−1 , (5.44)

having replaced the second-rank tensors in (5.43) by the appropriate
fourth-rank tensors.

1.5.5.2 Alternative Derivations and Interpretations

Note first that the formula (5.41) and its consequences (5.43) and
(5.44) for the effective properties has an appealing interpretation in
terms of the Mossotti cavity idea (see Section 1.1.3.2). Indeed, guided
by the heuristic derivation of the Clausius-Mossotti formula, as used
by Feynman at al. [FEc, Chapter 11], let us cut the inclusions, treated
as isolated, from the medium and replace them by cavities. Then

G = Gcav + Gincl , (5.45)

where Gcav is the field in the matrix with cavities and, correspond-
ingly, Gincl is the field that appears in the inclusions. The “cavity”
field Gcav is Gcav = φ1G

∗, where G∗ is the above mentioned mean
(or effective) field that results from the interactions of the inclusions.
In turn, Gincl = φ2Aw ·G∗, since each one is treated as isolated in
the far-field G∗. Together with (5.45), these formulae reproduce the
basic relation (5.41) of the effective field method.

An approach which turns out to be closely connected, if not equiv-
alent, to the effective field approximation is associated with the names
of Mori and Tanaka [MOb] in the literature on composites, see also
[BEc], [WEa], [WEb] et al. The original derivation of these authors
was expressed in terms of eigenstrains, equivalent inclusions, trans-
formation energy consideration, etc., and at first glance looked totally
different in spirit from the rest of the models, used in mechanics of
heterogeneous media. (Details and further applications can be found
in the book of Mura [MUa].) The clarification of the nature of this
approximation is to be attributed to Benveniste who, in the paper
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[BEd], pointed out that the basic idea of Mori-Tanaka’s method is
just the statement of Eq. (5.39), namely, that each particle is again
treated as single, but lying within the far-field 〈∇θ〉1 that equals the
mean field in the matrix. This assumption was adopted also by the
author in the note [MAe], without any connection to Mori-Tanaka’s
work, as a starting point of the derivation of the approximations
(5.43) and (5.44) for the effective moduli, as given in Section 1.5.5.1.

As we shall see below, the effective field method works well and
produces reasonable results in the cases when the inclusions are either
spherical or, if nonspherical, are aligned. For multi-phase systems
with different alignment and/or shape of the particles, the effective
field predictions fail to satisfy the necessary symmetry conditions
(2.65) and thus they are not acceptable, see [BEe], [FEb]. The same
shortcoming of the SCS was already pointed out in Remark 5.8.

This failure, in particular, suggests that the effective field method
should be modified for media with more complicated internal struc-
ture. A possible way was proposed by Kanaun and Levin in a number
of publications and elaborated in their book [KAf], see also [KAg] for
a detailed English exposition. Using the integral equation for the
displacement field in a particulate medium, they have derived an
approximate “self-consistent” equation for the effective field. The
solution of the latter, though simple, involves however “two-point
correlation” functions for the inclusions’ distribution. For spherical
particles, isotropically distributed, the Kanaun-Levin’s scheme yields
the same results (5.46) and (5.47), given below as particular cases of
the foregoing effective field (Mori-Tanaka) method. Details and some
of the latest results, concerning the application of this approach to
scalar waves phenomena in particulate media, can be found in Chap-
ter 3 of this volume.

1.5.5.3 Some Particular Cases

Consider again some of the most common and interesting particular
cases, to illustrate the predictions of the effective field method.
• Let the medium be a macroscopically isotropic random disper-

sion of spheres. The tensors Aw and Aw are given in Eqs. (4.13) and
(4.58) respectively, so that the effective field prescriptions (5.43) and
(5.44) yield

κ∗

κ1
= 1 +

3βφ2

1− φ2β
, β =

[κ]
κ2 + 2κ1

, (5.46)
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in the scalar case, and

k∗

k1
= 1 +

φ2[k]
k1 + α1φ1[k]

,
µ∗

µ1
= 1 +

φ2[µ]
µ1 + β1φ1[µ]

, (5.47)

in the elastic case; the parameter α1 and β1 are defined in Eq. (4.58).
The formula (5.46) reproduces the Maxwell one, cf. Eq. (1.19),

which in turn coincides with the appropriate Hashin-Shtrikman
bound (3.34).

Similarly to the scalar case, the formulae (5.47) provide bounds on
the elastic moduli of a two-phase material in the “well-ordered” case
(see Section 1.3.5). Indeed, the expression for the bulk modulus in
(5.47) obviously coincides with one of the Hashin-Shtrikman bounds
on k∗, as given in (3.68). Similarly, the expression for µ∗ in the same
formula (5.47) is the HS-bound [HAm], which is upper, if k2 > k1,
µ2 > µ1 and lower, if both inequality signs are reversed.

It is noted that the formulae (5.47) were also derived by Kuster
and Toksöz in the paper [KUc] (which is most often cited in geo-
physical community, but almost unknown outside it). The method
employed there is a direct generalization of the “Maxwell sphere,”
treated in the scalar context in Section 1.1.3.3. Here the long-wave-
length scattering by a “big” sphere, containing a host of small in-
homogeneities, was evaluated in two different ways: (i) taking the
spheres as homogeneous with unknown effective moduli and, (ii) sum-
ming the scattering waves from all small particles. Equating these
quantities reproduces (for spherical shape of the latter) the formula
(5.47), see also Berryman’s discussion in [BEm], [BEn].

• For a fiber reinforced material—circular cylinders, aligned
along the axis Ox3, the tensors Aw and Aw, as given in Eqs. (4.15)
and (4.62), respectively, are utilized.

In the scalar case the effective conductivity tensor is transversely
isotropic and has the form (5.5). The transverse conductivity reads

κ∗11

κ1
= 1 +

2βφ2

1− φ2β
, β =

[κ]
κ2 + κ1

, (5.48)

which is the 2-D counterpart of the Maxwell formula (1.19). Note that
the latter also provides a bound on κ∗ for an arbitrary macroscopically
isotropic 2-D mixture.
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For the conductivity along the fibers we have the same formula as
in (5.6), i.e. the Voigt value κ∗33 = κ = κv (and this is fully natural,
because the temperature gradient along the fibers is homogeneous).

In the elastic case the fiber-reinforced material under study is
again transversely isotropic and thus it is characterized macroscopi-
cally by means of five elastic moduli. Utilizing Hill’s notations (4.60)
and (4.61), with Eq. (4.62) for the tensor Aw inserted into the formula
(5.44) for L∗, we get, after some algebra:

L∗ = (2k∗, `∗, `∗, n∗, 2m∗, 2µ∗) ,

k∗ = λ1 + µ1 +
φ2γ1

∆
([λ] + [µ]) , `∗ = λ1 + µ1

φ2γ1[λ]
∆

,

n∗ = γ1 + φ2[γ]− φ1φ2
[λ]2

∆
, (5.49)

m∗ = µ1

(
1 +

φ2[µ]
µ1 + φ1χ1[µ]

)
,

µ∗ = µ1

(
1 +

2φ2[µ]
2µ1 + φ1[µ]

)
,

with the notations

∆ = φ1(λ2 + µ2) + φ2(λ1 + µ1) + µ1 ,

χ1 =
λ1 + 3µ1

2(λ1 + 2µ1)
=

3− 4ν1

4(1− ν1)
.

(5.50)

The above expressions (5.49) for the moduli k∗, `∗, n∗, m∗ and µ∗

coincide with those found by Hashin and Rosen [HAn], see also [HIc].
In their derivation, Hashin and Rosen used the exact 2-D counterpart
of the Hashin assemblage (see Section 1.3.4)—i.e. a medium, consist-
ing of parallel “composite cylindrical elements” (a cylindrical core of
one of the constituents, coated with a concentric shell of the other,
in such a way that the volume fractions φ1 and φ2 are fixed). They
also showed that the value of µ∗, as given in Eq. (5.49), lies within
the rigorous bounds, derived in the same paper [HAn]. The formu-
lae (5.49) were rederived by Levin [LEb] as well, who employed, in
a quite complicated way, a version of the effective field method, see
also [KAf].



1.5 Micromechanics of Heterogeneous Media 131

• In a similar manner one can treat a medium, containing iden-
tical, but randomly oriented spheroidal inhomogeneities. The scalar
conductivity of such a medium, according to Eqs. (4.23) and (5.43),
reads

κ∗ = κ1 +
φ2[κ]γΩ

φ1 + φ2γΩ
, (5.51)

where γΩ depends on the shape of the spheroid through its depolar-
ization factors M and M⊥, as seen from the formula (4.23).

Remark 5.14 The formula (5.51) in an equivalent form, was pro-
posed by Fricke [FRa]. In this work, and in a series of papers that
followed, the author compared some accurate experimental results
with the prediction of (5.51), using data for conductivity of dog’s
blood. The red corpuscles were approximated as identical, but ran-
domly oriented spheroids, and Fricke found that the best fit to ex-
periments corresponds to the choice of prolate spheroidal form, when
(in our notations) c/a = 4.25. These papers of Fricke are in a sense
certain natural extension of Einstein’s idea, already discussed in Sec-
tion 1.1.3.4: while the latter looked only for the size of the particles
in a solute by means of micromechanical experiment, the former was
interested in more specific details, like the particle shape (assuming
it spheroidal which, of course, is by no means obvious). A number
of new methods of such “micromechanical” nature, that are able to
provide information about the microstructure of a dispersion (con-
nected, e.g. with sedimentation, diffusion, etc.), were developed later
on. Some ideas, results and references can be found in [JEb], where
polydisperse materials were treated by means of the notion of the
so-called effective diameter.

The elastic moduli of the same dispersion of spheroids are

k∗ = k1 +
φ2[k]a′

φ1 + φ2a′
, µ∗ = µ1 +

φ2[µ]a′′

φ1 + φ2a′′
, (5.52)

see (5.44) and (4.66), with the parameters a′ and a′′, defined in (4.67).
• Consider finally the most interesting particular case of a micro-

cracked solid, when the spheroids degenerate into randomly oriented
penny-shaped cracks (with their conductivity and elastic moduli van-
ishing at the same time).
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In the scalar case Eq. (5.51) yields in this limiting case

κ∗

κ1
=

1
1 + δ

, δ = lim
ξ→0

φ2γΩ ,

where ξ = c/a, see the end of Section 1.4. The quantity δ in the last
formula was evaluated in Eq. (5.10) and the result, let us recall, is
δ = 8

9ε. Hence
κ∗

κ1
=

1
1 + 8

9ε
, (5.53)

where ε is the crack density parameter, cf. (5.11).

Remark 5.15 As shown recently by the author [MAf], the approxi-
mation (5.53) provides an upper bound on the effective conductivity
of the solid, if (i) there is no correlation between the location and the
orientation of the cracks and, (ii) The distance between the centers
of the cracks is greater than 2a (which means that overcrossing of
is forbidden, whatever the orientations, with cracks’ centers fixed).
We recall that a denotes the radius of the penny-shaped cracks under
consideration.

For an elastic microcracked solid the formula (5.52) yields

k∗

k1
= 1− φ2a

′

1 + φ2a′
,

µ∗

µ1
= 1− φ2a

′′

1 + φ2a′′
,

in which the limit ξ = c/a → 0 should be taken once again. But
the appropriate limits were already evaluated in the dilute case,
cf. Eq. (5.17). Hence, the effective field predictions for the elastic
moduli of a microcracked solid read

k∗

k1
=

1

1 +
16
9

1− ν2
1

1− 2ν1
ε

,

µ∗

µ1
=

1

1 +
32
45

(1− ν1)(5− ν1)
2− ν1

ε

.

(5.54)

The formulae (5.54) were proposed by Benveniste [BEd] within
the frame of Mori-Tanaka’s approximation (see also [BEc] for the 2-D
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case—a microcracked plane). A thorough discussion of this approxi-
mation with many appropriate references, can be found in Kachanov’s
survey [KAa]. Note that the foregoing coincidence of the Benveniste
results with Eq. (5.54) is fully natural, having in mind the already
pointed out equivalence of the Mori-Tanaka’s scheme and the effec-
tive field idea, in its simplest form treated here. It turned out also
that the values (5.54), similarly to the scalar case, cf. Remark 5.15,
provide upper bounds on the effective elastic moduli of the microc-
racked solid, under the conditions (i) and (ii) of the same remark, see
[MAf].

1.5.6 The Conductivity of a Medium with Nonideal
Interphase Contacts

In the case of thermally nonideal interphase contacts, the “one-par-
ticle” approximations can be constructed in a manner, fully similar
to the ideal contacts’ case, treated in the foregoing analysis. The only
difference is that the formulae (2.50) and (2.53) should be employed
instead of (2.41), thus taking into account the “surface concentration
factors” A(12) and B(12), as defined in Eqs. (2.49) and (2.52).

The simplest case of spherical inclusions will be treated again for
illustration, within the frame of the self-consistent approach. The
formulae (4.38) and (4.44), valid for a single sphere, allow us to obtain
then the surface concentration factors

A(12) = φ2A
(12)
s (κ∗, κ2) , B(12) = φ2B

(12)
s (κ∗, κ2) ,

having imagined that each sphere lies in a matrix with unknown
conductivity κ∗, cf. (2.49) and (2.52). Recalling (4.13) and inserting
the explicit expressions for A(12)

s and B(12)
s from the same formulae

in (2.50) and (2.53), respectively, gives the self-consistent equations

κ∗ = κ1 + 3φ2κ
∗
(

[κ]
κ2 + 2κ∗

+
2Cκ∗

κ2 + 2(1 + C)κ∗

)
(5.55)

in the superconducting case, and

κ∗ = κ1 + 3φ2κ
∗
(

[κ]
κ2 + 2κ∗

− 2Rκ1

κ2 + 2(1 +R)κ∗

)
(5.56)

in the resistance case.
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With the same ease the rest of the above discussed approximate
schemes of “one-particle” type can be implemented. Some other ex-
amples of similar schemes with more detailed exposition, discussion,
comparison with experiments, etc., can be found, e.g. in the papers
[HAo], [HAp], [BEb], [MIa] et al. Variational principles and esti-
mates, accounting for nonideal contacts, are given, for instance, in
the papers [TOd], [LIa], which also include a number of appropriate
and useful references.

Here it suffices perhaps to demonstrate briefly only two specific
effects in two-phase media that stem out from the nonideal interphase
contacts.

First, imagine that the inclusions are highly conducting, α =
κ2/κ1 → ∞, but the thermal resistance of the contacts is very high
at the same time, R →∞, with the ratio χ = R/α remaining finite.
The formula (5.56) then gives

κ∗

κ1
=

1
1− 3φ2(1− χ)

.

This relation, for small to moderate values of φ2, is in a reasonable
agreement with experimental data of De Araujo and Rosenberg [DEa]
and the appropriate lower bound of Torquato and Rintoul [TOd].

Second, assume that particles of higher conductivity are distribu-
ted in a matrix, i.e. α > 1. Then

κ∗ = κ1 , if R = Rc = 1
6(α− 1)(α+ 2) , (5.57)

as it follows again from (5.56). The above means that at R = Rc

the thermal resistance of the interphases “hides” the inclusions, so
that macroscopically their presence is not felt at all. This fact is di-
rectly connected with the presence of the so-called “critical radius”
ac, see [CHc], [EVa] et al. The essence is that the interfacial effects
are size-dependent: the radius a enters the definitions of both inter-
facial characteristics C and R, cf. their definitions (4.26) and (4.28)
(or (4.27)) respectively. In particular, whatever be the fixed volume
fraction φ2, Eq. (4.28) implies that when decreasing the particles’ ra-
dius a, we shall reach a value a = ac—the critical radius—for which
R coincides with the value Rc, given in (5.57). Then the “bad” in-
terphase will produce enough resistance to compensate for the higher
conductivity of the inclusions. The effective conductivity, as a result,
will not be able to exceed that of the matrix, when a ≤ ac.
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Torquato and Rintoul [TOd] have shown that the value of Rc =
α − 1 exactly for a dispersion of nonoverlapping spheres. The fore-
going self-consistent scheme gave a totally different value of Rc (see
Eq. (5.57)). This fact demonstrates once again that the self-consistent
reasoning, though based on consideration of a single inclusion in a ho-
mogeneous medium, has, in reality, little in common with dispersions
of equi-sized particles.

Note finally that in the papers [KAd], [KAe] the thermoelastic
properties of composites (dispersion of spheres) with nonideal con-
tacts were studied in detail by means of the effective field method.

1.5.7 The Self-consistent Scheme for the Absorption
Problem

To illustrate the generality of the “one-particle” approximations, we
shall discuss here a self-consistent type scheme for evaluating the
effective sink strength. Recall that this problem, motivated in par-
ticular by the classical Smoluchowski’s work [SMa], was discussed in
Section 1.2.7. It is specified by Eqs. (2.66) and (2.67). The scheme
to be applied is due to Brailsford and Bullough [BRa]. The imple-
mentation follows Talbot and Willis [TAb].

The self-consistent scheme provides an approximation for 〈c〉2 as-
suming that each inclusion is single and it is immersed into a medium
of the effective sink strength k∗2. Hence, choosing for simplicity the
inclusions’ shape spherical (of the radius a), one should solve the
“single inclusion problem” which, in the present context reads:

∆c(x)− k2
2 c(x) +K = 0 , if r < a ,

∆c(x)− k∗2 c(x) +K = 0 , if r > a .
(5.58)

Due to the radial symmetry of the problem, the solution has the
form

c(x) =


K

k2
2

+
A sinh k2r

k2r
, r < a ,

K

k∗22

+
Be−k∗r

k∗r
, r > a .

The constants A and B are fixed by the conditions that both the
function c(x) and its normal derivative dc/dr on the sphere r = a
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should be continuous. The calculations, though tedious, are straight-
forward, and the final result for c(x), together with (2.73), yields
eventually

k∗2 − k2
1

k2
2 − k2

1

(5.59)

=
φ2

k2
2

{
k∗2 + 3

(k2
2 − k∗2)(1 + k∗a)(k2a cosh k2a− sinh k2a)

(k2a)2(k∗a sinh k2a+ k2a cosh k2a)

}
.

This cubic (with respect to the dimensionless quantity k∗a) equation
is the absorption counterpart of the self-consistent equations (5.19)
and (5.28) for the conductivity and the elastic moduli, respectively.
Similarly to them, Eq. (5.59) does not pretend to be exact, since
spheres’ interactions are not taken into account with due precision,
but only approximately. Nevertheless, it allows to reveal certain in-
teresting features of the absorption problem’s homogenization, that
distinguish the latter from that of the more “ordinary” scalar and
elastic problems.

Consider first the limiting case, when

k1a→ 0 , k2a→ 0 . (5.60)

The solution of Eq. (5.59) is then k∗2 = k∗2v = φ1k
2
1 + φ2k

2
2. This

is just the Voigt type approximation, already observed in the scalar
and elastic cases, and also in the absorption problem under study, see
Eq. (3.78). Recall that it corresponds to the assumption that the con-
centration field c(x) remains constant in V. It is noted, after Talbot
and Willis [TAb], that the formula (3.78) is fully natural in the case
under study. Indeed, the limits (5.60) mean that, at fixed k1 and k2,
the radius of the inclusions decreases to zero. The fluctuation of the
field k2(x), as defined in (2.68), becomes then more and more rapid,
c(x) has, so to say, little chance to vary and remains approximately
constant. A rigorous justification of the foregoing reasoning, i.e. the
validity of the Voigt’s type formula (3.78) in the case (5.60) is due to
Papanicolaou [PAa].

In the other limiting case, when

k1a→∞ , k2a→∞ , (5.61)

Eq. (5.59) generates now the Reuss type formula k∗2 = k2
r , see

Eq. (3.79). The physical explanation of this result is also transparent
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enough [TAb]. The limit (5.61) means that at fixed k2
1 and k2

2 the
spheres’ radius increases. The matrix-inclusion interrelations affect
then only thin boundary layers, elsewhere c ≡ K/k2

1 or c ≡ K/k2
2

within the phase 1’ and 12’ respectively. Thus

c =
K

k∗2
=
φ1K

k2
1

+
φ2K

k2
2

,

which does yield (3.79).
The foregoing results indicate that the elementary bounds (3.80)

are sharp, in the sense that they cannot be improved.
Hence in both limiting cases Eq. (5.59) is exact. The most in-

teresting range is therefore k1a, k1a ∼ O(1), since the interactions
then become of crucial importance, and the exact spatial distribu-
tion of the sinks cannot be neglected. We shall illustrate this fact,
again qualitatively, on the classical Smoluchowski’s problem (see Sec-
tion 1.1.3) that corresponds to the “hard” limit (2.69) of Eq. (2.66).
In this case the self-consistent equation (5.59) becomes

(1− φ1)(k∗a)2 = 3φ1(1 + k∗a)

whose elementary solution, when expanded as a series for small values
of φ2, reads

k∗2a2 = 3φ2 + 3
√

3φ3/2
2 + · · · ,

or
k∗2

k2
s

= 1 +
√

3φ2 + 5
2φ2 + · · · , (5.62)

where k2
s is the Smoluchowski’s value of the effective absorption, valid

in the dilute limit, see Eq. (1.24) (at D = 1).
The formula (5.62) demonstrates an interesting and important fea-

ture of the Smoluchowski problem, namely, that the effective absorp-
tion coefficient k∗2 represents a nonanalytic function of the concentra-
tion φ2 of the trapping inclusions. (The expansion (5.62) suggests,
but does not prove of course, that instead it maybe an analytical
function of

√
φ2.) This fact sharply contrasts the scalar and elastic-

ity counterparts, as well as the absorption problem Eq. (2.66) for any
other case, different from the “hard” limit.

The explanation of the nonanalytic dependence (5.62) lies in the
appearance of the so-called “screening” (or shielding) effect which
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becomes of predominant importance in the Smoluchowski problem.
Roughly speaking, this means that a trap will absorb the particles
close to it, so that fewer of them can reach other traps “behind” to
be “eaten” by them. Such a screening effect is very important also
in systems of charged particles (the Debye shielding), see e.g. [VAa,
Chapter 8.1].

The first several terms of the expansion (5.62) have been obtained,
bounded by means of variational procedures and discussed by a num-
ber of authors [FEa], [TAa], [TOc], see also [CAa] and Torquato’s
survey in the present volume. An interesting approach to the prob-
lem is the so-called “point-particle” approximation in which the traps
are replaced by appropriate point-sources whose intensity is looked
for from a natural consistency condition [FEa]. The same approach
is also useful for particulate media in studying their effective elastic
properties; see [KAf, Chapter 5.14].

A final remark in this Section is warranted. Everywhere in the
foregoing considerations we have considered 3-D heterogeneous me-
dia. The 2-D case can be treated as well—a natural interpretation
will be provided by a medium containing an array of infinite cylindri-
cal inclusions, parallel to a fixed axis, when the applied temperature
gradient or external loading is perpendicular to it. In the conductivity
and elastic contexts, all 2-D counterparts of the 3-D considerations
and results can be repeated straightforwardly which explains their
omission here.

There exists however a notable exception when the 2-D situation
is drastically different from its 3-D analog. It concerns the Smolu-
chowski problem in 2-D, when the inclusions represents a sparse sys-
tem of aligned circular cylinders. In this case the solution of the
Laplace equation (1.23) in 2-D contains the function ln r/a, instead
of a/r, and hence the condition c(r) → c0 as r →∞ cannot be satis-
fied. (Note that the situation here is fully similar to the well-known
Stokes paradox [HAa, Chapter 2.7], which “assures” us that there
exists no Stokesian flow, bounded at infinity, around a cylinder.)

The nonexistence of the single-cylinder solution in the case under
study does not mean of course that the effective absorption coefficient
k∗2 cannot be defined. It only implies that the interactions are so
strong here, that a dilute formula, like the Smoluchowski one (1.25),
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cannot be found.16 The dependence k∗2 upon φ2 will be proportional,
say, to lnφ2 even for φ2 � 1. (Such logarithmic dependencies do
appear in homogenization problems with very strong interactions—an
example is provided by the very interesting and important problem,
concerned with the effective permeability of a randomly perforated
membrane, which however cannot be discussed here even briefly, see,
e.g. [MAc] and the references therein.

1.6 Elastic Properties of Polycrystals

We shall present here some basic ideas and simplest results concerning
the application of one of the approximate schemes of the previous
Section for predicting the effective properties of polycrystals. This
is the oldest scheme in the field—the self-consistent—proposed by
Hershey [HEb] and Kröner [KRd]. As an illustration only the cubic
symmetry case will be treated in more detail.

1.6.1 The Self-Consistent Scheme for Polycrystals

The polycrystal is an assembly of monocrystals—homogeneous grains
with one and the same elastic properties, defined by the elastic tensor
L. The crystallographic axes of each grain vary. Hence the tensor
L is “rotated” in a complicated manner when one moves across the
solid and exactly this is what makes the polycrystal heterogeneous.
for simplicity sake and to avoid cumbersome details that may eclipse
the clarity of the basic ideas, we assume that there exist no preferable
orientations of grains, i.e. of the crystallographic axes. Hence there
is no texture presented so that the polycrystal is macroscopically
isotropic, with a tensor of effective moduli

L∗ = 3k∗ I′ + 2µ∗ I′′ ,

where I′ and I′′ are the two basic fourth-rank isotropic tensors, defined
in Eq. (4.58). Our aim is to develop a certain simple approximate

16This explains the failure in 2-D of certain variational procedures for estimating
k∗2 for random dispersions; see the recent author’s lecture [MAg] for details and
references.
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scheme of self-consistent type for evaluating L∗ by means of the given
elastic tensor L for a single grain.

Imagine each grain is a sphere, immersed into an unbounded ma-
trix with the effective, but yet unknown, properties L∗. Fix one of
the grains, W. According to Eqs. (4.10) and (4.55) the strain within
such a grain is constant

εgr = Aw(L,L∗) : E , (6.1)

where E = ε is the prescribed macrostrain tensor, applied to the
polycrystalline RVE. Moreover, in virtue of Eqs. (4.7), (4.55) and
(4.58)

A(L,L∗) = A∗ = [I + P∗ : (L− L∗)]−1 ,

P∗ = p∗1 I′ + p∗2 I′′ ,

p∗1 =
1

3k∗ + 4µ∗
, p∗2 =

3
5µ∗

k∗ + 2µ∗

3k∗ + 4µ∗
.

(6.2)

(The subscript ‘w’ will be suppressed from now on.) The asterisk
everywhere underlines that the appropriate quantities, like p∗1, etc.,
are evaluated by means of the effective elastic moduli k∗, µ∗ of the
polycrystal.

Note that in writing Eqs. (6.1) and (6.2) we have used the fact
the the formula (4.55) is applicable under the sole assumption that
the matrix is isotropic; the anisotropy of the inclusion can be at the
same time arbitrary, as pointed out in Section 1.4.

Let us now average Eq. (6.1) with respect to all possible crystal-
lographic orientations of the axes of the grain. (This operation will
be denoted by 〈·〉Ω, similarly to Section 1.4). Then

〈εgr〉Ω = 〈A∗〉Ω : ε , (6.3)

The key observation now is the identity

〈εgr〉Ω = ε (6.4)

i.e. the average (with respect to all crystallographic orientations)
strain in a grain equals the macrostrain.

Remark 6.1 Assuming all grains spherical we have a kind of Hashin’s
assemblage (Section 1.3.3)—a set of spheres of different sizes, from
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finite down to infinitesimal, filling the RVE, V. The spheres differ
(mechanically) only in crystallographic orientation so that, averaging
over the latter, we should get the macrostrain. (Observe that the
strain-concentration factor A in Eq. (6.1) does not depend on the
grain size.)

Inserting (6.3) into (6.4), one gets the basic self-consistent equa-
tion

〈A∗〉Ω = I , (6.5)

through which the unknown effective tensor L∗ can be found; I is the
unit fourth-rank tensor that appeared in Eq. (4.55).

An equivalent to Eq. (6.5) formulation follows, if one applies the
tensor L to both parts of Eq. (6.1), evaluating thus the stress tensor
within a grain:

σgr = L : εgr = L : A∗ : ε ,

and average the result with respect to all possible orientations:

〈σ〉Ω = 〈L : εgr〉Ω = 〈L : A∗〉Ω : ε . (6.6)

But, similarly to Eq. (6.4), observe that

〈σgr〉Ω = σ = L∗ : ε

which, together with Eq. (6.6), yields the equation

L∗ = 〈L : A∗〉Ω , (6.7)

equivalent to the self-consistent one (6.5).

Remark 6.2 The equivalence of Eqs. (6.5) and (6.7) can be formally
demonstrated in a simple way, using the expression for the tensor A∗,
see (6.2). Indeed, from this expression we have

[ I + P∗ : (L− L∗) ] : A∗ = I

which, when averaged over orientations, yields

〈A∗〉Ω + P∗ : 〈L : A∗〉Ω − P∗ : L∗ : 〈A∗〉Ω = I ,

or
I− 〈A∗〉Ω = P∗ :

[
〈L : A∗〉Ω − L∗ : 〈A∗〉Ω

]
. (6.8)
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Now, if Eq. (6.5) holds, i.e. 〈A∗〉Ω = I, then Eq. (6.8) immediately
implies (6.7). Conversely, if Eq. (6.7) holds, then 〈L : A∗〉Ω = L∗ and
(6.8) becomes

I− 〈A∗〉Ω = P∗ : L∗ :
[
I− 〈A∗〉Ω

]
,

i.e. I− 〈A∗〉Ω = 0 which is exactly the needed Eq. (6.5).

Other equivalent forms of the self-consistent equation (6.5) have
been proposed by Kröner [KRe]. He then ingeniously exploited them
to bound the effective properties for a polycrystal, using simple alge-
braic arguments.

1.6.2 Formulation in Compliances and Consistency of the
Scheme

Let
σgr = B∗ : σ , B∗ = Bw(M,M∗) , (6.9)

be the solution of the single sphere (i.e. single grain) problem in
stresses; M = L−1 and M∗ are the compliance tensors of the grain
and of the polycrystal respectively. Recall that both stress and strain
tensors εgr and σgr are constant within the (spherical) grain under
study. Upon comparing Eqs. (6.1) and (6.9) we find that

A∗ = M : B∗ : M∗−1 or M : B∗ = A∗M∗ . (6.10)

We employ again the reasoning of Section 1.6.1, but with respect
to stresses now. That is, average Eq. (6.9) with respect to all grain’s
orientations:

〈σgr〉 = 〈B∗ : (M,M∗)〉 : σ

and note that 〈σgr〉 = σ. Then the self-consistent equation for the
effective compliance tensor M∗ emerges

〈M∗〉Ω = I , (6.11)

which is the natural counterpart of Eq. (6.5). An equivalent formu-
lation reads

M∗ = 〈M : B∗〉Ω . (6.12)

The latter can be obtained, say, if one applies the tensor M to both
parts of Eq. (6.9) to get the strain εgr = M : σgr in the grain, and then
average this result with respect to all crystallographic orientations.
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Theorem 6.1 Eqs. (6.5) and (6.11) are equivalent, in the sense that

L∗ : M∗ = I , (6.13)

i.e. the effective properties of the polycrystal, calculated by means
of the above described self-consistent procedure, are the same, no
matter whether the schemes, based on elastic moduli or compliances,
are utilized.

Proof. Let M∗ be the effective compliance, as calculated from (6.11).
Denote L+ = M−1 and average Eq. (6.10) over all orientations:〈

A(L,L+)
〉
Ω : M∗ = 〈M : B∗〉Ω = M∗ ,

having used Eq. (6.12). Thus
〈
A(L,L+)

〉
Ω = I; comparing the latter

with Eq. (6.5) that specifies L∗, one concludes that indeed L+ = L∗
= M∗−1.

1.6.3 Example: Elastic Moduli of a Cubic Polycrystal
The tensor of the elastic moduli L in this simplest case is

L = 3kI′ + 2µ2I′′ + 2(µ1 − µ2)Oh , (6.14)

where
Oh = e4

1 + e4
2 + e4

3 (6.15)

is the basic fourth-rank tensor with cubic symmetry (whose axes are
along the orthonormal crystallographic basis ei, i = 1, 2, 3, see [SPa]).
For this simplest anisotropy, the effective bulk modulus coincides with
that of the grains:

k∗ = k + 2
3(µ1 − µ2) , (6.16)

because if the applied stress tensor is spherical. the strain is a pure
dilatation, one and the same in all grains. To simplify the calculation
of the shear modulus, introduce three basic fourth-rank tensor with
cubic symmetry as follows

Σ1 = I′ , Σ2 = I′ + I′′ −Oh , Σ2 = Oh − I′ . (6.17)

It is easily checked that they are orthogonal, in the sense that

Σi : Σj = 0 , i 6= j ,

Σi : Σj = Σi , i = 1, 2, 3 (no sum over i) .
(6.18)
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In the sequel, the symbolic notation

L = (α, β, γ) ⇔ L = αΣ1 + βΣ2 + γΣ3 (6.19)

will be useful. The isotropic tensors are characterized by the equality
β = γ, i.e. they have the form (α, β, β). The most important for-
mula, however, concerns the tensors of the form (6.19), averaged over
orientation; it reads, symbolically,

〈L〉Ω = 〈(α, β, γ)〉Ω = (α, β, β) , β = 1
5(3β + 2γ) . (6.20)

It is a straightforward consequence of the fact that 〈Oh〉Ω = 1
5H,

where H is the fully-symmetric isotropic fourth-rank tensor, defined
in (4.56); the multiplier 1/5 follows from a full contraction of both
sides of (6.20), having noticed that 〈Oh〉Ω is proportional to H. Hence

〈Oh〉Ω = 1
5

[
2I + 3I′

]
= I′ + 2

5I′′ .

According to the definitions (6.17) of the basic tensors Σ2 and Σ3,
we have

〈Σ2〉Ω = 3
5I′′ , 〈Σ3〉Ω = 2

5I′′ ,

and (6.20) immediately follows from the last two equations.
For the tensor L of a single grain, see (6.14), we have

L = (α, β, γ) , α = 3k∗ , β = 2µ2 , γ = 2µ1 . (6.21)

Due to the “orthogonal” properties (6.18) of the basic tensors
Σi, i = 1, 2, 3, the multiplication and inversion of the tensors in the
symbolic form (6.19) is extremely simple. Namely,

L = (α, β, γ) ⇒ L−1 = (1/α, 1/β, 1/γ) ,

L′ = (α′, β′, γ′) , L′′ = (α′′, β′′, γ′′) ⇒ L′ : L′′ = (α′α′′, β′β′′, γ′γ′′) .

Due to Eqs. (6.2) and (6.21) we thus have

I + P∗ : (L− L∗)

= (1, 1, 1) + (p∗1, p
∗
2, p

∗
2) ·

[
(3k∗, 2µ2, 2µ1)− (3k∗, 2µ∗, 2µ∗)

]
= (1, 1 + 2p∗2(µ2 − µ∗), 1 + 2p∗2(µ1 − µ∗) ,



1.6 Micromechanics of Heterogeneous Media 145

so that,

〈A〉Ω =
〈[

I + P∗ : (L− L∗)
]−1

〉
Ω
,

δ =
3
5

1
1 + 2p∗2(µ2 − µ∗)

+
2
5

1
1 + 2p∗2(µ1 − µ∗)

.

(6.22)

Here

2p∗2 =
3

5µ∗
k∗ + 2µ∗

3k∗ + 4µ∗
(6.23)

in virtue of Eq. (6.2) and k∗ is the bulk modulus of the polycrystal,
given in (6.16). It remains to recall the self-consistent condition (6.5)
〈A∗〉Ω = I = (1, 1, 1) which means that the unknown shear modulus
µ∗ solves the equation δ = 1, with δ defined in (6.22). Using (6.23)
we recast this equation, after some algebra, to its final form:(

µ∗

µ1

)3

+ a

(
µ∗

µ1

)2

− b

(
µ∗

µ1

)
− c = 0 ,

a =
9k∗ + 4µ1

8µ1
, b =

3µ2(k∗ + 4µ1)
8µ2

1

, c =
3k∗µ2

4µ2
1

.

(6.24)

It is easy to see that if k, µ1, µ2 > 0, this cubic equation has only one
real root, as it should.

Eq. (6.24) was first derived by Hershey [HEb] and, independently,
by Kröner [KRd], who developed the self-consistent theory of poly-
crystals. Details and further references can be found in the reviews
[WAb], [KRf], as well as in the book [SHb] (concerned mainly with
polycrystals and covering, in particular, the rich Russian literature
on the subject).

The experimental data reported and discussed in these references
support very favorably the predictions of the self-consistent theory for
polycrystals and, in particular, those of Eq. (6.24). This is natural
enough, since for polycrystals we have a well-defined basic element
to be embedded in an effective medium, namely the single crystallite.
For a particulate medium the choice of such an element is not that
obvious, and many choices may compete, as already pointed out in
Section 1.5.3.1 (see Remark 5.8).
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[FRd] Frölich, H., and Sack, R., Theory of the rheological properties
of dispersions, Proc. R. Soc. London A, 185 (1946), 415–430.
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[KRf] Kröner, E., Statistical modelling, in Modelling Small De-
formation of Polycrystals, Gittus, J., and Zarka, J., eds.,
Elsevier, Barking, Essex, England (1986), 229–291.

[KUa] Kunin, I. A., Elastic Medium with Microstructure, Vol. 2,
Springer-Verlag, New York-London-Heidelberg-Tokio (1983).

[KUb] Kunin, I. A., and Sosnina, E. G., An ellipsoidal inhomogeneity
in an elastic medium, J. Appl. Math. Mech. (PMM), 37 (1971)
501–504. (Translated from Russian.)
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