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Konstantin Markov, Keranka Ilieva. ZAMEQANIE O C2-QLENE �FFEKTIVNO�
PROVODIMOSTI SLUQA�NO� DISPERSII SFER

Rabota posv�wena issledovani� �ffektivno� teploprovodnosti κ∗ sluqa�no�
razr��enno� suspensii sfer. Special	noe vnimanie udeleno c2-ko�fficientu a2 v
razlo�enii �to� provodimosti po stepen�m ob
emno� koncentracii sfer c. Pol	-
zu�s	 prostymi soobra�eni�mi pokazano, qto a2 predstavl�ec� summo� posto�nny
i line�nogo funkcionala ot radial	no� funkcii raspredeleni� sfer. V ravninnom
sluqae (material armirovanny� voloknami) na�den analitiqeski� vid �togo �dra i
vyvedeny nekotorye prostye ocenki dl� nego.

Konstantin Markov, Keranka Ilieva. A NOTE ON THE C2-TERM OF THE EFFECTIVE
CONDUCTIVITY FOR RANDOM DISPERSIONS

The paper is devoted to the study of the effective conductivity κ∗ of a random dilute dispersion

of spheres. A special attention is paid to the c2-coefficient a2 in the expansion of κ∗ in powers of
the volume fraction c of the spheres. The functional dependence of a2 upon the radial distribution
function is discussed and it is shown, using simple arguments, that a2 is a sum of a constant and
a linear functional of the said function. The analytical form and certain estimates for the kernel
of this functional are obtained in the two-dimensional case (fiber-reinforced material).
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1. INTRODUCTION

Consider a random dispersion of spheres in the three-dimensional case (3D) or
cylinders in the two-dimensional (2D) case, i.e., an unbounded matrix of conductiv-
ity κm, containing an array of either spherical or parallel cylindrical inclusions, each
one of radius a and conductivity κf . The centers of the inclusions, assumed nonover-
lapping, are in the random points xj . The statistics of the dispersion is described by
the multipoint distribution densities fp(y1, . . . ,yp) that give the probability of find-
ing a center of an inclusion per each of the infinitesimal volumes yi < y < yi + dyi,
i = 1, . . . , p. We assume, as usual, that the dispersion is statistically homogeneous
and isotropic and fp ∼ np in the dilute limit n → 0, where n is the number den-
sity of the inclusions. The classical problem consists in evaluating the effective (or
overall) conductivity κ∗ of the dispersion, making use of the known conductivities
κm and κf of the constituents, and of the statistical information represented by the
functions fp (cf., e.g., [1-6]). The mathematical formulation of the problem reads

(1.1) ∇ · {κ(x)∇θ(x)} = 0, 〈∇θ(x)〉 = G,

where θ(x) is the random temperature field, κ(x)—the given conductivity field
(κ(x) = κf or κm depending on whether x lies in an inclusion or in the matrix
respectively), G—the prescribed macroscopic gradient of the temperature, and 〈·〉
denotes ensemble averaging. Upon solving the random problem (1.1), one calculates
the mean flux, which is proportional to the macrogradient G:

(1.2) 〈κ(x)∇θ(x)〉 = κ∗G,

where κ∗ is the effective conductivity of the medium. The difficulties in calculating
κ∗ are well acknowledged in the literature: they stem from the need to account
properly for the multiparticle interactions in the dispersions and for the slow decay
of the single-inclusion field [2,4,5]. A number of approximations for κ∗ exist; one of
the first and most famous of them has been proposed by J. Maxwell [7]. Though he
dealt with dispersions of spheres, we give the respective result in a bit more general
form in order to be able to cover both 3D (dispersion of spheres) and 2D-case
(dispersions of aligned cylinders, i.e. fiber-reinforced materials) simultaneously:

(1.3a)
κ∗

κm
= 1 +

dβd

1 − βdc
= 1 + dβdc + dβd

2c2 + · · · ,

where

(1.3b) βd =
[κ]

κf + (d − 1)κm
, [κ] = κf − κm;

hereafter d = 3 in 3D-case and d = 2 in 2D-case, c is the volume fraction of the
inclusions, c = nVa, Va = 4

3πa3 in 3D-case, or c = nSa, Sa = πa2 in 2D-case.
Let

(1.4)
κ∗

κm
= 1 + a1c + a2c

2 + · · ·

124



be the so-called virial (or density) expansion of κ∗ in powers of the volume fraction
c of the inclusions. As a matter of fact, the coefficient a1 is the only thing rigorously
calculated by J. Maxwell (cf. [7]): a1 = dβd, while for the c2-coefficient his formula
yields only a certain approximation

(1.5) a2 = dβd
2.

The rigorous evaluation of a2 has attracted the attention of many authors because
this is the simplest case in which the multiparticle interaction shows up in a non-
trivial way (see, e.g., the papers [4-6], [10]), where a2 has been expressed in a closed
form, making use of the zero-density limit g0(r) of the so-called radial distribution
function for the spheres, and of the one- and two-inclusion fields for the conductivity
problem under study. Let us point out also the paper [8], where certain bounds on
a2 are derived in which the same function g0(r) appears; the counterpart of these
bounds in 2D-case is given in [9].

In this paper we shall first concentrate on the functional dependence of a2 upon
the above mentioned function g0(r). We shall show in §2, using the bounds of [8,9],
that a2 is a sum of a constant and a linear functional of g0(r) with a certain kernel
Φ1, and estimates on Φ1 will be then proposed (§3). In §4 we shall evaluate Φ1

analytically in the 2D-case, making use of a method originated by J. Peterson and
J. Hermans [10]. In this way we avoid twin expansion technique of D. Jeffrey [4]
and B. Felderhof et al. [5], needed in 3D-case when solving the two-sphere problem,
and get the eventual 2D-case result for a2 in an explicit integral form. Moreover,
for some simple but important particular cases the integration can be performed
analytically employing certain well-known higher transcendental functions. Finally
we consider some power series expansions for a2 which allow us to calculate the
latter easily (§5).

2. FUNCTIONAL DEPENDENCE OF a 2 UPON THE RADIAL
DISTRIBUTION FUNCTION

Due to the assumption fp ∼ np, the coefficient a2 could depend on the two-
point distribution density f2 only. As usual, we represent the latter as f2(y1,y2) =
f2(r) = n2g(r) = n2g0(r)+ o(n2), where g(r) is the radial distribution function and
g0(r) is its zero-density limit, r = |y1 − y2|. Obviously, only g0(r) could influence
a2, so that

(2.1) a2 = F[g0(·)].

The functional F is defined on the space C̃ of all bounded, piece-wise continuous
functions on the interval [2,∞), g0(λa), λ = r/a (due to the nonoverlapping as-
sumption) and g0(r) → 1 at r → ∞ (no long-range order in the dispersion). The
continuity of this functional in the C-norm seems obvious so that, according to the
general representation theorem of V. Volterra [11], we can write down a2 in the
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form of a functional Volterra series:

(2.2)

a2 = Φ0 +

∞∫
2

Φ1(λ)g0(λa) dλ

+

∞∫
2

∞∫
2

Φ2(λ1, λ2)g0(λ1a)g0(λ2a) dλ1 dλ2 + · · · ,

where Φ0 = const and Φ1(λ), Φ2(λ1, λ2), etc., are certain kernels that vanish at
infinity. These kernels do not depend on the statistics of the dispersions but only
on the ratio α = κf/κm of the constituent conductivities or, which is the same,
on the parameters βd, introduced in (1.3b); to emphasize this fact we shall use the
notations Φ1 = Φ1(λ; βd), etc.

Let us recall now the bounds on a2, derived in [8,9] in the 3D- and 2D-cases
respectively:

(2.3a) dβ2
d

(
1 +

dβd

1 − (d − 1)βd
m2

)
≤ a2 ≤ dβ2

d

(
1 +

dβd

1 + βd
m2

)
,

(2.3b) m2 = (d − 1)

∞∫
2

λd−1

(λ2 − 1)d
g0(λa) dλ, d = 2, 3.

As a first consequence of (2.3) we shall show that the functional (2.1) has the
form

(2.4) a2 = dβ2
d +

∞∫
2

Φ1(λ; βd)g0(λa) dλ,

i.e.

(2.4a) Φ0 = dβ2
d

and

(2.4b) Φ2 = Φ3 = . . . = 0.

The proof is based on the fact that (2.3) holds for all admissible functions g0(r) ∈
C̃. Indeed, consider the class of functions gA

0 ∈ C̃ such that gA
0 (r) = 0 at r ≤ A

and gA
0 (r) = 1 at r > A, A > 2a. The statistical parameter in (2.3b) depends then

on A, m2 = mA
2 , and it can be easily calculated in this case, but we need here only

the obvious fact that

(2.5) mA
2 → 0 at A → ∞.
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On the other hand,

(2.6)

φA
1 =

∞∫
2

Φ1(λ)gA
0 (λa) dλ → 0,

φA
2 =

∞∫
2

∞∫
2

Φ2(λ1, λ2)gA
0 (λ1a)gA

0 (λ2a) dλ1dλ2 → 0,

etc., at A → ∞. We employ now (2.3a) for the function g0(r) = gA
0 (r):

dβ2
d

(
1 +

dβd

1 − (d − 1)βd
mA

2

)
≤ Φ0 + φA

1 + φA
2 + · · · ≤ dβ2

d

(
1 +

dβd

1 + βd
mA

2

)
.

Letting A → ∞ and recalling (2.5) and (2.6), we get from the last inequalities
that Φ0 = dβ2

d which proves (2.4a).
The proof of (2.4b) is very simple if the functional series (2.2) is finite, containing

N terms, N ≥ 2. Let N = 2 first. Consider the kernel Φ2 and suppose that in the
neighbourhood

Λε = (λ0
1 − ε, λ0

1 + ε) × (λ0
2 − ε, λ0

2 + ε)

of the point (λ0
1, λ0

2) ∈ �
2 we have, say, Φ2(λ1, λ2) > 0 . We consider the class of

step-constant functions g0(r) ∈ C̃, such that g0(r) = µ if r ∈ (λ0
1 − ε, λ0

1 + ε)∪ (λ0
2 −

ε, λ0
2 + ε); g0(r) = 1 at r ≥ A and vanishes otherwise. In this case the parameter

m2 is a linear function of µ. On the other hand, the two-tuple term in (2.2) is a
quadratic function of µ with a positive multiplier of µ2. If µ and A are big enough,
the inequality (2.3a) will be violated, which proves that Φ2 = 0. The proof in the
case when N > 2 but is finite, is fully similar.

We should finally show that the series (2.2) for a2 is finite. To this end it suffices
to recall the definition (1.2) and the representations

κ(x) = 〈κ〉 + [κ]
∫

h(x − y)ω′(y) d3y,

θ(x) = G · x +
∫

T1(x − y)ω′(y) d3y

+
∫ ∫

T2(x − y1,x − y2)D
(2)
ω (y1,y2) d3y1 d3y2 + o(n2),

where ω′(x) = ω(x) − n,
ω(x) =

∑
j

δ(x − xj)

is the random density field for the dispersion and

D(2)
ω (y1,y2) = ω(y1)[ω(y2) − δ(y1,2) − ng0(y1,2)[ω′(y1) + ω′(y2)] − n2g0(y1,2),

y1,2 = y1 − y2. The kernels T1 and T2 have been specified in [6], but we need
here only the fact that the two- and three-point moments of ω(x) depend linearly
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on g0(r), to the needed order n2 [12], so that the series (2.2) should be finite and,
moreover, should indeed have the form (2.2), truncated after the one-tuple term.

3. BOUNDS ON THE KERNEL Φ1

Let us denote by a′
2 the c2-deviation of a2 from its Maxwell value (1.5), i.e.

a′
2 = a2 − dβ2

d . From (2.3) and (2.4) we have

(3.1) a′
2 =

∞∫
2

Φ1(λ; βd)g0(λa) dλ,

(3.2)
d2β3

d

1 − (d − 1)βd
m2 ≤ a′

2 ≤ d2β3
d

1 + βd
m2.

Since the statistical parameter m2 is a linear functional of g0(λa) and (3.2)
should hold for all admissible functions g0 ∈ C̃, we can conclude that

d2(d − 1)β3
d

1 − (d − 1)βd

λd−1

(λ2 − 1)d
≤ Φ1(λ; βd)

(3.3) ≤ d2(d − 1)β3
d

1 + βd

λd−1

(λ2 − 1)d
, λ ∈ [2,∞).

The proof employs the arbitrariness of g0(λa) in the space C̃ and is fully similar to
that in §2.

Note that the estimates (3.3) imply that Φ1 decays as λ−(d+1) at λ → ∞ and

(3.4) Φ1(λ; βd) = d2(d − 1)β3
d

λd−1

(λ2 − 1)d
+ o(β3

d).

If κf/κm → ∞, i.e. βd → 1, the upper bound (3.3) degenerates; if κf/κm → 0,
i.e. β3 → − 1

2 or β2 → −1, the lower bound (3.3) degenerates (cf. Fig. 2 below).

4. EVALUATION OF THE KERNEL Φ1 IN 2D-CASE

Let us recall first the formula for a′
2, derived in [4,10], see also [6], which in the

2D-case reads

(4.1) a′
2G =

[κ]
κm

1
S2

a

∫
Sa

d2x
∫

Z2a

g0(z)
[
∇xT (2)(x; z) −∇T (1)(x)

]
d2z,

where Z2a =
{
z

∣∣ |z| ≥ 2a
}
⊂ �

2, and

(4.2) T (1)(x) = −βG · x at |x| ≤a; β = β2 =
[κ]

κf + κm
,
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is the solution of one-inclusion problem at |x| ≤ a; the inclusion hereafter is the
disc Sa =

{
x

∣∣ |x| ≤ a
}

of radius a, located at the origin. The field T (2)(x; z) is
the solution of the two-inclusion problem which represents the disturbance to the
temperature field introduced by the pair of equal discs 1 and 2 centered at the origin
and at the point z, respectively, when the temperature gradient at infinity equals
G. The field T (2)(x; z) satisfies the equation

(4.3) κm∆T (2)(x; z) + [κ]∇ ·
{[

h(x) + h(x − z)
][

G + ∇T (2)(x; z)
]}

= 0;

here z plays the role of a parameter and z ∈ Z2a, since the discs are not allowed to
overlap. The integral in (4.1) is conditionally convergent and is understood in the
sense

(4.4)
∫
· d2z = lim

R→∞

∫
Z2a,R

· d2z;
∫

Z2a,R

· d2z =

R∫
0

r dr

∫
Ω

· dΩ,

where Z2a,R =
{
z | 2a ≤ |z| ≤ R

}
. This means that in the integral over the region

Z2a,R we first integrate with respect to the angular coordinates, i.e. on the unit
circle Ω =

{
z | |z| = 1

}
, and then with respect to the radial coordinate r = |z|, see

[4,6].
We shall calculate here this integral by means of an obvious extension of the

arguments of J. Peterson and J. Hermans [10], who tacitly considered only the
well-stirred case g0(r) = 1.

Let us introduce the tilted coordinate system (x′
1, x

′
2) as shown in Fig. 1, where

|O′O1| = |O′O2| = L, and the bipolar coordinate system (σ, τ) for which

(4.5)

x′
1 =b

sh τ

ch τ − cosσ
= b

(
1 + 2

∞∑
p=1

e−pτ cos pσ

)
,

x′
2 = b

sin σ

ch τ − cosσ
= 2b

∞∑
p=1

e−pτ sin pσ.

The boundaries of the two discs 1 and 2 correspond to the coordinate lines
τ = ±τ0, where

(4.6) a =
b

sh τ0
, L = a ch τ0.

The solution of the problem (4.3), bounded at infinity can be obtained straight-
forwardly, making use of the bipolar coordinates (σ, τ) (see, e.g., [10]). We shall
need in what follows only the values of the solution at the boundary τ = τ0 of the
disc 1:

(4.7)

(
G · x + T (2)(x; z)

) ∣∣∣∣
τ=τ0

= bG′
1

(
1 +

∞∑
p=0

2κm cos pσ

κf sh pτ0 + κm ch pτ0

)
+ bG′

2

∞∑
p=1

2κm sin pσ

κf ch pτ0 + κm sh pτ0
,
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where G′
1 and G′

2 are the projections of the temperature gradient at infinity G on
the axes x′

1 and x′
2, respectively.

As it follows from (4.2),

(4.8) T (1)(x) = −βG · x = −β
(
G′

1x
′
1 + G′

2x
′
2

)
+ const,

so that the field W (x; z) = T (2)(x; z) − T (1)(x), needed in (4.1), has the form

W (x; z) = G′
1W

′
1 + G′

2W
′
2,

(4.9) W ′
1 =

∞∑
p=0

W ′
p1 cos pσ, W ′

2 =
∞∑

p=1

W ′
p2 sin pσ,

W ′
p1 =

2κmβbe−2pτ0

κf sh pτ0 + κm ch pτ0
, W ′

p2 = − 2κmβbe−2pτ0

κf ch pτ0 + κm sh pτ0
.

Let us change now the order of integration in (4.1) and then apply the Gauss
theorem

(4.10) a′
2G =

[κ]
κm

1
S2

a

∫
Z2a

g0(z) d2z
∫

|x|=a

nW (x; z) ds;

Fig. 1. Coordinate systems in the two-inclusion problem (2D-case).
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here n is the unit outward normal to the disk 1 and ds is its element of length

(4.11) ds =
dσ

h
, h =

b

ch τ0 − cosσ
.

Since the integral with respect to z is to be understood in the sense (4.4) and
g0(z) = g0(|z|), we carry out the integration consecutively: first, at fixed |z| =
2L = 2a ch τ0, i.e. at fixed τ0, we integrate with respect to all orientations of the
dumb-bell shaped figure (see Fig. 1), described by the angle ψ. Next we integrate
with respect to all |z|, i.e. to all τ0. This procedure is equivalent to a transition to
the polar coordinates (ρ, α) in the plane (x1, x2) with a center at the point O1, so
that ρ = |z| = 2L, after which the integration is performed first with respect to α
and then with respect to ρ (cf. Fig. 1).

Consider first the integration with respect to ρ. Due to (4.9)1 and (4.11), we
have

(4.12)

K(L) =

π∫
−π

dα

∫
|x|=a

nW (x; a) ds

=

π∫
−π

dα

∫
|x|=a

n(G′
1W

′
1 + G′

2W
′
2) ds =

π∫
−π

dα

∫
|x|=a

(W ′
1ne′1 + W ′

2ne′2) ds ·G.

In this expression we should once integrate over the orientations of the pair of unit
vectors e′1, e′2 and once over the orientations of the normal n. Instead, we first fix
the angle ψ between n and e′1:

(4.13) n · e′1 = cosψ, n · e′2 = sinψ,

and rotate rigidly the triad e′1, e
′
2, n. The dyadics ne′1, ne′2, after such an integration

become proportional to the unit second-rank tensor I, so that, in virtue of (4.11)
and (4.13), the integral in (4.12) becomes

(4.14) K(L) = πG

π∫
−π

(G′
1W

′
1 + G′

2W
′
2)

dσ

h
.

It remains to integrate with respect to the angle ψ only.
Let us recall now the formulas

(4.15)

cosψ

h
= b

ch τ0 cosσ − 1
(ch τ0 − cosσ)2

= 2b

∞∑
p=1

pe−pτ0 cos pσ,

sin ψ

h
= b

sh τ0 sin σ

(ch τ0 − cosσ)2
= 2b

∞∑
p=1

pe−pτ0 sin pσ,
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which, when substituted into (4.14), together with (4.9) yield

(4.16)

K(L) = πbG
∞∑

p=1

pe−pτ0(W ′
p1 + W ′

p2)

= 16π2b2β2 κm

κm + κf
G

∞∑
p=1

pe−6pτ0

1 − β2e−4pτ0
.

Since the radius a of the discs is fixed, the integration with respect to ρ = 2a ch τ0

is an integration over τ0 ∈ (0,∞) and

ρ dρ = 4a2 ch τ0 sh τ0 dτ0.

Making use of (4.7) and (4.16), we thus get

(4.17)

a′
2G =

[κ]
κm

1
S2

a

∞∫
2a

K(L)g0(ρ)ρdρ = 4β3M(β)G,

M(β) = 16
∞∑

p=1

p

∞∫
0

g0(2a ch τ0)
ch τ0 sh3τ0

1 − β2e−4pτ0
e−6pτ0 dτ0.

Upon inserting (4.17) into (4.1) we easily obtain the eventual c2-formula for the
effective transverse conductivity κ∗ of a fiber-reinforced material:

(4.18)
κ∗

κm
= 1 + 2βc + 2β2(1 + 2βM(β))c2 + o(c2),

with the function M(β) defined in (4.17). This function is obviously even, which
implies the relation

(4.19) a2(β) + a2(−β) = 4β2

for the coefficient a2, considered as a function of the parameter β. It is to be noted
that (4.19) is a simple consequence of the Keller interchange formula [13], which
reads

κ∗(κf , κm)κ∗(κm, κf ) = κfκm;

here κ∗(κf , κm) denotes the effective transverse conductivity of the fiber material
under study and κ∗(κm, κf ) is the conductivity of the same material, but when the
fibers are made of the matrix material and the matrix—of fiber’s.

The comparison of (3.1) and (4.17) yields the analytical form of the kernel Φ1:

(4.20) Φ1(λ; β) = 4β3λ(λ2 − 4)
∞∑

p=1

pΛ6p

1 − β2Λ6p
;

here Λ = e−τ0 = 1
2

(
λ −

√
λ2 − 4

)
, λ ≥ 2.
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Fig. 2. Plots of the kernel Φ1 (continuous line) and the bounds ΦL
1 and ΦU

1

(dashed lines) (2D-case); a) β = 0.5; b) β = 0.9

By means of (2.4) and (4.20) we can evaluate numerically the coefficient a2

for an arbitrary sphere statistics, represented here by the function g0(r). Thus in
2D-case under study we avoid twin expansion technique of D. Jeffrey [4] and B.
Felderhof et al. [5], needed in 3D-case when solving the two-sphere problem, and
get the eventual result for a2 as an explicit integral. Moreover, for some simple but
important particular cases the integration can be performed analytically employing
certain well-known higher transcendental functions, as we shall see in the next
Section.

The bounds (3.3) in 2D-case under study have the form

(4.21)

ΦL
1 (λ; β) ≤ Φ1(λ; β) ≤ ΦU

1 (λ; β),

ΦL
1 =

4β3

1 + β

λ

(λ2 − 1)2
, ΦU

1 =
4β3

1 − β

λ

(λ2 − 1)2
.

The exact values of the kernel Φ1 together with the bounds ΦL
1 and ΦU

1 as
functions of λ are shown in Fig. 2 in two cases: β = 0.5 and β = 0.9.
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5. SOME FORMULAS CONCERNING a 2 IN 2D-CASE

In order to make easier the numerical evaluation of a2 for the fiber-reinforced
materials let us expand the function M(β) in (4.17) in powers of the parameter β:

(5.1) M(β) =
∞∑

k=0

Mkβ2k, β =
[κ]

κf + κm
,

(5.2) Mk = 16
∞∑

j=1

j

∞∫
0

g0(2a ch τ) ch τ sh3τe−2j(3+2k)τ dτ.

The estimates (3.2) for a2 now imply

(5.3)
2β

1 + β
m2 ≤ 2βM(β) ≤ 2β

1 − β
m2,

so that

(5.4) M0 = m2 =

∞∫
2

λ

(λ2 − 1)2
g0(λa) dλ,

(5.5) M(β) = m2 + O(β), i.e. a2 = 2β2(1 + 2βm2) + o(β3).

The formula (5.2) can be recast as

Mk = 4

∞∫
0

g0(2a ch τ)
ch τ sh3τ

sh2(3 + 2k)τ
dτ.

Having used the known formula for shnτ and making the substitution λ = 2 ch τ ,
we get eventually

(5.6) Mk =

∞∫
2

λg0(λa)


k+1∑
j=0

(−1)jCj
2+2k−jλ

2(2k−j+1)


−1

dλ.

The formula (5.4) coincides with (5.6) at k = 0. At k = 1 we have

(5.7) M1 =

∞∫
2

λg0(λa)
(λ4 − 3λ2 + 1)2

dλ,

and this integral, as well as the integral in (5.4), can be easily evaluated in the most
frequently used well-stirred approximation for which g(r) = g0(r) = g0(λa) = 1 at
λ ≥ 2, yielding

(5.8) M0 = Mws
0 =

1
6
, M1 = Mws

1 =
1
10

+
√

5
25

ln
3 −

√
5

2
.
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However, the analytical evaluation of Mk by means of (5.6) at k ≥ 2 is not easy
even in the well-stirred case. In the latter case we employ (5.2) which leads, after
simple manipulations, to the following result:

(5.9a) Mws
k = c2

k

{
2ψ(1 + ck) − 2ψ(1 + 2ck) +

1
ck

(
2πck

sin 2πck
− 1

)}
,

where

(5.9b) ck =
1

2k + 3
, ψ(x) =

Γ′(x)
Γ(x)

,

so that ψ(x) is the logarithmic derivative of the Euler Gamma-function which is
investigated in detail and tabulated [14,15]. As a matter of fact, the formula (5.9)
is given in [10]. Note that since the arguments 1 + ck and 1 + 2ck are rational, we
can employ the formula for ψ(p/q), cf. [15, p.722], which allows us to represent
Mws

k by means of elementary functions, namely

(5.10) Mws
k = c2

k

 1
2ck

+ 8
k+1∑
j=1

sin(jπck) sin(3jπck) ln sin(jπck)

 .

Note also the asymptotic formula

(5.11) Mws
k = 6ζ(3)c4

k + 30ζ(5)c6
k + o(c6

k),

where ζ(3) = 1.2021 and ζ(5) = 1.0369 are the respective values of the Riman ζ-
function. The formula (5.11) gives four correct decimal numbers for Mws

k at k ≥ 4
and six at k ≥ 6.

The formulas (5.10) and (5.11) make possible to evaluate a2 in the well-stirred
case, having truncated the series (5.1) and replacing the remaining coefficients Mws

k

with their asymptotic values (5.11). In this way one easily finds, e.g.,

aws
2 = 2.7450 at β = 1, i.e. κf/κm = ∞,

(5.12) aws
2 = 1.2550 at β = −1, i.e. κf/κm = 0.

The dependence a2 = a2(β) is shown in Fig. 3 together with the bounds (2.3a),
which in the well-stirred 2D-case under study read

2β2

(
1 +

β

3(1 + β)

)
≤ aws

2 ≤ 2β2

(
1 +

β

3(1 − β)

)
.

It is instructive to consider as well the more general radial distribution function

(5.13) g0(r) = 1 + A1
a

r
, r ≥ 2a,

where A1 is a certain scalar parameter such that A1 ≥ −2 (in order to have g0(r) ≥
0). The coefficients Mk, corresponding to the distribution function (5.13) can be
easily evaluated by means of (5.2) and the final result is

(5.14) Mk = Mws
k + A1Nk,
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Fig. 3. The c2-coefficient a2 in the well-stirred 2D-case as a function of β.

(5.15) Nk =
3
2
c2
k

{
2ψ

(
1 +

1
2
ck

)
− ψ

(
1 +

3
2
ck

)
+

π cos(πck/2)
sin(3πck/2)

− 2
3ck

}
,

k = 0, 1, . . ., where ck are defined in (5.9b) and Mws
k are the respective coefficients

in (5.1) in the well-stirred case, cf. (5.10). Having applied the above mentioned
formula for ψ(p/q) from [15, p. 722], we get

(5.16) Nk =
3
2
c2
k

 2
3ck

+ 4
2(k+1)∑

j=1

sin(jπck) sin(2jπck) ln sin
jπck

2

 ,

so that Nk > 0, k = 0, 1, . . ..
In particular,

N0 =
1
3
− 1

4
ln 3, N1 =

1
5

+
9
√

5
100

ln
3 −

√
5

2
.

The asymptotic formula for Nk reads

Nk = 3ζ(3)c4
k + o(c4

k).

It gives four correct decimal digits at k ≥ 2 and six at k ≥ 8.
Since A1 should only exceed −2 and thus it can take arbitrarily big values,

equation (5.14) suggests that the statistics of the dispersion affects very strongly
the c2-coefficient in the virial expansion (1.4) of the effective conductivity. This is
illustrated in Fig. 4 for the radial distribution function (5.13) in the cases A1 = −2,
A1 = 0 (well-stirred) and A1 = 5.

136



Fig. 4. The c2-coefficient a2 in the well-stirred 2D-case as a function of β for
the distribution function g0(r) given in (5.13);

1 — A1 = −2; 2 — A1 = 0 (well-stirred); 3 — A1 = 5

Let us note finally that M(β) > 0 at β ∈ (−1, 1), cf. (4.17), and it could take
arbitrarily big values, e.g. for the distribution function (5.13). Then (4.19) implies
the following sharp estimates for the coefficient a2 in 2D-case:

(5.17)
2β2 < a2 < ∞, if β > 0, i.e. κf > κm,

−∞ < a2 < 2β2, if β < 1, i.e. κf < κm,

having taken sup a2 and inf a2 with respect to all admissible radial distribution
functions g0(r) (so that varying, in particular the parameter A1 in (5.13) from −2
to infinity). We can thus conclude that there is no finite interval, independent of the
statistics of the fibres, within which the c2-coefficient a2 is to be always found. Note
that similar to (5.17) estimates are to be expected to hold in the 3D-case, i.e. for
dispersions of spheres, with the only difference that the factor 2 should be replaced
by 3, and again there will be no finite interval for the coefficient a2, independent of
the statistics of the dispersion.
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