ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА
Том 84, 1990

ANNUAIRE DE L'UNIVERSITE DE SOFIA „ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 84, 1990

A NOTE ON THE C^{2}-TERM OF THE EFFECTIVE CONDUCTIVITY FOR RANDOM DISPERSIONS

KONSTANTIN MARKOV, KERANKA ILIEVA

Константин Марков, Керанка Илиева. ЗАМЕЧАНИЕ О C^{2}-ЧЛЕНЕ ЭФФЕКТИВНОЙ ПРОВОДИМОСТИ СЛУЧАЙНОЙ ДИСПЕРСИИ СФЕР

Работа посвящена исследованию эффективной теплопроводности κ^{*} случайной разряженной суспенсии сфер. Специальное внимание уделено c^{2}-коэффициенту a_{2} в разложении этой проводимости по степеням объемной концентрации сфер c. Пользуясь простыми соображениями показано, что a_{2} представляеця суммой постоянны и линейного функционала от радиальной функции распределения сфер. В равнинном случае (материал армированный волокнами) найден аналитический вид этого ядра и выведены некоторые простые оценки для него.

Konstantin Markov, Keranka Ilieva. A NOTE ON THE C^{2}-TERM OF THE EFFECTIVE CONDUCTIVITY FOR RANDOM DISPERSIONS

The paper is devoted to the study of the effective conductivity κ^{*} of a random dilute dispersion of spheres. A special attention is paid to the c^{2}-coefficient a_{2} in the expansion of κ^{*} in powers of the volume fraction c of the spheres. The functional dependence of a_{2} upon the radial distribution function is discussed and it is shown, using simple arguments, that a_{2} is a sum of a constant and a linear functional of the said function. The analytical form and certain estimates for the kernel of this functional are obtained in the two-dimensional case (fiber-reinforced material).

1. INTRODUCTION

Consider a random dispersion of spheres in the three-dimensional case ($3 D$) or cylinders in the two-dimensional ($2 D$) case, i.e., an unbounded matrix of conductivity κ_{m}, containing an array of either spherical or parallel cylindrical inclusions, each one of radius a and conductivity κ_{f}. The centers of the inclusions, assumed nonoverlapping, are in the random points \mathbf{x}_{j}. The statistics of the dispersion is described by the multipoint distribution densities $f_{p}\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{p}\right)$ that give the probability of finding a center of an inclusion per each of the infinitesimal volumes $\mathbf{y}_{i}<\mathbf{y}<\mathbf{y}_{i}+d \mathbf{y}_{i}$, $i=1, \ldots, p$. We assume, as usual, that the dispersion is statistically homogeneous and isotropic and $f_{p} \sim n^{p}$ in the dilute limit $n \rightarrow 0$, where n is the number density of the inclusions. The classical problem consists in evaluating the effective (or overall) conductivity κ^{*} of the dispersion, making use of the known conductivities κ_{m} and κ_{f} of the constituents, and of the statistical information represented by the functions f_{p} (cf., e.g., [1-6]). The mathematical formulation of the problem reads

$$
\begin{equation*}
\nabla \cdot\{\kappa(\mathbf{x}) \nabla \theta(\mathbf{x})\}=0, \quad\langle\nabla \theta(\mathbf{x})\rangle=\mathbf{G} \tag{1.1}
\end{equation*}
$$

where $\theta(\mathbf{x})$ is the random temperature field, $\kappa(\mathbf{x})$-the given conductivity field $\left(\kappa(\mathbf{x})=\kappa_{f}\right.$ or κ_{m} depending on whether \mathbf{x} lies in an inclusion or in the matrix respectively), \mathbf{G} - the prescribed macroscopic gradient of the temperature, and $\langle\cdot\rangle$ denotes ensemble averaging. Upon solving the random problem (1.1), one calculates the mean flux, which is proportional to the macrogradient G:

$$
\begin{equation*}
\langle\kappa(\mathbf{x}) \nabla \theta(\mathbf{x})\rangle=\kappa^{*} \mathbf{G}, \tag{1.2}
\end{equation*}
$$

where κ^{*} is the effective conductivity of the medium. The difficulties in calculating κ^{*} are well acknowledged in the literature: they stem from the need to account properly for the multiparticle interactions in the dispersions and for the slow decay of the single-inclusion field $[2,4,5]$. A number of approximations for κ^{*} exist; one of the first and most famous of them has been proposed by J. Maxwell [7]. Though he dealt with dispersions of spheres, we give the respective result in a bit more general form in order to be able to cover both $3 D$ (dispersion of spheres) and $2 D$-case (dispersions of aligned cylinders, i.e. fiber-reinforced materials) simultaneously:

$$
\begin{equation*}
\frac{\kappa^{*}}{\kappa_{m}}=1+\frac{d \beta_{d}}{1-\beta_{d} c}=1+d \beta_{d} c+d \beta_{d}^{2} c^{2}+\cdots, \tag{1.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{d}=\frac{[\kappa]}{\kappa_{f}+(d-1) \kappa_{m}}, \quad[\kappa]=\kappa_{f}-\kappa_{m} ; \tag{1.3b}
\end{equation*}
$$

hereafter $d=3$ in $3 D$-case and $d=2$ in $2 D$-case, c is the volume fraction of the inclusions, $c=n V_{a}, V_{a}=\frac{4}{3} \pi a^{3}$ in $3 D$-case, or $c=n S_{a}, S_{a}=\pi a^{2}$ in $2 D$-case.

Let

$$
\begin{equation*}
\frac{\kappa^{*}}{\kappa_{m}}=1+a_{1} c+a_{2} c^{2}+\cdots \tag{1.4}
\end{equation*}
$$

be the so-called virial (or density) expansion of κ^{*} in powers of the volume fraction c of the inclusions. As a matter of fact, the coefficient a_{1} is the only thing rigorously calculated by J. Maxwell (cf. [7]): $a_{1}=d \beta_{d}$, while for the c^{2}-coefficient his formula yields only a certain approximation

$$
\begin{equation*}
a_{2}=d \beta_{d}{ }^{2} . \tag{1.5}
\end{equation*}
$$

The rigorous evaluation of a_{2} has attracted the attention of many authors because this is the simplest case in which the multiparticle interaction shows up in a nontrivial way (see, e.g., the papers [4-6], [10]), where a_{2} has been expressed in a closed form, making use of the zero-density limit $g_{0}(r)$ of the so-called radial distribution function for the spheres, and of the one- and two-inclusion fields for the conductivity problem under study. Let us point out also the paper [8], where certain bounds on a_{2} are derived in which the same function $g_{0}(r)$ appears; the counterpart of these bounds in $2 D$-case is given in [9].

In this paper we shall first concentrate on the functional dependence of a_{2} upon the above mentioned function $g_{0}(r)$. We shall show in $\S 2$, using the bounds of $[8,9]$, that a_{2} is a sum of a constant and a linear functional of $g_{0}(r)$ with a certain kernel Φ_{1}, and estimates on Φ_{1} will be then proposed (§3). In $\S 4$ we shall evaluate Φ_{1} analytically in the $2 D$-case, making use of a method originated by J. Peterson and J. Hermans [10]. In this way we avoid twin expansion technique of D. Jeffrey [4] and B. Felderhof et al. [5], needed in 3D-case when solving the two-sphere problem, and get the eventual $2 D$-case result for a_{2} in an explicit integral form. Moreover, for some simple but important particular cases the integration can be performed analytically employing certain well-known higher transcendental functions. Finally we consider some power series expansions for a_{2} which allow us to calculate the latter easily ($\S 5$).

2. FUNCTIONAL DEPENDENCE OF a_{2} UPON THE RADIAL DISTRIBUTION FUNCTION

Due to the assumption $f_{p} \sim n^{p}$, the coefficient a_{2} could depend on the twopoint distribution density f_{2} only. As usual, we represent the latter as $f_{2}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=$ $f_{2}(r)=n^{2} g(r)=n^{2} g_{0}(r)+o\left(n^{2}\right)$, where $g(r)$ is the radial distribution function and $g_{0}(r)$ is its zero-density limit, $r=\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right|$. Obviously, only $g_{0}(r)$ could influence a_{2}, so that

$$
\begin{equation*}
a_{2}=\mathfrak{F}\left[g_{0}(\cdot)\right] . \tag{2.1}
\end{equation*}
$$

The functional \mathfrak{F} is defined on the space \widetilde{C} of all bounded, piece-wise continuous functions on the interval $[2, \infty), g_{0}(\lambda a), \lambda=r / a$ (due to the nonoverlapping assumption) and $g_{0}(r) \rightarrow 1$ at $r \rightarrow \infty$ (no long-range order in the dispersion). The continuity of this functional in the C-norm seems obvious so that, according to the general representation theorem of V. Volterra [11], we can write down a_{2} in the
form of a functional Volterra series:

$$
\begin{gather*}
a_{2}=\Phi_{0}+\int_{2}^{\infty} \Phi_{1}(\lambda) g_{0}(\lambda a) d \lambda \tag{2.2}\\
+\int_{2}^{\infty} \int_{2}^{\infty} \Phi_{2}\left(\lambda_{1}, \lambda_{2}\right) g_{0}\left(\lambda_{1} a\right) g_{0}\left(\lambda_{2} a\right) d \lambda_{1} d \lambda_{2}+\cdots
\end{gather*}
$$

where $\Phi_{0}=$ const and $\Phi_{1}(\lambda), \Phi_{2}\left(\lambda_{1}, \lambda_{2}\right)$, etc., are certain kernels that vanish at infinity. These kernels do not depend on the statistics of the dispersions but only on the ratio $\alpha=\kappa_{f} / \kappa_{m}$ of the constituent conductivities or, which is the same, on the parameters β_{d}, introduced in (1.3b); to emphasize this fact we shall use the notations $\Phi_{1}=\Phi_{1}\left(\lambda ; \beta_{d}\right)$, etc.

Let us recall now the bounds on a_{2}, derived in $[8,9]$ in the $3 D$ - and $2 D$-cases respectively:

$$
\begin{equation*}
d \beta_{d}^{2}\left(1+\frac{d \beta_{d}}{1-(d-1) \beta_{d}} m_{2}\right) \leq a_{2} \leq d \beta_{d}^{2}\left(1+\frac{d \beta_{d}}{1+\beta_{d}} m_{2}\right) \tag{2.3a}
\end{equation*}
$$

$$
\begin{equation*}
m_{2}=(d-1) \int_{2}^{\infty} \frac{\lambda^{d-1}}{\left(\lambda^{2}-1\right)^{d}} g_{0}(\lambda a) d \lambda, \quad d=2,3 \tag{2.3b}
\end{equation*}
$$

As a first consequence of (2.3) we shall show that the functional (2.1) has the form

$$
\begin{equation*}
a_{2}=d \beta_{d}^{2}+\int_{2}^{\infty} \Phi_{1}\left(\lambda ; \beta_{d}\right) g_{0}(\lambda a) d \lambda, \tag{2.4}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\Phi_{0}=d \beta_{d}^{2} \tag{2.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{2}=\Phi_{3}=\ldots=0 . \tag{2.4b}
\end{equation*}
$$

The proof is based on the fact that (2.3) holds for all admissible functions $g_{0}(r) \in$ \widetilde{C}. Indeed, consider the class of functions $g_{0}^{A} \in \widetilde{C}$ such that $g_{0}^{A}(r)=0$ at $r \leq A$ and $g_{0}^{A}(r)=1$ at $r>A, A>2 a$. The statistical parameter in (2.3b) depends then on $A, m_{2}=m_{2}^{A}$, and it can be easily calculated in this case, but we need here only the obvious fact that

$$
\begin{equation*}
m_{2}^{A} \rightarrow 0 \text { at } A \rightarrow \infty \tag{2.5}
\end{equation*}
$$

On the other hand,

$$
\begin{gather*}
\phi_{1}^{A}=\int_{2}^{\infty} \Phi_{1}(\lambda) g_{0}^{A}(\lambda a) d \lambda \rightarrow 0, \\
\phi_{2}^{A}=\int_{2}^{\infty} \int_{2}^{\infty} \Phi_{2}\left(\lambda_{1}, \lambda_{2}\right) g_{0}^{A}\left(\lambda_{1} a\right) g_{0}^{A}\left(\lambda_{2} a\right) d \lambda_{1} d \lambda_{2} \rightarrow 0, \tag{2.6}
\end{gather*}
$$

etc., at $A \rightarrow \infty$. We employ now (2.3a) for the function $g_{0}(r)=g_{0}^{A}(r)$:

$$
d \beta_{d}^{2}\left(1+\frac{d \beta_{d}}{1-(d-1) \beta_{d}} m_{2}^{A}\right) \leq \Phi_{0}+\phi_{1}^{A}+\phi_{2}^{A}+\cdots \leq d \beta_{d}^{2}\left(1+\frac{d \beta_{d}}{1+\beta_{d}} m_{2}^{A}\right)
$$

Letting $A \rightarrow \infty$ and recalling (2.5) and (2.6), we get from the last inequalities that $\Phi_{0}=d \beta_{d}^{2}$ which proves (2.4a).

The proof of (2.4b) is very simple if the functional series (2.2) is finite, containing N terms, $N \geq 2$. Let $N=2$ first. Consider the kernel Φ_{2} and suppose that in the neighbourhood

$$
\Lambda_{\varepsilon}=\left(\lambda_{1}^{0}-\varepsilon, \lambda_{1}^{0}+\varepsilon\right) \times\left(\lambda_{2}^{0}-\varepsilon, \lambda_{2}^{0}+\varepsilon\right)
$$

of the point $\left(\lambda_{1}^{0}, \lambda_{2}^{0}\right) \in \mathbb{R}^{2}$ we have, say, $\Phi_{2}\left(\lambda_{1}, \lambda_{2}\right)>0$. We consider the class of step-constant functions $g_{0}(r) \in \widetilde{C}$, such that $g_{0}(r)=\mu$ if $r \in\left(\lambda_{1}^{0}-\varepsilon, \lambda_{1}^{0}+\varepsilon\right) \cup\left(\lambda_{2}^{0}-\right.$ $\left.\varepsilon, \lambda_{2}^{0}+\varepsilon\right) ; g_{0}(r)=1$ at $r \geq A$ and vanishes otherwise. In this case the parameter m_{2} is a linear function of μ. On the other hand, the two-tuple term in (2.2) is a quadratic function of μ with a positive multiplier of μ^{2}. If μ and A are big enough, the inequality (2.3a) will be violated, which proves that $\Phi_{2}=0$. The proof in the case when $N>2$ but is finite, is fully similar.

We should finally show that the series (2.2) for a_{2} is finite. To this end it suffices to recall the definition (1.2) and the representations

$$
\begin{gathered}
\kappa(\mathbf{x})=\langle\kappa\rangle+[\kappa] \int h(\mathbf{x}-\mathbf{y}) \omega^{\prime}(\mathbf{y}) d^{3} \mathbf{y} \\
\theta(\mathbf{x})=\mathbf{G} \cdot \mathbf{x}+\int T_{1}(\mathbf{x}-\mathbf{y}) \omega^{\prime}(\mathbf{y}) d^{3} \mathbf{y} \\
+\iint T_{2}\left(\mathbf{x}-\mathbf{y}_{1}, \mathbf{x}-\mathbf{y}_{2}\right) D_{\omega}^{(2)}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) d^{3} \mathbf{y}_{1} d^{3} \mathbf{y}_{2}+o\left(n^{2}\right)
\end{gathered}
$$

where $\omega^{\prime}(\mathbf{x})=\omega(\mathbf{x})-n$,

$$
\omega(\mathbf{x})=\sum_{j} \delta\left(\mathbf{x}-\mathbf{x}_{j}\right)
$$

is the random density field for the dispersion and

$$
D_{\omega}^{(2)}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\omega\left(\mathbf{y}_{1}\right)\left[\omega\left(\mathbf{y}_{2}\right)-\delta\left(\mathbf{y}_{1,2}\right)-n g_{0}\left(\mathbf{y}_{1,2}\right)\left[\omega^{\prime}\left(\mathbf{y}_{1}\right)+\omega^{\prime}\left(\mathbf{y}_{2}\right)\right]-n^{2} g_{0}\left(\mathbf{y}_{1,2}\right)\right.
$$

$\mathbf{y}_{1,2}=\mathbf{y}_{1}-\mathbf{y}_{2}$. The kernels T_{1} and T_{2} have been specified in [6], but we need here only the fact that the two- and three-point moments of $\omega(\mathbf{x})$ depend linearly
on $g_{0}(r)$, to the needed order n^{2} [12], so that the series (2.2) should be finite and, moreover, should indeed have the form (2.2), truncated after the one-tuple term.

3. BOUNDS ON THE KERNEL Φ_{1}

Let us denote by a_{2}^{\prime} the c^{2}-deviation of a_{2} from its Maxwell value (1.5), i.e. $a_{2}^{\prime}=a_{2}-d \beta_{d}^{2}$. From (2.3) and (2.4) we have

$$
\begin{gather*}
a_{2}^{\prime}=\int_{2}^{\infty} \Phi_{1}\left(\lambda ; \beta_{d}\right) g_{0}(\lambda a) d \lambda, \tag{3.1}\\
\frac{d^{2} \beta_{d}^{3}}{1-(d-1) \beta_{d}} m_{2} \leq a_{2}^{\prime} \leq \frac{d^{2} \beta_{d}^{3}}{1+\beta_{d}} m_{2} . \tag{3.2}
\end{gather*}
$$

Since the statistical parameter m_{2} is a linear functional of $g_{0}(\lambda a)$ and (3.2) should hold for all admissible functions $g_{0} \in \widetilde{C}$, we can conclude that

$$
\begin{aligned}
& \quad \frac{d^{2}(d-1) \beta_{d}^{3}}{1-(d-1) \beta_{d}} \frac{\lambda^{d-1}}{\left(\lambda^{2}-1\right)^{d}} \leq \Phi_{1}\left(\lambda ; \beta_{d}\right) \\
& \leq \frac{d^{2}(d-1) \beta_{d}^{3}}{1+\beta_{d}} \frac{\lambda^{d-1}}{\left(\lambda^{2}-1\right)^{d}}, \quad \lambda \in[2, \infty) .
\end{aligned}
$$

The proof employs the arbitrariness of $g_{0}(\lambda a)$ in the space \widetilde{C} and is fully similar to that in §2.

Note that the estimates (3.3) imply that Φ_{1} decays as $\lambda^{-(d+1)}$ at $\lambda \rightarrow \infty$ and

$$
\begin{equation*}
\Phi_{1}\left(\lambda ; \beta_{d}\right)=d^{2}(d-1) \beta_{d}^{3} \frac{\lambda^{d-1}}{\left(\lambda^{2}-1\right)^{d}}+o\left(\beta_{d}^{3}\right) \tag{3.4}
\end{equation*}
$$

If $\kappa_{f} / \kappa_{m} \rightarrow \infty$, i.e. $\beta_{d} \rightarrow 1$, the upper bound (3.3) degenerates; if $\kappa_{f} / \kappa_{m} \rightarrow 0$, i.e. $\beta_{3} \rightarrow-\frac{1}{2}$ or $\beta_{2} \rightarrow-1$, the lower bound (3.3) degenerates (cf. Fig. 2 below).

4. EVALUATION OF THE KERNEL Φ_{1} IN $2 D$-CASE

Let us recall first the formula for a_{2}^{\prime}, derived in $[4,10]$, see also [6], which in the $2 D$-case reads

$$
\begin{equation*}
a_{2}^{\prime} \mathbf{G}=\frac{[\kappa]}{\kappa_{m}} \frac{1}{S_{a}^{2}} \int_{S_{a}} d^{2} \mathbf{x} \int_{Z_{2 a}} g_{0}(\mathbf{z})\left[\nabla_{x} T^{(2)}(\mathbf{x} ; \mathbf{z})-\nabla T^{(1)}(\mathbf{x})\right] d^{2} \mathbf{z} \tag{4.1}
\end{equation*}
$$

where $Z_{2 a}=\{\mathbf{z}| | \mathbf{z} \mid \geq 2 a\} \subset \mathbb{R}^{2}$, and

$$
\begin{equation*}
T^{(1)}(\mathbf{x})=-\beta \mathbf{G} \cdot \mathbf{x} \text { at }|\mathbf{x}| \leq a ; \quad \beta=\beta_{2}=\frac{[\kappa]}{\kappa_{f}+\kappa_{m}} \tag{4.2}
\end{equation*}
$$

is the solution of one-inclusion problem at $|\mathbf{x}| \leq a$; the inclusion hereafter is the $\operatorname{disc} S_{a}=\{\mathbf{x}| | \mathbf{x} \mid \leq a\}$ of radius a, located at the origin. The field $T^{(2)}(\mathbf{x} ; \mathbf{z})$ is the solution of the two-inclusion problem which represents the disturbance to the temperature field introduced by the pair of equal discs 1 and 2 centered at the origin and at the point \mathbf{z}, respectively, when the temperature gradient at infinity equals \mathbf{G}. The field $T^{(2)}(\mathbf{x} ; \mathbf{z})$ satisfies the equation

$$
\begin{equation*}
\kappa_{m} \Delta T^{(2)}(\mathbf{x} ; \mathbf{z})+[\kappa] \nabla \cdot\left\{[h(\mathbf{x})+h(\mathbf{x}-\mathbf{z})]\left[\mathbf{G}+\nabla T^{(2)}(\mathbf{x} ; \mathbf{z})\right]\right\}=0 \tag{4.3}
\end{equation*}
$$

here \mathbf{z} plays the role of a parameter and $\mathbf{z} \in Z_{2 a}$, since the discs are not allowed to overlap. The integral in (4.1) is conditionally convergent and is understood in the sense

$$
\begin{equation*}
\int \cdot d^{2} \mathbf{z}=\lim _{R \rightarrow \infty} \int_{Z_{2 a, R}} \cdot d^{2} \mathbf{z} ; \int_{Z_{2 a, R}} \cdot d^{2} \mathbf{z}=\int_{0}^{R} r d r \int_{\Omega} \cdot d \Omega \tag{4.4}
\end{equation*}
$$

where $Z_{2 a, R}=\{\mathbf{z}|2 a \leq|\mathbf{z}| \leq R\}$. This means that in the integral over the region $Z_{2 a, R}$ we first integrate with respect to the angular coordinates, i.e. on the unit circle $\Omega=\{\mathbf{z}| | \mathbf{z} \mid=1\}$, and then with respect to the radial coordinate $r=|\mathbf{z}|$, see [4,6].

We shall calculate here this integral by means of an obvious extension of the arguments of J. Peterson and J. Hermans [10], who tacitly considered only the well-stirred case $g_{0}(r)=1$.

Let us introduce the tilted coordinate system $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ as shown in Fig. 1, where $\left|O^{\prime} O_{1}\right|=\left|O^{\prime} O_{2}\right|=L$, and the bipolar coordinate system (σ, τ) for which

$$
\begin{gather*}
x_{1}^{\prime}=b \frac{\operatorname{sh} \tau}{\operatorname{ch} \tau-\cos \sigma}=b\left(1+2 \sum_{p=1}^{\infty} e^{-p \tau} \cos p \sigma\right) \\
x_{2}^{\prime}=b \frac{\sin \sigma}{\operatorname{ch} \tau-\cos \sigma}=2 b \sum_{p=1}^{\infty} e^{-p \tau} \sin p \sigma \tag{4.5}
\end{gather*}
$$

The boundaries of the two discs 1 and 2 correspond to the coordinate lines $\tau= \pm \tau_{0}$, where

$$
\begin{equation*}
a=\frac{b}{\operatorname{sh} \tau_{0}}, \quad L=a \operatorname{ch} \tau_{0} . \tag{4.6}
\end{equation*}
$$

The solution of the problem (4.3), bounded at infinity can be obtained straightforwardly, making use of the bipolar coordinates (σ, τ) (see, e.g., [10]). We shall need in what follows only the values of the solution at the boundary $\tau=\tau_{0}$ of the disc 1:

$$
\begin{gather*}
\left.\left(\mathbf{G} \cdot \mathbf{x}+T^{(2)}(\mathbf{x} ; \mathbf{z})\right)\right|_{\tau=\tau_{0}} \\
=b G_{1}^{\prime}\left(1+\sum_{p=0}^{\infty} \frac{2 \kappa_{m} \cos p \sigma}{\kappa_{f} \operatorname{sh} p \tau_{0}+\kappa_{m} \operatorname{ch} p \tau_{0}}\right)+b G_{2}^{\prime} \sum_{p=1}^{\infty} \frac{2 \kappa_{m} \sin p \sigma}{\kappa_{f} \operatorname{ch} p \tau_{0}+\kappa_{m} \operatorname{sh} p \tau_{0}} \tag{4.7}
\end{gather*}
$$

where G_{1}^{\prime} and G_{2}^{\prime} are the projections of the temperature gradient at infinity \mathbf{G} on the axes x_{1}^{\prime} and x_{2}^{\prime}, respectively.

As it follows from (4.2),

$$
\begin{equation*}
T^{(1)}(\mathbf{x})=-\beta \mathbf{G} \cdot \mathbf{x}=-\beta\left(G_{1}^{\prime} x_{1}^{\prime}+G_{2}^{\prime} x_{2}^{\prime}\right)+\text { const } \tag{4.8}
\end{equation*}
$$

so that the field $W(\mathbf{x} ; \mathbf{z})=T^{(2)}(\mathbf{x} ; \mathbf{z})-T^{(1)}(\mathbf{x})$, needed in (4.1), has the form

$$
\begin{gather*}
W(\mathbf{x} ; \mathbf{z})=G_{1}^{\prime} W_{1}^{\prime}+G_{2}^{\prime} W_{2}^{\prime}, \\
W_{1}^{\prime}=\sum_{p=0}^{\infty} W_{p 1}^{\prime} \cos p \sigma, \quad W_{2}^{\prime}=\sum_{p=1}^{\infty} W_{p 2}^{\prime} \sin p \sigma, \tag{4.9}\\
W_{p 1}^{\prime}=\frac{2 \kappa_{m} \beta b e^{-2 p \tau_{0}}}{\kappa_{f} \operatorname{sh} p \tau_{0}+\kappa_{m} \operatorname{ch} p \tau_{0}}, \quad W_{p 2}^{\prime}=-\frac{2 \kappa_{m} \beta b e^{-2 p \tau_{0}}}{\kappa_{f} \operatorname{ch} p \tau_{0}+\kappa_{m} \operatorname{sh} p \tau_{0}} .
\end{gather*}
$$

Let us change now the order of integration in (4.1) and then apply the Gauss theorem

$$
\begin{equation*}
a_{2}^{\prime} \mathbf{G}=\frac{[\kappa]}{\kappa_{m}} \frac{1}{S_{a}^{2}} \int_{Z_{2 a}} g_{0}(\mathbf{z}) d^{2} \mathbf{z} \int_{|x|=a} \mathbf{n} W(\mathbf{x} ; \mathbf{z}) d s \tag{4.10}
\end{equation*}
$$

Fig. 1. Coordinate systems in the two-inclusion problem (2D-case).
here \mathbf{n} is the unit outward normal to the disk 1 and $d s$ is its element of length

$$
\begin{equation*}
d s=\frac{d \sigma}{h}, \quad h=\frac{b}{\operatorname{ch} \tau_{0}-\cos \sigma} . \tag{4.11}
\end{equation*}
$$

Since the integral with respect to \mathbf{z} is to be understood in the sense (4.4) and $g_{0}(\mathbf{z})=g_{0}(|\mathbf{z}|)$, we carry out the integration consecutively: first, at fixed $|\mathbf{z}|=$ $2 L=2 a \operatorname{ch} \tau_{0}$, i.e. at fixed τ_{0}, we integrate with respect to all orientations of the dumb-bell shaped figure (see Fig. 1), described by the angle ψ. Next we integrate with respect to all $|\mathbf{z}|$, i.e. to all τ_{0}. This procedure is equivalent to a transition to the polar coordinates (ρ, α) in the plane $\left(x_{1}, x_{2}\right)$ with a center at the point O_{1}, so that $\rho=|\mathbf{z}|=2 L$, after which the integration is performed first with respect to α and then with respect to ρ (cf. Fig. 1).

Consider first the integration with respect to ρ. Due to (4.9) $)_{1}$ and (4.11), we have

$$
\begin{gather*}
\mathbf{K}(L)=\int_{-\pi}^{\pi} d \alpha \int_{|x|=a} \mathbf{n} W(\mathbf{x} ; a) d s \\
=\int_{-\pi}^{\pi} d \alpha \int_{|x|=a} \mathbf{n}\left(G_{1}^{\prime} W_{1}^{\prime}+G_{2}^{\prime} W_{2}^{\prime}\right) d s=\int_{-\pi}^{\pi} d \alpha \int_{|x|=a}\left(W_{1}^{\prime} \mathbf{n e}_{1}^{\prime}+W_{2}^{\prime} \mathbf{n e}_{2}^{\prime}\right) d s \cdot \mathbf{G} . \tag{4.12}
\end{gather*}
$$

In this expression we should once integrate over the orientations of the pair of unit vectors $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}$ and once over the orientations of the normal \mathbf{n}. Instead, we first fix the angle ψ between \mathbf{n} and \mathbf{e}_{1}^{\prime} :

$$
\begin{equation*}
\mathbf{n} \cdot \mathbf{e}_{1}^{\prime}=\cos \psi, \quad \mathbf{n} \cdot \mathbf{e}_{2}^{\prime}=\sin \psi \tag{4.13}
\end{equation*}
$$

and rotate rigidly the triad $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{n}$. The dyadics $\mathbf{n e}_{1}^{\prime}, \mathbf{n e}_{2}^{\prime}$, after such an integration become proportional to the unit second-rank tensor \mathbf{I}, so that, in virtue of (4.11) and (4.13), the integral in (4.12) becomes

$$
\begin{equation*}
\mathbf{K}(L)=\pi \mathbf{G} \int_{-\pi}^{\pi}\left(G_{1}^{\prime} W_{1}^{\prime}+G_{2}^{\prime} W_{2}^{\prime}\right) \frac{d \sigma}{h} . \tag{4.14}
\end{equation*}
$$

It remains to integrate with respect to the angle ψ only.
Let us recall now the formulas

$$
\begin{align*}
& \frac{\cos \psi}{h}=b \frac{\operatorname{ch} \tau_{0} \cos \sigma-1}{\left(\operatorname{ch} \tau_{0}-\cos \sigma\right)^{2}}=2 b \sum_{p=1}^{\infty} p e^{-p \tau_{0}} \cos p \sigma \tag{4.15}\\
& \frac{\sin \psi}{h}=b \frac{\operatorname{sh} \tau_{0} \sin \sigma}{\left(\operatorname{ch} \tau_{0}-\cos \sigma\right)^{2}}=2 b \sum_{p=1}^{\infty} p e^{-p \tau_{0}} \sin p \sigma
\end{align*}
$$

which, when substituted into (4.14), together with (4.9) yield

$$
\begin{align*}
& \mathbf{K}(L)=\pi b \mathbf{G} \sum_{p=1}^{\infty} p e^{-p \tau_{0}}\left(W_{p 1}^{\prime}+W_{p 2}^{\prime}\right) \\
& =16 \pi^{2} b^{2} \beta^{2} \frac{\kappa_{m}}{\kappa_{m}+\kappa_{f}} \mathbf{G} \sum_{p=1}^{\infty} \frac{p e^{-6 p \tau_{0}}}{1-\beta^{2} e^{-4 p \tau_{0}}} . \tag{4.16}
\end{align*}
$$

Since the radius a of the discs is fixed, the integration with respect to $\rho=2 a \operatorname{ch} \tau_{0}$ is an integration over $\tau_{0} \in(0, \infty)$ and

$$
\rho d \rho=4 a^{2} \operatorname{ch} \tau_{0} \operatorname{sh} \tau_{0} d \tau_{0} .
$$

Making use of (4.7) and (4.16), we thus get

$$
\begin{align*}
a_{2}^{\prime} \mathbf{G} & =\frac{[\kappa]}{\kappa_{m}} \frac{1}{S_{a}^{2}} \int_{2 a}^{\infty} \mathbf{K}(L) g_{0}(\rho) \rho d \rho=4 \beta^{3} M(\beta) \mathbf{G}, \tag{4.17}\\
M(\beta) & =16 \sum_{p=1}^{\infty} p \int_{0}^{\infty} g_{0}\left(2 a \operatorname{ch} \tau_{0}\right) \frac{\operatorname{ch} \tau_{0} \operatorname{sh}^{3} \tau_{0}}{1-\beta^{2} e^{-4 p \tau_{0}}} e^{-6 p \tau_{0}} d \tau_{0} .
\end{align*}
$$

Upon inserting (4.17) into (4.1) we easily obtain the eventual c^{2}-formula for the effective transverse conductivity κ^{*} of a fiber-reinforced material:

$$
\begin{equation*}
\frac{\kappa^{*}}{\kappa_{m}}=1+2 \beta c+2 \beta^{2}(1+2 \beta M(\beta)) c^{2}+o\left(c^{2}\right) \tag{4.18}
\end{equation*}
$$

with the function $M(\beta)$ defined in (4.17). This function is obviously even, which implies the relation

$$
\begin{equation*}
a_{2}(\beta)+a_{2}(-\beta)=4 \beta^{2} \tag{4.19}
\end{equation*}
$$

for the coefficient a_{2}, considered as a function of the parameter β. It is to be noted that (4.19) is a simple consequence of the Keller interchange formula [13], which reads

$$
\kappa^{*}\left(\kappa_{f}, \kappa_{m}\right) \kappa^{*}\left(\kappa_{m}, \kappa_{f}\right)=\kappa_{f} \kappa_{m} ;
$$

here $\kappa^{*}\left(\kappa_{f}, \kappa_{m}\right)$ denotes the effective transverse conductivity of the fiber material under study and $\kappa^{*}\left(\kappa_{m}, \kappa_{f}\right)$ is the conductivity of the same material, but when the fibers are made of the matrix material and the matrix - of fiber's.

The comparison of (3.1) and (4.17) yields the analytical form of the kernel Φ_{1} :

$$
\begin{equation*}
\Phi_{1}(\lambda ; \beta)=4 \beta^{3} \lambda\left(\lambda^{2}-4\right) \sum_{p=1}^{\infty} \frac{p \Lambda^{6 p}}{1-\beta^{2} \Lambda^{6 p}} \tag{4.20}
\end{equation*}
$$

here $\Lambda=e^{-\tau_{0}}=\frac{1}{2}\left(\lambda-\sqrt{\lambda^{2}-4}\right), \lambda \geq 2$.

b)

Fig. 2. Plots of the kernel Φ_{1} (continuous line) and the bounds Φ_{1}^{L} and Φ_{1}^{U} (dashed lines) (2D-case); a) $\beta=0.5$; b) $\beta=0.9$

By means of (2.4) and (4.20) we can evaluate numerically the coefficient a_{2} for an arbitrary sphere statistics, represented here by the function $g_{0}(r)$. Thus in $2 D$-case under study we avoid twin expansion technique of D. Jeffrey [4] and B. Felderhof et al. [5], needed in 3D-case when solving the two-sphere problem, and get the eventual result for a_{2} as an explicit integral. Moreover, for some simple but important particular cases the integration can be performed analytically employing certain well-known higher transcendental functions, as we shall see in the next Section.

The bounds (3.3) in $2 D$-case under study have the form

$$
\begin{gather*}
\Phi_{1}^{L}(\lambda ; \beta) \leq \Phi_{1}(\lambda ; \beta) \leq \Phi_{1}^{U}(\lambda ; \beta) \\
\Phi_{1}^{L}=\frac{4 \beta^{3}}{1+\beta} \frac{\lambda}{\left(\lambda^{2}-1\right)^{2}}, \quad \Phi_{1}^{U}=\frac{4 \beta^{3}}{1-\beta} \frac{\lambda}{\left(\lambda^{2}-1\right)^{2}} . \tag{4.21}
\end{gather*}
$$

The exact values of the kernel Φ_{1} together with the bounds Φ_{1}^{L} and Φ_{1}^{U} as functions of λ are shown in Fig. 2 in two cases: $\beta=0.5$ and $\beta=0.9$.

5. SOME FORMULAS CONCERNING a_{2} IN $2 D$-CASE

In order to make easier the numerical evaluation of a_{2} for the fiber-reinforced materials let us expand the function $M(\beta)$ in (4.17) in powers of the parameter β :

$$
\begin{gather*}
M(\beta)=\sum_{k=0}^{\infty} M_{k} \beta^{2 k}, \beta=\frac{[\kappa]}{\kappa_{f}+\kappa_{m}}, \tag{5.1}\\
M_{k}=16 \sum_{j=1}^{\infty} j \int_{0}^{\infty} g_{0}(2 a \operatorname{ch} \tau) \operatorname{ch} \tau \operatorname{sh}^{3} \tau e^{-2 j(3+2 k) \tau} d \tau .
\end{gather*}
$$

The estimates (3.2) for a_{2} now imply

$$
\begin{equation*}
\frac{2 \beta}{1+\beta} m_{2} \leq 2 \beta M(\beta) \leq \frac{2 \beta}{1-\beta} m_{2} \tag{5.3}
\end{equation*}
$$

so that

$$
\begin{gather*}
M_{0}=m_{2}=\int_{2}^{\infty} \frac{\lambda}{\left(\lambda^{2}-1\right)^{2}} g_{0}(\lambda a) d \lambda, \tag{5.4}\\
M(\beta)=m_{2}+O(\beta), \text { i.e. } a_{2}=2 \beta^{2}\left(1+2 \beta m_{2}\right)+o\left(\beta^{3}\right) . \tag{5.5}
\end{gather*}
$$

The formula (5.2) can be recast as

$$
M_{k}=4 \int_{0}^{\infty} g_{0}(2 a \operatorname{ch} \tau) \frac{\operatorname{ch} \tau \operatorname{sh}^{3} \tau}{\operatorname{sh}^{2}(3+2 k) \tau} d \tau
$$

Having used the known formula for $\operatorname{sh} n \tau$ and making the substitution $\lambda=2 \operatorname{ch} \tau$, we get eventually

$$
\begin{equation*}
M_{k}=\int_{2}^{\infty} \lambda g_{0}(\lambda a)\left\{\sum_{j=0}^{k+1}(-1)^{j} C_{2+2 k-j}^{j} \lambda^{2(2 k-j+1)}\right\}^{-1} d \lambda \tag{5.6}
\end{equation*}
$$

The formula (5.4) coincides with (5.6) at $k=0$. At $k=1$ we have

$$
\begin{equation*}
M_{1}=\int_{2}^{\infty} \frac{\lambda g_{0}(\lambda a)}{\left(\lambda^{4}-3 \lambda^{2}+1\right)^{2}} d \lambda \tag{5.7}
\end{equation*}
$$

and this integral, as well as the integral in (5.4), can be easily evaluated in the most frequently used well-stirred approximation for which $g(r)=g_{0}(r)=g_{0}(\lambda a)=1$ at $\lambda \geq 2$, yielding

$$
\begin{equation*}
M_{0}=M_{0}^{w s}=\frac{1}{6}, \quad M_{1}=M_{1}^{w s}=\frac{1}{10}+\frac{\sqrt{5}}{25} \ln \frac{3-\sqrt{5}}{2} . \tag{5.8}
\end{equation*}
$$

However, the analytical evaluation of M_{k} by means of (5.6) at $k \geq 2$ is not easy even in the well-stirred case. In the latter case we employ (5.2) which leads, after simple manipulations, to the following result:

$$
\begin{equation*}
M_{k}^{w s}=c_{k}^{2}\left\{2 \psi\left(1+c_{k}\right)-2 \psi\left(1+2 c_{k}\right)+\frac{1}{c_{k}}\left(\frac{2 \pi c_{k}}{\sin 2 \pi c_{k}}-1\right)\right\}, \tag{5.9a}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{k}=\frac{1}{2 k+3}, \quad \psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}, \tag{5.9b}
\end{equation*}
$$

so that $\psi(x)$ is the logarithmic derivative of the Euler Gamma-function which is investigated in detail and tabulated [14,15]. As a matter of fact, the formula (5.9) is given in [10]. Note that since the arguments $1+c_{k}$ and $1+2 c_{k}$ are rational, we can employ the formula for $\psi(p / q)$, cf. [15, p.722], which allows us to represent $M_{k}^{w s}$ by means of elementary functions, namely

$$
\begin{equation*}
M_{k}^{w s}=c_{k}^{2}\left\{\frac{1}{2 c_{k}}+8 \sum_{j=1}^{k+1} \sin \left(j \pi c_{k}\right) \sin \left(3 j \pi c_{k}\right) \ln \sin \left(j \pi c_{k}\right)\right\} . \tag{5.10}
\end{equation*}
$$

Note also the asymptotic formula

$$
\begin{equation*}
M_{k}^{w s}=6 \zeta(3) c_{k}^{4}+30 \zeta(5) c_{k}^{6}+o\left(c_{k}^{6}\right), \tag{5.11}
\end{equation*}
$$

where $\zeta(3)=1.2021$ and $\zeta(5)=1.0369$ are the respective values of the Riman ζ function. The formula (5.11) gives four correct decimal numbers for $M_{k}^{w s}$ at $k \geq 4$ and six at $k \geq 6$.

The formulas (5.10) and (5.11) make possible to evaluate a_{2} in the well-stirred case, having truncated the series (5.1) and replacing the remaining coefficients $M_{k}^{w s}$ with their asymptotic values (5.11). In this way one easily finds, e.g.,

$$
\begin{align*}
& a_{2}^{w s}=2.7450 \text { at } \beta=1, \text { i.e. } \kappa_{f} / \kappa_{m}=\infty, \\
& a_{2}^{w s}=1.2550 \text { at } \beta=-1, \text { i.e. } \kappa_{f} / \kappa_{m}=0 . \tag{5.12}
\end{align*}
$$

The dependence $a_{2}=a_{2}(\beta)$ is shown in Fig. 3 together with the bounds (2.3a), which in the well-stirred $2 D$-case under study read

$$
2 \beta^{2}\left(1+\frac{\beta}{3(1+\beta)}\right) \leq a_{2}^{w s} \leq 2 \beta^{2}\left(1+\frac{\beta}{3(1-\beta)}\right) .
$$

It is instructive to consider as well the more general radial distribution function

$$
\begin{equation*}
g_{0}(r)=1+A_{1} \frac{a}{r}, \quad r \geq 2 a \tag{5.13}
\end{equation*}
$$

where A_{1} is a certain scalar parameter such that $A_{1} \geq-2$ (in order to have $g_{0}(r) \geq$ 0). The coefficients M_{k}, corresponding to the distribution function (5.13) can be easily evaluated by means of (5.2) and the final result is

$$
\begin{equation*}
M_{k}=M_{k}^{w s}+A_{1} N_{k}, \tag{5.14}
\end{equation*}
$$

Fig. 3. The c^{2}-coefficient a_{2} in the well-stirred $2 D$-case as a function of β.

$$
\begin{equation*}
N_{k}=\frac{3}{2} c_{k}^{2}\left\{2 \psi\left(1+\frac{1}{2} c_{k}\right)-\psi\left(1+\frac{3}{2} c_{k}\right)+\frac{\pi \cos \left(\pi c_{k} / 2\right)}{\sin \left(3 \pi c_{k} / 2\right)}-\frac{2}{3 c_{k}}\right\} \tag{5.15}
\end{equation*}
$$

$k=0,1, \ldots$, where c_{k} are defined in (5.9b) and $M_{k}^{w s}$ are the respective coefficients in (5.1) in the well-stirred case, cf. (5.10). Having applied the above mentioned formula for $\psi(p / q)$ from [15, p. 722], we get

$$
\begin{equation*}
N_{k}=\frac{3}{2} c_{k}^{2}\left\{\frac{2}{3 c_{k}}+4 \sum_{j=1}^{2(k+1)} \sin \left(j \pi c_{k}\right) \sin \left(2 j \pi c_{k}\right) \ln \sin \frac{j \pi c_{k}}{2}\right\} \tag{5.16}
\end{equation*}
$$

so that $N_{k}>0, k=0,1, \ldots$..
In particular,

$$
N_{0}=\frac{1}{3}-\frac{1}{4} \ln 3, \quad N_{1}=\frac{1}{5}+\frac{9 \sqrt{5}}{100} \ln \frac{3-\sqrt{5}}{2} .
$$

The asymptotic formula for N_{k} reads

$$
N_{k}=3 \zeta(3) c_{k}^{4}+o\left(c_{k}^{4}\right)
$$

It gives four correct decimal digits at $k \geq 2$ and six at $k \geq 8$.
Since A_{1} should only exceed -2 and thus it can take arbitrarily big values, equation (5.14) suggests that the statistics of the dispersion affects very strongly the c^{2}-coefficient in the virial expansion (1.4) of the effective conductivity. This is illustrated in Fig. 4 for the radial distribution function (5.13) in the cases $A_{1}=-2$, $A_{1}=0$ (well-stirred) and $A_{1}=5$.

Fig. 4. The c^{2}-coefficient a_{2} in the well-stirred $2 D$-case as a function of β for the distribution function $g_{0}(r)$ given in (5.13);

$$
1-A_{1}=-2 ; 2-A_{1}=0(\text { well-stirred }) ; 3-A_{1}=5
$$

Let us note finally that $M(\beta)>0$ at $\beta \in(-1,1)$, cf. (4.17), and it could take arbitrarily big values, e.g. for the distribution function (5.13). Then (4.19) implies the following sharp estimates for the coefficient a_{2} in $2 D$-case:

$$
\begin{align*}
& 2 \beta^{2}<a_{2}<\infty, \text { if } \beta>0, \text { i.e. } \kappa_{f}>\kappa_{m} \\
& -\infty<a_{2}<2 \beta_{2}, \text { if } \beta<1, \text { i.e. } \kappa_{f}<\kappa_{m} \tag{5.17}
\end{align*}
$$

having taken $\sup a_{2}$ and $\inf a_{2}$ with respect to all admissible radial distribution functions $g_{0}(r)$ (so that varying, in particular the parameter A_{1} in (5.13) from -2 to infinity). We can thus conclude that there is no finite interval, independent of the statistics of the fibres, within which the c^{2}-coefficient a_{2} is to be always found. Note that similar to (5.17) estimates are to be expected to hold in the $3 D$-case, i.e. for dispersions of spheres, with the only difference that the factor 2 should be replaced by 3 , and again there will be no finite interval for the coefficient a_{2}, independent of the statistics of the dispersion.

ACKNOWLEDGEMENT. The support of this work by the Bulgarian Ministry of Culture, Science and Education under Grant No MM26 is acknowledged.

R E F ERENCES

1. L a n d a u e r, R. Electrical conductivity in inhomogeneous media. Electrical transport and optical properties of inhomogeneous media (eds. J.C.Garland, D.B.Tanner). Am. Inst. Phys., N. Y., 1978, 2-43.
2. M c C o y, J. J. Macroscopic response of continua with random micro- structure. - Mechanics Today (ed. S. Nemat-Nasser), Vol. 6, Pergamon Press, N. Y., 1981, 1-40.
3. Ф и н к е л ь б е р г, В. М. Диэлектрическая проницаемость смесей. — Ж. Техн. Физ. 34(3), 1964, 509-518.
4. Jeffrey, D. J. Conduction through a random suspension of spheres. - Proc. Roy. Soc. London, A335, 1973, 355-367.
5. F el d e r h o f, B. V., G. W. Ford, E. G. D. Cohen. Two-particle cluster integral in the expansion of the dielectric constant. - J. Stat. Phys., 28, 1982, 649-672.
6. M a rkov, K. Z. On the heat propagation problem for random dispersion of spheres - Math. Balkanica (New series), 3, 1989, 399-417.
7. M ax well, J. C. A treatise on electricity and magnetism. Dover, N. Y., 1954. (Republication of 3rd edition of 1891.)
8. M a r k o v, K. Z. Application of Volterra-Wiener series for bounding the overall conductivity of heterogeneous media. I. General procedure. II. Suspensions of equi-sized spheres. - SIAM J. Appl. Math., 47, 1987, 831-849, 850-870.
9. M a rkov, K. Z. Bounds on the effective transverse conductivity of fibre materials - Ann. Univ. Sofia, Fac. Math. Méc., Livre 2, Méc., 79/1985, 1988, 113-124.
10. Peterson, J. M., J. J. Hermans. The dielectric constant of nonconducting suspensions. - J. Composite Materials, 3, 1969, 338-354.
11. Volterra, V. Theory of functionals and of integral and integral -differential equations. Blackie, London, 1929. (Republicated by Dover, N. Y., 1959.)
12. Stratonovich, R. L. Topics in theory of random noise. Vol.1, Gordon and Breach, N. Y., 1963.
13. K elle r, J.B. A theorem on the conductivity of a composite medium - J. Math. Phys., 5, 1964, 548-549.
14. J a n k e, E., F. Em d e, F. L ö s c h. Tafeln Höherer Functionen, B.G.Teubner, Stuttgart, 1960.
15. Пр у д н и о в, А. П., Ю. А. Б р ычк о в, О. И. М а ри ч е в. Интегралы и ряды. Специальные функции. Наука, М., 1983.
