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A NOTE ON THE BULK MODULUS OF A BINARY
ELASTIC MIXTURE

M. K. KOLEV and K. Z. MARKOV

The Hashin-Shtrikman and Walpole bounds on the effective bulk modulus of a binary
elastic mixture are revisited. A simple method of derivation is given as a generalization
of the approach, recently proposed by one of the authors in the absorption and scalar
conductivity problems for a two-phase medium.
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The aim of this note is to present and discuss a simple derivation of the well-
known two-point estimates on the effective bulk modulus of a binary elastic mixture,
due to Hashin and Shtrikman [1] and Walpole [2]. The basic idea is a straightfor-
ward generalization of the approach, used by one of the authors in the absorption
and scalar conductivity cases [3].

Assume that the mixture is statistically homogeneous and isotropic. Let

]., if x € Qi,

Xi(®) { 0, otherwise, (1)
be the characteristic function of the region €2;, occupied by one of the constituents,
labelled ‘i’, i = 1,2, so that x1(x)+ x2(x) = 1. Hereafter, all quantities, pertaining
to the region €2y or (s, are supplied with the subscript ‘1’ or ‘2’ respectively.

The statistical properties of the medium follow from the set of multipoint
moments of one of the functions y;(x), say x2(x), for definiteness, or, which is the
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X5}

same, by the volume fraction 7o = (x2(x)) of the phase ‘2, and the multipoint

moments

Ma(z) = (x5(0)x5(2)) , Ms(z,y) = (x5(0)x5(21)x5(¥)) ;- - - (2)

with x5(z) = x2(x) — n2 being the fluctuating part of the field x2(z), see, e.g. [4].
The angled brackets (-) hereafter denote ensemble averaging. One point could be
taken at the origin, because of the assumed statistical homogeneity, as already done
in (2).

Assuming also the constituents isotropic, the fourth-rank tensor of elastic mod-
uli of the medium, L(z) is a random field of the familiar form

L(z) = ( W+ 2u(x)J”,
k(z) = kixi(x) + kaxz(z) = (k) + [k]x5(2), (3)
p(x) = prxa(e) + paxe(x) = (u) + [ux5(x),

where k and p stand, as usual, for the bulk and shear modulus, respectively. The
square brackets denote the jumps of the appropriate quantities, say, [k] = k2 — k1,
[#] = p2 — pa, ete. In Eq. (3), J/ and J” are the basic isotropic fourth-rank tensors
with the Cartesian components

1 2
ik = 51]5kl7 Tk = 3 (5ik5jl + 005, — §5ij5kl)- (4)

The displacement field u(x) in the medium, at the absence of body forces, is
governed by the well-known equations

V-o(z)=0,
o(x) =L(x) : e(x) = k(2)0(2)I + 2u(z)d(z), (5)

<
g
_l’_
S
d
S
s

I
o

|

!
=

where o denotes the stress tensor, € is the small strain tensor, generated by the
displacement field u(z), d is the strain deviator, and § = tre is the volumetric
strain. The colon designates contraction with respect to two pairs of indices and I
is the unit second-rank tensor.

The system (5) is supplied with the condition

(e(x)) = E, (6)

prescribing the macroscopic strain tensor E, imposed upon the medium.
Recall [4] that the random problem (5), (6) is equivalent to the variational
principle of classical type

Wle(x)] = (e(z) : L(z) : e(x)) — min,

. i (7)
minW =E:L" : E.
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The energy functional W is considered over the class of random fields u(z) that
generate strain fields e(x), complying with the condition (6). In Eq. (7), L* is the
tensor of effective elastic moduli for the medium which, in the isotropic case under
study, has the form

L* =3k +2u*J", (8)

where k* and p* are the effective bulk and shear modulus of the mixture, respec-
tively.

Consider, guided by [3], the class of trial fields for the variational prin-
ciple (7):

K = {a@) | i(z) =E-z—a / VG(@ = y)x5(v) d3y} , (9)
having assumed that E is spherical
1 1
E=-1 = — 1
3L 00 = g (10)

and « is an adjustable scalar parameter. Hereafter the integrals are over the whole
R?, if the integration domain is not explicitly indicated.

The energy functional W, when restricted over X(!)| becomes a quadratic func-
tion of o

Wi(z)] = A —2Ba+Co®, A= (k), B =[k]M(0), )
C = (\) Ma(0) + [AJM3(0,0) + 2 (1) P> + 2[u] P,

with the dimensionless statistical parameters for the medium, defined as follows:

P :/ VVG(y1) : VVG(y2) Ma(y1 — o) d>y1d>ya,

(12)
P = [ [VG) : TG ) Mayr, o) e
A=k-— %,u is the familiar Lamé constant.
Note that for the isotropic binary medium under study
M3(0) = (x5 (0)) = mnz,  M3(0) = (x5 (0)) = mnz(m — 12)- (13)

Moreover, the parameter P, can be easily evaluated, having integrated by parts
and noting that G(z) is the well-known Green function for the Laplacian:

P2 = MQ(O) =mn2. (14)
The variational principle (7), together with (11), implies

E* < Wi(x)] = A —2Ba+ Ca?, Va. (15)



In particular, at &« = 0 one has
k"< (k) (16)

which, obviously, is the elementary (Voigt) bound on k*.
Next, optimizing (15) with respect to «, one gets another estimate on k*:

k*< A-— el (17a)
v . N mne(k]?
F ) e (N 2T ) (170)
where

1

mi2(m — n2)
is the statistical parameter that appears in the perturbation expansion of k* for
a weakly inhomogeneous medium, see [5], and also in the Beran’s bound on the
effective conductivity constant [6]. A simple check shows that (18) coincides with
the upper bound on k*, due to Beran and Molyneux (BM) [7].

The main problem in specifying the bound (17b) is just the three-point pa-
rameter I3 whose evaluation for special and realistic random constitution is non-
trivial. Recall that in many cases it is more convenient to employ, instead of I3,
the Torquato-Milton parameter (1, see [8, 9], defined as a certain integral, similar
to Ps (see, e.g. the Torquato review [10]). Without going into detail, we shall only
point out the formula

Iy Py (18)

3(n2 —m)Is = 2G + 3 — . (19)

The bound (18) should be at least as good as the elementary bound (16) (since
the energy functional is minimized over a broader class of trial fields). This implies
that

C>0, AC-B%*>0, (20)

because k* > 0. Since A = (k) > 0, C > B?/A > 0, which means that the second
inequality in (20) is the stronger one. Using the expressions for A, B and C from
(11), we can write the latter in the form

k 2
(O 20+ () + 20l 1) = ) = o 2 0 1)
The inequality (21) should hold for every “realistic” choice of the elastic moduli of
the constituents (i.e. for which the appropriate elastic energy is positive-definite).
This implies

1 1
3~ <(m—m)ls <m— 3’ (22)

Note that (22) drastically simplifies, when the parameter ¢; is used, instead
of I5, see (19). Namely, it states then that 0 < {; < 1, which is a well-known fact
8, 9].
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However, keeping I5 in the BM-bound (17b) has its advantages. Namely, by
means of (22) we can exclude the product (1 — 12)I3 from this bound. Depending
on the sign of [u] = w2 — w1, we should use to this end the upper or lower bound
(22). The final result reads

. mne[k]? -
< (k) - ————— if < 1,

. mne[k]? -
< (k) ———— f > 1.
>~ < > )\2 + 2’”2 _ nQ[k] ’ I 2 = 1

In the so-called “well-ordered” case, when (ko —k1) (2 —p1) > 0, the first of the
estimates (23) coincides with the Hashin-Shtrikman (HS) bound on k*, provided
that not only po < uq, but also ko < kq, see [1]. This unnecessary restriction was
removed by Walpole [2]. It is easily seen that our bounds (23) are just the Walpole
bounds in which no requirements are put on the sign of ko — k7.

The derivation of the lower bound, corresponding to (23), is fully similar. In
this case we write the elastic energy (7) by means of the stress tensor:

Wlo(z)] = (o(z) : L™ (2) : o(2)) — min,

(24)
mnW =%:L*1: %
The functional W is considered now over the class of trial fields, such that
V.o(z)=0, (o)=2%, (25)

with a prescribed macrostress tensor X, imposed upon the medium.
The functional W in (24) is minimized now over the class of trial fields

N —{5) |50 =2 +a | [V96a-nmdrrgm| ] e

with the spherical ¥ = %I and an adjustable scalar parameter o, G(x) being the
function defined in (10). The straightforward manipulations are omitted and the
final result reads

. mnz(k)? .
k* > (k) - —————— , if < pa,
- < > )\2 + 2’”2 — 772[k'] 2 M1
2 (27)
k> (k) e if po > 1.

Y +2u1 +mlk]’

The inequalities (27), combined with (23), are just the Walpole bounds on the
effective bulk modulus of a binary mixture, see [2] and also [11], which are a direct
generalization of the Hashin-Shtrikman result with the condition of “well-orderness”
removed. Here we have demonstrated how this classical estimate shows up simply
and naturally within the frame of the general method, recently developed by one
of the authors [3] in the absorption and scalar conductivity contexts.
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