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The Hashin-Shtrikman and Walpole bounds on the effective bulk modulus of a binary
elastic mixture are revisited. A simple method of derivation is given as a generalization
of the approach, recently proposed by one of the authors in the absorption and scalar
conductivity problems for a two-phase medium.
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The aim of this note is to present and discuss a simple derivation of the well-
known two-point estimates on the effective bulk modulus of a binary elastic mixture,
due to Hashin and Shtrikman [1] and Walpole [2]. The basic idea is a straightfor-
ward generalization of the approach, used by one of the authors in the absorption
and scalar conductivity cases [3].

Assume that the mixture is statistically homogeneous and isotropic. Let

χi(x) =
{

1, if x ∈ Ωi,
0, otherwise,

(1)

be the characteristic function of the region Ωi, occupied by one of the constituents,
labelled ‘i’, i = 1, 2, so that χ1(x)+χ2(x) = 1. Hereafter, all quantities, pertaining
to the region Ω1 or Ω2, are supplied with the subscript ‘1’ or ‘2’, respectively.

The statistical properties of the medium follow from the set of multipoint
moments of one of the functions χi(x), say χ2(x), for definiteness, or, which is the
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same, by the volume fraction η2 = 〈χ2(x)〉 of the phase ‘2’, and the multipoint
moments

M2(x) = 〈χ′
2(0)χ′

2(x)〉 , M3(x, y) = 〈χ′
2(0)χ′

2(x1)χ′
2(y)〉 , . . . , (2)

with χ′
2(x) = χ2(x) − η2 being the fluctuating part of the field χ2(x), see, e.g. [4].

The angled brackets 〈·〉 hereafter denote ensemble averaging. One point could be
taken at the origin, because of the assumed statistical homogeneity, as already done
in (2).

Assuming also the constituents isotropic, the fourth-rank tensor of elastic mod-
uli of the medium, L(x) is a random field of the familiar form

L(x) = 3k(x)J′ + 2µ(x)J′′,

k(x) = k1χ1(x) + k2χ2(x) = 〈k〉 + [k]χ′
2(x),

µ(x) = µ1χ1(x) + µ2χ2(x) = 〈µ〉 + [µ]χ′
2(x),

(3)

where k and µ stand, as usual, for the bulk and shear modulus, respectively. The
square brackets denote the jumps of the appropriate quantities, say, [k] = k2 − k1,
[µ] = µ2 −µ1, etc. In Eq. (3), J′ and J′′ are the basic isotropic fourth-rank tensors
with the Cartesian components

J ′
ijkl =

1
3
δijδkl, J ′′

ijkl =
1
2

(
δikδjl + δilδjk − 2

3
δijδkl

)
. (4)

The displacement field u(x) in the medium, at the absence of body forces, is
governed by the well-known equations

∇ · σ(x) = 0,

σ(x) = L(x) : ε(x) = k(x)θ(x)I + 2µ(x)d(x),

ε =
1
2
(∇u + u∇), d(x) = ε(x) − 1

3
θ(x)I,

(5)

where σ denotes the stress tensor, ε is the small strain tensor, generated by the
displacement field u(x), d is the strain deviator, and θ = tr ε is the volumetric
strain. The colon designates contraction with respect to two pairs of indices and I
is the unit second-rank tensor.

The system (5) is supplied with the condition

〈ε(x)〉 = E, (6)

prescribing the macroscopic strain tensor E, imposed upon the medium.
Recall [4] that the random problem (5), (6) is equivalent to the variational

principle of classical type

W [ε(x)] = 〈ε(x) : L(x) : ε(x)〉 → min,

min W = E : L∗ : E.
(7)
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The energy functional W is considered over the class of random fields u(x) that
generate strain fields ε(x), complying with the condition (6). In Eq. (7), L∗ is the
tensor of effective elastic moduli for the medium which, in the isotropic case under
study, has the form

L∗ = 3k∗J′ + 2µ∗J′′, (8)

where k∗ and µ∗ are the effective bulk and shear modulus of the mixture, respec-
tively.

Consider, guided by [3], the class of trial fields for the variational prin-
ciple (7):

K(1) =
{

ũ(x)
∣∣ ũ(x) = E · x − α

∫
∇G(x − y)χ′

2(y) d3y

}
, (9)

having assumed that E is spherical

E =
1
3

I, G(x) =
1

4π|x| , (10)

and α is an adjustable scalar parameter. Hereafter the integrals are over the whole
R

3, if the integration domain is not explicitly indicated.
The energy functional W , when restricted over K(1), becomes a quadratic func-

tion of α:

W [ũ(x)] = A − 2Bα + Cα2, A = 〈k〉 , B = [k]M2(0),

C = 〈λ〉M2(0) + [λ]M3(0, 0) + 2 〈µ〉P2 + 2[µ]P3,
(11)

with the dimensionless statistical parameters for the medium, defined as follows:

P2 =
∫ ∫

∇∇G(y1) : ∇∇G(y2)M2(y1 − y2) d3y1d
3y2,

P3 =
∫ ∫

∇∇G(y1) : ∇∇G(y2)M3(y1, y2) d3y1d
3y2;

(12)

λ = k − 2
3µ is the familiar Lamé constant.

Note that for the isotropic binary medium under study

M2(0) =
〈
χ′2

2 (0)
〉

= η1η2, M3(0) =
〈
χ′3

2 (0)
〉

= η1η2(η1 − η2). (13)

Moreover, the parameter P2 can be easily evaluated, having integrated by parts
and noting that G(x) is the well-known Green function for the Laplacian:

P2 = M2(0) = η1η2. (14)

The variational principle (7), together with (11), implies

k∗ ≤ W [ũ(x)] = A − 2Bα + Cα2, ∀α. (15)

147



In particular, at α = 0 one has
k∗ ≤ 〈k〉 (16)

which, obviously, is the elementary (Voigt) bound on k∗.
Next, optimizing (15) with respect to α, one gets another estimate on k∗:

k∗ ≤ A − B2

C
, (17a)

i.e.

k∗ ≤ 〈k〉 − η1η2[k]2

〈λ + 2µ〉 + ([λ] + 2[µ]I3)(η1 − η2)
, (17b)

where
I3 =

1
η1η2(η1 − η2)

P3 (18)

is the statistical parameter that appears in the perturbation expansion of κ∗ for
a weakly inhomogeneous medium, see [5], and also in the Beran’s bound on the
effective conductivity constant [6]. A simple check shows that (18) coincides with
the upper bound on k∗, due to Beran and Molyneux (BM) [7].

The main problem in specifying the bound (17b) is just the three-point pa-
rameter I3 whose evaluation for special and realistic random constitution is non-
trivial. Recall that in many cases it is more convenient to employ, instead of I3,
the Torquato-Milton parameter ζ1, see [8, 9], defined as a certain integral, similar
to P3 (see, e.g. the Torquato review [10]). Without going into detail, we shall only
point out the formula

3(η2 − η1)I3 = 2ζ1 + 3η1 − η2. (19)

The bound (18) should be at least as good as the elementary bound (16) (since
the energy functional is minimized over a broader class of trial fields). This implies
that

C > 0, AC − B2 ≥ 0, (20)

because k∗ ≥ 0. Since A = 〈k〉 > 0, C ≥ B2/A > 0, which means that the second
inequality in (20) is the stronger one. Using the expressions for A, B and C from
(11), we can write the latter in the form

〈λ + 2µ〉 +
(
[λ] + 2[µ]I3

)
(η1 − η2) −

[k]2

〈k〉 η1η2 ≥ 0. (21)

The inequality (21) should hold for every “realistic” choice of the elastic moduli of
the constituents (i.e. for which the appropriate elastic energy is positive-definite).
This implies

1
3
η1 − η2 ≤ (η1 − η2)I3 ≤ η1 −

1
3
η2. (22)

Note that (22) drastically simplifies, when the parameter ζ1 is used, instead
of I3, see (19). Namely, it states then that 0 ≤ ζ1 ≤ 1, which is a well-known fact
[8, 9].
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However, keeping I3 in the BM-bound (17b) has its advantages. Namely, by
means of (22) we can exclude the product (η1 − η2)I3 from this bound. Depending
on the sign of [µ] = µ2 − µ1, we should use to this end the upper or lower bound
(22). The final result reads

k∗ ≤ 〈k〉 − η1η2[k]2

λ1 + 2µ1 + η1[k]
, if µ2 ≤ µ1,

k∗ ≤ 〈k〉 − η1η2[k]2

λ2 + 2µ2 − η2[k]
, if µ2 ≥ µ1.

(23)

In the so-called “well-ordered” case, when (k2−k1)(µ2−µ1) > 0, the first of the
estimates (23) coincides with the Hashin-Shtrikman (HS) bound on k∗, provided
that not only µ2 ≤ µ1, but also k2 ≤ k1, see [1]. This unnecessary restriction was
removed by Walpole [2]. It is easily seen that our bounds (23) are just the Walpole
bounds in which no requirements are put on the sign of k2 − k1.

The derivation of the lower bound, corresponding to (23), is fully similar. In
this case we write the elastic energy (7) by means of the stress tensor:

W [σ(x)] =
〈
σ(x) : L−1(x) : σ(x)

〉
→ min,

min W = Σ : L∗−1 : Σ.
(24)

The functional W is considered now over the class of trial fields, such that

∇ · σ(x) = 0, 〈σ(x)〉 = Σ, (25)

with a prescribed macrostress tensor Σ, imposed upon the medium.
The functional W in (24) is minimized now over the class of trial fields

N (1) =
{

σ̃(x)
∣∣ σ̃(x) = Σ + α

[ ∫
∇∇G(x − y)χ′

2(y) d3y + Iχ′
2(y)

]}
, (26)

with the spherical Σ = 1
3I and an adjustable scalar parameter α, G(x) being the

function defined in (10). The straightforward manipulations are omitted and the
final result reads

k∗ ≥ 〈k〉 − η1η2[k]2

λ2 + 2µ2 − η2[k]
, if µ2 ≤ µ1,

k∗ ≥ 〈k〉 − η1η2[k]2

λ1 + 2µ1 + η1[k]
, if µ2 ≥ µ1.

(27)

The inequalities (27), combined with (23), are just the Walpole bounds on the
effective bulk modulus of a binary mixture, see [2] and also [11], which are a direct
generalization of the Hashin-Shtrikman result with the condition of “well-orderness”
removed. Here we have demonstrated how this classical estimate shows up simply
and naturally within the frame of the general method, recently developed by one
of the authors [3] in the absorption and scalar conductivity contexts.
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