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ABSTRACT—The paper is devoted to the steady-state problem of absorption of a diffusing species in a

random heterogeneous medium. The variational principles of classic type, using ensemble averaging, are

first discussed and then used for derivation of variational estimates on the effective absorption coefficient

(sink strength) of the medium. The estimates are three-point, i.e., they employ statistical information,

contained in the `-point correlation functions for the medium up to ` = 3, and could be viewed as

counterparts of the well-known Beran’s bounds in the scalar conductivity problem. Moreover, the bounds

are third-order in the weakly-inhomogeneous case. Explicit results are obtained for Miller’s cellular media

which indicate that the bounds remain useful even when the absorption capabilities of the constituents

differ one hundred times.

1. INTRODUCTION

The problem of predicting the macroscopic properties of heterogeneous solids of ran-
dom internal constitution, making use of adequate microstructure information, is a classic
one and the respective literature is enormous. We shall only point out the surveys [1,2]
of the papers most relevant to the spirit of this study. As is well seen from these surveys,
the basic attention is paid to transport properties (say, heat conduction, elasticity, etc.)
in which the randomly fluctuating coefficients enter the divergence part of the respective
differential operator. In the simplest scalar case this is the problem

∇ · {κ(x)∇θ(x)} = 0, 〈∇θ(x)〉 = G,

in which θ(x) could be treated as the random temperature field; then κ(x) is the given
conductivity field and G—the prescribed macroscopic gradient of the temperature. Here-
after 〈·〉 denotes ensemble averaging. The solution of this, as well as of similar random
problems, is understood in statistical sense. This means, let us recall [3], that one is to
find all multipoint correlations of the random field θ(x), and all joint correlations of the
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fields θ(x) and κ(x), provided that all needed correlations of κ(x) are known. In particu-
lar, one is to find the one-point correlation (the mean flux), which is proportional to the
macrogradient G, i.e., 〈κ(x)∇θ(x)〉 = κ∗G. The constant κ∗ is the effective conductivity
of the medium, which describes its macroscopic behaviour.

Much smaller attention is paid in the literature to the case when the equation under
study is of the type of Helmholtz and the randomly fluctuating coefficient multiplies the
unknown function, namely

∆ϕ(x)− k2(x)ϕ(x) +K = 0. (1.1)

Under some simplifying assumptions (constant diffusion coefficient), this equation governs,
e.g., the steady-state concentration ϕ(x) of a diffusing species (say, irradiation defects) in
a random absorbing (lossy) medium; the species is generated at the constant rate K (for
instance, due to radiation) and it is absorbed throughout the medium with an absorption
coefficient k2(x), see [4] for more details and references, and also [5] for the respective
physical background. The absorption coefficient k2(x) is a known random field, assumed
positive and statistically homogeneous and isotropic.

Let us average eqn (1.1)

∆〈ϕ(x)〉 − 〈k2(x)ϕ(x)〉+K = 0. (1.2)

Due to the statistical homogeneity 〈ϕ(x)〉 is a constant which equals the mean (macro-
scopic) value of the defect concentration resulting from the steady-state equilibrium of the
two processes taking place in the medium, namely, generation and absorption of defects.
Thus

〈k2(x)ϕ(x)〉 = K. (1.3)

We next define the effective absorption coefficient (sink strength), k∗2, of the medium by
means of the relation

〈k2(x)ϕ(x)〉 = k∗2〈ϕ(x)〉, (1.4)

which means that we perform a “homogenization” of the basic equation (1.1), i.e., we re-
place the given random medium with a homogeneous (“effective”) one which, from a macro-
scopical point of view, absorbs defects at the same rate as the given micro-inhomogeneous
one. From (1.3) and (1.4), we have

k∗2 =
K

〈ϕ(x)〉
. (1.5)

Thus the evaluation of k∗2 needs knowledge of the one-point joint moment of the random
fields k2(x) and ϕ(x) or of the mean value (the one-point moment) of the field ϕ(x), see
(1.4) and (1.5). These moments are part of the full statistical solution of the problem (1.1),
in the sense described above. To the best of the authors’ knowledge, there is no proof of
the existence and uniqueness theorem for the random equation (1.1), unlike the classical
problem, concerning stationary heat propagation or elastic straining of heterogeneous me-
dia. It is to be noted also that there is no additional condition for eqn (1.1) (of the type
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of prescribed value of macroscopic gradient), but rather 〈ϕ(x)〉 is to be determined in the
course of the solution, among the rest of the multipoint correlation functions of the latter.

The only detailed study of the random equation (1.1) from the point of view of its
homogenization, as far as we know, is due to Talbot and Willis [4], who considered certain
approximate schemes for evaluating k∗2 and then derived bounds on this quantity upon
introducing a variational principle of Hashin-Shtrikman’s type. It is noted that in the
literature much more attention is paid to the “degenerate” case when the medium is
two-phase (in particular, a random dispersion) for which one phase is a perfect absorber
(k2 = ∞) while the other does not absorb at all (k2 = 0). In this case a number of
variational estimates have been proposed, see, e.g., [6] and the references therein.

The aim of the present study is a systematic use of variational principles of classical
type in connection with the problem (1.1) and its homogenization. We first derive the
primal and dual principles in which ensemble averaging is used so that there is no need
to take care for the respective boundary conditions. The primal principle allows to sketch
in passing a simple proof of uniqueness and existence theorem for the problem (1.1) (Sec-
tion 2). In Section 3 we discuss the variational procedure that uses truncated functional
series, generated by the random absorption coefficient field, in the simplest nontrivial case,
when it yields optimal three-point bounds on k∗2. The procedure is similar to that intro-
duced and elaborated by one of the authors [7] in the scalar conductivity case. In Section 4
we simplify the procedure, using the respective Green functions as kernels and get as a
result the counterparts of the well-known Beran bounds [8]. The bounds are shown to be
third-order for a two-phase medium, and this seems to be the central result of the paper;
they are explicitly evaluated in Section 5 for Miller’s cellular material. We notice there
in passing that Beran’s type bounds are not optimal even for this comparatively simple
microstructure. The numerical results clearly show that the bounds remain tolerably close
even when the absorption coefficients of the constituents differ one hundred times.

2. VARIATIONAL PRINCIPLES IN THE ABSORPTION PROBLEM

2.1. The primal principle
Consider the functional

I[ϕ(·)] =
1
2

〈
|∇ϕ(x)|2 + k2(x)ϕ2(x)− 2Kϕ(x)

〉
, (2.1)

defined over the class of all statistically homogeneous random fields ϕ(x), x ∈ R3, for which
I[ϕ(·)] is finite. Eqn (1.1) is the Euler-Lagrange equation for the variational problem

I → inf . (2.2)

Moreover, the minimum value, Imin, of I is

Imin = − K2

2k∗2
, (2.3)
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and it is attained on the true field ϕ(x), i.e., on the solution of eqn (1.1).
Indeed,* the first variation of the functional I is

δI[δϕ(·)] =
〈
∇ϕ(x) · ∇δϕ(x) + k2(x)ϕ(x)δϕ(x)−Kδϕ(x)

〉
.

Note next that
〈∇ϕ · ∇δϕ〉 = 〈∇ · (δϕ∇ϕ)〉 − 〈δϕ∆ϕ〉;

but 〈∇·(δϕ∇ϕ)〉 = 0, since differentiation commutes with ensemble averaging and 〈δϕ∇ϕ〉
= const due to the statistical homogeneity assumed. (A similar idea was employed by
Beran [3, p. 128].) Thus

δI[δϕ(·)] = −
〈
δϕ(x)[∆ϕ(x)− k2(x)ϕ(x) +K]

〉
= 0, ∀ δϕ(x),

which implies that eqn (1.1) is indeed the Euler-Lagrange equation for the functional I. A
direct check shows that the second variation of I is strongly positive, since k2(x) > 0, and
therefore I attains its minimum value on the true field ϕ(x).

To calculate Imin we notice that for any statistically homogeneous field ϕ(x) we have

〈|∇ϕ|2〉 = 〈∇ϕ · ∇ϕ〉 = ∇ · 〈ϕ∇ϕ〉 − 〈ϕ∆ϕ〉 = −〈ϕ∆ϕ〉,

since ∇ · 〈ϕ∇ϕ〉 = 0, due to the assumed homogeneity. Thus

I[ϕ(·)] = −1
2

〈
ϕ(x)

[
∆ϕ(x)− k2(x)ϕ(x) + 2K

]〉
.

The minimum value is attained when ϕ(x) solves eqn (1.1), and the expression in the
square brackets then equals K:

Imin = −1
2
K〈ϕ(x)〉.

Now (2.3) immediately follows, if (1.5) is recalled.

2.2. A consequence of the variational principle
As a consequence of the principle (2.2) we shall sketch now a proof of the existence and
uniqueness theorem for the problem (1.1).

Let (Ω, F , P ) be a probabilistic space. Assume that for every realization of the field
k2(x) the following inequalities hold

0 < M1 ≤ k2(x) ≤M2 <∞. (2.4)

* This statement is obvious, if the averaging used were the volume one; here ensemble
averaging is employed so that the proof requires a bit more effort.
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We introduce, after Golden and Papanicolaou [9], the Hilbert space H of all statisti-
cally homogeneous random fields with the scalar product

ϕ · ψ = 〈ϕ(x)ψ(x)〉+ 〈∇ϕ(x) · ∇ψ(x)〉

and, consequently, with the norm

‖ϕ‖ =
√
〈ϕ2(x)〉+ 〈|∇ϕ(x)|2〉. (2.5)

The functional I, due to the positiveness of k2(x), is strongly convex.
Note the obvious inequality

〈ϕ(x)〉2 ≤ 〈ϕ2(x)〉, (2.6)

which follows immediately from the definition of the ensemble averaging as an integral
with respect to the probability measure P (dω):

〈ϕ(x)〉 =
∫

Ω

ϕ(x;ω)P (dω).

The continuity of the functional (2.1) with respect to the norm (2.5) is now an obvious
consequence of eqns (2.4) and (2.6). Another obvious consequence of these equations is
the chain of inequalities

I[ϕ(·)] =
1
2

〈
|∇ϕ(x)|2 + k2(x)ϕ2(x)− 2Kϕ(x)

〉
≥ 〈|∇ϕ(x)|2〉+M1

1
2

(
〈ϕ2(x)〉 − 2K

√
〈ϕ2(x)〉

)
≥ 1

2

(
m‖ϕ‖2 − 2K‖ϕ‖

)
, m = min (1,M1) > 0,

which implies that the functional I is coercitive, i.e.,

I[ϕ(·)] →∞ at ‖ϕ‖ → ∞.

It remains now to notice that the functional I, due to the positiveness of k2(x), is
strongly convex and to recall the well-known result from the convex analysis [10] which
states that a continuous, strongly convex and coercitive functional, defined over a close
and convex set (the whole space H in our case) possesses a minimizing element which
is unique. This proves the uniqueness and existence theorem for the absorption problem
(1.1) under study.

2.3. The dual variational principle
Let us rewrite the functional (2.1) in the form

I[e(·), ϕ(·)] =
〈
WA(e(x), ϕ(x))

〉
,

5



where
WA(e(x), ϕ(x)) =

1
2

(
e2(x) + k2(x)ϕ2(x)− 2Kϕ(x)

)
.

The functional I in these notations is defined over the class of admissible pairs

A =
{

(e, ϕ)
∣∣∣ e = ∇ϕ

}
. (2.7)

Following the well known scheme of the variational calculus [10,11], we introduce the
Fenchel-Young transform of the function WA

W ∗
A(e∗, ϕ∗) = sup

(e,ϕ)∈A

{
e · e∗ + ϕϕ∗ −WA(e, ϕ)

}

= sup
(e,ϕ)∈A

{
e · e∗ + ϕϕ∗ − 1

2
e(x)2 − 1

2
k2(x)ϕ2(x) +Kϕ(x)

}
.

The supremum is attained at

e = e∗, ϕ = α2(x)(ϕ∗ +K), (2.8)

so that
W ∗

A(e∗, ϕ∗) =
1
2

(
e∗2 + α2(x)(ϕ∗ +K)2

)
,

where α2(x) = 1/k2(x) is the “compliance” field.
Due to (2.4) the function WA(e, ϕ) is convex and therefore W ∗∗

A = WA which means
that

WA(e, ϕ) = sup
(e∗,ϕ∗)

{e · e∗ + ϕϕ∗ −W ∗
A(e∗, ϕ∗)} .

Thus the primal principle can be recast as

Imin = inf 〈WA(e, ϕ)〉

= inf
(e,ϕ)∈A

sup
(e∗,ϕ∗)

〈
e · e∗ + ϕϕ∗ −W ∗

A(e∗, ϕ∗)
〉

= sup
(e∗,ϕ∗)

J [e∗(·), ϕ∗(·)],

(2.9)

where
J [e∗(·), ϕ∗(·)] = inf

(e,ϕ)∈A

〈
e · e∗ + ϕϕ∗ −W ∗

A(e∗, ϕ∗)
〉
.

We have not put until now any restrictions on the dual variables (e∗, ϕ∗), unlike those
that enter the primal principle, see (2.7). Such restrictions should be imposed, however,
in order to get a finite value of the functional J . We first note that

〈e · e∗〉 = 〈e∗ · ∇ϕ〉 = 〈∇ · (ϕe∗)〉 − 〈ϕ∇ · e∗〉 = −〈ϕ∇ · e∗〉,
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since 〈∇ · (ϕe∗)〉 = ∇ · 〈(ϕe∗)〉 = 0 due to the statistical homogeneity. Thus

J [e∗(·), ϕ∗(·)] = inf
ϕ

〈
ϕ[ϕ∗ −∇ · e∗]−W ∗

A(e∗, ϕ∗)
〉

and a finite value of the functional J is obtained provided

∇ · e∗ = ϕ∗.

The equality (2.9) allows us to formulate the needed dual principle, namely

J → max,

J [e∗(·), ϕ∗(·)] = −
〈
WB

(
e∗(x), ϕ∗(x)

)〉
,

WB(e∗(x), ϕ∗(x) =
1
2

(
e∗2 + α2(x)(ϕ∗ +K)2

)
.

(2.10)

Moreover,

Jmax = sup
(e∗,ϕ∗)∈A∗

J [e∗(·), ϕ∗(·)] = − K2

2k∗2
, (2.11)

where
A∗ =

{
(e∗, ϕ∗)

∣∣∣ ∇ · e∗ = ϕ∗
}

and thus Imin = Jmax as it should be. The proof of the latter fact needs of course a bit
more attention, since it follows from the assumption inf sup = sup inf, tacitly made in
(2.9). For the simple functionals under study it is, however, easily verified, so we skip the
details.

2.4. Variational principles using volume averaging
Let us denote by k2(x;ω) one of the realizations of the random field k2(x) in the

volume V = V (ω). Hereafter we assume the field k2(x), as well as the rest of the random
fields that appear, ergodic, i.e., the ensemble and volume averages (for a given realization)
coincide.

Consider the basic equation (1.1) in the volume V . Since the latter is finite, and
the defects created should be absorbed inside the volume, it is necessary that the no-flux
condition

∂ϕ

∂n

∣∣∣
S
= 0 (2.12)

be imposed on the boundary S = ∂V with outward unit vector n. The variational prin-
ciples of Sections 2.1 and 2.3 are formulated in the same manner using volume averaging.
The only difference is that in the primal principle the admissible fields should satisfy the
boundary condition (2.12), and those in the dual one the condition

e∗ · n
∣∣∣
S
= 0. (2.13)
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In these forms the primal and dual principles were formulated by Talbot and Willis [4, p.II]
(with the purely formal difference that they used s∗ = ϕ∗ + K as a dual variable). The
necessity to take care for the boundary conditions (2.12) or (2.13), when choosing ap-
propriate trial fields, well explains our efforts to reformulate the variational principles in
the absorption problem in forms, containing ensemble averaging merely and no boundary
conditions involved as a consequence.

3. THE VARIATIONAL PROCEDURE

3.1. The simplest bounds
To obtain estimates on the effective absorption coefficient we shall introduce, as usual,
appropriate trial fields in the variational principles. The simplest choice is to use a constant
such field ϕ(x) = ϕ0 in the functional (2.1):

I[ϕ(·)] = I(ϕ0) =
1
2

(〈
k2(x)

〉
ϕ2

0 − 2Kϕ0

)
→ min .

Minimization with respect to ϕ0 yields

ϕ0 =
K

〈k2〉
and min

ϕ0
I(ϕ0) = − K2

2〈k2〉
(3.1)

which, upon comparing with (2.3), gives the estimate of the Voigt type

k∗2 ≤ k2
V , k2

V = 〈k2(x)〉. (3.2)

To get a similar lower bound we should also choose ϕ∗ = const in the dual principle.
But ∇ · e∗ = ϕ∗ and since e∗ should be statistically homogeneous, then e∗ = 0, ϕ∗ = 0 is
the simplest choice. From (2.10) and (2.11) it then follows:

−1
2
〈α2〉K2 ≤ − K2

2k∗2
,

i.e.,

k2
R ≤ k∗2, k2

R =
1

〈α2〉
(3.3)

which is the Reuss type bound estimate.
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3.2. The optimal three-point upper bound
To get tighter bounds than the simplest Voigt and Reuss type ones, it is necessary to
introduce ampler classes of trial fields. A convenient source for such classes are truncated
functional series, similar to those that appear in the scalar conductivity case [7]. In the
simplest nontrivial case they have here the form

ϕ(x) = Φ0 +
∫

Φ1(x− y)δk2(y) d3y, (3.4)

where the constant Φ0 and the function Φ1(x) are nonrandom and adjustable quantities
and δk2(y) = k2(y)−〈k2〉 is the fluctuating part of the field k2(y). (Hereafter, the integrals
are taken over the whole R3, if the integration domain is not explicitly indicated.)

Let us introduce (3.4) into (2.1)

I = I[ϕ(·)] =I[Φ0,Φ1(·)] =
1
2

〈∣∣∣∫ ∇Φ1(x− y)δk2(y) d3y
∣∣∣2

+ k2(x)
∣∣∣Φ0 +

∫
Φ1(x− y)δk2(y) d3y

∣∣∣2 −2KΦ0

〉
.

Upon varying this functional with respect to Φ0, we get〈
k2(x)

[
Φ0 +

∫
Φ1(x− y)δk2(y) d3y

]〉
= K,

which means that the trial fields (3.4) should satisfy the same condition 〈k2(x)ϕ(x)〉 = K
as the true fields ϕ(x), see (1.3). Consequently

Φ0 =
1
k2

V

(
K −

∫
Φ1(y)Mk

2 (y) d3y
)
, (3.5)

so that the kernel Φ1(x) should be only varied; here Mk
2 (y) = 〈δk2(0)δk2(y)〉 is the two-

point correlation function for the absorption coefficient k2(x).
Let us introduce again the fields (3.4) in the functional (2.1), taking now (3.5) into

account. This makes I a functional of Φ1(x) only, whose Euler-Lagrange equation has the
form ∫

∆Φ1(x− y)Mk
2 (y) d3y −

∫
Φ1(x− y)

[
k2

V M
k
2 (y) +Mk

3 (x,y)
]
d3y

+
1
k2

V

Mk
2 (x)

[∫
Φ1(y)Mk

2 (y) d3y −K

]
= 0,

(3.6)

where Mk
3 (y1,y2) = 〈δk2(0)δk2(y1)δk2(y2)〉 is the three-point correlation function for the

field k2(x).
Obviously, the class of trial fields (3.4) (with or without the constraint (3.5)) forms a

convex set in the space H of statistically homogeneous random fields. Since the functional
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I is strongly convex, its restriction on this class has a minimizing element which is unique.
This means that the Euler-Lagrange equation (3.6) for the kernel Φ1(x) possesses a solution
which is unique; we denote this solution as Φ̃1(x). Upon inserting the latter into the
functional (2.1) and taking (3.5) and (3.6) into account, we reach the following upper
bound on the effective absorption coefficient:

k∗2 ≤ k2
u, k2

u =
Kk2

V

K −
∫

Φ̃1(y)Mk
2 (y) d3y

. (3.7)

It should be emphasized that the bound k2
u is three-point, i.e., its evaluation needs

knowledge of the `-point correlation functions for the medium up to ` = 3. Moreover,
repeating the arguments from the scalar conductivity case [7], we can claim that k2

u is the
optimal three-point bound in the sense that it is the tightest one which only employs the
above mentioned statistical information.

The solution of eqn (3.6) for a given random constitution, i.e., for given functions Mk
2

and Mk
3 , is very difficult. That is why we shall consider its solution in the simplest possible

case of a weakly inhomogeneous medium. The obtained solution will reappear later in a
Ritz’s type variational procedures for bounding the effective absorption coefficient k∗2

(Section 4).

3.3. The optimal upper bound for a weakly inhomogeneous medium
Let the medium be weakly inhomogeneous, i.e.,

δκ = max
x

∣∣ δk2(x
∣∣

〈k2〉
� 1.

We look for the solution of eqn (3.6) as the perturbation series

Φ̃1(x) = Φ(0)
1 (x) + Φ(1)

1 (x) + · · · , (3.8)

assuming that Φ(p)
1 (x) ∼ (δκ)p, p = 0, 1, . . . . The introduction of (3.8) into eqn (3.6) leads

in a standard way to the chain of equations∫ [
∆Φ(0)

1 (x− y)− 〈k2〉Φ(0)
1 (x− y)

]
Mk

2 (y) d3y − K

〈k2〉
Mk

2 (x) = 0, (3.9)

∫ [
∆Φ(1)

1 (x− y)− k2
V Φ(1)

1 (x− y)
]
Mk

2 (y) d3y

−
∫

Φ(0)
1 (x− y)Mk

3 (y) d3y = 0, etc.

(3.10)

The solution of eqn (3.9) is obvious

Φ(0)
1 (x) = − K

〈k2〉
GV (x) (3.11)
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—it is proportional to the Green function GV (x) =
1

4π|x|
exp(−kV |x|) of the operator

∆− k2
V , i.e.

∆GV (x)− k2
V GV (x) + δ(x) = 0.

Making use of (3.7) and (3.11), we get

k2
u

k2
V

= 1− M2
k (0)
k4

V

Ik
2 + o((δκ)2), (3.12)

where

Ik
2 =

k2
V

Mk
2 (0)

∫
GV (y)Mk

2 (y) d3y (3.13)

is a dimensionless statistical parameter for the medium, depending on the two-point cor-
relation function Mk

2 (y) solely. It could be easily shown that for dispersions of nonover-
lapping spheres Ik

2 is simply connected with the parameter I that appeared in Talbot
and Willis’ approximate scheme for evaluating k∗2, see [4, p.I, eqn (3.25)], and in their
bounds of Hashin-Shtrikman’s type, derived in [4, p.II]. Moreover, these authors were able
to evaluate I in the case when the two-point statistics of the dispersion is governed by the
well-known Percus-Yevick approximation.

Unlike (3.9), eqn (3.10) is not, however, an equation of convolution type. When
calculating the bound k2

u to the order o((δκ)3) we do not need the exact solution Φ(1)
1 (x),

but only the integral

F1(x) =
∫

Φ(1)
1 (x− y)M2

k (y) d3y

at x = 0. From (3.10) we get the differential equation for the function F1(x):

∆F1(x)− k2
V F1(x) +

∫
Φ(0)

1 (x− y)Mk
3 (x,y) d3y = 0

which immediately gives

F1(0) =
K

k2
V

∫ ∫
GV (y1)GV (y2)Mk

3 (y1,y2) d3y1d
3y2,

taking (3.11) into account. Thus

k2
u

k2
V

= 1− M2
k (0)
k4

V

Ik
2 +

M3
k (0,0)
k6

V

Ik
3 + o((δκ)3), (3.14)

where we have introduced, similarly to (3.13), another dimensionless statistical parameter

Ik
3 =

k4
V

Mk
3 (0,0)

∫ ∫
GV (y1)GV (y2)Mk

3 (y1,y2) d3y1d
3y2, (3.15)
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depending already on the three-point correlation Mk
3 (y1,y2).

3.4. Coincidence of k∗2 and k2
u to the order o((δκ)3)

A perturbation solution of the type of (3.8) could be obviously found for the basic problem
(1.1):

ϕ(x) = ϕ(0)(x) + ϕ(1)(x) + · · · , (3.16)

where ϕ(p)(x) ∼ (δκ)p at δκ → 0, p = 0, 1, . . . . Together with (1.1), the decomposition
(3.16) immediately yields the chain of equations

−k2
V ϕ

(0) +K = 0,

∆ϕ(p) − k2
V ϕ

(p) − δk2ϕ(p−1) = 0,

p = 1, 2, . . . , i.e.,

ϕ(0) =
K

k2
V

,

ϕ(1) = − K

k2
V

∫
GV (x− y)δk2(y) d3y,

etc., so that ϕ(p) will be represented as a p-tuple integral containing the product of p Green
functions GV . It is easy to check, in turn, that

k∗2

k2
V

= 1− Mk
2 (0)
k4

V

Ik
2 +

Mk
3 (0,0)
k6

V

Ik
3 + o((δκ)3). (3.17)

The comparison between (3.14) and (3.17) shows that indeed the optimal bound k2
u

coincides with the effective absorption coefficient k∗2 to the order o((δκ)3) for a weakly
inhomogeneous medium. A similar result has been derived in [7] in the scalar conductivity
case.

3.5. Optimal three-point lower bound
Consider the functional J in the dual principle

J [e∗(·)] = −1
2

〈
e∗2(x) + α2(x)(∇ · e∗(x) +K)2

〉
→ max, (3.18)

α2(x) = 1/k2(x); we used the fact that ∇ · e∗ = ϕ∗ in order to view J as a functional of
the field e∗(x) only.

Similarly to (3.4), we consider the class of trial fields

e∗(x) = ∇
∫

Ψ(x− y)δα2(y) d3y, (3.19)

where δα2(y) = α2(y)− 〈α2〉 is the fluctuation of the “compliance” field α2(y) and Ψ(x)
is a nonrandom kernel.
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The class of trial fields (3.19) is the obvious counterpart of the class (3.4), having
recalled that ∇ · e∗ = ϕ∗. The only difference is that instead of δk2(y) the fluctuation
δα2(y) appears in (3.19). Note, however, that the random fields δk2(y) and δα2(y) are
simply interrelated only under certain additional assumptions, e.g., if the medium is two-
phase, see Section 4.4 below.

The introduction of (3.19) into (3.18) turns J into a functional of the kernel Ψ, namely

J [e∗(·)] = J [Ψ(·)] = −1
2

{∫ ∫
∇Ψ(y1) · ∇Ψ(y2)Mα

2 (y1 − y2) d3y1d
3y2

+
∫ ∫

∆Ψ(y1)∆Ψ(y2)
[
〈α2〉Mα

2 (y1 − y2) +Mα
3 (y1,y2)

]
d3y1d

3y2

+ 2K
∫

∆Ψ(y)Mα
2 (y) d3y +K2〈α2〉

}
,

(3.20)

where, similarly to the absorption field k2(x),

Mα
2 (y) = 〈δα2(0)δα2(y)〉, Mα

3 (y1,y2) = 〈δα2(0)δα2(y1)δα2(y2)〉

are the two- and three-point correlation functions for the compliance field α2(x). The
Euler-Lagrange equation for the functional (3.20) is obvious∫ [

〈α2〉∆Ψ(x− y)−Ψ(x− y)
]
∆Mα

2 (y) d3y

+
∫

∆Ψ(x− y)∆xM
α
3 (x,y) d3y +K∆Mα

2 (x) = 0.

(3.21)

Eqn (3.21) is the counterpart of the Euler-Lagrange equation (3.6); repeating the
respective arguments, concerning the latter, we can claim that the solution, Ψ̃(x), exists
and it is unique. Introducing this solution into the functional J [Ψ(·)], see (3.20), and using
eqn (3.21), leads us to a lower bound on the effective conductivity k∗2, namely

k2
` ≤ k∗2, k2

` =
K

K〈α2〉+
∫

∆Ψ̃(y)Mα
2 (y) d3y

, (3.22)

which corresponds to the upper bound k2
u, given in (3.7). Note that the bound (3.22) could

be immediately obtained upon averaging eqn (2.8):

K

k2
`

= 〈ϕ〉 = 〈α2(x)(ϕ∗(x) +K)〉 = 〈α2(x)∇ · e∗(x)〉+K〈α2〉.

This is obviously a three-point bound, since its evaluation needs knowledge of the `-point
correlation functions Mα

2 and Mα
3 for the compliance field up to ` = 3. Repeating the

arguments of [7] we can again state that the bound k2
` is the optimal three-point lower
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bound, i.e., the best one which employs solely the statistical information incorporated in
these correlation functions.

3.6. The optimal lower bound for a weakly inhomogeneous medium
Let the medium be again weakly inhomogeneous, but in the sense that

δα = max
x

∣∣ δα2(x)
∣∣

〈α2〉
� 1.

For a two-phase medium this assumption is equivalent to that that δκ � 1, adopted in
Section 3.3. Similarly to the analysis, performed there, we represent the solution of eqn
(3.21) as the perturbation series

Ψ̃(x) = Ψ(0)(x) + Ψ(1)(x) + · · · , (3.23)

assuming that Ψ(p)(x) ∼ (δα)p, p = 0, 1, . . . . The introduction of (3.23) into eqn (3.21)
leads in a standard way to the chain of equations∫ [

∆Ψ(0)(x− y)− k2
RΨ(0)(x− y)

]
∆Mα

2 (y) d3y +Kk2
R∆Mα

2 (x) = 0, (3.24)∫ [
∆Ψ(1)(x− y)− k2

RΨ(1)(x− y)
]
∆Mα

2 (y) d3y

+ k2
R

∫
Ψ(0)(x− y)∆xM

α
3 (x,y) d3y = 0, . . . .

(3.25)

The solution of eqn (3.24) is obvious

Ψ(0)(x) = Kk2
RGR(x),

where GR(x) =
1

4π|x|
exp(−kR|x|) is the Green function for the operator ∆− k2

R. For the

integral, appearing in (3.22), we find∫
∆Ψ(1)(y)Mα

2 (y) d3y = Kk4
R

∫ ∫
∆GR(y1)∆GR(y2)Mα

3 (y1,y2) d3y1d
3y2,

repeating the respective arguments of Section 3.3. The eventual result for the optimal
three-point lower bound (3.22) reads

k2
`

k2
R

= 1 + k4
RM

α
2 (0)Iα

2 − k6
RM

α
3 (0,0)Iα

3 + o((δα)3), (3.26)

where
Iα
2 = − 1

Mα
2 (0)

∫
∆GR(y)Mα

2 (y) d3y,

Iα
3 =

1
Mα

3 (0,0)

∫ ∫
∆GR(y1)∆GR(y2)Mα

3 (y1,y2) d3y1d
3y2

(3.27)
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are the dimensionless statistical parameters, corresponding to those, introduced in (3.13)
and (3.15) for the absorption field k2(x).

3.7. Coincidence of k∗2 and k2
` to the order o((δα)3)

To show this, we rewrite eqn (1.1) in the form

α2(x)∆ϕ(x)− ϕ(x) + α2(x)K = 0. (3.28)

Its perturbation solution in this case has the form (3.16), with the only difference that
ϕ(p)(x) ∼ (δα)p at δα → 0, p = 0, 1, . . . . The introduction of (3.16) into (3.28) yields the
respective chain of equations, similar to that in Section 3.4, so that

ϕ(0) =
K

k2
R

, ϕ(1)(x) = Kk2
R

∫
GR(x− y)δα2(y) d3y,

ϕ(p)(x) = k2
R

∫
GR(x− y)∆ϕ(p−1)(y)δα2(y) d3y,

(3.29)

p = 2, 3, . . . . A direct check shows that∫
∆GR(x) d3x = 0

which implies that ∫
∆ϕ(p)(x) d3x = 0, p = 0, 1, , . . . . (3.30)

To calculate k∗2 to the needed order, we use the definition (1.5) and eqn (3.28):

K

k∗2
= 〈ϕ(x)〉 = 〈α2(x)(∆ϕ(x) +K)〉.

Upon inserting (3.29) here and making use of (3.30), we get after simple algebra the
expression of k∗2 to the needed order o((δα)3), which indeed coincides with that for k2

` , as
given in (3.26).

4. BERAN’S TYPE BOUNDS

4.1. Ritz’s procedure
Due to the difficulties connected with the solution of eqns (3.6) and (3.21) for the optimal
kernels, we shall resort here to a simpler procedure of Ritz’s type in which we replace, e.g.,
the class (3.4) of trial fields with the narrower one

ϕ(x) = Φ0 + λ

∫
Φ(x− y)δk2(y) d3y, (4.1)
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where Φ0 and λ are adjustable scalars and Φ(x) is a fixed kernel. The constants Φ0 and λ
are subject to the constraint

Φ0k
2
V + λ

∫
Φ(y)Mk

2 (y) d3y = K, (4.2)

as it follows from (3.5). The procedure is now straightforward. We insert (4.1) into the
functional I, see (2.1), and take into account (4.2). This makes I a quadratic function of
λ whose minimization yields an upper bound on the effective absorption coefficient k∗2.
This bound will depend on the choice of the kernel Φ(x) in the class (4.1). Similarly to the
scalar conductivity case [12,13], we call the kernel Φ(x) optimal, if the respective bound
coincides with the optimal one, k2

u. The problem of determining the optimal, in this sense,
kernels is equivalent to solving eqn (3.6): since the solution of this equation is unique, all
such kernels are proportional to it.

A natural and convenient choice of the kernel Φ(x) is the Green function GV (x). It is
natural because it already appeared in the perturbation solution of eqn (3.6), and of the
basic eqn (1.1). The convenience is due to simplification of the needed calculations of the
respective bounds. A similar choice of the kernel in the scalar conductivity problem was
proposed by Beran [8]; that is why the bounds on k∗2, obtained hereafter, will be called
Beran’s. The problem of their optimality will be addressed in Section 5.

4.2. Upper Beran’s type bound
In accordance with the foregoing, let us minimize the functional I in (2.1) over the class
of trial fields

ϕ(x) = Φ0 + λ

∫
GV (x− y)δk2(y) d3y, (4.3)

under the constraint

Φ0k
2
V + λ

Mk
2 (0)
k2

V

Ik
2 = K,

see (4.2) and the definition (3.13) of the dimensionless statistical parameter Ik
2 . The

minimization with respect to λ is straightforward and the final result is the upper Beran’s
type bound:

k∗2

k2
V

≤ 1− Mk
2 (0)
k4

V

(Ik
2 )2

Ik
2 +

Mk
3 (0,0)

k2
V M

k
2 (0)

Ik
3

, (4.4)

with Ik
3 defined in (3.15).

Obviously, the upper bound (4.4) coincides to the order o((δκ)3) with both the optimal
upper bound k2

u, see (3.14), and with the exact value of the absorption coefficient k∗2, given
in (3.17).

4.3. Lower Beran’s type bound
The same arguments can be repeated in connection with the dual principle (2.10). In this
case (3.19) is replaced by the narrower class

e∗(x) = λ∇
∫

Ψ(x− y)δα2(y) d3y,
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where Ψ(x) is a fixed kernel and the constant λ is adjustable. If the bound so obtained
coincides with k2

l —the optimal three-point lower bound, the kernel Ψ is called optimal.
The optimal kernels have again a simple description here—they are proportional to the
solution Ψ̃(x) of eqn (3.21).

Similarly to Section 4.1, we may argue that a natural and convenient choice of the
kernel Ψ(x) is the Green function GR(x). That is why we maximize the functional (2.10)
over the class of trial fields

e∗(x) = λ∇
∫
GR(x− y)δα2(y) d3y,

with respect to λ. The final result is the above mentioned lower bound of Beran’s type1− k4
RM

α
2 (0)

(Iα
2 )2

Iα
2 + k2

R

Mα
3 (0,0)
Mα

2 (0)
Iα
3


−1

≤ k∗2

k2
R

, (4.5)

where Iα
2 and Iα

3 are the statistical parameters (3.27).
Obviously, the lower bound (4.5) coincides to the order o((δα)3) with both the optimal

lower bound k2
` , see (3.26), and with the exact value of the absorption coefficient k∗2, given

in (3.17).

4.4. Beran’s type bounds are third-order
Let us recall that Beran’s bounds in the scalar conductivity case depend on two statistical
parameters [8]. For a two-phase medium these two parameters are interrelated, so that
both may be expressed by a single one, following, e.g., Milton [14]. In the absorption
problem under study the needed parameters are four: Ik

2 , Ik
3 , Iα

2 and Iα
3 . We derived,

however, two perturbation expansions for the effective absorption coefficient k∗2—the first
is (3.17), in powers of δκ, the second is (3.26), in powers of δα. It sounds appealing at
a first glance to compare these expansions and get as a result two relations between the
above mentioned four statistical parameters. This is, unfortunately, not possible. The
basic reason is that for an arbitrary random medium δκ and δα are not connected, so that
no comparison between (3.17) and (3.26) can be done. The latter is possible only for a
two-phase medium for which

k2(x) = k2
m + [k2]If (x), α2(x) = α2

m + [α2]If (x), (4.6)

where If (x) is the characteristic function of the volume, occupied by one of the con-
stituents, whose characteristics are supplied hereafter with the subscript ‘f ’: its absorption
coefficient and “compliance” are thus k2

f and α2
f = 1/k2

f , the volume fraction is c = cf . For
the other constituents we use the subscript ‘m’, so that its parameters are, respectively,
k2

m, α2
m = 1/k2

m and cm = 1− c. As usual, [k2] = k2
f − k2

m, etc. Then

δk2(x) = [k2]I ′f (x), δα2(x) = [α2]I ′f (x), (4.7)
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where I ′f (x) = If (x)− c is the fluctuating part of If (x); besides

Mk
2 (0) = c(1− c)[k2]2, Mk

3 (0,0) = c(1− c)(1− 2c)[k2]3, (4.8)

and similarly for Mα
2 and Mα

3 .
Making use of (4.8), we rewrite the bounds (4.4) and (4.5) for a two-phase medium

in a bit simplified form

k2
R

{
1− k4

R[α2]2
c(1− c)(Iα

2 )2

Iα
2 + k2

R[α2](1− 2c)Iα
3

}−1

≤ k∗2 ≤ k2
V

1− [k2]2

k4
V

c(1− c)(Ik
2 )2

Ik
2 +

[k2]
k2

V

(1− 2c)Ik
3

 ,

(4.9)

keeping in mind that now k2
V = ck2

f + (1− c)k2
m and k2

R = (c/k2
f + (1− c)/k2

m)−1. Due to
(4.7), the four statistical parameters Ik

2 , Ik
3 , Iα

2 and Iα
3 depend only on the two- and three-

point correlation functions of the field I ′f (x). These correlation functions are, however,
multiplied in the respective integrals by different functions, namely, by GV (x) or GR(x)—
a situation that does not appear in the scalar conductivity or elastic cases (one and the
same Green function is used there in both upper and lower Beran’s bounds). It is noted
also that one of the bounds (4.9) degenerates at kf/km → 0 (the lower) or kf/km → ∞
(the upper).

For a two-phase medium, the perturbation expansions (3.17) and (3.26) may already
be compared, because they both can be recast as expansions in powers of, say, ∆κ =
[k2]/k2

m. It is then readily checked that

k2
R

k2
V

= 1 +O((∆κ)2).

That is why, in the definitions (3.27) of the parameters Iα
2 and Iα

3 , we may replace k2
R by

k2
V , making an error of the order O((∆κ)2). These parameters multiply (∆κ)2 and (∆κ)3

in (3.26) (having made an obvious transition from δα to ∆κ there), so that, to the order
o((∆κ)3) the expansion (3.26) will not be affected by the replacement of k2

R by k2
V . A

simple check will show, in turn, that both expansions (3.14) and (3.26) coincide to the
same order o((∆κ)3).

Two conclusions can be drawn upon the foregoing reasoning.
The first is that the existence of two perturbation expansions (3.14) and (3.26) for the

effective absorption coefficient k∗2 does not lead to any relations between the four statistical
parameters in the Beran type bounds (4.4) and (4.5) even for a two-phase medium. Thus
they are all independent and should be somehow evaluated for a given random constitution.

The second is the fact that Beran’s type bounds (4.9) for a two-phase medium are
third-order, i.e., they coincide to the asymptotic order o((∆κ)3) in the weakly inhomoge-
neous case. As is well-known, the same fact holds in the scalar conductivity and elastic
cases.
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5. BOUNDS FOR CELLULAR MEDIA

To illustrate the performance of the Beran’s type bounds (4.9) we consider a simple and
quite realistic, for a wide class of two-phase media, model of a cellular medium, proposed by
Miller [15]. It is obtained by dividing the space into closed regions, called cells. Afterwards
the cells are randomly filled up with one of the two constituents possessing (in our context)
absorption coefficients k2

f or k2
m. The volume fractions of the latter are respectively cf or

cm, see [15], [16] for details, and [17] for the most recent discussion and development.
Under the assumption of statistical isotropy and spherical shape of the cells, the two-

and three-point correlation functions for such a cellular medium have, after Hori [16], the
form:

Mk
2 (y) = Mk

2 (0)
1
Va

∫
h(z)h(y − z) d3z,

Mk
3 (y1,y2) = Mk

3 (0,0)
1
Va

∫
h(z)h(y1 − z)h(y2 − z) d3z,

(5.1)

where h(x) denotes the characteristic function of the mean cell—a ball of radius a, Va =
4
3πa

3 and Mk
2 (0) and Mk

3 (0,0) are given in (4.8). Similar expressions hold for the “com-
pliance” field α2(x) = 1/k2(x).

On introducing (5.1) into the definitions (3.13) and (3.15) of the statistical parameters
Ik
2 and Ik

3 respectively, one gets integrals involving the Helmholtz potential χV = h∗GV (x)
for a single sphere of radius a, located at the origin. Using the simple analytical form of
the latter, the following expressions for these parameters are eventually obtained:

Ik
2 = 1− F2(aV ), Ik

3 = 1− 2F2(aV ) + F3(aV ), (5.2a)

where aV is the dimensionless parameter aV = akV and

F2(x) = 3
1 + x

x3
e−x(x coshx− sinhx),

F3(x) =
3
2

(1 + x)2

x3
e−2x(sinhx coshx− x)1.

(5.3)

Similar calculations for the statistical parameters Iα
2 and Iα

3 , that enter the lower
bound (4.5), involve the Helmholtz potential χR = h ∗ GR(x) for a sphere of radius a,
located at the origin. It appears finally that

Iα
2 = F2(aR), Iα

3 = F3(aR), (5.2b)

where aR = akR and the functions F2 and F3 are defined in (5.3).
Note that F2(x) and F3(x) are monotonically decreasing functions of x and F2(0) =

F3(0) = 1, F2(∞) = F3(∞) = 0. That is why the four statistical parameters Ik
2 , Ik

3 , Iα
2

and Iα
3 for a cellular medium always lie in the interval [0, 1].
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Tables 1 and 2 illustrate the performance of the bounds (4.9) for a cellular medium at
am = 1 and am = 10, respectively, where am = akm. It is well seen that the bounds remain
tolerably close and supply useful information about k∗2 even when the absorption ability of
one of the constituents is one hundred times greater than that of the other (k2

f/k
2
m = 100

or 0.01).
The cellular model helps us also to demonstrate that Beran’s type bounds (4.9) are

not optimal even for this simple microgeometry. Indeed, their optimality, in the sense
explained in Section 3, would mean here that eqn (3.6) has a solution Φ1(x) = λGV (x)
for a certain scalar λ, provided the correlation functions are given in (5.1). It is easy
to see that the latter would imply proportionality of the convolutions h ∗ h and χV ∗ h,
which could be true only if the Helmholtz potential of a sphere, χV (x), is proportional to
the characteristic function, h(x), of the same sphere. But this is obviously wrong. Thus
Beran’s type upper bounds are not optimal three-point bounds even for cellular media;
more restrictive three-point bounds could be obtained if the kernel Φ1(x) is chosen more
skillfully.
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