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ABSTRACT—The aim of the paper is to outline and discuss some ideas and preliminary results concerning
microstructural modelling of brittle-like damage in solids. We argue that the basic premises of the simple
microelastic theory (independent micro-dilatation of particles), developed by S. Cowin et al. and the
author, are a natural starting point in developing certain continuum damage mechanics models. In the
brittle-like case under study, with the assumption of isotropic deterioration, the damage rate is added to
the arguments (strain, damage and damage gradient) of the elastic energy density. The additional field
quantity of the theory—the damage parameter in our context—leads to the appearance of hyperstresses
and a balance equation for them. It is shown that the latter can be conveniently identified with the
well-known Kachanov’s law of damage growth. Thus this law, traditionally introduced through purely
phenomenological arguments, finds a natural place in the herein proposed damage model as an equation
expressing hyperstress equilibrium.

1. INTRODUCTION

In continuum damage mechanics, after the pioneering work of L. Kachanov [1], damage is
often treated as a certain scalar quantity—an internal scalar variable for which there is no need to
attribute a specific physical meaning. The kinetic laws of damage growth are then prescribed using
tacitly mathematical convenience arguments and the respective material constants are specified on
the base of experimental data. Though instructive and useful in many cases of practical interest,
see [2–4], this approach carries a number of arbitrary assumptions and cannot be considered as an
adequate tool in the analysis of more complicated damage and failure problems. To get a more
fruitful damage mechanics it is necessary that a bit more of a physical microstructural insight be
introduced, see the survey [4] for details and a critical evaluation. One of the possibilities that
seems intrinsically correct and appealing in the case of randomly distributed spheroidal cavities is
to employ their volume fraction (void ratio) as the measure of damage. (Note that such a measure
has been used by a number of authors, starting perhaps with Davison et al. [5] for ductile metals.)
Accordingly, we shall treat the damage process as a generation and growth of microdefects of the
type of microvoids. Since damage is assumed isotropic, these defects introduce above all a certain
irreversible volume change of the body points which is independent of their displacement. This
fact, in turn, leads us immediately to the basic kinematical premises of an exceptionally simple
microstructural continuum theory, introduced and developed by the author [6–9] (under the name
dilatation theory of elasticity) and by S. Cowin et al. (theory of materials with voids) [10,11], see
also [12]. In dilatation elasticity we imagine material points to be micro-volumes which may undergo
internal dilatation independent of the macro-dilatation ∇ · u, prescribed by the displacement field
u(x) of the mass centers of the points. Kinematically, this model is a particular case of the
more general micromorphic theory of Eringen and Şuhubi [13] (developed at the same time by
Mindlin [14] as well) in which the micro-volumes are assumed undergoing internal deformation,
described by means of the so-called micro-distortion tensor α, independent of the macro-distortion
∇u, generated by the displacement field u(x). The independence of dilatation leads in turn to

† On leave from Faculty of Mathematics and Informatics, “St. Kliment Ohridski” University of
Sofia, 5 blvd J. Bourchier, BG-1164 Sofia, Bulgaria; e-mail: kmarkov@fmi.uni-sofia.bg

139



appearance of hyperstresses whose balance equation, within the proposed framework, could be
directly connected, as we shall argue, to damage evolution law.

The outline of the paper is as follows. The basic equations of the dilatation elasticity are briefly
recalled in Section 2. In Section 3, having added the damage rate ω̇ to the basic parameters (strain
tensor, damage ω and its gradient ∇ω ), we repeat the thermodynamic reasoning of J. Nunziato and
S. Cowin [11] and get as a result the governing equations of our damage model. It is to be pointed
out that the damage phenomena treated by the model are, generally speaking, of brittle nature.
The reason is that no account is taken for plastic strain or strain rate in damage accumulation—the
body fails through a microdefects growth governed, as a matter of fact, by Kachanov’s type damage
evolution law. In Section 4 we discuss the simplest specification of the model when the internal
energy is a quadratic function of its arguments with constant coefficients. Even in this simplest case
the respective system of coupled equations for displacement and damage fields is strongly nonlinear.
The reason is that the density of the solid depends on damage. To illustrate the performance of this
simplest model, we treat at some length an illustrative example concerned with uniaxial tension of
a deteriorating rod, inspired by a similar analysis of Passman [12] and Passman and Trucano [15]
for their creep-damage model. At a first glance a very interesting feature of our model shows up,
namely, the existence of a homogeneous damage field ω ≡ ω0, 0 < ω0 < 1. A closer look reveals,
unfortunately, that certain unreal material behaviour can be also predicted within the model—for
instance, a decrease of the homogeneous time-dependent solution ω = ω(t) for which ω(0) > ω0.
That is why we reject the assumption of constant material parameters as physically unacceptable
and assume them, similarly to the density field, depending on damage (Section 5). It turns out
possible to choose plausible forms of the material parameters as functions of ω and the strain, so
that the equation governing damage field reduces to the well-known Kachanov law of brittle damage
accumulation in the unidimensional case. Thus we may conclude that the latter law, within the
micromorphic framework, expresses the balance of microstresses.

2. BASIC EQUATIONS

In accordance with the foregoing, we first write down the basic balance equations of the
micromorphic theory (under the assumption of small strain) in the particular case when the micro-
distortion tensor α is spherical

α = ωI, (2.1)

ω is the scalar damage variable and I is the second rank unit tensor. These equations read

ρv̇ = ∇ · ε + ρf ,

ρκ̇ω̇ = ∇ · h + p− s + ρ`,

(2.2)

and
ρė = σ : ξ + (s− p)ω̇ + h · ∇ω̇ −∇ · q + ρr, (2.3)

which gives the energy balance; the colon denotes contraction with respect to two pairs of indices.
The following nomenclature is adopted here:

ξ = ε̇—the strain rate tensor,
f—the body force density,
`—the body microstress density,
p = 1

3 trσ—the hydrostatic pressure, associated with the macrostress tensor σ,
s—the total hydrostatic pressure which differs from p due to independence of dilatation,
h—the hyperstress field,
q—the heat flux,
r—the body heating.
Note that the density ρ of the solid has now the form

ρ = ρ0(1− ω), (2.4)
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where ρ0 is the density of the undamaged material. Also, the microinertia coefficient κ in eqn (2.2)2
has the form

κ = κ(ω), (2.5)

as argued in the literature, see [11].
We add also the Clausius-Duhem inequality in its standard form

ρη̇ ≥ −∇ · q
T

+
ρr

T
, (2.6)

where η is the entropy and T—the temperature.

3. THE BRITTLE-DAMAGE MODEL OF MICROMORPHIC TYPE

The displacement field u = u(x, t) and the damage variable ω = ω(x, t) (interpreted as an
independent volume change) describe, according to the foregoing reasoning, the kinematics of a
deteriorating solid. Its thermal behaviour is described, in turn, by the entropy density η = η(x, t).
We shall repeat now the simple thermodynamic reasoning of Nunziato and Cowin [11] with only
one point of departure.

By definition, the triple (u, ω, η) constitutes a thermokinetic process in the damaged solid; in
what follows the fields u, ω and η will be assumed smooth enough. In the brittle case under study
there is no irreversible macro-deformation (creep or plastic), if the level of damage is fixed (i.e.,
at ω = const). That is why only the strain tensor ε should be taken into account. The tensor ε,
together with the two other strain characteristics of the dilatation-elastic solid, ω and ∇ω, define
the local strain state of a body point. If we add the entropy at the same point, we get the array

S = {ε, ω,∇ω, η}, (3.1)

which we call a local elastic state of the damaged solid. The simplest way to invoke damage evolution
into the model is to include the time-derivative ω̇ among the local parameters (3.1) and thus to
assume that the overall response of the deteriorating solid depends on the parameters {S, ω̇}. In
other words, we postulate the following set of constitutive equations

e = e(S, ω̇), σ = σ(S, ω̇),

h = h(S, ω̇), s− p = S(S, ω̇).
(3.2)

Besides, we assume for simplicity that the solid does not conduct heat, i.e., q = 0, and there
is no body heating, r = 0. The energy balance (2.3) and entropy inequality then simplify

ρė = σ : ξ + (s− p)ω̇ + h · ∇ω̇ + ρr, (3.3)

ρη̇ ≥ 0. (3.4)

It is important to point out that the form (3.3) of the energy balance equation is just the
above mentioned point of disagreement between the analysis of Nunziato and Cowin [11] and ours.
Namely, the authors of [11] take ρRė in the l.-h. side of eqn (3.3), where ρR is the density field in
a fixed reference configuration of the body, while here we take the current value ρ of the density.
Thus ρR is not affected by damage evolution and remain constant in material points, in contrast
to the current density ρ which “feels” damage according to eqn (2.4). In our view the assumption
ρ = const and thus ρ = ρR can be justified only if damage magnitude (i.e., void ratio in our context)
is very small, ω � 1. In the latter case we would get the linearized version of our model which
coincides exactly with that of Nunziato and Cowin [11].
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We next subtract (3.4) (multiplied by T ) from (3.3) and, using the first of the constitutive
assumptions (3.2) (that for the internal energy density e), rearrange the result in the form[

σ− ρ
∂e

∂ε

]
: ξ +

[
s− p− ρ

∂e

∂ω

]
ω̇

+ ρ
∂e

∂ω
ω̈ +

[
h− ρ

∂e

∂∇ω

]
· ∇ω̇ + ρ

[
T − ∂e

∂η

]
η̇ ≥ 0.

(3.5)

This inequality leads as usual to certain restrictions concerning the constitutive equations (3.2).
Namely it appears that

∂e

∂ω̇
= 0, i.e., e = e(ε, ω,∇ω, η), (3.6)1

σ = ρ
∂e

∂ε
, h = ρ

∂e

∂∇ω
, T = ρ

∂e

η
. (3.6)2

Only the microstress s can thus depend on the damage rate ω̇; moreover

s− p = ρ
∂e

∂ω
+ F (S, ω̇) (3.7)

with the only restriction on the function F that

F (S, ω̇)ω̇ ≥ 0, (3.8)

as it follows from (3.5) and (3.6); this is the dissipation inequality of the model under study. It
remains now to choose plausible forms of the functions e and F and to combine them with the
balance equations (2.2) in order to get a coupled system for the unknown fields u(x, t) and ω(x, t)
in the damaged solid. Prior to this, however, we note that only stationary processes in the solid
will be dealt with in the sequel, i.e., v = const and ω̇ = const. Moreover, the damage rate ω̇
and damage “acceleration” ω̈ should be small except for a very short interval before final failure
of the body and that is why we may neglect the term ω̇2 as compared to ω̇. Consequently, the
microinertia term in eqn (2.2)2:

κ̇ω̇ = κω̈ + κ′(ω)ω̇2

should be also neglected, so that the balance equations (2.2), at the absence of body sources, reduce
to their static form

∇ · σ = 0, ∇ · h + p− s = 0, (3.9)

Note that a similar in spirit micromorphic model was introduced by Passman and Trucano
[15] who, in order to account for creep-damage interrelation, introduced the strain-rate tensor ξ,
instead of the strain ε, in the array (3.1).

A final remark in this Section is warranted. Assume the damage field homogeneous, ω = ω(t).
Then h = 0, see (3.6)2, and thus s−p = 0 as it follows from the balance equation (3.9)2. Eqn (3.7)
now yields

ρ
∂e

∂ω
+ F (S, ω̇) = 0. (3.10)

Let
F = fω̇, f = f(S, ω̇) ≥ 0, (3.11)

where f is a positive and arbitrary, for the moment, function to be discussed and specified later on.
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Assuming ρ damage independent (which is a crude approximation, as we shall argue in the
next Section), we recast (3.10) as

ω̇ = 2Y/f, Y = −1
2

∂(ρe)
∂ω

,

so that Y is the so-called damage energy release rate. As is well-known the quantity Y plays an
important role in the recent development of continuum damage mechanics, especially in formulating
the plastic damage models, based on the notion of damage surface, see [16,17] and the references
therein. Thus the damage rate in our micromorphic model (at constant ρ) appears proportional to
the damage energy release rate—the thermodynamic force, conjugated to the damage variable.

4. THE SIMPLEST SPECIFICATION OF THE MODEL

4.1. The governing equations

We shall now concentrate on the simplest plausible choice for the functions e and F in order
to illuminate certain characteristic features, introduced by the micromorphic premises in damage
picture.

Obviously, the simplest form of e in the isotropic case under study is quadratic

ρe =
1
2
λtr ε2 + µε : ε− ξ1ωtr ε +

1
2
ξ2ω

2 +
1
2
ξ3|∇ω|2. (4.1)

Besides
µ > 0, k = λ +

2
3
µ > 0, ξ2 > 0, ξ3 > 0, kξ2 − ξ2

1 > 0 (4.2)

in order to assure positive definiteness of e.
Note that ρ itself depends on ω, see (2.4), so that it is more convenient to deal with ρe, as we

did in (4.1).
As a very crude approximation, we first assume all material functions in (4.1) constant. Our

first task will be to show that such an assumption leads to certain unrealistic predictions for damage
process and should be therefore rejected in favor to the assumption that the material parameters,
similarly to density field ρ, are sensitive to damage magnitude.

Under the assumption of constant parameters in the potential function (4.1) we get, using
(3.6) and (3.7), that

σ = λItr ε + 2µε− ξ1ωI, h = ξ3∇ω,

s− p = fω̇ + ξ2ω − ξ1tr ε (4.3)

+
1

1− ω

{
1
2
λtr 2ε + µε : ε− ξ1ωtr ε +

1
2
ξ2ω

2 +
1
2
ξ3|∇ω|2

}
;

the expression in the curly brackets in the formula for s− p is just ρe, see (4.1). This cumbersome,
at a first glance, formula follows from (4.1):

ρ
∂e

∂ω
=

∂(ρe)
∂ω

− e
∂ρ

∂ω
=

∂(ρe)
∂ω

+
ρ0

ρ
(ρe), (4.4)

since ρ depends on ω, according to (2.4). The latter dependence is thus responsible for the obvious
and strong nonlinearity of the basic equations of the micromorphic damage model under study, even
in the simplest case of quadratic energy function ρe with constant coefficients. A linearization could
be achieved under the assumption of small damage magnitudes, ω � 1. This assumption, however,
is not acceptable in the framework of the continuum damage mechanics which associates the failure
with critical damage values close (or simply equal) to 1. Moreover, damage has a tendency to
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localize around stress concentrators (like micro-holes, micro-cracks, etc.) so that it can be expected
to attain considerable values in their vicinities even in the brittle case.

When coupled with the balance equations (3.9), the constitutive ones (3.6) would yield a
nonlinear system of partial differential equations for the unknown fields of displacement and damage,
namely

µ∆u + (λ + µ)∇∇ · u− ξ1∇ω = 0,

f ω̇ = ξ3∆ω − ξ2ω + ξ1∇ · u (4.5)

− 1
1− ω

{
1
2
λ(∇ · u)2 + µε : ε− ξ1ω∇ · u +

1
2
ξ2ω

2 +
1
2
ξ3|∇ω|2

}
.

The classical boundary conditions in stress and/or displacement are then imposed:

σ
∣∣∣
S
= σ0

n or u
∣∣∣
S
= u0, (4.6)1

where n is the outward unit normal vector to the boundary S of the solid. A boundary condition
in hyperstresses is also needed; a natural choice is the requirement of no normal hyperstresses on
S [11]:

hn

∣∣∣
S
= 0, hn = h · n. (4.6)2

As far as the initial conditions are concerned, we first require

ω(x, 0) = 0 (4.6)3

—no damage in the initial state (t = 0) of the body. The initial condition for the displacement is
then

u(x, 0)
∣∣∣
S
= U(x), (4.6)4

where U(x) is the displacement field in the virgin elastic body (ω = 0) with elastic moduli λ and µ,
corresponding to the boundary condition (4.6)1. A rigorous proof of the existence and uniqueness
theorem for the initial-boundary-value problem (4.5)–(4.6) would be of interest. It is to be noted
that such a theorem has been recently proved in [18] for the linear version of the system (4.5):

µ∆u + (λ + µ)∇∇ · u− ξ1∇ω = 0,

ξ3∆ω − ξ2ω + ξ1∇ · u = fω̇
(4.7)

in the static case (ω̇ = 0). The foregoing reasoning indicates, however, that the system (4.7)
oversimplifies the damage phenomena and cannot be expected to provide an adequate picture of
the latter.

Let us point out in passing that a number of classical problems has been solved for the system
(4.7), see, e.g., [19-21] et al., under the assumption of material constants independent of void ratio.
Some of these solutions could be used to identify the additional material parameters ξi employing the
idea of mimicking the behaviour of a porous solid with that of a homogeneous and microstructured
one, see [22, 11, 7]. For example, it was shown in this way that for a dilatation-elastic solid,
governed by the system (4.7) in the static case (ω̇ = 0) one has ξ1 = k.

4.2. Tension of a rod

Consider now a simple solution of the system (4.5), concerned with the uniaxial tension of a
rod with a circular cross-section. In the cylindrical coordinate system (r, ϕ, x) with the x-axis along
the rod axis, the solution due to the obvious symmetry has the form

ux = ux(x), ur = ur(r), uϕ = 0, ω = ω(x),
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so that

εx =
∂ux

∂x
, εr =

∂ur

∂r
, εϕ =

ur

r
.

From eqn (4.5)1, together with the boundary condition (4.5), one easily obtains
ur = Ar, A = A(x) and therefore εr = εϕ. The Hooke law (4.3)1 then yields

λθ + 2µεx − ξ1ω = σx, λθ + 2µεr − ξ1ω = 0, (4.8)

θ = tr ε = εx + 2εr, since σr ≡ 0; σx is the fixed tensile stress.
Upon solving eqns (4.8) as a system with respect to the strain components εx and εr, we get

σx = Ẽεx, εr = −ν̃εx,

where Ẽ and ν̃ are the apparent values of the Young modulus and Poisson ratio for the damaged
solid given, respectively, by the formulae

Ẽ = E(1− Ω), ν̃ =
ν − Ω
1 + Ω

; Ω =
ξ1ω

3kεx
. (4.9)

Since the Young modulus Ẽ decreases with deterioration, we should have Ω > 0. That is why
the Poisson ratio ν̃ should also decrease and the parameter ξ1 is positive. It is to be noted as
well that (4.9) supplies us with a simple method of experimental determination of ξ1: it obviously
suffices, for a given tensile strain εx, to measure the apparent Young modulus Ẽ (say, by an
ultrasonic test) and to find the void ratio ω (say, through the change of the specimen density, cf.
(2.4)).

Eqns (4.9) imply the following relation

∆ν =
∆E

E
(1 + ν) (4.10)

between the increments ∆E = E− Ẽ and ∆ν = ν− ν̃ of the moduli due to damaging. This relation
is, however, a consequence of the specific model adopted, more specifically, of the Hooke law (4.8)
with constant material parameters, in the dilatation elasticity theory and may thus serve as a test
for applicability of the model. It is easily seen, e.g., that (4.10) does not fit at all the experimental
data, reported by Cordebois and Sidoroff [22] which is no wonder—the data concern ductile damage
created by a considerable plastic deformation.

4.3. A simplest damage distribution in the rod

We shall look now for certain simple damage fields in the strained rod. The simplest one is
obviously the homogeneous time-independent field ω ≡ ω0. For such a solution we have from (4.5)2

2ξ1θ − 2ξ2ω0 + ξ2ω
2
0 − λθ2 − 2µ(ε2

x + 2ε2
r) = 0 (4.11)

and, besides,

εx =
σx

E
+

ξ1ω

3k
, εr = − ν

E
σx +

ξ1ω

3k
,

θ = εx + 2εr =
σx + 3ξ1ω

3k
,

(4.12)

145



as it follows from (4.8). Upon inserting the expressions for εx, εr and θ in (4.11), we get the
quadratic equation

g(ω) = Aω2 − 2Bω + C = 0,

A = 3(ξ2k − ξ2
1), B = A + ξ1σx, C = 2ξ1σx −

σ2
x

1− 2ν
,

(4.13)

whose solutions should be the needed constant damage fields. But A > 0 as a consequence of

(4.2) and g(1) = −A − σ2
x

1− 2ν
< 0, so that eqn (4.13)1 has a root in the interval (0, 1) (a natural

condition for the latter to possess a “damage” meaning) if and only if g(0) = C > 0, i.e.,

0 < σx < σ0
x, σ0

x = 2ξ1(1− 2ν). (4.14)

The second root of eqn (4.13)1 is also real in this case but it is greater than 1 and therefore has no
damage interpretation. We thus conclude that there is a certain stress “limit” σ0

x with the property
that at tensile stresses σx < σ0

x a constant damage field ω0 can exist in the rod. A similar conclusion
was reached by Passman and Trucano [15] in their creep-damage model of dilatation-elastic, in our
terminology, type. Moreover, these authors even claimed the existence of three different real roots
of the respective equation for ω0 and thus the possibility of coexistence of three different damage
fields in the body under simple tension. It should be pointed out, however, that no account was
taken in [15] for the natural condition that the roots should lie in the interval (0, 1). (It could be
immediately seen that one of the constant solutions in [15] is negative and has no damage meaning
as a result.)

The stress “limit” σ0
x admits an appealing interpretation on a very rough heuristic level, con-

nected with the Griffith theory of cracks. Let ` be the mean length of the microdefects imagined for
the moment as crack-like objects. For a given tensile stress let `∗ be the critical length of a Griffith
crack in the solid. If ` < `∗, the defects will remain stable under the tension—they will just open
a bit without propagating and thus a certain stationary constant damage field will take place in
the specimen as predicted by the foregoing considerations. The stress “limit” σ0

x then corresponds
to the minimal critical length `∗ of the order of several interatomic distances. Therefore σ0

x can
be identified with the stress that ruptures the rod instantly; the latter stress may be found having
extrapolated the time-to-rupture curve in the brittle region to t = 0 when it intersects the ordinate
axis.

4.4. The failure of the simplest model

Let us face now a more realistic situation when, at fixed tensile stress σx, a homogeneous
time-dependent damage field ω = ω(t) appears in the rod. Repeating the simple arguments of
Section 4.3, we get

ω̇ =
g(ω)
6kf

, (4.15)

where g(ω) is the quadratic function, defined in (4.13).
Let σx < σ0

x, where σ0
x is the stress “limit” (4.14), and ω = ω0 is the corresponding to σx

homogeneous damage field that solves eqn (4.13)1, 0 < ω0 < 1. As is easily seen from eqn (4.20), if
the initial damage magnitude ω(0) < ω0, then ω(t) monotonically increases (as it should have been
expected), approaching the value ω0. If, however, ω(0) > ω0, then ω(t) monotonically decreases
approaching from above the same value ω0. This unrealistic behaviour suffices to indicate clearly
that the simplest micromorphic model, corresponding to the quadratic form (4.1) of the internal
energy function with constant coefficients, is unrealistic as far as damage phenomena are concerned.

5. DAMAGE DEPENDENT MATERIAL CONSTANTS
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To get a more realistic model we should assume all material parameters depending on damage
magnitude. This is a natural assumption since the elastic moduli, in particular, are strongly affected
by damage, as is well known. Moreover, the current values of the latter in a deteriorating solid
could serve as a convenient measure of damage [3].

The balance equation (3.9)2 for microstresses, with (2.4), (3.7) and (4.4) taken into account,
yields

fω̇ = ∇ · (ξ3∇ω)−
[
∂(ρe)
∂ω

+
ρe

1− ω

]
. (5.1)

Let the internal energy have the same simplest form (4.1), but with damage dependent coeffi-
cients λ = λ(ω), . . . , ξ3 = ξ3(ω). Eqn (5.1) then becomes

fω̇ = ∇ · (ξ3∇ω)− 1
2

[
λ′ +

λ

1− ω

]
tr 2ε

−
[
µ′ +

µ

1− ω

]
ε : ε− 1

2

(
2ξ2ω +

[
ξ′
2 +

ξ2

1− ω

]
ω2

)

+
(

ξ1 +
[
ξ′
1 +

ξ1

1− ω

]
ω

)
tr ε− 1

2

[
ξ′
3 +

ξ3

1− ω

]
|∇ω|2;

(5.2)

the primes denote differentiation with respect to ω.
We notice that eqn (5.2) drastically simplifies if we choose

λ(ω) = λ0(1− ω), µ(ω) = µ0(1− ω), ξi(ω) = ξ0
i (1− ω), i = 1, 2, 3, (5.3)

where the subscript (or superscript) ‘0’ indicates the values of the respective parameters for the
undamaged solid (ω = 0). In this case all expressions in the square brackets in (5.2) vanish and
hence

fω̇ = ∇ · (ξ3∇ω) + ξ1tr ε− ξ2ω, (5.4)

which coincides with eqn (4.7)2 if ∇ω = 0.
Eqns (5.3) imply that we have assumed the internal energy of the damaged solid in the form

ρe = (1− ω)
[
1
2
λ0tr ε2 + µ0ε : ε− ξ0

1ωtr ε +
1
2
ξ0
2ω2 +

1
2
ξ0
3 |∇ω|2

]
, (5.5)

or
ρ0e =

1
2
λ0tr ε2 + µ0ε : ε− ξ0

1ωtr ε +
1
2
ξ0
2ω2 +

1
2
ξ0
3 |∇ω|2

which is just the form of the internal energy chosen by Nunziato and Cowin [11] (assuming tacitly
that the undamaged state of the solid is taken as the reference one: ρR = ρ0). For a homogeneous
damage field the basic equations of our model coincide then with those of [11], see (4.7). However,
for a nonhomogeneous damage distribution our equations are strongly nonlinear even under the
simplest assumptions (5.3). At the same time eqns (4.7) of Nunziato and Cowin [11], see also
[19], remain the same no matter whether the damage field is homogeneous or not. This represents
an essential difference due to the fact, let us point out once more, that we employ the damage
dependent density field ρ in the energy balance equation unlike the authors of [11] who take ρ as
damage independent.

For a homogeneous damage field, ∇ω = 0, eqn (5.4) simplifies even more

fω̇ = ξ1tr ε− ξ2ω. (5.6)
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However, if the strain is deviatoric, tr ε = 0, as it is the case in a pure torsion, eqn (5.6) predicts
damage decrease in loading (since both f and ξ2 are positive) which is unacceptable. Hence the
assumption (5.3), though highly appealing due to extreme simplicity of its corollaries like (5.4) and
(5.6), should be rejected.

One of the reasons for failure of the assumption (5.3) lies perhaps in the fact that it corresponds,
in particular, to the so-called Voigt values of the effective elastic moduli of the damaged solid treated
here as a composite material comprising a matrix with voids [24]. As is well known the Voigt values
µV = µ0(1−ω), λV = λ0(1−ω) provide elementary upper bounds on the elastic moduli of a porous
solid, grossly overestimating the latter. A number of more refined theories predicting the effective
properties of porous solids (and, more general, of composites) have been proposed in literature, see,
e.g. [22, 24], but a detailed discussion would not be warranted in the present study. We shall only
point out the simple empirical relations

µ = µ0(1− ω)2, λ = λ0(1− ω)2 (5.7)

for the moduli of the porous (damaged) solid which at any case describe much more realistically
their dependence upon the damage variable ω. Since nothing in this moment can be said about the
microstructural parameters ξi we shall stick to the Voigt type relations (5.3) for them: ξi = ξ0

i (1−ω),
i = 1, 2, 3.

The foregoing assumptions allow us to write the balance equation (5.2) in the form

fω̇ = ∇ · (ξ3∇ω) +
1
2
λ0(1− ω)tr 2ε + µ0(1− ω)ε : ε + ξ1tr ε− ξ2ω. (5.8)

The parameter f = f(S, ω̇), see (3.11). We may neglect the dependence of f upon the damage
rate ω̇ since it is multiplied by ω̇ which itself is assumed small. Hereafter we shall deal with
homogeneous damage fields, ∇ω = 0, so that

f = f(ε, ω). (5.9)

Moreover, due to isotropy assumption, f is an scalar-valued isotropic function of the strain tensor
ε.

Let us recall that the damage growth in brittle solids in 3D loading is appropriately described
by means of the phenomenological Kachanov’s law

ω̇ = B

(
σeq

1− ω

)n

, (5.10)

where B and n are material constants easily specified through the respective time-to-rupture curves
in the brittle region, see [2,3]. In (5.10) σeq is the so-called equivalent stress which is a certain scalar-
valued isotropic function of the stress tensor σ, expressed usually as a linear combination of the
first and second invariants of σ and the maximum tensile stress σmax. The specific form of the σeq

is traditionally obtained using the respective isochronous surfaces for a solid, see for details and
further references [2, 3, 25] et al.

A natural requirement is then to want eqns (5.7) and (5.10) to be equivalent, since they have
the one and the same structure of evolution laws determining the damage growth rate. This allows
us to specify the material function f :

f = f(ε, ω) =
(1− ω)n+1

Bσn
eq

[
1
2
λ0(1− ω)tr 2ε + µ0(1− ω)ε : ε + ξ0

1tr ε− ξ0
2ω

]
, (5.11)

having used the assumption (5.3) for the microstructure parameters dependence on damage; the
equivalent stress σeq is to be expressed by means of the strain tensor ε using the Hooke law (4.3)1
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of our model. Eqn (5.11) assures that the microstress balance equation of the proposed model
reduces to Kachanov’s law of damage growth for homogeneous damage fields.

It is should be noted, however, that the direct comparison between the balance equation
(5.8) and Kachanov’s law (5.10) is, strictly speaking, incorrect. The reason is that two different
interpretations of damage are inherent in these two equations. In eqn (5.8) ω is the volume fraction
of the microvoids while in eqn (5.10) ω is the relative decrease of the cross-sections of a rod due
to deterioration. Thus in uniaxial tension σx/(1 − ω) is the real tensile stress acting on the rod.
A simple remedy could be proposed if one recalls the studies of the strength of porous solids,
summarized, e.g., in [26, Chap. 3]. One of the simplest model there, due to Pines et al. (1958)
claims that an array of identical micro-pores with volume concentration ω leads to a relative decrease
of 3

2ω for the cross-section of a rod (provided the pore distribution is spatially uniform.) Thus the
real (effective) tensile stress in the microporous rod will be σx/

(
1− 3

2ω
)

and Kachanov’s law (5.10)
should be replaced by the relation

ω̇ = B′
(

σeq

1− 3
2ω

)n′

, (5.12)

with new material constants B′ and n′. The latter may be again specified by means of the respective
time-to-rupture curves for the specimen—the same procedure as that for the classical Kachanov’s
law (5.10), with the only difference that the failure criterion ω = 1 should be replaced by the
criterion ω = 2/3, since the denominator of (5.12) vanishes at this value of ω. (Note also that
ω = 2/3 is very close to the packing value for an array of identical spheres.) The comparison
between (5.12) and (5.10) will bring forth now a certain relation for the function f(ε, ω), a bit
different from (5.11), but the basic idea—identification of Kachanov’s damage growth equation as
a balance of hyperstresses in the simple dilatation elastic model—remains the same.

6. CONCLUDING REMARKS

When treating damage as a certain internal variable with specific micromechanical meaning,
namely, as an additional volume change due to appearance and growth of the microdefects, it is
natural to invoke a simple microstructural theory of elasticity. The appropriate choice seems to be
the model of an elastic solid with independent dilatation of particles, developed by Cowin et al. and
the author. The additional field quantity of the theory—the damage parameter in our context—
leads to the appearance of hyperstresses and a balance equation for them. We argue that the latter
can be conveniently identified with the well-known Kachanov’s law of damage growth. Thus this
law, traditionally introduced through purely phenomenological arguments, finds a cosy and natural
place in the herein proposed damage model as an equation expressing hyperstress equilibrium. Such
an interpretation of Kachanov’s law seems new and appealing. But the usefulness of the proposed
model and the limits of its applicability (if any) for more realistic continuum damage mechanics
problems obviously need extensive further study.
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