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For a random arrays of identical spheres the “particle-center” correlation Fpc(r)
is considered. A simple integral representation of Fpc(r) through the radial dis-
tribution function is first proposed. As an application, the classical Smoluchowski
problem, concerning steady-state diffusion of a species among an array of nonover-
lapping and ideally absorbing sinks, is revisited. Using the variational principle
of Rubinstein and Torquato, a lower bound on the effective sink strength k∗2, in
which Fpc(r) shows up, is obtained in an elementary manner. It turns out that the
bound coincides with that derived by Doi and Talbot & Willis, but here neither
more complicated “surface” correlations, nor Hashin-Shtrikman’s type principles
are invoked. The degeneration of the bound, produced by the 2-D case counterpart
of the proposed variational procedure, is demonstrated and discussed.
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1 Definitions of the Basic Statistical Characteristics

Consider a dispersion of equal and nonoverlapping spheres of radius a in
R3, whose centers form the random set of points

{
xα

}
. The assumption of

statistical isotropy and homogeneity is adopted henceforth. Introduce after
Stratonovich [1] the so-called random density field

ψ(x) =
∑
α

δ(x− xα), (1.1)
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δ(x) is the Dirac delta-function. Then, in particular,

〈ψ(x)〉 = n, F cc(x) = 〈ψ(x)ψ(0)〉 = nδ(x) + n2g(x), (1.2)

where n is the number density of the spheres, and g(x) = g(r), r = |x|, is
their radial distribution function, see [1]. The brackets 〈·〉 signify ensemble
averaging. The notation F cc(x) in Eq. (1.2) is justified by the interpretation
of the quantity 〈ψ(x)ψ(0)〉—this is the “center-center” correlation, in the sense
that it obviously gives the probability densities of finding centers of particles
both at the origin and at the point x.

Let

I1(x) =
{ 1, if x ∈ K1,

0, otherwise,
(1.3)

be the characteristic function of the region K1, occupied by the spheres. Then

I1(x) = (ha ∗ψ)(x) =
∫
ha(x− y)ψ(y) dy, I ′1(x) =

∫
ha(x− y)ψ′(y) dy, (1.4)

where ψ′(y) = ψ(y)−n is the fluctuating part of the field ψ(y) and ha(y) is the
characteristic function of a single sphere of radius a, located at the origin. All
integrals hereafter are over the whole R3; as usual, f ∗ g denotes convolution.

In turn, the two-point correlation most often used, is

F pp(x) = 〈I1(0)I1(x)〉 , (1.5)

whose interpretation is obvious—this is the probability density that two points,
separated by the vector x, when thrown into the medium both fall within the
region K1, occupied by the spheres. That is why 〈I1(0)I1(x)〉 can be called
“particle-particle” correlation which explains its notation F pp(x) in Eq. (1.5).

A natural statistical quantity, playing an intermediate role between F cc(x)
and F pp(x), is the “particle-center” correlation, defined as

F pc(x) = 〈I1(x)ψ(0)〉 . (1.6)

It obviously gives the probability that for a pair of points, separated by the
vector x, one hits a sphere’s center while the other falls into a sphere. In
this lecture a more detailed study of this correlation, together with one of its
possible applications, will be performed. Of course, the latter correlation is a
particular case of the much more general statistical characteristics of two-phase
random media, as introduced by Torquato [2], but our aim here will be more
specific, namely, the derivation of a simple integral representation of F pc(x)
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by means of the two-point probability density function for the set
{
xα

}
of

sphere’s centers, see Eq. (2.9) below.
It is natural to represent the above introduced correlations as

F cc(x) = n2 + F
cc

(x), F pc(x) = nη1 + F
pc

(x), F pp(x) = η2
1 + F

pp
(x), (1.7)

where η1 = 〈I1(x)〉 = nVa is the volume fraction of the spheres, Va = 4
3πa

3.
As it follows from Eqs. (1.2), (1.4), (1.5) and (1.6),

F
cc

(x) = 〈ψ′(y1)ψ′(y2)〉 = nδ(x) + n2ν2(x), F
pc

(x) = 〈I ′1(x)ψ′(0)〉

= (ha ∗ F
cc

)(x) = nha(x) + n2

∫
ha(x− y)ν2(y) dy,

F
pp

(x) = 〈I ′1(x)I ′1(0)〉 =
(
ha ∗ F

pc)
(x) =

(
ha ∗ ha ∗ F

cc)
(x).

(1.8)

Here ν2(x) = g(x) − 1 is the so-called binary (or total) correlation function.
Assuming there is no long-range order, all ν2(x), F

cc
(x), F

pc
(x) and F

pp
(x)

vanish as x→∞, since the constants in the right-hand sides of Eqs. (1.7) are
just their long-range values.

2 A Study of the “Particle-Center” Correlation

Let us split the radial distribution function, g(x), as

g(x) = gws(x) + g̃(x), (2.1)

where

gws(x) = 1− h2a(x) =

{
0, if |x| ≤ 2a,

1, if |x| > 2a,
(2.2)

corresponds to the simplest “well-stirred” distribution of spheres; g̃(x) is then
the “correction” to the latter. In turn, the binary correlation ν2(x) = g(x)− 1
is represented as

ν2(x) = −h2a(x) + ν̃2(x). (2.3)

Moreover, one has ν2(x) = ν̃2(x) = g̃(x), if |x| ≥ 2a, due to Eqs. (2.1)–(2.3).
The nonoverlapping assumption implies that g(x) = 0, and hence ν̃2(x) =
g̃(x) = 0 as well, if |x| ≤ 2a, as a consequence of the same Eqs. (2.1)–(2.3).

From Eqs. (1.7) and (2.3) it now follows

F
pc

(x) = F
pc

ws(x) + F̃ pc(x), (2.4)
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where

F
pc

ws(x) =nha(x)− n2(ha ∗ h2a)(x)

=nη2ha(x)− nη1
16ρ

(3− ρ)2(ρ2 + 6ρ− 3)
[
h3a(x)− ha(x)

]
,

(2.5)

F̃ pc(x) = n2

∫
ha(x− y)ν2(y) dy, ρ = |x|/a. (2.6)

To represent F̃ pc(x) as a simple one-tuple integral, containing the binary
correlation ν2(x), write down the latter as

ν2(y) =
∫ ∞

2a

ν2(ξ)
∂

∂ξ
hξ(y) dξ, (2.7)

which follows from the obvious formula

∂hξ(y)
∂ξ

= δ(|y| − ξ). (2.8)

Then, by virtue of Eqs. (2.6) and (2.7),

F̃ pc(x) =n2

∫ ∞

2

dµ ν2(µ)
∂

∂µ

(
ha ∗ hξ

)
(r)

=
3nη1
4ρ

∫ ρ+1

max{2,ρ−1}

[
1− (µ− ρ)2

]
µν2(µ) dµ,

(2.9)

having changed the order of integration and recalling the formula for the com-
mon volume of (ha∗hξ)(r) of two spheres of radii a and ξ, with centers separated
by r; µ = ξ/a.

The formula (2.9) is just the needed simple integral representation of
F̃ pc(x) by means of the binary correlation function for the set

{
xα

}
of sphere’s

centers. Its derivation has been inspired here by the reasoning of the recent pa-
per [3], devoted to the “particle-particle” correlation F pp(x). A detailed study
of the rest of the two-point correlation functions for the dispersion, including
the interfacial ones, and of their integral representations similar to (2.9), can
be found in [4].

The obtained formula (2.9) is useful, for example, when statistical quanti-
ties

θpc
U =

∫ ∞

0

U(ρ)F
pc

(ρ) dρ (2.10)
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are of interest, for a given function U(ρ). Indeed, θpc
U = θpc

U,ws + θ̃pc
U , where the

term θpc
U,ws corresponds to the well-stirred distribution and can be immediately

found, see (2.5); the “correction” F̃ pc(ρ) generates θpc
U . To evaluate the latter,

it suffices to apply (2.9) and change afterwards the order of integration:

θ̃pc
U =

∫ ∞

0

U(ρ)F̃ pc(ρ) dρ =nη1

∫ ∞

2

Hpc
U (µ)µν2(µ)dµ,

Hpc
U (µ) =

3
4

∫ µ+1

µ−1

U(ρ)
ρ

[
1− (µ− ρ)2

]
dρ.

(2.11)

(A similar idea was used by Drugan and Willis [5] when deriving a formula of
the type (2.13) below for the “particle-particle” correlation.)

The kernels Hpc
U (µ) in (2.11) become extremely simple when U(ρ) = ρk,

k = 0, 1, . . . . In this case Hpc
U (µ) = Hpc

k (µ) are polynomials whose explicit
evaluation is straightforward. In particular, Hpc

1 (µ) = 1, so that

θpc
1 =

∫ ∞

0

ρF
pc

(ρ) dρ = n

(
5− 19η1

10
+ η1m1

)
, m1 =

∫ ∞

2

µν2(µ) dµ, (2.12)

see (2.5). It is noted that Eq. (2.12) is fully similar to the formula, recently de-
rived by Markov and Willis [3], for the “particle-particle” correlation, namely,

θpp
1 =

∫ ∞

0

ρF
pp

(ρ) dρ = η1

(
2− 9η1

5
+ η1m1

)
, (2.13)

with the same m1, as defined in Eq. (2.12).

3 Absorption Problem and Rubinstein-Torquato’s Principle

As a simple application of the “particle-center” correlation and of its represen-
tation (2.4), (2.5) and (2.9), consider a dispersion of ideal and nonoverlapping
spherical sinks (the phase ‘1’), immersed into an unbounded matrix. Let a
species (defects) be generated at the rate K within the matrix (phase ‘2’), oc-
cupying the region K2, and absorbed by the sinks in the region K1 = R3\K2.
In the steady-state limit the concentration of the defects c(x) is governed by
the well-known equations:

∆c(x) +K = 0, x ∈ K2, c(x)
∣∣∣

∂K2

= 0. (3.1)

The creation of defects is exactly compensated by their removal from the sinks:

k∗2 〈c(x)〉 = K(1− η1). (3.2)
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The rate constant k∗2 is just the effective absorption coefficient (the sink
strength) of the medium. Its evaluation and bounding for special kinds of ran-
dom constitution and, above all, for random dispersion of spheres, has been the
subject of numerous works, starting with the classical studies of Smoluchowski
(1912), see, e.g. [6, 7, 8, 9, 10], and the references therein. (Note that we have
added the factor 1 − η1 in (3.2), due to the fact that in the case under study
defects are created only within the phase ‘2’, see [11] for a discussion.)

We shall confine the analysis to variational bounding of the sink strength
k∗2, taking into account the foregoing two-point statistical characteristics. Re-
call to this end the variational principle of Rubinstein and Torquato (R-T) [9].

Let A be the class of statistically homogeneous trial fields such that

A =
{
u(x)

∣∣ ∆u(x) +K = 0, x ∈ K2

}
. (3.3)

Then

k∗2 ≥ K2(1− η1)
〈I2(x)|∇u(x)|2〉

. (3.4)

The equality sign in (3.4) is achieved, if u(x) = c(x) is the actual field that
solves the problem (3.1).

Since
〈
I2(x)|∇u(x)|2

〉
≤

〈
|∇u(x)|2

〉
, another bound follows from (3.4):

k∗2 ≥ K2(1− η1)
〈|∇u(x)|2〉

, (3.5)

see [9]. Though weaker than (3.4), the evaluation of the bound (3.5) is simpler,
because it obviously employs a smaller amount of statistical information.

Consider the trial fields

u(x) = −K
µ

∫
G0(x− y)

[
I1(y)− µ

]
dy +KλVa

∫
H0(x− y)ψ(y) dy,

G0(x) =
1

4π|x|
, H0(x) =

{
G0(a), if |x| < a,

G0(x), if |x| ≥ a,

(3.6)

with adjustable constants λ, µ. Since ∆G0(x) + δ(x) = 0, it is easily seen that
∆u(x) = K, if x ∈ K2, and therefore the fields u(x) in (3.6)1 are admissible.

Consider now the quantity of central importance U =
〈
|∇u(x)|2

〉
/K2. For

the latter to be finite, and hence to produce a nontrivial lower bound (3.5), it
is necessary that the integrand in (3.6)1 have a zero mean value when x→∞:

− 1
µ

(η1 − µ) + λnVa = 0, i.e. λ =
η1 − µ

η1µ
. (3.7)
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Integration by parts yields

U =
1
µ2

∫
G0(x)

[
F

pp
(x) + (η1 − µ)2

]
dx− 2λVa

µ

∫
H0(x)

×
[
F

pc
(x) + n(η1 − µ)

]
dx+ λ2V 2

a

∫
χ(x)

[
F

cc
(x) + n2

]
dx,

(3.8)

see Eqs. (1.2), (1.5), (1.6), (1.7). In Eq. (3.8), χ(x) is the convolution

χ(x) =
∫
∇yH0(x− y) · ∇yH0(y)dy =

{
G0(a)(1− ρ/4), |x| < 2a,

G0(x), |x| ≥ 2a.
(3.9)

Eq. (3.9) simply follows if the Fourier transform techniques is employed.
A comment, concerning the class (3.6), is warranted before starting calcu-

lations. In the random case under study the realizations of the random medium
occupy the whole R3, and therefore no boundary conditions are imposed on
the Green function G(x) for the Laplace operator. This makes the choice of
this function ambiguous, because G0(x) = 1/(4π|x|) is as good for our pur-
poses (to have in (3.6)1 an admissible trial field) as G(x) = G0(x)+const, and
there were no reasons at that stage of the analysis to take this constant zero,
as it was implicitly done in (3.6)2. The quantity

〈
∇u(x)|2

〉
, and hence the

bound (3.5), do not feel the presence of this constant, since it enters under the
nabla operator. However, to perform the integration by parts that leads us to
Eq. (3.8), it is necessary to employ the Green function that decays at infinity
(i.e. far from the source), and this is exactly the reason which explains the
choice of this function in (3.6)2, and fixes the value of the additive constant as
zero in the proposed procedure. It is to be pointed out immediately that the
situation in 2-D is drastically different from 3-D in the sense that among the
multitude of possible Green functions − ln |x|/(2π) + const, no one decays at
infinity. This, in particular, makes impossible the appropriate integration by
parts in the double integrals that appear in this case in the quantity

〈
∇u(x)|2

〉
,

cf. Eqs. (3.6) and (3.8).
Now, elementary calculations, using Eqs. (2.5), (3.9), (2.12) and (2.13),

give eventually

U/a2 = F (µ) +m1, F (µ) =
1− η1
3η1

− 2η1
15

1
µ

+
η1
15

1
µ2

. (3.10)

As it now follows from (3.10)1, the best bound (3.5) corresponds obviously
to µ = µ0 that minimizes F (µ), i.e. to µ = 1. Hence this bound is

k∗2a2 ≥ 3η1(1− η1)
1− 5η1 − η2

1/5 + 3η1m1
= 3η1 + o(η1). (3.11)
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As indicated, the bound (3.11) is exact in the dilute limit η1 � 1, since it
reproduces in this case the well-known Smoluchowski result.

The bound (3.11) coincides with that derived by Talbot and Willis [8]
by means of an ingenious variational procedure of Hashin-Shtrikman’s type.
In this paper [8] the appropriate Green function was defined unambiguously ,
starting with the finite body case and only then passing to the “unbounded”
limit. Later on it was noticed by Talbot (unpublished manuscript) that (3.11),
for a dispersion of nonoverlapping spheres, coincides with the earlier proposed
bound of Doi [7] (the authors of [8] apparently were not aware of Doi’s paper).
The variational procedure, used by Doi, was clarified later on by Rubinstein
and Torquato [9] and put within the frame of their variational principle (3.3),
(3.4). The fact that the original Doi’s result can be recast in the elegant Talbot
and Willis’ form (3.11) was noticed in passing also by Beasley and Torquato
[12], who apparently were not aware of the paper [8]. Due to all these reasons
it seems proper to call (3.11) Doi-Talbot-Willis (DTW) bound.

It is important to point out that the appearance of the Doi result (in the
form (3.11)) out of the class (3.6) is however fully natural. The explanation
follows from the fact that Doi [7] has employed the trial fields

u(x) = K

∫
G0(x− y)

(
I2(y)− ξ|∇I1(y)|

)
dy, (3.12)

with ξ uniquely defined from the condition that the integrand should possess
zero mean value. Since |∇I1(y)| is a δ-function, concentrated on the surfaces
of the spheres, one has∫

G0(x−y) |∇I1(y)|dy =
∫
G0(x− y)

∫
∂

∂b
hb(y − z)ψ(z) dz dy

∣∣∣
b=a

=
∫

∂

∂b
ϕb(x− z)

∣∣∣
b=a

ψ(z) dz = 4πa2

∫
H0(x− z)ψ(z) dz,

(3.13)

having taken Eqs. (1.1) and (2.8) into account. In Eq. (3.13)

ϕb(x) = (G0 ∗ hb)(x) =

{
(3b2 − r2)/6, if r < b,

b3/(3r), if r ≥ b,
(3.14)

is the well-known harmonic potential of a sphere of radius b. We have also
employed in (3.13) the obvious identity ∂ϕb(x)/∂b

∣∣
b=a

= 4πa2H0(x), with the
same function H0(x) as in (3.6)2. The latter immediately implies that the
classes (3.6) and (3.12) coincide, which explains the appearance of the Doi
bound (in its form (3.11)) here. In our derivation we have employed, however,
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the “particle-center” correlation F pc(r) which is simpler than the interfacial
correlations. Also, the herein proposed variational procedure, based on the
R-T principle (3.3), (3.4), is considerably simpler than the one employed by
Talbot and Willis [8].

4 A Discussion of the 2-D Case

In the 2-D case the spheres are replaced by an array of identical parallel cir-
cular cylinders. Equivalently, we can consider a “perforated” plane, in which
the circular perforations are randomly and nonoverlappingly positioned. The
R-T variational principle and the bound (3.5) remain unchanged. The only
difference is that the 3-D Green function in (3.6) should be replaced by its 2-D
counterpart G(x) = − ln |x|/(2π)+constant. But the convolution integral (3.9)
becomes then divergent, since its integrand behaves as 1/|x| when |x| → ∞. As
a result, it can be easily shown that the counterpart of our procedure (Section
3), that has lead us to the DTW bound (3.11), degenerates in the 2-D case,
due to the aforementioned asymptotic behaviour of the appropriate Green’s
function in infinity. In this sense the situation is fully similar to the Talbot
and Willis’ procedure [8] which also fails in 2-D, due to convergence difficulties,
as noticed by the authors (private communication).

It is noted that Doi’s procedure, corresponding to the trial fields (3.12)
coupled with the R-T principle, fails in 2-D as well. The reason is obvious, if
one writes down the denominator of (3.5) in the form〈

|∇u(x)|2
〉

= K2

∫
Γ(x)

[
F pp(x)− 2ξF sp(x) + ξ2F ss(x)

]
dx,

where F sp(x) = 〈I1(0)|∇I1(x)|〉 and F ss(x) = 〈|∇I1(0)| |∇I1(x)|〉 are the in-
terfacial correlations [7, 9], and Γ(x) is the convolution integral

Γ(x) =
∫
∇yG(x− y) · ∇yG(y) dy

which, similarly to χ(x), see Eq. (3.9), is divergent in the 2-D case under study.
The failure of all the above mentioned variational procedures in 2-D does

not mean however that the homogenization of the problem (3.1) is impossible in
this case. The failures should be attributed to the procedures themselves, and
presumably, to the fact that in 2-D the interactions between sinks become much
stronger than in 3-D and hence trial fields, that somewhat more essentially
incorporate these interactions, must be employed.
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