
Continuum Models and Discrete Systems
Proceedings of 8th International Symposium, June 11-16, 1995, Varna, Bulgaria, ed. K.Z. Markov

c©World Scientific Publishing Company, 1996, pp. 241–249

ON A STATISTICAL PARAMETER IN THE THEORY OF

RANDOM DISPERSIONS OF SPHERES

K. Z. MARKOV
Faculty of Mathematics and Informatics,

“St. Kl. Ohridski” University of Sofia, 5 blvd J. Bourchier, BG-1164 Sofia, Bulgaria

Abstract. A two-point statistical parameter which naturally appears in variational
bounds in the absorption problem for random media is studied. For random disper-
sions of nonoverlapping sphere an analytic formula for the parameter is first given
through the radial distribution function for the spheres. Analyzing the asymptotic
behaviour of the parameter, two kinds of formulae are derived: i) Simple rela-
tions between the values of the two-point correlation function and its derivatives at
r = 0 with the values of radial distribution function and its derivatives at the
“touching distance” r = 2a. ii) Relations between the moments of the two-point
correlation on (0,∞) and the moments of the radial distribution function. As a
simple application, the failure of the well-stirred approximation for sphere fractions
higher than 1/8 is finally demonstrated.

1. Introduction

In the theory of random media, when evaluation of their effective macroscopic
properties is the aim, the internal random constitution shows up in the final results
through certain statistical parameters that incorporate, in an integral form, the mul-
tipoint correlations in the media. Presumably the first such parameter appeared in
Brown’s study [1] of the effective conductivity of weakly inhomogeneous two-phase
media. The same Brown’s parameter entered later on the well-known variational
bounds of Beran [2]. The counterparts of the Beran bounds in the elasticity context
and/or Hashin-Shtrikman variational principle involved other and more complicated
statistical parameters, see, e.g., the surveys [3,4] for details and references.

If a context, different from conductivity or elasticity, is chosen, different kinds
of statistical parameters appear. Consider, for instance, the absorption problem

�c(x) − k2(x) c(x) + K = 0,

where c(x) is the concentration of a diffusing species absorbed with different rates k2
1

and k2
2 in the constituents ‘1’ and ‘2’ respectively of a two-phase random medium (so

that k2(x) is a random field taking the values k2
1 and k2

2 depending on whether x lies
in ‘1’ or ‘2’); K is the fixed rate of creation of the species in the bulk of the specimen.
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The variational bounds of Beran’s type for the effective absorption coefficient of the
medium involve, in addition to an integral containing the three-point correlation
function in its integrand, the dimensionless two-point statistical parameter (i.e., such
in which only two-pair correlation takes part):

i2(p) = p2
∫ ∞

0
re−prγ2(r) dr, p ∈ (0,∞), (1.1)

where γ2(r) = 〈I ′
1(0)I ′

1(x)〉/η1η2 is the usual two-point correlation function, r = |x|.
(The medium is assumed statistically homogeneous and isotropic); the brackets 〈·〉
signify ensemble averaging. Here I1(x) is the characteristic function of the region,
occupied by the constituent ‘1’ so that 〈I1(x)〉 = η1, where η1 is its volume fraction
and η2 = 1 − η1, I ′

1(x) = I1(x) − η1 is the fluctuating part of the field I1(x). For
details we refer the reader to the recent papers [5-7]. Our aim here is to study the
parameter (1.1) for random dispersions of equal and nonoverlapping spheres and to
extract from its asymptotic behaviour (at p → ∞ and p → 0) certain simple and
useful relations and facts concerning this important class of random media.

2. The Evaluation of i2(p) for Random Dispersions

Hereafter we shall deal with a random dispersion of equal and nonoverlapping
spheres. Their centers {xk} form a system of random points, characterized by the
usual probability density functions fk(y1, . . . , yk) [8]. In particular, for the two-point
probability density we have f2(y1, y2) = f2(r) = n2 g(r), r = |y1−y2|, where g(r) is the
radial distribution function, f1 = n is the number density of the spheres, n = η1/Va,
Va = 4

3
πa3; η1 is their volume fraction. Then I1(x) =

∑
k ha(x−xk) =

∫
h(x−y)ψ(y) dy,

where ha(x) is the characteristic function of a single sphere of radius a, located at the
origin, ψ(x) =

∑
k δ(x − xk) is the so-called random density field for the dispersion

[8], δ(x) denotes the Dirac delta function and the integration is over the whole R3.
Using the fact that 〈ψ(y)〉 = n, 〈ψ(y1)ψ(y2)〉 = nδ(y1 − y2) + f2(y1, y2), one easily
gets the two-point correlation function in the integral form

γ2(x) =
1

η1(1 − η1)

∫ ∫
ha(x − y′)ha(y

′′)〈ψ′(y′)ψ′(y′′)〉 dy′ dy′′

=
1

η1(1 − η1)

{
n

∫
ha(x−z)ha(z) dz+n2

∫ ∫
ha(x−y′)ha(y

′′)ν2(y
′−y′′) dy′ dy′′

}
, (2.1)

where ν2(z) = g(z) − 1 is the so-called binary correlation function,
Introducing (2.1) into (1.1) allows to evaluate, after some efforts, the parameter

i2(p). The details of the calculations are given, as a matter of fact in [6]. The final
result reads

i2(p) =
A(τ) − η1B(τ)

1 − η1
, A(τ) = 1 − 3

1 + τ

τ 3
e−τ (τ cosh τ − sinh τ),

B(τ) = 1 − 36(τ cosh τ − sinh τ)2

τ 4
I, I = I(τ) =

∫ ∞

1
se−2sτg(s) ds, (2.2)
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where s = r/2a and τ = ap is dimensionless and I is the statistical parameter, that
appeared in Talbot and Willis’ [9] bounds on the effective absorption coefficient of
the dispersion.

Hence from Eqs. (1.1) and (2.2) it is clear that the Laplace transforms of the
functions rγ2(r) and sg(s) are comparatively simply connected. This fact allows us
to find a number of useful relations between the two-point correlation and the radial
distribution function for a dispersion.

3. Asymptotics of i2(p) as p → ∞ and its Consequences

Consider first the quantity e2τI

e2τI =
∫ ∞

1
se−2τ(s−1)g(s) ds. (3.1)

As p → ∞, i.e., τ = pa → ∞, the function e−2τ(s−1) tends pointwisely to 0, if s−1 ≥ 0
and equals 1, if s − 1 = 0. Therefore only the behaviour of g(s) around s = 1 will
matter in the limit τ → ∞. Let

ν2(s) = g(s) − 1 = g0 + g1(s − 1) + g2(s − 1)2 + · · · , s ≥ 1, (3.2)

be the Taylor expansion of the binary correlation at the point s = r/2a = 1, i.e.,
r = 2a; the coefficients gN depend in general on the sphere fraction η1, gN = gN(η1).
Obviously

gN =
1

N !
(2a)Nν

(N)
2 (2a), (3.3)

so that knowledge of gN determines immediately the derivatives of the radial distri-
bution function g(r) at the “touching” distance r = 2a.

Inserting (3.2) in (3.1) gives

e2τI =
∞∑

N=0

GN

(2τ)N+1
, GN = N ! (gN−1 + gN) at N ≥ 2, (3.4)

G0 = 1+g0, G1 = 1+g0+g1. Note that (3.4) holds only asymptotically at τ = ap � 1,
since the binary correlation ν2(r) is not obliged in general to be analytical for all
r ≥ 2a—the series (3.2) may converge to ν2(r) only in a vicinity of the point s = 1.

Note that the parameter I for the Percus-Yevick (PY) approximation is an-
alytically known due to Wertheim [10] and hence the coefficients GN can be easily
found. In turn, using (3.3) and (3.4), one can obtain the values of the PY radial
distribution function and its derivatives at r = 2a, in particular,

g0 = g(2a) =
2 + η1

2(1 − η1)2
− 1 , g1 = −9

2

η1(1 + η1)

(1 − η1)3
,

g2 =
3η1(1 + 2η1)

2

2(1 − η1)4
, g3 =

η1(1 + 2η1)
2

2(1 − η1)4
,



g4 = −3η2
1(2 + η1)

3

4(1 − η1)6
, g5 =

3η2
1(8 + 5η1 + 5η2

1)

20(1 − η1)7
, (3.5)

etc. The coefficients gN at N ≥ 6 can be also found analytically, using a symbolic
algebra package, but their form will be more and more complicated with k increasing.

Note that the first of these values, i.e. g(2a), was pointed out by Lebowitz
[11].

An obvious application of the formulae (3.5) consists in an approximate eval-
uation of the PY function g(r) in a vicinity of the point r = 2a. To this end, truncate
the series (3.2), say, after the term g5(s − 1)5, use the values of gk at k ≤ 5, see
Eq. (3.5), and denote the result by gap

5 (r). The function gap
5 (r) is plotted in Fig. 1

for the values 8na3 =
π

6
η1 = 0.2, 0.5 and 1, i.e., for sphere fractions η1 ≈ 0.105,

η1 ≈ 0.262 and η1 ≈ 0.523; the dots correspond to the numerical solution of the PY
equation, due to Throop and Bearman [12]. Obviously, the higher the sphere fraction,
the smaller is the region where the approximation gap

5 (r) is useful. Nevertheless, the
latter provides a very good fit to the numerical data in the region 2a ≤ r ≤ 3a, if
η1 ≈ 0.105, and in the region 2a ≤ r ≤ 2.5a, if η1 ≈ 0.524.

Fig. 1. Plots of the approximation gap
5 .

The dots correspond to the Throop and
Bearman [12] numerical solution for the

PY function. Sphere fractions:
a) η1 = π/20 ≈ 0.105;
b) η1 = π/12 ≈ 0.262;
c) η1 = π/6 ≈ 0.523.

In the well-stirred case g(r) = 1 at r ≥ 2a, so that gN = 0, ∀N , and (3.4)
yields

I = Iws =
1 + 2τ

4τ 2
e−2τ , τ ∈ (0,∞), (3.6)

which can be directly obtained from (3.1) by elementary integration.
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Assume that i2(p) admits the expansion

i2(p) = 1 +
C1

p
+

C2

p2
+ · · ·+ ε(τ), τ = ap � 1, (3.7)

C0 = 1. Then

γ
(N)
2 (0) =

CN

N + 1
=

1

N + 1
lim
p→∞

pN


i2(p) −

N−1∑
j=0

Cj

pj


 , (3.8)

N = 0, 1, . . ., which easily follows from the definition (1.1) of i2(p) and the well-known
properties of the Laplace transform. Hereafter ε(τ) denotes terms that decrease
exponentially as τ → ∞.

To find the coefficients Cj in the expansion (3.7), note first that

A(τ) = 1 − 3

2

(
1

τ
− 1

τ 3

)
+ ε(τ), τ � 1, (3.9)

and rewrite next the coefficient B, see (2.2), in the form

B(τ) = 1 − F (τ)(e2τI),

F (τ) =
36(τ cosh τ − sinh τ)2

τ 4
e−2τ = 9

(τ − 1)2

τ 4
+ ε(τ), τ � 1. (3.10)

The asymptotic expansion of e2τI is given in (3.4). Combining the latter with
(3.9) and (3.10) and inserting the result into the formula (1.1) for the statistical
parameter i2(p) gives after some algebra

i2(p) = 1 − 3

2(1 − η1)

1

τ
+

3(1 + 3η1 + 3g0η1)

2(1 − η1)

1

τ 3
+

∞∑
N=4

TN

τN
+ ε(τ), τ � 1, (3.11)

with the coefficients

TN =
9η1

2N−2(1 − η1)

(
GN−3 − 4GN−4 + 4GN−5

)
, (3.12)

N = 4, 5, . . ., assuming Gj = 0 at j < 0. Using in turn the formula for GN , see (3.4),
gives

TN =
9η1

2N−2(1 − η1)

(
(N − 3)! gN−3 + (N − 7)(N − 4)! gN−4

−4(N − 5)(N − 5)! gN−5 + 4(N − 5)! gN−6

)
. (3.13)

From (3.8) and (3.11) one finds, first of all,

γ′
2(0) = − 3

4(1 − η1)a
, γ′′

2 (0) = 0. (3.14)
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The first of Eqs (3.14) is a simple consequence of Debye et al. formula [13], which con-
nects the specific surface of a two-phase material with γ′

2(0). Thus for any dispersion
of nonoverlapping spheres γ′

2(0) is not sensitive to the sphere statistics depending, at
a fixed radius a, on the sphere fraction η1 only. A stronger and more curious fact is
embodied into the second relation of (3.14), namely, the vanishing at the origin of
the second derivative of the correlation function for such dispersion whatever be the
sphere statistics. The assumed spherical shape of the particles is not important here;
the fact that γ′′

2 (0) = 0 is essentially connected with the assumption of nonoverlap-
ping. Indeed, consider a statistically isotropic dispersion of particles of fixed shape,
whose location and orientation are both random but not interconnected statistically;
the particles should not overlap whatever their orientations at fixed locations. An
averaging with respect to orientation first (which is possible, due to the statistical in-
dependence of the latter), leads just to a dispersion of nonoverlapping spheres. Each
one is obtained through rotation of the particle, centered at the same location; the
rotation represents simply the averaging with respect to all possible orientations of
the particle. Note that the fact that γ′′

2 (0) = 0 for a dispersion of nonoverlapping
particles was first noticed by Kirste and Porod [14] using different and more com-
plicated geometrical arguments; they also assumed that there are no corner points
on the particle’s surfaces. This assumption is not necessary, as easily seen from the
foregoing reasoning. The results of Kirste and Porod were rederived and extended by
Frisch and Stillinger [15] who expanded directly the two-point correlation function
γ2(r) at r = 0 starting, as a matter of fact, with its integral representation (2.1).

According to (3.12), the statistics of the dispersion, that is, the radial distri-

bution function, shows up only in the derivatives γ
(N)
2 at N ≥ 3. Indeed, from (3.12)

and (3.13) it follows

γ′′′
2 (0) =

3(1 + 3η1 + 3g0η1)

8(1 − η1)a3
, γ

(4)
2 (0) =

9(g1 − 3(1 + g0))η1

20(1 − η1)a4
,

γ
(5)
2 (0) =

3(g2 − g1)η1

8(1 − η1)a5
, γ

(6)
2 (0) =

9(3g3 − g2 − 2g1 + 2(1 + g0))η1

56(1 − η1)a6
, (3.15)

and, in general,

γ
(N)
2 (0) =

TN

(N + 1)aN
, N = 7, 8, . . . , (3.16)

where TN is expressed in (3.13) by the coefficients gN−3, gN−4, gN−5 and gN−6, con-
nected with the local behaviour of the binary correlation ν2(r) at the “touching” dis-
tance r = 2a. Note that the first of expressions (3.15)—the value of γ′′′

2 (0)—coincides
with that given by Kirste and Porod [14] and Frisch and Stillinger [15].

In the well-stirred case all gN vanish. From (3.13), (3.15) and (3.16) one

finds the needed values of γ′′′
2 (0), γ

(4)
2 (0) and γ

(6)
2 (0); all the rest of the derivatives

γ
(N)
2 (0) = 0 at N = 4 and N ≥ 7 vanish in this case. Thus in a certain vicinity

of the origin the two-point correlation function of the well-stirred dispersion is the
polynomial

γ2(r) = 1 − 3

4(1 − η1)

r

a
+

1 + 3η1

16(1 − η1)

(
r

a

)3
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− 9η1

160(1 − η1)

(
r

a

)4

+
η1

2240(1− η1)

(
r

a

)6

. (3.17)

Note that the function γ2(r) should vanish at r = 4a in the well-stirred case under
study. The polynomial (3.17) does not possess this property which means that γ2(r)
is not analytical on the whole semiaxis (0,∞) and hence (3.17) holds in a certain
vicinity of the origin r = 0. Indeed, a direct analytical computation, details of which
will be reported elsewhere, shows that (3.17) holds only at r ≤ 2a. In the point

r = 2a, γ
(4)
2 (r) is discontinuous. It is to be mentioned that the above computation

allows us to claim that the general formula for γ
(4)
2 (0), given by Frisch and Stillinger

[15], is not correct, since in the well-stirred case it does not yield the respective value
in (3.17).

4. Asymptotics of i2(p) as p → 0 and its Consequences

Note immediately that at small p � 1:

i2(p) = θ1τ
2 − θ2τ

3 + · · · = τ 2
∞∑

N=0

(−1)N

N !
θn+1τ

N , (4.1)

θN =
∫ ∞

0
tNγ2(r/a) dt, t = r/a, (4.2)

so that θN are the moments of the correlation function γ2(r) on the semiaxis (0,∞).
To connect these moments with the appropriate moments of the binary correlation
note first that

I = I(τ) =
∫ ∞

1
se−2τsg(s) ds =

1 + 2τ

4τ 2
e−2τ +

∫ ∞

1
se−2τsν2(s) ds, (4.3)

using the definition ν2(s) = g(s) − 1 of the binary correlation, s = r/2a. The first
term in the right side of (4.3) is just the parameter I = Iws in the well-stirred case,
already known, see (3.6).

Expand next I(τ), as given in (4.3), around τ = 0:

I(τ) =
1 + 2τ

4τ 2

(
1 − 2τ +

(2τ)2

2!
− · · ·

)
+

(
m1 − 2τm2 +

(2τ)2

2!
m3 − · · ·

)

=
1

4τ 2

(
1 +

∞∑
N=2

(−1)N−1(1 − NmN−1)

N (N − 2)!
(2τ)N

)

=
1

4τ 2

(
1 − 2(1 − 2m1)τ

2 +
8

3
(1 − 3m2)τ

3 − 2(1 − 4m3)τ
4 + · · ·

)
, (4.4)

where

ml =
∫ ∞

1
sl ν2(s) ds, s = r/2a, (4.5)

l = 0, 1, . . ., are the moments of the binary correlation on the semiaxis (1,∞).
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Insert the series (4.4) for I into the formula (1.1) for the statistical parameter
i2(p), and use that

A(τ) = 12τ 2
∞∑

N=0

(−1)N (N + 1) (N + 4)

(N + 5)!
(2τ)N = τ 2

(
2

5
− 1

3
τ +

6

35
τ 2 − · · ·

)
,

F (τ)e2τ = 9
∞∑

N=0

(N + 1) (2N + 5) 22(N+3)

(2(N + 3))!
(2τ)N = 4τ 2

(
1 +

1

5
τ 2 +

3

175
τ 4 + · · ·

)
,

see (2.2) and (3.10). Then

i2(p) = τ 2

[
2/5 − η1(9/5 − 4m1)

5(1 − η1)
− 1 − 8η1(1 − 3m2)

3(1 − η1)
τ + · · ·

]
,

which, when compared to (4.1), gives the interconnection between the moments θN

of the two-point correlation γ2(r) and the moments ml of the binary correlation ν2(r)
for a dispersion of nonoverlapping spheres. In particular,

θ1 =
2 − η1(9 − 20m1)

5(1 − η1)
, θ2 =

1 − 8η1(1 − 3m2)

3(1 − η1)
, etc. (4.6)

The formulae (4.6) are very convenient, if the binary correlation is given an-
alytically. For instance, in the well stirred case ν2(r) = 0 at r ≥ 2a, so that all the
moments ml vanish and hence, in particular,

θ1 =
2 − 9η1

5(1 − η1)
, θ2 =

1 − 8η1

3(1 − η1)
, (4.7)

in this case.
Note that for any statistically homogeneous and isotropic random medium the

moments θ1 and θ2 should be nonnegative. (As a matter of fact, this follows from
the Bochner-Khinchine theorem which states that the two-point correlation function
γ2(r) should be positive-definite for such media [16,17].) An elementary proof of this
fact consists in introducing the random fields

χ(x) =
∫ 1

4π|x − y| I
′
1(y) dy, φ(x) =

∫
I ′
1(x − y) dy,

and noting that 〈|∇χ|2〉 ≥ 0 and 〈φ2〉 ≥ 0.
The nonnegativeness of θ1 and θ2 imposes, through Eq. (4.6), restrictions on

the moments m1 and m2 of the binary correlation for any realistic dispersion of
spheres, namely,

m1 ≥
9η1 − 2

20η1

, m2 ≥
8η1 − 1

24η1

. (4.8)

Hence the well-stirred approximation, for which m1 = m2 = 0, is realistic only at
η1 ≤ 1/8—something conjectured by Willis [18], who noticed that a certain well-
known scheme of mechanics of composites in the wave propagation context yields
unrealistic predictions for this approximation, if η1 > 1/8.
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