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ABSTRACT

Variational estimates (upper and lower) are derived for the effective absorption
coefficient (sink strength) of a random medium. The estimates are three-point, i.e.,
they employ statistical information, contained in the `-point correlation functions
for the medium up to ` = 3, and could be viewed as counterparts of the well-known
Beran’s bounds in the scalar conductivity problem. Explicit results are obtained for
Miller’s cellular media.

INTRODUCTION

Consider the steady-state equation

∆ϕ(x)− k2(x)ϕ(x) + K = 0, (1)

that governs, at the expense of some simplifying assumptions, the concentration ϕ(x) of a
diffusing species (say, irradiation defects), generated at the constant rate K, in a random
absorbing (lossy) medium, see [1] for references and more details. The absorption coefficient
k2(x) is a given random field, assumed positive and statistically homogeneous and isotropic.
The problem is to evaluate the random field ϕ(x), i.e., all its multipoint correlations, and,
in particular, to find the mean defect concentration 〈ϕ(x)〉; the brackets 〈·〉 hereafter denote
ensemble averaging. The latter value allows to obtain the effective absorption coefficient (sink
strength), k∗2, of the medium defined by the relation k∗2〈ϕ(x)〉 = K.

Our aim here is to derive certain bounds on k∗2, using variational formulations of the problem
(1). The bounds thus derived will be counterparts of the well-known Beran’s bounds for the
effective scalar conductivity of a random medium [2]. Four statistical parameters enter the
bounds and we show how to evaluate them for the Miller’s cellular medium. The respective
calculations for random dispersions of spheres are being dealt with and the final results will be
reported elsewhere.
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PRIMAL VARIATIONAL PRINCIPLE AND UPPER BOUNDS

The random equation (1) is first replaced by the primal variational principle

W (e, ϕ) =
〈
e(x) · e(x) + k2(x)ϕ2(x)− 2Kϕ(x)

〉
→ inf. (2a)

The functional W is considered over the class of admissible pairs

A =
{
(e, ϕ)

∣∣∣ e = ∇ϕ
}
. (2b)

Moreover,

inf
A

W = −K2

k∗2
, (2c)

and this value is attained on the pair (∇ϕ, ϕ) ∈ A, where the field ϕ(x) solves equation (1).
The principle (2) obviously allows to obtain upper bounds on k∗2 provided appropriate classes
of trial fields are introduced.

After [3] we choose here the class of trial fields of the form

ϕ(x) = Φ0 +
∫

Φ1(x− y)δk2(y) d3y, (3)

where Φ0 = const and Φ1(x) are nonrandom adjustable quantities, δk2(y) = k2(y) − 〈k2〉 is
the fluctuating part of the field k2(y). (Hereafter, the integrals are taken over the whole R3, if
the integration domain is not explicitly indicated.) The scalar Φ0 and the function Φ1(x) are
interrelated:

Φ0 =
1

〈k2〉
{
K −

∫
Φ1(y)Mk

2 (y) d3y
}
, Mk

2 (y) = 〈δk2(0)δk2(y)〉, (4)

since the fields (3) should satisfy the equation 〈k2(x)ϕ(x)〉 = K which follows from (1) after
averaging.

Note that if Φ1(y) = 0, then the variational principle (2) brings forth the obvious Voigt-type
estimate

k∗ ≤ kV , kV =
√
〈k2〉. (5)

On introducing (3) into (2) and taking (4) into account, we make W an usual functional of the
kernel Φ1(x). The minimization of the latter with respect to Φ1 yields a certain complicated
integro-differential equation which will be discussed elsewhere. Instead we shall resort here to

the Ritz type procedure in which the kernel Φ1(x) is taken proportional to
1

4π|x|
exp(−kV |x|).

Thus we minimize the functional (2) over the class of trial fields

ϕ(x) = Φ0 + λ
∫ 1

4π|x− y|
exp(−kV |x− y|)δk2(y) d3y, (6)

where now Φ0 and λ are adjustable scalars, subject to the constraint

Φ0 + λ
Mk

2 (0)

〈k2〉2
Ik
2 =

K

〈k2〉
, (7)

cf. (4), and Ik
2 is a dimensionless statistical parameter for the medium, defined as follows

Ik
2 =

〈k2〉
Mk

2 (0)

∫ 1

4π|y|
exp(−kV |y|)Mk

2 (y) d3y. (8a)
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The procedure is now straightforward. We insert (6) into the functional W , cf. (2), and take
into account (7). This makes W a quadratic function of λ whose minimization yields an upper
bound on k∗2, namely

k∗2

k2
V

≤ 1−

Mk
2 (0)

〈k2〉2
(Ik

2 )2

Ik
2 +

Mk
3 (0,0)

〈k2〉Mk
2 (0)

Ik
3

, (9)

where Ik
3 is another dimensionless statistical parameter for the medium:

Ik
3 =

〈k2〉2

Mk
3 (0,0)

∫ ∫ 1

16π2|y1||y2|
exp(−kV (|y1|+ |y2|))M

k
3 (y1,y2) d3y1 d3y2; (8b)

here Mk
3 (y1,y2) = 〈δk2(0)δk2(y1)δk

2(y2)〉 is the three-point correlation function.

Note that the integrand’s kernel in the r.h.-side of equation (6) is proportional to that that
appears in the first-order term in the perturbation solution of the problem (1) in the case of
a weakly inhomogeneous medium. A variational procedure, based on the similar term of the
perturbation solution in the scalar conductivity problem, was developed by Beran [2]. That is
why the bound (9), as well as the respective lower bound below, could be viewed as counterparts
of Beran’s bounds for the absorption problem under study.

DUAL PRINCIPLE AND LOWER BOUNDS

The construction of the dual variational principle for the problem under consideration needs
evaluation of the Fenchel-Young transform of the functional W , cf., e.g., [4]. Skipping all
details, we give only the eventual formulation1

J(e, ϕ) = −
〈
e∗(x) · e∗(x) + α2(x)(ϕ∗(x) + K)2

〉
→ sup . (10a),

where α2(x) = 1/k2(x) is the “compliance” field. The functional J is considered over the class
of admissible pairs

A∗ =
{
(e∗, ϕ∗)

∣∣∣ 〈e∗〉 = 0, ∇ · e∗ = ϕ∗
}
. (10b)

Moreover,

inf
A

W = sup
A∗

J = −K2

k∗2
, (10c)

and the supremum value of the functional J is attained on the pair (e∗, ϕ∗)
∈ A∗, for which e∗ = ∇ϕ, ϕ∗(x) = k2(x)(ϕ(x) + K), where the field ϕ(x) solves equation
(1). The principle (10) obviously allows to obtain upper bounds on k∗2 provided appropriate
classes of trial fields are introduced. For instance, in the simplest case when both e∗ and ϕ∗

vanish, one gets the Reuss-type estimate

kR ≤ k∗, 1/kR =
√
〈α2〉. (11)

The counterpart of the class (6) now is

e∗(x) = λ∇x

∫ 1

4π|x− y|
exp(−kR|x− y|)δα2(y) d3y, (12)

1One of the authors (KM) gratefully acknowledges the helpful discussion with J. Willis, concerning the
formulation of the dual principle for the problem under study.
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where λ ∈ R is adjustable scalar and δα2(x) = α2(x) − 〈α2(x)〉 is the fluctuation of the
“compliance” field. Note that the kernels in the classes (6) and (12) differ, because the Voigt
and Reuss values, kV and kR, are used within the respective exponential functions.

On inserting (12) into the functional (10a) and using the fact that ∇ · e∗ = ϕ∗, we make J a
quadratic function of λ whose minimization yields a lower bound on k∗2, namely1−

Mα
2 (0)

〈α2〉2
(Iα

2 )2

Iα
2 +

Mα
3 (0,0)

〈α2〉Mα
2 (0)

Iα
3



−1

≤ k∗2

k2
R

, (13)

where

Iα
2 = − 1

Mα
2 (0)

∫
∆y

(
1

4π|y|
exp(−kR|y|)

)
Mα

2 (y) d3y, (14a)

Iα
3 =

1

Mα
3 (0,0)

∫ ∫
∆y1

(
1

4π|y1|
exp(−kR|y1|)

)

×∆y2

(
1

4π|y2|
exp(−kR(|y2|)

)
Mα

3 (y1,y2) d3y1 d3y2, (14b)

are the counterparts of dimensionless statistical parameters (8) that enter the upper bound for
the medium, and

Mα
2 (y) = 〈δα2(0)δα2(y)〉, Mα

3 (y1,y2) = 〈δα2(0)δα2(y1)δα
2(y2)〉

are, respectively, the two- and three-point correlation functions for the field α(y).

BOUNDS FOR CELLULAR MEDIA

Let us recall that a simple and plausible random geometry for a two-phase medium has been
proposed by Miller [5]. This is the so-called cellular material which is obtained by dividing the
space into closed regions, called cells. Afterwards the cells are randomly filled up with one of
the two constituents possessing (in our context) absorption coefficients k2

f or k2
m. The volume

fractions of the latter are respectively cf or cm, see [5], [6] for more details.

Under the assumption of statistical isotropy, the two-and three-point for such a cellular medium
have the form [6]:

Mk
2 (y) = cfcm[k2]2

1

Va

∫
h(y)h(y − z) d3z,

Mk
3 (y1,y2) = cfcm(cm − cf )[k

2]3
1

Va

∫
h(z)h(y1 − z)h(y2 − z) d3z, (15)

where h(x) denotes the characteristic function of the mean cell, assumed spherical with radius a,
Va = 4

3
πa3 is its volume and [k2] = k2

f −k2
m. Similar expressions hold for the “compliance” field

α2(x) = 1/k2(x), with the only replacement of [k2] by [α2] = αf − αm, αf = 1/kf , αm = 1/km.

On introducing (15) into the definitions (8a) and (8b) of the statistical parameters Ik
2 and Ik

3

respectively, one gets integrals involving the Helmholtz potential χV = h ∗ 1

4π|x|
exp(−kV |x|)
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for a single sphere of radius a, located at the origin. Using the simple analytical form of the
latter, the following expressions for these parameters are eventually obtained:

Ik
2 = 1− F2(aV ), Ik

3 = 1− 2F2(aV ) + F3(aV ), (16a)

where aV is the dimensionless parameter aV = akV and

F2(x) = 3
1 + x

x3
exp(−x)(x cosh x− sinh x),

F3(x) =
3

2

(1 + x)2

x3
exp(−2x)(sinh x cosh x− x). (17)

Similar calculations for the statistical parameters Iα
2 and Iα

3 , that enter the lower bound (13),

involve the Helmholtz potential χR = h ∗ 1

4π|x|
exp(−kR|x|) for a sphere of radius a, located

at the origin. It appears finally that

Iα
2 = F2(aR), Iα

3 = F3(aR), (16b)

where aR = akR and the functions F2 and F3 are given in (17).

Thus the Beran’s type bounds on the effective absorption coefficient of a cell medium could be
summarized as follows

k2
R

{
1− cfcm(δα)2(Iα

2 )2

Iα
2 + δα(cm − cf )Iα

3

}−1

≤ k∗2 ≤ k2
V

{
1− cfcm(δk)2(Ik

2 )2

Ik
2 + δk(cm − cf )Ik

3

}
, (18)

where δk =
[k2]

〈k2〉
and δα =

[α2]

〈α2〉
; the needed statistical parameters are defined in equations

(16a,b).

Note that F2(x) and F3(x) are monotonically increasing functions of x and F2(0) = F3(0) = 0,
F2(∞) = F3(∞) = 1. That is why the four statistical parameters Ik

2 , Ik
3 , Iα

2 and Iα
3 for a cellular

medium always lie in the interval [0, 1].

Tables 1 and 2 illustrate the performance of the bounds (18) for a cellular medium at am = 1
and am = 10, respectively, where am = akm. It is well seen that the bounds remain tolerably
close and supply useful information about k∗2 even when the absorption ability of one of the con-
stituents is one hundred times greater than that of the other (k2

f/k
2
m = 100 or 0.01). Naturally

enough, one of the bounds degenerates in the limiting cases k2
f/k

2
m → 0 or k2

f/k
2
m →∞.

TABLE 1

Values of the bounds (18) on k∗2/k2
m for a

cellular medium at am = 1.

k2
f/k

2
m = 0.01 k2

f/k
2
m = 100

cf lower upper lower upper
0 1 1 1 1
0.05 0.936 0.940 1.268 1.559
0.10 0.873 0.881 1.570 2.251
0.25 0.694 0.710 2.734 4.842
0.50 0.431 0.449 6.318 12.019
0.75 0.205 0.214 16.379 28.674
0.90 0.085 0.087 34.390 54.724
0.95 0.047 0.048 46.055 71.883
1 0.01 0.01 100 100

TABLE 2

Values of the bounds (18) on k∗2/k2
m for a

cellular medium at am = 10.

k2
f/k

2
m = 0.01 k2

f/k
2
m = 100

cf lower upper lower upper
0 1 1 1 1
0.05 0.461 0.719 1.063 1.138
0.10 0.344 0.547 1.134 1.258
0.25 0.164 0.287 1.402 1.694
0.50 0.063 0.120 2.205 3.004
0.75 0.027 0.048 4.502 6.839
0.90 0.016 0.023 10.484 16.819
0.95 0.013 0.016 18.623 29.443
1 0.01 0.01 100 100
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