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The effective absorption coefficient (the sink strength or the trapping constant) γ
of a statistically isotropic random array of penny-shaped cracks is considered. The
cracks are treated as oblate spheroids with vanishing aspect ratio. A variational
procedure, based on Rubinstein-Torquato’s principle is employed which yields non-
trivial lower bounds on γ using appropriate trial fields of ‘particle’ and ‘surface’
type. The bounds include the crack density parameter for the array as well as the
two-point correlation function for the set of crack’s centers. The bounds also provide
useful and nontrivial information concerning crack’s competition at non-dilute con-
centration. The straightforward ‘transition’ of the obtained results as upper bounds
on the effective permeability of an array of randomly distributed disk-like obstacles
is finally indicated.
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1. Introduction

An array of geometrically identical entities (particles or voids) that constitute phase
1 is immersed into an unbounded matrix (phase 2). The centers of the entities, to
be called particles for definiteness in what follows, form a random set, assumed
statistically homogeneous and isotropic. The particles act as ideal absorbers (sinks)
for a diffusing species generated at a constant rate K in the matrix. In the steady-
state limit, the governing equations of this well-known problem read

∆c(x) +K = 0, x ∈ K2, c(x)
∣∣∣

∂K2

= 0, (1.1)

where K2 is the region occupied by the matrix. The creation of defects is exactly
compensated by their removal from the sinks, so that, in the steady-state limit
under study,

γ 〈c(x)〉 = K(1 − η1). (1.2)

The rate constant γ is the effective absorption coefficient (the sink strength or the
trapping constant) of the medium. In (1.2), η1 is the volume fraction of the sinks;
the brackets 〈〉 denote ensemble averaging.

† Adapted from Proc. Roy. Soc. Lond. A, 459 (2003), 1135–1151, with several misprints cor-
rected.
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For a dilute array of spherical particles, γ was first evaluated by Smoluchowski,
whose work initiated an extensive research of the so-called diffusion-controlled re-
actions in the context of heterogeneous catalysis or irradiation damage (see, for
example, Brailsford & Bullough (1981) or Calef & Deutch (1983) for more de-
tails and references). For non-dilute concentrations, however, the sink interactions
become predominant and their influence on the effective sink strength has been
studied theoretically by many authors since the 1970s (see, for example, Doi 1976,
Felderhof & Deutch 1976, Talbot & Willis 1980, Torquato & Rubinstein 1989).
These authors addressed either various approximations or variational bounds on
γ that utilize statistical information about spatial location of the sinks. In all of
these works the shape of the absorbers was assumed, similarly to Smoluchowski, to
be spherical. Only in Miller et al. (1991) absorption by a dilute array of oriented
spheroids was studied together with the limiting cases when the latter degenerate
into disks or rod-like inclusions (see also Torquato 2002).

In the present work the sinks will be taken as identical penny-shaped cracks
of radius a. They are randomly distributed throughout the matrix and their ori-
entation and location are uncorrelated. The cracks are treated as a limiting case
of spheroids with semiaxes a and c when the aspect ratio w = c/a → 0 (the
‘crack’ limit). Since the absorption is a ‘surface’ phenomenon in the sense that it
takes place on the interfacial boundaries, the effective sink strength should ‘sur-
vive’ and not vanish after taking this limit, though its value would considerably
differ, presumably, from that of an array of spheres. The obtained results (§§ 5–7)
will corroborate and quantify these expectations. Moreover, in this way some use-
ful information concerning cracks competition at non-dilute concentration will be
obtained.

The straightforward ‘transition’ of the sink strength results as estimates on
the effective permeability arrays of randomly distributed disk-like obstacles will be
finally indicated in §8.

2. Statistical description of the micro-cracked medium

Consider a random array S of identical and nonoverlapping spheroids, assumed both
homogeneous and isotropic statistically. The spheroids are oblate with semiaxes
a = b > c. Let xj be the centers of the spheroids. We shall treat S as a marked
system of random points xj , having imagined it constructed in the following manner.

Fix a ‘test’ spheroid S0 at the origin O together with a Cartesian system
Ox1x2x3 along the semiaxes of S0 and such that Ox3 is along the shorter of them.
Let e1, e2, e3 be the unit vectors of the system Ox1x2x3. Put a copy of the test
spheroid S0 at each of the points xj and rotate it arbitrarily. The vector e3 will
then turn into the vector ωj = U j · e3, where U j is a unitary tensor, detU j = 1
(i.e., U j is a ‘pure’ rotation in R

3). Then attach ωj to the point xj as a ‘mark.’
The result is the marked system S =

{
xj , ωj

}
of random points comprising the

location xj ∈ R
3 of the jth spheroid center and its ‘orientation’ ωj ∈ Ω; hereafter

Ω = {z ∈ R
3

∣∣ |z| = 1} denotes the unit sphere in R
3. The marked system S

represents mathematically the array of randomly oriented spheroids under study.
(For the general definition and basic properties of sets of marked random points
see Snyder (1975).)
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The system S is defined statistically by the multipoint probability densities Fk

such that

dP = Fk(y1, . . . , yk;ω1, . . . , ωk) dy1 · · · dyk dSΩ1 · · · dSΩk

is the probability to find simultaneously in the vicinities yi < y < yi + dyi of the
spatial positions yi, k members of the system with marks (i.e. with orientations)
ω ∈ Ω, whose end points lie in the vicinities dSΩi

of the points ωi ∈ Ω, respectively
(i = 1, . . . , k).

Observe that at k = 1 one has

F1(y;ω) = nP (ω), P (ω) =
1
4π

, (2.1)

where n is the number density of the spheroids. The adopted expression of P (ω)
corresponds to the assumption that there is no preferable orientation of the latter.

Assume there is no long-range order in the array S. Then

F2(y1, y2;ω1, ω2) → F1(y1;ω1)F1(y2;ω2) = n2P (ω1)P (ω2)

as |y1 − y2| → ∞, see (2.1). Hence, if the above mentioned rotations U j in each
point are mutually uncorrelated and there is no correlation between U j and the
location xj of the spheroid, j = 1, 2, . . . , then the density function F2(y1, y2;ω1, ω2)
factorizes as:

F2(y1, y2;ω1, ω2) = n2g(y1 − y2)P (ω1)P (ω2). (2.2)

Here f2(y1, y2) = g(y1 − y2)n2 is the two-point density function for the random set
of spheroid centers xj and g(|y1 − y2|) is the radial distribution function.

To forbid overlapping of the spheroids we assume also the simplest possible
restriction on f2, namely:

f2(y1, y2) = 0 if |y1 − y2| ≤ 2a. (2.3)

Note that the assumption (2.3) can be simply interpreted in the following man-
ner. Insert each spheroid within a sphere of radius a, both having a common center.
Eq. (2.3) then means that the so appearing spheres are impenetrable and hence their
volume fraction is

α = nVa, Va = 4
3πa

3; (2.4)

recall that n is the number density of the spheroids. The quantity α will be used
in what follows as the crack-density parameter after degeneration of the spheroids
into cracks. Observe that the volume fraction, η1, of the spheroids is η1 = nVω,
Vω = 4

3πa
2c. Due to (2.4), in the ‘crack’ limit, one has

η1 = αw → 0 as w → 0. (2.5)

A convenient statistical description of the set S, corresponding to the array
of spheroids under study, is the marked random density function of the type of
Stratonovich (1963),

ψ(x;ω) =
∑

j

δ(x− xj) δ(ω − ωj). (2.6)

Proc. R. Soc. Lond. A (2003) 459, 1035–1051



1038 K. Z. Markov

The moments of the field ψ(x;ω) can be expressed by the multipoint probability
densities Fk and vice versa; the general formulae are given in Stratonovich (1963)
(in the ‘non-marked’ case, but their generalization to the ‘marked’ one is straight-
forward). Under the assumptions (2.1) and (2.2), the first two moments of ψ(x;ω),
needed in what follows, are

〈ψ(y;ω)〉 = F1(y;ω) = nP (ω),

〈ψ(y1;ω1)ψ(y2;ω2)〉 = nP (ω1)δ(y1 − y2)δ(ω1 − ω2)

+n2g(y1 − y2)P (ω1)P (ω2).

 (2.7)

It is noted that the description of a dispersion of randomly oriented spheroids
as a marked random point set was introduced in Markov (1998a) when bounding
the effective thermal conductivity and elastic moduli of a micro-cracked solid.

3. The basic lemma

The micro-cracked solids are treated here, as already pointed out, as limiting cases
of solids, containing spheroidal cavities when the aspect ratio w = c/a → 0. In
the quest for their effective behaviour one encounters certain quantities depending
on the aspect ratio w, averaged over all possible orientations of the spheroids. The
limits of these quantities when w → 0, i.e. when the cavities degenerate into penny-
shaped cracks, are then of central importance. The needed limits can be easily
found, as it will be seen, making use of the following basic lemma.

Lemma 3.1. Let h(x;ω) be the characteristic function of an ellipse (in two di-
mensions) or of a spheroid (in three dimensions) located at the origin, with the
orientation ω. Then

lim
w→0

1
w

∫
Ω

h(x;ω)P (ω) dω = H(x),

H(x) =
b

ρ

√
1 − ρ2 ha(x), b =


2
π
, in two dimensions,

1 , in three dimensions,

 (3.1)

where ha(x) is the characteristic function of a sphere of radius a, located at the
origin, ρ = r/a, r = |x|.

Proof. Though only the three dimesional case will be needed in the sequel, the
proposed proof needs first a study of the planar case.

Fix the Cartesian system Ox1x2, with the center O in the ellipse’s center, see
figure 1a. The orientation of the ellipse is then specified by the angle α0 between
eω (the direction of the shorter semiaxis) and Ox1, as shown in figure 1. Fix the
point M and let x =

−−→
OM , r = |x|, r < a. The characteristic function h(x;ω) �= 0

for those angles α solely, for which the appropriate ellipses contain the point M .
But in the limit w → 0, when the ellipses become very prolate, such angles belong
to the interval (α0 −�α , α0 + �α)

⋃
(α0 + π −�α , α0 + π + �α), where

�α ≈ tan�α =
d

r
=
c
√

1 − r2/a2

r
, (3.2)
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Figure 1. ‘Geometrical’ background of the derivation of (3.1)

see figure 1a for notations and the obvious geometrical sense of the above relations.
Hence

1
w

∫
Ω

h(x;ω)P (ω) dω ≈ 1
2πc/a

4�α

≈ 1
2πc/a

4c
√

1 − r2/a2

r
=

2
πρ

√
1 − ρ2 ,

 (3.3)

which proves (3.1) in two dimensions, since the latter relation becomes exact in the
limit w → 0. (Observe that P (ω) = 1/(2π) in two dimensions.)

Consider now the three dimesional case. Fix a vector x, |x| < a, and consider all
spheroids with a bigger axis along the unit vector e1, such that e1 ‖ x, see figure 1b.
Then h(x, ω) �= 0 for these spheroids. The vectors eω, corresponding to them, span
the unit circle of length 2π in the plane perpendicular to e1, see figure 1b again.
In turn, any of these spheroids can be rotated about the other of their bigger axes
(the one along e2 in figure 1b). As it follows from the foregoing two dimensional
reasoning, the range of the appropriate angles of such rotations is the interval
(−�α,�α), see figure 1a, with �α given in Eq. (3.2). (Note that we should not
take into account now the opposite angles’ interval (π−�α, π+�α), since we have
already counted the appropriate spheroids, having allowed the rotations about e1
to span the unit circle.) That is why

1
w

∫
Ω

h(x;ω)P (ω) dω ≈ 1
4πc/a

2π · 2�α

≈ 1
c/a

√
1 − r2/a2

r
=

1
ρ

√
1 − ρ2 ,

which proves (3.1) in three dimensions, since the latter relation becomes exact in
the limit w → 0.

Lemma 3.1 was formulated in Markov (1998a), when bounding the effective
properties of micro-cracked solids, without proof. The reason was that the explicit
form of H(ρ) turned out needless there and only its property∫

Va

H(ρ) dx = Va, Va =
{
x

∣∣ |x| ≤ a
}
, (3.4)
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had to be employed. (Observe that it can be easily verified directly from (3.1),
without needing the explicit expression of this function.) Unlike Markov (1998a)
the explicit form of H(ρ) will be needed here in §§5–7.

4. Variational procedure

Recall first the variational principle of Rubinstein and Torquato (1988), associated
with the problem (1.1), (1.2).

Let A be the class of smooth and statistically homogeneous trial fields such that

A =
{
u(x)

∣∣ ∆u(x) +K = 0, x ∈ K2

}
. (4.1)

Then

γ ≥ K2(1 − η1)
〈I2(x)|∇u(x)|2〉 . (4.2)

The equality sign in (4.2) is achieved if u(x) = c(x) is the actual field that solves
the problem (1.1). In (4.2), I2(x) denotes the characteristic function of the region
occupied by the matrix. Since the ‘crack’ limit will be of only interest, one can take
I2(x) ≡ 1 and η1 = 0 (see (2.5)) from the very beginning here so that the bound
(4.2) simplifies to

γ ≥ K2

〈|∇u(x)|2〉 . (4.3)

5. The ‘particle-particle’ bound

Following Torquato & Rubinstein (1989), we shall first employ in (4.3) the trial
field

u(x) = −K
η1

∫
G(x− y)

[
I1(y) − η1

]
dy, (5.1)

where I1(x) is the characteristic function of the spheroids (the sink phase 1) with
volume concentration η1 and G(x) = 1/(4π|x|). Since ∆G(x)+ δ(x) = 0, it is easily
seen that ∆u(x)+K = 0, if x ∈ K2, and therefore the fields u(x) in (5.1) are indeed
admissible.

For an array of spherical sinks the bound (4.3), corresponding to the trial field
(5.1) was called by Torquato & Rubinstein (1989) ‘void’ (since the sinks are treated
by these authors as voids in the medium throughout which the defects diffuse).

After Markov (2001) we prefer to call a bound of this type ‘particle-particle’
due to the fact that its evaluation (independently of any physical context) requires
only the ‘particle-particle’ correlation, i.e., the probability density that two points
thrown at random both fall within the particulate phase, imagined here as an array
of very thin oblate ellipsoids.

To evaluate the bound (4.3), corresponding to the trial fields (5.1) in the crack
limit, express first the field I ′1(y) = I1(y) − η1 in the integrand of (5.1) by means
of the random density field (2.6)

I ′1(y) =
∫∫

h(y − z;ω)ψ′(z;ω) dzdω, (5.2)

Proc. R. Soc. Lond. A (2003) 459, 1035–1051
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where
ψ′(z;ω) = ψ(z;ω) − 1

2nP (ω)

is the fluctuating part of the field ψ(z;ω), so that 〈ψ′(z;ω)〉 = 0, see (2.7). (Observe
that I ′1(y) is the fluctuating part of I1(y).) If not explicitly indicated, the integration
hereafter with respect to spatial coordinates is over the whole R

3, and that with
respect to the ‘mark,’ i.e., spheroid’s orientation, over the unit sphere Ω.

In virtue of (5.2) the quantity
〈|∇u(x)|2〉 that is of primary interest, as far as

the bound (4.3) is concerned, reads〈|∇u(x)|2〉 =
1
η2
1

∫∫∫∫
∇ϕ(z1;ω1) · ∇ϕ(z2;ω2)

×〈ψ′(z1;ω1)ψ′(z2;ω2)〉 dz1dz2 dω1dω2,

 (5.3)

where

ϕ(z;ω) =
∫

h(u;ω)
4π|z − u| du (5.4)

is the Newtonian potential of the spheroid with the characteristic function h(u;ω).
Recall that ϕ(z;ω) solves the equation

∆ϕ(z;ω) + h(z;ω) = 0. (5.5)

In the crack limit w → 0 one has〈|∇u(x)|2〉 =
A

α2
, A = nA1 + n2A2,

A1 = lim
w→0

1
w2

∫∫
|∇ϕ(z;ω)|2P (ω) dz dω,

A2 =
∫∫

∇Φ(z1) · ∇Φ(z2) ν2(z1 − z2) dz1dz2,


(5.6)

having used (5.3), (2.7) and (2.5). Here

Φ(z) = lim
w→0

1
w

∫
ϕ(z;ω)P (ω) dω (5.7)

and ν2(y) = g(y)− 1 is the total (binary) correlation function for the set of crack’s
centers.

Consider first the coefficient A1. Integration by parts together with (5.5) yields

A1 = lim
w→0

1
w2

∫ [ ∫
ϕ(z;ω)h(z;ω) dz

]
P (ω) dω. (5.8)

The potential ϕ(x;ω) inside the spheroid is a quadratic function of the Cartesian
coordinates z1, z2, z3 along its axes

ϕ(z;ω) = 1
2

(
M0 −M⊥

(
z2
1 + z2

2

) −Mz2
3

)
. (5.9)

In the case of a thin spheroid the factors M’s have the asymptotics

M = 1 − π
2w + o(w), M⊥ = π

4w + o(w),

M0 = 2M⊥a2 +Mc2 =
(
2M⊥ +Mw2

)
a2 = π

2wa
2 + o(w),

}
(5.10)
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according to Muratov (1975). Hence

2
∫
ϕ(z;ω)h(z;ω) dz = M0Vω

−M⊥
∫ (

z2
1 + z2

2

)
h(z;ω) dz + o(w2) = 2

5πVaw
2a2 + o(w2),

 (5.11)

after elementary integration, with (5.9) and (5.10) taken into account. Thus

nA1 = 2
5παa

2, (5.12)

as it follows from (2.5).
Consider next the coefficient A2. Note first that the function Φ(z) in its expres-

sion solves the equation
∆Φ(z) +H(z) = 0, (5.13)

see (5.7), (5.5) and (3.1). Integration by parts, combined with (5.13), yields

A2 =
∫∫

Φ(z1)H(z2) ν2(z1 − z2) dz1dz2 =
∫
S(x) ν2(x) dx. (5.14)

Here S(x) is the convolution

S(x) = (Φ ∗H)(x) =
∫

Φ(x− u)H(u) du (5.15)

which as a consequence of (5.13) solves the equation

∆S(x) + (H ∗H)(x) = 0. (5.16)

Split the total correlation as

ν2(y) = νws
2 (y) + ν̃2(y), νws

2 (y) = −h2a(y), (5.17)

where h2a(y) is the characteristic function of a sphere of radius 2a, located at the
origin. The total correlation νws

2 (y) corresponds to the simplest well-stirred (hard
spheres) distribution gws(y) = 1 − h2a(y). Note that

ν̃2(y) = 0, if |y| ≤ 2a, (5.18)

due to the assumption (2.3). Accordingly, the coefficient A2 splits as

A2 = Aws
2 + Ã2, Aws

2 = −
∫
S(x)h2a(x) dx, Ã2 =

∫
S(x)ν̃2(x) dx, (5.19)

see (5.14) and (5.17).
The evaluation of Aws

2 is straightforward using the Fourier transform

f̂(k) =
1

(2π)3/2

∫
eik·xf(x) dx.

Then

Aws
2 = −

∫
Ŝ(k)ĥ2a(k) dk and Ŝ(k) =

(2π)3/2

k2
Ĥ2(k),
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due to (5.16). In spherical coordinates in the k-space the latter formula yields

Aws
2 = −4π

a
(2π)3/2

∫ ∞

0

Ĥ2(κ)ĥ2a(κ) dκ, κ = |k|a. (5.20)

In turn, using the radial symmetry of both H(x) and h2a(x), one has

Ĥ(k) =
3Va

(2π)3/2κ

∫ 1

0

ρH(ρ) sinκρdρ, ĥ2a(k) =
3Va

(2π)3/2

sin 2κ− 2κ cos 2κ
κ3

.

(5.21)
In virtue of (3.1),∫ 1

0

ρH(ρ) sinκρdρ =
∫ 1

0

√
1 − ρ2 sinκρdρ =

π

2κ
H1(κ),

where H1(κ) is the Struve function, see Abramowitz & Stegun (1972). Eventually,

Aws
2 = −

[
9
2π

∫ ∞

0

1
κ7

H2
1(κ)(sin 2κ− 2κ cos 2κ) dκ

]
V 2

a a
2. (5.22)

The author was not able to find analytically the value of the integral in (5.22).
However, numerical integration indicates that the value of the multiplier in the
square bracket in (5.22) equals 28/15 within the accuracy of 1 ·10−12. Since such an
accuracy far exceeds any reasonable needs, one can take as ‘proven’ that the said
multiplier is exactly 28/15. Thus

Aws
2 = − 28

15V
2
a a

2. (5.23)

Consider finally the coefficient Ã2, see (5.19). In virtue of (5.18), only the values
of S(x) at |x| > 2a are needed for its evaluation. But the function S(x) is harmonic
at |x| > 2a. (The function H(x) vanishes at |x| > a, see (3.1), and therefore the
convolution (H ∗H)(x) = 0, if |x| > 2a.) The Poisson formula then yields

S(x) =
1

4πr

∫
Va

(H ∗H)(y) dy =
V 2

a

4πr
, r = |x| > 2a,

cf. (3.4). (Observe that S(x) is radially symmetric.) Hence

Ã2 =
∫
S(x)ν̃2(x) dx = V 2

a a
2m1,

m1 =
∫ ∞

2

ρν̃2(ρ) dρ, ρ = r/a.

 (5.24)

It is noted that the same statistical quantity m1 shows up in the bound on the sink
strength in the case of spherical sinks, due to Talbot & Willis (1980), as well as in
the ‘void’ bound of Torquato and Rubinstein (1989).

It remains to insert (5.6), (5.12), (5.23) and (5.24) into (4.3) to get eventually

γa2 ≥ α
π
5 − 28

15α+m1α
. (5.25)
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6. The ‘surface-surface’ bound

Let hτ (x, ω) be the characteristic function of a spheroid with orientation ω, centered
at the origin, whose semiaxes are (1 + τ)a and (1 + τ)c, τ > 0. Observe that the
function

s(x, ω) =
d
dτ

hτ (x, ω)
∣∣∣∣

τ=0

(6.1)

is proportional to the Dirac’s delta δS(x), whose support is the surface Sω of the el-
lipsoid with the characteristic function h(x, ω). A similar observation of Doi (1976),
in the case of spherical sinks, was the basis in Markov (2001) for derivation of a new
‘surface-surface’ bound on the sink strength as well as of a new and simpler deriva-
tion of the bound of Talbot and Willis (1980) within the frame of the variational
principle (4.3) (Markov, 1998b).

Here we shall generalize the reasoning of the author (Markov, 2001) to the case
of a micro-cracked solid, using (6.1) as a starting point.

Consider the function

J(x) =
∫∫

s(x− y;ω)ψ(y;ω) dydω (6.2)

— this is the ‘surface’ counterpart of the field I1(x), defined in (5.2), since J(x) is a
superposition of delta functions concentrated on the surfaces of the ellipsoids that
form the array under consideration, see (2.7).

The mean value of the field J(x) is

〈J(x)〉 = n
d
dτ

∫ [ ∫
hτ (x− y, ω) dy

]
P (ω) dω

∣∣∣∣
τ=0

= n
d
dτ

(1 − τ)3 4
3πa

2c

∣∣∣∣
τ=0

= 3η1 = 3nVaw,

 (6.3)

see (2.7).
Guided by (5.1), consider the trial field

u(x) = − K

3η1

∫
G(x− y)

[
J(y) − 3η1

]
dy, (6.4)

which is obviously admissible, ∆u(x) = K, x ∈ K2.
It is natural to call the bound, corresponding to the trial field (6.4), ‘surface-

surface’ since it is generated by a superposition of delta’s, concentrated over the
surfaces of the spheroids. Hence, when evaluating the bound the two-point prob-
ability that a pair of points, thrown at random, both ‘land’ on such surfaces will
show up. This probability can be expressed through the radial distribution function
g(r) of the spheroid’s centers — something that will be tacitly done in the course
of calculations below.

To find the explicit form of the ‘surface-surface’ bound note first that the random
field in the integrand of (6.4) is just the fluctuating part of J(x):

J ′(x) = J(x) − 3η1 =
∫∫

s(x− y;ω)ψ′(y, ω) dydω, (6.5)
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as a consequence of (6.2) and (6.3).
The scheme of §5 is now implemented in the ‘surface’ case under discussion. The

quantity
〈|∇u(x)|2〉 has here the form

〈|∇u(x)|2〉 =
1

9η2
1

∫∫∫∫
∇σ(z1;ω1) · ∇σ(z2;ω2)

×〈ψ′(z1;ω1)ψ′(z2;ω2)〉 dz1dz2 dω1dω2,

 (6.6)

where the function

σ(z;ω) =
∫

s(u;ω)
4π|z − u| du (6.7)

solves the equation
∆σ(z;ω) + s(z;ω) = 0. (6.8)

Observe that

σ(z;ω) =
d
dτ

ϕτ (z;ω)
∣∣∣∣

τ=0

, (6.9)

where ϕτ = hτ ∗G is the Newtonian potential of the spheroid whose characteristic
function is hτ (x;ω).

In the crack limit w → 0 one has〈|∇u(x)|2〉 =
C

9α2
, C = nC1 + n2C2,

C1 = lim
w→0

1
w2

∫∫
|∇σ(z;ω)|2P (ω) dz dω,

C2 =
∫∫

∇Ψ(z1) · ∇Ψ(z2) ν2(z1 − z2) dz1dz2,


(6.10)

having used (6.6), (2.7) and (2.5). Here

Ψ(z) = lim
w→0

1
w

∫
σ(z;ω)P (ω) dω. (6.11)

Let us start again with the coefficient C1. Integration by parts in its definition,
with (6.1), (6.8) and (6.9) taken into account, yields

C1 = lim
w→0

1
w2

∫ [ ∫
σ(z;ω)s(z;ω) dz

]
P (ω) dω

= lim
w→0

1
w2

∫
d
dτ

ϕτ (z, ω)
∣∣∣∣

τ=0

d
dτ

hτ (z, ω)
∣∣∣∣

τ=0

dz.

But
2ϕτ (z, ω) = 2ϕ(z, ω) + πwa2τ + o(w) + o(τ)

(see (5.9) and (5.10)). Hence

d
dτ

ϕτ (z, ω)
∣∣∣∣

τ=0

= 1
2πwa

2 + o(w)
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and therefore∫
σ(z;ω)s(z;ω) dz

∣∣∣∣
τ=0

=
(
πwa2 + o(w)

) d
dτ

∫
hτ (z, ω) dz

∣∣∣∣
τ=0

=
(
πwa2 + o(w)

) d
dτ

(1 + τ)3 4
3πa

2c

∣∣∣∣
τ=0

= 3πw2Vaa
2 + o(w2).

Thus
nC1 = 3

2παa
2, (6.12)

To find the coefficient C2, see (6.10), note first that the function Ψ(z), defined
in (6.11), solves the equation

∆Ψ(z) + T (z) = 0, (6.13)

where

T (z) = lim
w→0

1
w

∫
s(z, ω)P (ω) dω

= lim
w→0

1
w

d
dτ

∫
hτ (z, ω)P (ω) dω

∣∣∣∣
τ=0

=
d
dτ
Hτ (z)

∣∣∣∣
τ=0

, Hτ (z) =
1 + τ

ρ

√
1 − ρ2

(1 + τ)2
,


(6.14)

see (3.1). Simple differentiation yields

T (z) =
1

ρ
√

1 − ρ2
ha(z), ρ = |z|/a. (6.15)

Note that ∫
Va

T (ρ) dx = 3Va (6.16)

which can be deduced directly from (6.14) as well.
The evaluation of C2 now literally follows that of the coefficient A2 in §5, see

Eqs. (5.15) ÷ (5.24). The difference is that the function H(z) from (3.1) is replaced
by the function T (z) found in (6.15). Namely, we write

C2 =
∫∫

Ψ(z1)T (z2) ν2(z1 − z2) dz1dz2 =
∫
U(x) ν2(x) dx, (6.17)

where U(x) is the convolution

S(x) = (Ψ ∗ T )(x) =
∫

Ψ(x− u)T (u) du (6.18)

which solves now the equation

∆U(x) + (T ∗ T )(x) = 0, (6.19)
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as a consequence of (6.13). Then

C2 = Cws
2 + C̃2, Cws

2 = −
∫
U(x)h2a(x) dx, C̃2 =

∫
U(x)ν̃2(x) dx, (6.20)

see (6.17) and (5.17).
The evaluation of the ‘well-stirred’ contribution Cws

2 is performed again by using
Fourier transform technique. One should only note the formula∫ 1

0

ρT (ρ) sinκρdρ =
∫ 1

0

sinκρ√
1 − ρ2

dρ = π
2 H0(κ),

where H0(κ) is the Struve function, this time of zeroth-order. Eventually

Cws
2 = −

[
9
2π

∫ ∞

0

1
κ5

H2
0(κ)(sin 2κ− 2κ cos 2κ) dκ

]
V 2

a a
2. (6.21)

Numerical integration indicates that the value of the multiplier in the square bracket
in (6.21) equals 16 within the accuracy of 1 · 10−12. Hence one can take as ‘proven’
that

Cws
2 = −16V 2

a a
2. (6.22)

We note further that the function U(x) is harmonic at |x| > 2a. (The function
T (x) vanishes at |x| > a, see (6.15), and therefore the convolution (T ∗ T )(x) = 0,
if |x| > 2a.) Hence

U(x) =
1

4πr

∫
|y|≤2a

(T ∗ T )(y) dy =
9V 2

a

4πr
, r = |x| ≥ 2a,

see (6.16), so that

C̃2 =
∫
U(x)ν̃2(x) dx = 9V 2

a a
2m1. (6.23)

Here m1 is the statistical quantity for the crack array defined in (5.24).
It remains to insert (6.10), (6.12), (6.22) and (6.23) into (4.3):

γa2 ≥ α
1
6π − 16

9 α+m1α
(6.24)

which is the explicit form of the ‘surface-surface’ bound on the sink strength of a
micro-cracked array.

7. A more general bound

One can try to improve on the bounds, obtained in §§5 and 6, by combining the
trial fields used there, namely,

u(x) = −K
η1

∫
G(x− y)

[
λI1(y) − η1 + 1

3µJ1(y)
]
dy. (7.1)

The field (7.1) is obviously admissible, whatever the adjustable constants λ, µ. To
get a finite value for the denominator

〈|∇u(x)|2〉 in (4.2) and hence a nontrivial
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lower bound on γ, the integrand in (7.1) should have a zero mean value. This
requires that

λ+ µ = 1, (7.2)

see (6.3), which allows one to recast (7.1) as

u(x) = −K
η1

∫
G(x− y)

[
λI ′1(y) + 1

3µJ
′
1(y)

]
dy. (7.3)

Putting λ = 1, µ = 0 in (7.3) reproduces the ‘particle’ field (5.1); accordingly, the
choice λ = 0, µ = 1 yields the ‘surface’ field (6.4). Hence the more general trial
fields (7.3) should produce a lower bound on the effective sink strength γ superior
to both bounds (5.25) and (6.24), if an appropriate optimization with respect to λ
and µ is performed (under the constraint (7.2)).

For the field (7.3) the quantity
〈|∇u(x)|2〉 reads

〈|∇u(x)|2〉 =
1
α2

(
λ2A+ 2

3λµB + 1
9µ

2C
)
, (7.4)

where A and C are defined in Eqs. (5.6) and (6.10), respectively, and B is a ‘mix’
between their definitions:〈|∇u(x)|2〉 =

B

α2
, B = nB1 + n2B2,

B1 = lim
w→0

1
w2

∫∫
∇ϕ(z;ω) · ∇σ(z;ω)P (ω) dz dω,

B2 =
∫∫

∇Φ(z1) · ∇Ψ(z2) ν2(z1 − z2) dz1dz2,


(7.5)

see (5.7), (5.4), (6.7), (6.11), (2.7) and (2.5).
The evaluation of the coefficients B1 and B2 in (7.5) literally follows the scheme,

used in §§5–6 and the final results read

nB1 = παa2, B2 =
(− 82

15 + 3m1

)
V 2

a a
2. (7.6)

Note that the first term in the expression (7.6) for B2 is the ‘well-stirred’ con-
tribution which has the integral form

Bws
2 = −

[
9
2π

∫ ∞

0

1
κ6

H0(κ)H1(κ)(sin 2κ− 2κ cos 2κ) dκ
]
V 2

a a
2. (7.7)

cf. (5.22) and (6.21). Numerical integration indicates that the multiplier in (7.7)
equals 82/15 within the accuracy of 1 · 10−12.

A straightforward minimization of the quadratic form (7.4), with the constraint
(7.2) taken into account, yields

γa2 ≥ α
1
6π − 16

9 α− 2
135πα

2 +m1α
(7.8)

see (4.2), and this represents a more restrictive lower bound on the sink strength γ
of a micro-cracked solid.
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It is noted that in the case of spherical sinks the foregoing procedure, employed
by the author (Markov, 2001), yielded the known bound of Talbot & Willis (1980).
That is why (7.8) can be viewed as a ‘crack’ counterpart of the latter bound.

Observe also that the only difference between (7.8) and (6.24) is the underlined
term in the denominator of (7.8) which clearly is negligibly small. Hence the more
general bound (7.8) practically brings forth no improvement as compared with the
‘surface’ bound (6.24).

8. Bounds on the effective permeability

Consider now a steady-state Stokesian flow of a viscous fluid through the array S
of ellipsoidal obstacles. The flow is described by the equations

µ∆v(x) = ∇p− e, ∇ · v = 0, x ∈ K2, v(x)
∣∣∣

∂K2

= 0, (8.1)

where v is the velocity, p the pressure, µ the viscosity and e is the applied pressure
gradient. An important problem consists then in evaluating the permeability (or
the Darcy constant) k of the array, defined as

〈v〉 = µke. (8.2)

Detailed discussion of this well-known problem can be found in Torquato (2000,
2002) together with an exhaustive list of appropriate references.

A variational principle for the flow problem (8.1) was introduced by Rubinstein
& Torquato (1989) together with trial fields tantamount to ones used in the ab-
sorption problem. As it turned out the resulting bounds on the permeability k of
a two-phase medium include the same statistical parameters as the bounds on the
sink strength γ. Moreover,

if γ ≥ L then k ≤ 2
3L−1 (8.3)

for the classes of trial fields used by these authors, see Torquato (2000, 2002). It is
noted that the correspondence (8.3) was explicitly indicated by Doi (1976) within
the frame of his variational procedure, clarified later on by Rubinstein & Torquato
(1988, 1989). Hence one can immediately recast the bounds on the sink strength γ,
found in §§5–7, as upper bounds on the permeability of a micro-cracked array to
be viewed here as an array of disk-like obstacles. In particular, the most restrictive
bound (7.8) on γ, when inserted into (8.3), yields

k ≤ 2a2

3α
(

1
6π − 16

9 α− 2
135πα

2 +m1α
)
. (8.4)

For a dilute crack array, n� 1, the bound (8.4) gives

k =
1

12an
+ o(n). (8.5)

A simple check shows that (8.5) coincides with the dilute value of the permeability
of an array of disk-like obstacles, as given by Torquato (2002), Eq. (19.115).
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9. Discussion

For dilute crack fractions, α� 1, the bounds (7.8) and (6.24) yield

γ ≥ γs + o(n), γs = 8an, (9.1)

and hence they both produce the correct dilute limit, given by Miller et al. (1991),
see also Torquato (2002), Eq. (19.58).

Unlike them the ‘particle’ bound (5.25) gives

γ ≥ 20
3 an+ o(n).

which underestimates the exact value γs. Recall that the same happens in the case
of an array of spheres for which the ‘void’ bound of Torquato and Rubinstein (1989)
does not produce either the respective Smoluchowski value 4πan. At the same time,
both ‘surface’ bound of Markov (2001) and the bound of Talbot & Willis (1980)
reproduce correctly this value.

To compare, at least qualitatively, the sink ability of arrays of cracks and spheres
(of the same radius a, located at the same points xj), assume that the radial
distribution function of the set xj coincides with the familiar Percus-Yevick one.
The statistical parameter m1, see (5.24), then reads

m1 =
α(22 − α)
5(1 + 2α)

, (9.2)

according to Talbot and Willis (1980). The bound of the same authors for an array
of spheres is extremely simple in this case

γa2 ≥ 3α(1 + 2α)
(1 − α)2

. (9.3)

For dilute α, the sink strength of the spheres is π/2-times higher than the one for
the cracks. For non-dilute sink fractions, however, the difference between spherical
and crack-like absorbers becomes much more considerable. This can be explained
by screening effects which should be more pronounced in the non-dilute crack arrays
than in the respective arrays of spheres.

It is noted finally that the bound (7.8) allows one to propose the following
approximation

γa2 ≈ 6
πα+ 64

π2α
2 (9.4)

for the sink strength of a micro-cracked array. It coincides to the order o(α2) with
the right-hand side of (7.8), independently of the statistics, since the radial distri-
bution function affects only the α3-term in the power series expansion of the bound.
For both well-stirred and Percus-Yevick distributions of the sink’s centers Eq. (9.4)
provides an error of less than 4 %, if α ≤ 0.2, as compared with (7.8).
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