
GODIXNIK NA SOFI�SKI� UNIVERSITET ,,SV. KLIMENT OHRIDSKI‘‘

FAKULTET PO MATEMATIKA I INFORMATIKA
Kniga 1 — Matematika i mehanika

Tom 92, 1998

ANNUAIRE DE L’UNIVERSITE DE SOFIA ,,ST. KLIMENT OHRIDSKI‘‘

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
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FIELD FLUCTUATIONS AND THE EFFECTIVE BEHAVIOUR
OF MICRO-INHOMOGENEOUS SOLIDS

K. Z. MARKOV and K. S. ILIEVA

The problem of predicting the effective mechanical properties and response of micro-
inhomogeneous solids is revisited. The aim is to highlight the influence of field fluctua-
tions which, as a rule, is neglected by the numerous existing theories that interconnect
the micro- and macro-behaviour of such solids. The key observation is that in a hetero-
geneous solid of random constitution when, say, macroscopic quantities like the mean
stress tensor are prescribed, fluctuations always create regions in which considerably
higher stresses appear. In these regions either plastic flow or a certain kind of deteri-
oration takes place, which affects the macroscopic behaviour of the solid. The result
is that the latter should start exhibiting deviations from linear response from the very
beginning of straining, despite the assumed linearity of its constituents. A quantitative
approach that takes into account the field fluctuations is proposed and outlined in the
lecture. For the simplicity sake, the scalar conductivity problem for a dilute dispersion
of spheres, possessing properties different from those of the matrix, is employed in order
to illustrate better the basic ideas. The progressive deviation from linearity, when the
macroscopic “straining” increases, indeed shows up clearly in the performed analysis.
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1. INTRODUCTION

The problem of predicting the macroscopic mechanical behaviour of a solid
with a given internal structure is the central problem of micromechanics, see, e.g.
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[1], where the well-known approximate theories, like self-consistent one, differen-
tial scheme, effective fields approach, etc., are considered in detail and compared
to experimental findings. If the microstructure is periodic, there exist rigorous
mathematical theories that yield numerical algorithms for evaluating the macro-
properties [2]. For a random solid, the problem is considerably more complicated.
In the simplest linear scalar case it is posed in the following typical manner [3].

Assume that κ(x) is the known random field of conductivity coefficient for
the medium. (For a two-phase one, κ(x) takes the values κm or κf depending on
whether x lies in the matrix or in a particle, respectively.) The temperature field,
θ(x), in such a medium is governed by the equations

∇ · q(x) = 0, q(x) = κ(x)∇θ(x), 〈∇θ(x)〉 = G, (1.1)

where q(x) is the (opposite) heat flux, G denotes the prescribed macroscopic tem-
perature gradient. Hereafter 〈·〉 signifies ensemble averaging. The problem (1.1)
should be solved in statistical sense — for a given (infinite) hierarchy of multipoint
moments 〈κ(x1) . . . κ(xq)〉, q = 1, 2, . . . , one should find the similar hierarchy of all
multipoint moments of θ(x) and the joint moments of θ(x) and κ(x). In particular
among the latter, one of the simplest is of special interest, namely,

Q = 〈κ(x)∇θ(x)〉 = κ∗G, (1.2)

since it defines the well-known effective conductivity, κ∗, of the medium. The defini-
tion (1.2) of κ∗ reflects the familiar “homogenization” of the problem under study,
in the sense that from a macroscopic point of view, when only the macroscopic
values of the flux Q and of the temperature gradient G are of interest, the medium
behaves as if it were homogeneous with a certain macroscopic conductivity κ∗. This
interpretation explains why the value κ∗ and its counterparts, say, the effective elas-
tic moduli, have been extensively studied in the literature on micro-inhomogeneous
and composite materials, see [1] and the references therein.

However, κ∗ is only a tiny part of the full statistical solution of the random
problem (1.1). Moreover, its evaluation cannot be torn away from the full statis-
tical solution of (1.1), i.e., of specifying the whole infinite hierarchy of multipoint
moments, as argued, e.g., in [3 – 5] et al. (The latter fact explains the failure of
all schemes that try to determine solely the effective property κ∗ without trying to
solve the whole stochastic problem (1.1).) Besides, there are plenty of reasons why
one should pay much more attention to other statistical characteristics of random
fields like θ(x) in (1.1), that appear in problems in random heterogeneous media.
For instance, one of the most important quantities is often the variance of local
fields, connected with the square of its fluctuation, see, e.g., [6 – 7] for more details
and references. For transport-like problems of the type of (1.1), the fluctuations
of the local fields are of primary importance when there exists a transition to non-
linearity (or a deterioration starts) after a certain threshold. Their effect will then
consists in a deviation from a linear response, however small is the macroscopic
“loading” G, compared to the respective threshold value.

The aim of the present work is to quantify this statement to a certain extent,
sketching very briefly a theory that describes such an effect in a highly idealized
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situation and thus will stimulate, hopefully, further interest and research. The core
of the approach is a combination between the functional (Volterra-Wiener) series
method, proposed and used in the last years by one of the authors in the study of
micro-inhomogeneous solids [4 – 5], and Vanmarcke’s theory [8] of excursion sets
for random fields.

2. STATISTICAL SOLUTION OF EQ. (1.1) FOR A DILUTE DISPERSION

To illustrate the basic ideas, assume that the medium is a random dispersion
of spheres — a typical representative of the wide and important class of particulate
micro-inhomogeneous media, extensively studied in the literature.

Let ηf = nVa, Va = 4
3πa3, be the volume fraction of the spheres, n be their

number density, a be the spheres’ radius. In this case the random temperature field,
θ(x), that solves the problem (1.1), can be conveniently constructed by means of
the functional series approach, see [5, 6]. In particular, in the dilute limit ηf � 1,
θ(x) has the form of the truncated functional series

θ(x) = G · x +
∫

T1(x − y)ψ′(y) dy + o(ηf ), (2.1)

where ψ′(x) = ψ(x) − n is the fluctuating part of Stratonovich’s random density
field ψ(x) =

∑
α δ(x − xα), see [9]. The integrals hereafter are over the entire space

R
3 if the integration domain is not explicitly indicated. In Eq. (2.1)

T1(x) = 3βG · ∇ϕ(x), β =
[κ]

κf + 2κm
, (2.2)

[κ] = κf − κm, is the “single-sphere” field, i.e. the disturbance to the temperature
field G · x in the homogeneous matrix of conductivity κm, introduced by a single
spherical inclusion of conductivity κf ; ϕ(x) is the Newtonian potential for the latter
inclusion. Recall that

∇∇ϕ(x) = −1
3




I, if |x| < a,
1
ρ3

(
I − 3erer

)
, if |x| > a,

(2.3)

ρ = r/a, er = r/r, r = |x| and I is the unit 2nd-rank tensor.
The representation (2.1) allows us to obtain all statistical characteristic of the

field θ(x), asymptotically correctly to the order O(ηf ). In particular, we shall need
in what follows the full statistical information about the random variable

τ = τ(0) = |∇θ(0)|2, (2.4)

i.e. its probability distribution function. Using Eq. (2.1) and the formula

〈ψ′(y1)ψ′(y2)〉 = nδ(y1 − y2) + o(n), (2.5)
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see [9], yields after some algebra

τ = G̃2 + 3βG ·
∫

T̃(y) ·Gψ′(y) dy + o(ηf ), (2.6)

G̃2 = G2(1 + 3β2ηf ), T̃(y) = ∇∇ϕ(y) ·
(
2I + 3β∇∇ϕ(y)

)
, (2.7)

having employed some results of [5]. In a similar way other statistical characteristics
of the field θ(x) can be obtained in a closed form. Details can be found, e.g., in [5]
and [10] (in the last paper the effective conductivity κ∗ of the dispersion is rigorously
evaluated to the order O(η2

f ), using the truncated functional series approach).

3. THE IDEALIZED MODEL

Hereafter we shall consider a highly idealized situation in which there exists a
threshold G0 of the temperature gradient with the following properties: if |∇θ(x)| <
G0 locally (at the point x that is), then both the matrix and the particles behave
linearly, obeying the Fourier law, see Eq. (1.1).

If, however, |∇θ(x)| ≥ G0, the constituents become nonconducting, i.e. both
κf and κm vanish. In other words, the following constitutive equation is adopted

q(x) = κ̃(x)∇θ(x), κ̃(x) =
{

κ(x), if |∇θ(x)| < G0,
0, if |∇θ(x)| ≥ G0,

(3.1)

κ(x) =
{

κm, if x ∈ matrix,
κf , if x ∈ spheres.

The model is not claimed to have any specific physical meaning — its sole
role here is to illustrate the basic ideas and techniques as simply as possible. The
generalizations to more realistic situations when, say, plastic flow and/or damaging
take place, according to certain well-known criteria, can be performed along a
similar line of reasoning (provided the volume fraction ηf of the inhomogeneities is
small enough).

As it follows from Eqs. (2.2) and (2.3), the “stress-concentration factor” for the
single-spherical inhomogeneity, in the scalar conductivity context under discussion,
does not exceed 2, whatever the values of κf and κm. In other words, if G = |G|
is the magnitude of the temperature gradient at infinity, the magnitude of this
gradient within or around the single inhomogeneity does not exceed 2G. This
means that if G < 2G0, the linear Fourier law in (1.1) is applicable throughout the
whole infinite space, comprising the matrix with the single spherical inhomogeneity.
In turn, for the considered dilute dispersion the spheres are, as a rule, far one from
another1 and hence each one can be considered as single, immersed into the infinite

1More precisely, this is true, if the inclusions are “well-separated”; however, there can exist re-
alizations of the arrays of spheres, when they form clusters. The latter may result in a considerable
increase of the local temperature gradient, as pointed out in the final section.
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matrix constituent. This means that under the condition

G < G0/2, (3.2)

the linear equation (1.1) for the temperature field θ(x) is still applicable, despite
the obvious strong nonlinearity of the model (3.1). The applicability of this linear
equation does not mean, though, that the effective behaviour of the solid will be
linear even in the region (3.2). The reason is that however small is the mean
gradient’s magnitude G, the solution θ(x) of Eq. (1.1), being random, will always
exhibit fluctuations, some of which will be big enough to generate regions in which
the local gradient |∇θ(x)| ≥ G0. These are just the so-called excursion sets to be
discussed in the next section.

4. THE EXCURSION SETS FOR THE RANDOM FIELD |∇θ(x)|2

Let f(x) be a random field, whose realizations are defined over the region
Ω ⊂ R

3. The sets ΩA =
{
x ∈ Ω

∣∣ f(x) ≥ A
}

are called excursion for the field
f(x), [8, 11]. A problem of central importance for many applications concerns a
more detailed description of these sets and, in particular, estimates of their mean
volume ΩA/Ω.

In general, such questions are very hard since the answers should involve the
multipoint statistics of f(x). Comparatively simple results are achieved for infinite
regions Ω = R

3 under the assumption that the field f(x) is Gaussian, see again
[8, 11]. The latter assumption unfortunately is not appropriate for the fields that,
like θ(x), emerge as solution of the random equations of the type of (1.1) in media
of particulate microstructure, see [4] for a more detailed discussion. For arbitrary
(statistically homogeneous) random fields convenient, though approximate, results
are given by Vanmarcke [8, Ch. 4], and they will turn out very useful for our study,
as we shall see in a moment.

Namely, Vanmarcke observed that if the excursion value A is considerably
higher than the mean value of the field (say, two or three time at least, which as
a matter of fact is just our case, as it follows from Eq. (3.2)), the excursion sets
have a simple structure — they represent well separated areas in R

3, whose volume
fraction, ηA, is just the complementary cumulative distribution function F c

f (A) of
the random variable f = f(0). More precisely

ηA = lim
Ω→R

3
Pr

{
f ≥ A

}
= F c

f (A) = 1 − Ff (A). (4.1)

The result (4.1), though not mentioned explicitly in [8], immediately follows from
the formulae (4.6.4) of the same book.

Note that due to the assumed statistical homogeneity, all random variables
f(x), x ∈ R

3, possess one and the same probability distribution function Ff (A)
and hence it suffices to take x = 0, i.e. to consider the random variable f = f(0)
only.
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It is to be also noted that the formula (4.1) has a simple and clear interpre-
tation: it states that for high enough excursion levels the multipoint statistics of
the random field f(x) does not influence the volume fraction ηA of the respective
excursion sets. This volume fraction is thus specified by the “one-point” statistics
only, i.e. by the cumulative distribution function (c.d.f.) Ff (A) = Pr

{
f < A

}
of

the random field f(x) in a fixed point x (which can always be chosen at the origin
due to the assumed statistical homogeneity). With this interpretation, the formula
(3.2) becomes natural enough.

For the dispersion under study which obeys the constitutive law (3.1), the
quantity of central interest is just the field |∇θ(x)|2 since its excursion sets above
the level G2

0 will represent, so to say, the “plastified” region of the volume fraction
ηG0 of the composite. According to (4.1),

ηA = F c
τ (G0) = 1 − Fτ (G0), (4.2)

where τ is the random variable, introduced in Eq. (2.4), and Fτ (A) is its cumulative
distribution function. These regions will cover both matrix and inhomogeneities,
with probabilities ηm and ηf , respectively. Hence the dispersion under study will
become a three-phase material, comprising:

• phase ‘1’ — matrix of conductivity κm and volume fraction ηm(1 − ηG0);

• phase ‘2’ — inhomogeneities of conductivity κf and volume fraction ηf (1 −
ηG0);

• phase ‘3’ — nonconducting excursion sets (“plastified” regions) of volume
fraction ηG0 .

Since the dispersion is dilute, ηf � 1, we can imagine that the foregoing three-
phase material can be adequately homogenized in the following simple and obvious
way. First, the matrix with the inhomogeneities is replaced by a homogeneous
medium of effective conductivity

κ∗ = κm(1 + 3βηf ) + o(ηf ), (4.3)

without paying attention to the excursion regions. In the next step we introduce
the latter (whose conductivity is zero) into the already homogenized medium of
conductivity κ∗ and get a material of conductivity

κ̃∗ = κ∗ 1 − ηG0

1 + ηG0/2
= κm(1 + 3βηf )(1 − 3

2
ηG0), (4.4)

so that, eventually,
κ̃∗

κm
= 1 + 3βηf − 3

2
ηG0 + o(ηf ). (4.5)

In the last formulae (4.3) to (4.5) we have applied the well-known Maxwell (or
Clausius-Mossotti) result for predicting the effective conductivity of a dispersion,
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which is exact in the dilute limit. Also, we have tacitly assumed that the applied
gradient G is considerably smaller than the limit one G0, so that the volume fraction
ηG0 of the “plastified” regions is small as well; the parameter β in the foregoing
relations is defined in Eq. (2.2). The latter assumption is in full agreement with
the one that assures the applicability of Vanmarcke’s formula (4.1), so that

ηG0 = Fτ (G0). (4.6)

Hence, as it follows from Eqs. (4.5) and (4.6), to predict the effective behaviour
of the dispersion under study, with fluctuations of the appropriate random fields
taken into account, it is necessary that the c.d.f. Fτ (A) of the random variable τ ,
defined by Eq. (2.4), be evaluated.

5. EVALUATION OF THE DISTRIBUTION FUNCTION Fτ (A)

Let
fτ (u) =

dFτ (u)
du

(5.1)

be the probability density function (p.d.f.) of the random variable τ = |∇θ(0)|2.
Then the moments of τ read

tp = 〈τp〉 =
∫ ∞

0

upfτ (u) du. (5.2)

The integration is over (0,∞) since, obviously, the random variable τ is nonnegative
and hence both fτ (u) and Fτ (u) vanish if u < 0.

To find the moments tp, the representation (2.6) of τ is to be used together
with the formulae

〈ψ′(y1) . . . ψ′(yk)〉 = nδ(y1 − y2) . . . δ(y1 − y2) + o(n), (5.3)

k = 2, 3, . . . , which generalize Eq. (2.5) in an obvious manner, see [9]. The final
result reads

t
(1)
0 = t

(1)
1 = 0, tp = G̃2p + ηf t(1)p G2p,

G̃2p = G2p(1 + 6pβ2ηf ),

t(1)p =
p∑

k=0

1
3k

Cp
k

[
(β − 2)k + 3Ik

]k
, p ≥ 2,

Ik =
1
3

∫ 1

0

dz

∫ ∞

1

dρ

ρ6k−2

[
β + 2ρ3 + 3(β − 2ρ3)z2

]k

=
1
3

k∑
l=0

2lβk−1

2k − l − 1
Ck

l

∫ 1

0

(1 + 3z2)k−l(1 − βz2)l dz.

(5.4)
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Knowledge of the moments tp allows us to evaluate the Laplace transform of
fτ (u):

f τ (s) = L[fτ ](s) =
∫ ∞

0

e−sufτ (u) du = f
(0)

τ (s) + ηff
(1)

τ (s),

f
(0)

τ (s) =
∞∑

p=0

(−1)p

p!
(G̃2s)p = e−G̃2s,

f
(1)

τ (s) =
∞∑

p=0

(−1)p

p!
(G̃2s)pt(1)p .

(5.5)

Hence
fτ (u) = δ(u − G̃2) + ηff (1)

τ (u), (5.6)

where
f (1)

τ (u) = L−1[f
(1)

τ ](u) (5.7)

is the inverse Laplace transform of the function f
(1)

τ (s), defined in the last line of
Eq. (5.5). Let us recall that all the foregoing formulae hold in the dilute limit, i.e.
they are correct to the order O(ηf ) only.

Note that the formula (5.6) is fully natural — if ηf = 0, then G̃ = G, see Eq.
(2.7), the medium is homogeneous so that ∇θ(x) ≡ G and thus τ = |∇θ(x)|2 ≡ G2.

6. DISCUSSION

The formulae (5.4) — (5.7) specify, at least in principle, the function fτ (u)
and hence its primitive Fτ (u), see Eq. (5.1), i.e. the needed cumulative distribution
function of the random variable τ , defined in Eq. (2.4). It is easily seen that the
function Fτ (u) depends on the nondimensional ratio u/G2, i.e. Fτ = Fτ (u/G2),
and as a c.d.f. it monotonically increases, tending to 1 when u/G2 → ∞. The
formulae (4.5) and (4.6) now give

κ̃∗

κm
= 1 + 3βηf − 3

2
(
1 − Fτ (G2

0/G2)
)

+ o(ηf ) (6.1)

and the underlined term is just the result of fluctuations of the temperature gra-
dient. When G → 0, i.e. at G � G0, κ∗ tends to its classical value κm(1 + 3βηf ),
predicted by the Maxwell formula in the dilute limit. Therefore, the values of the
effective conductivity and, more general, of the effective properties for a compos-
ite, represent but tangents to the appropriate “stress-strain” curves at the onset of
loading. When G increases, the underlined term in Eq. (6.1) increases as well thus
leading to progressively bigger deviation from the classical linear behaviour.

The aforesaid means that no matter how small is the macrostrain “loading” (G
in our simplified context), imposed upon a micro-inhomogeneous medium, there will
always appear zones of “plastic” yielding or deteriorated ones, due to fluctuations of
the appropriate random fields. Hence such a random medium should show deviation
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from linear behaviour from the very onset of loading. This represents the central
conclusion of our study, which we have tried to quantify in the proposed scheme.

It is curious to point out immediately that the nonlinearity of stress-strain
curves, even for very small strain, is an experimentally observed feature of all
solids, as specially emphasized by Bell [12] as a result of his extensive and detailed
review of experimental data in the last 300 years. (See, e.g., his words at the end of
Ch. 2.6, p. 30: “One might dismiss nonlinearity of the response functions observed
in the experiments of Hodgkinson and Dupin as merely an interesting historical
development in the fields of solid mechanics, were it not for the fact that by the
end of the 19th century the increasing accuracy of measurements and improved
experiments demonstrated that that was indeed the precise manner in which such
solids deformed.”)

The proposed scheme possesses, however, certain drawbacks which should be
explicitly pointed out and which make it only approximate, even in the simplest
dilute case under study. The point is the following: When using ensemble averaging,
one should consider a multitude of spatial realizations of the array of spheres in the
dispersion. When the spheres in a given realization are “well-separated,” then each
one can be indeed treated as single, immersed into unbounded matrix material.
The behaviour of both spheres and matrix is then linear under the condition (3.2).
There will be however specific realizations of a “clustering” type, so to say, when
some of the spheres are close one to another; in this case the “stress-concentration”
factor may become much higher than 2. For these realizations the “plastic” or
deteriorated zones will be considerable and the behaviour will not be linear already.
Moreover, the number of such “clustering” realizations is not negligible, even at
small G/G0, since they influence the overall response when averaging over the set
of all realizations. This means that the basic equation (1.1) should be considered
as a nonlinear and random one, with κ(x) replaced by κ̃(x), see Eq. (3.1), whatever
the value of G. The representation (2.1), which has served as a basis of our analysis,
can be viewed then as a certain approximation which allows solely to highlight the
role of the fluctuations on the overall behaviour of the composite. Despite this, its
adoption seems unavoidable in the proposed scheme, because it is not clear, at least
to the authors, how a problem of the type (1.1) with a discontinuous coefficient κ̃(x)
can be efficiently treated in the random case.
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