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The classical problem for a cloud of identical spheres settling steadily in an un-
bounded incompressible fluid is revisited and a rigorous upper bound on the sed-
imentation speed is derived. Within the frame of the Rayleigh analogy between
equations of linear (incompressible) elasticity and Stokesian hydrodynamics a more
general Robin’s type problem in elastostatics is first discussed, in which an array of
rigid spheres, cemented into an elastic matrix, are displaced due to a given force. In-
stead of a variational principle a Bounjakowsky-Schwarz type inequality is applied
in order to avoid the quest for trial fields that satisfy the boundary conditions. The
energy of the system is thus explicitly estimated which generates a lower bound on
the effective constant α∗ that interconnects the force with the mean displacement
of the spheres. In the incompressible case, invoking the Rayleigh analogy, a rigor-
ous bound on the familiar hindered settling speed of the dispersion immediately
follows. The bound turns out to coincide with the ‘far-field’ approximation for the
sedimentation speed, proposed by Brady & Durlofsky.
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1. Random elastostatic Robin’s problems

Consider a macroscopic piece V of an elastic dispersion of spheres, i.e. an (isotropic)
elastic matrix (phase 2) that contains a random array of small rigid spherical par-
ticles (phase 1). The array is assumed statistically homogeneous and isotropic. The
regions, occupied by the phases, are denoted K1 and K2 and their characteristic
functions are I1(x) and I2(x), respectively. Hence ηk = 〈Ik(x)〉 is the volume frac-
tion of the phase ‘k’, k = 1, 2. There are no displacements on the boundary of
V :

u
∣∣∣
∂V

= 0. (1.1)

In statistical setting, to be employed in what follows, the condition (1.1) will be
replaced by

〈u(x)〉 = 0 (1.2)

with the brackets 〈·〉 denoting ensemble averaging. In such a setting the piece V
with a specific distribution of particles will be treated as one of the realizations of
the random dispersion.

Assume that a constant force F 0 is applied to each sphere. As a result displace-
ment u(x) and stress tensor T σ(x) fields appear in the matrix. The displacement
satisfies the Lamé equations

L[u] = µ∆u + (λ + µ)∇∇ · u = 0, x ∈ K2, (1.3)
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L[·] is Lamé’s operator.
In turn, the condition that the force acting on the spheres is F 0 reads

F 0 =
∫
Sα

σn ds, σn = T σ · n, (1.4)

α = 1, 2, . . . Here Sα is the surface of the α-th sphere Vα and n is its outward unit
vector.

Due to the applied force F 0 the spheres, assumed cemented into the matrix,
undergo rigid displacements Uα

u(x) = Uα, x ∈ V α, (1.5)

α = 1, 2, . . .. Using (1.5) we extend the displacement field u(x), defined in the
matrix by means of Lamé equations (1.3), over the whole R

3, by taking u(x) ≡ Uα

within the α-th sphere Vα.
The mean displacement of the spheres is

U0 =
1
N

∑
α

Uα (1.6)

for a given realization, containing N spheres or, in statistical setting,

U0 =
1
η1

〈I1(x)u(x)〉 . (1.7)

Moreover,
F 0 = α∗U0 (1.8)

with a certain effective (macroscopic) constant α∗ that depends on the shear mod-
ulus µ and Poisson ratio ν of the matrix, as well as on the statistical properties of
the array of rigid spheres.

The problem (1.2), (1.3), (1.4) will be called the random elastostatic Robin’s
problem. The reason is that it represents an obvious multi-particle generalization
of the electrostatic Robin’s problem. The constancy of the potential in the latter
context on the conductors’ surfaces—the spheres Sα—corresponds to rigid displace-
ment of the balls Vα; the lack of electric force within Vα is ‘translated’ as absence
of stresses there, see, e.g., Lur’e (1970), Sec. IV.4.7. In the simplest particular case
a single rigid sphere is cemented within unbounded elastic medium and undergoes
a fixed displacement U0 due to the applied force F 0. Then

F 0 = A0U0, A0 =
24πµ(1 − ν)

5 − 6ν
a, (1.9)

see again Lur’e (1970), Eq. (V.3.3.9); hereafter a stands for the radius of the spheres.
It is noted that a problem that differs a bit from (1.2), (1.3), (1.4), was formu-

lated by the author (Markov, 1991) who named it also random elastostatic Robin’s
problem. There the spheres undergo fixed displacements U0, one and the same
for all of them, and one looks for the mean force F 0 that generates them.† This
problem will not be discussed here.

† In fluid context, see below, this corresponds to the steady flow through a fixed bed of spherical
obstacles.
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Sedimentation speed 3

As is well known there exists a formal analogy between the Lamé equations for an
elastic solid and the quasi-static Stokesian equations for a viscous incompressible
fluid (provided the solid is incompressible as well, i.e. its Poisson ratio ν = 1

2 ).
This analogy was pointed out by Lord Rayleigh (1894), but rarely exploited in the
literature. A notable exception is the work of by Hill & Power (1956) who employed
it to obtain variational estimates on the drag of some bodies of complicated shape
in a viscous flow. Within the frame of Rayleigh’s analogy the Robin’s problem (1.2),
(1.3), (1.4) exactly corresponds to the classical sedimentation problem: a cloud of
rigid particles, subject to a constant (gravitational) force, falls steadily throughout
an unbounded fluid at rest at infinity. The counterpart of (1.8) in this case reads

F 0 = α∗V 0, (1.10)

where V 0 is the mean steady-state velocity of the particles and F 0 is the force
applied to them; α∗ is interpreted as a sedimentation constant. Recall that in the
dilute case, when each sphere can be viewed as single, the Stokes formula holds, so
that

α∗ = 6πµa. (1.11)

Eq. (1.11) follows immediately from (1.9) at ν = 1
2 , as it should be. The only

difference is that µ in (1.11) is interpreted now as the fluid viscosity.
It is noted that all considerations below can be performed using fluid context

from the very beginning. The Lamé equation is to be replaced then with the Stokes
one, taking into account the incompressibility condition ∇ · v = 0 and the corre-
sponding Lagrange multiplier—the pressure p. The Kelvin-Somigliana tensor will
then generate Stokeslets in §§3 and 4, etc. In author’s view however it seems more
consistent logically to start with the more general Robin’s problem and only in the
final stage let ν = 1

2 and invoke fluid context.

2. The basic inequality and some of its consequences

Let T e and T ′
e be arbitrary (symmetric) tensor fields of second rank, statistically

homogeneous, not necessarily generated as small strain tensors by means of certain
displacement fields. Let in turn H be a fourth-rank tensor of elastic moduli, i.e. H
is strictly

positive-definite and possesses the familiar internal and external symmetries.
Denote

A =
√

H : T e, A′ =
√

H : T ′
e

and invoke the obvious inequality〈
(A − A′) : (A − A′)

〉
=

〈
A : A − 2A : A′ + A′ : A′〉 ≥ 0. (2.1)

The semicolon indicates contraction with respect to two pair of indices. In virtue
of the assumed symmetry properties of the tensors A, A′ and H one has

A : A =
(√

H : T e

)
:
(√

H : T e

)
= T e : H : T e

and similarly for A : A′ and A′ : A′. Thus (2.1) can be recast as

〈T σ : T e〉 ≥ 2
〈
T ′

σ : T e

〉
−

〈
T ′

σ : T ′
e

〉
, (2.2)
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where
T σ = H : T e, T ′

σ = H : T e (2.3)

are the ‘stress’ fields associated with T e and T ′
e, respectively, by means of the

‘elastic’ tensor H .
Let T ′

e = λT̃ e, where T̃ e is a fixed (but otherwise arbitrary) symmetric tensor
field and λ is an adjustable scalar. For such a choice of T ′

e the right-hand side of
(2.2) becomes a quadratic function of λ whose optimization yields

〈T σ : T e〉 ≥

〈
T̃ σ : T e

〉2

〈
T̃ σ : T̃ e

〉 . (2.4)

Equality sign is achieved if the tensors T̃ e and T e are proportional.
The inequality in (2.4) is the starting point of our study. It obviously represents

a certain tensorial counterpart of the familiar Bounjakowsky-Schwarz inequality.
Observe that (2.4) resembles a variational statement as far as the functional

F
[
T e, T̃ e

]
= 〈T σ : T e〉 −

〈
T̃ σ : T e

〉2

〈
T̃ σ : T̃ e

〉 → min (2.5)

is minimized here and T̃ e can be thought as a ‘trial’ field that approximates the
‘true’ one T e. In such statements, however, the appropriate functionals depend as
a rule only on the ‘trial’ field and they are extremized when the latter ‘hits’ the
true one. Unlike this the functional F

[
T e, T̃ e

]
here depends both on the ‘trial’

and ‘true’ fields. This fact implies that practical results may be obtained from (2.4)
only if the ‘mixed’ term

〈
T̃ σ : T e

〉
in (2.5) can be somehow calculated without

full knowledge of the ‘true’ field T e. If this is done, then (2.5) may reduce to a
variational statement which compares the energy 〈T σ : T e〉 of the actual field with
that of a ‘trial’ one,

〈
T̃ σ : T̃ e

〉
.

Assume for example that the trial fields ũ(x) satisfy the same boundary condi-
tions as the true one:

ũ
∣∣∣

∂K
= u

∣∣∣
∂K

. (2.6)

Then, for a given realization of the dispersion,〈
T̃ σ : T e

〉
=

〈
T σ : T̃ e

〉
=

1
Vol (V)

∫
∂K

σn · ũds =
1

Vol (V)

∫
∂K

σn · u ds = 〈T σ : T e〉

after an obvious integration by parts with (1.1) taken into account. Hence (2.4)
reduces to the classical variational principle〈

T̃ σ : T̃ e

〉
≥ 〈T σ : T e〉 (2.7)

that states the minimum of the elastic energy (or of the dissipation in fluid context)
for the true deformation (respectively flow).
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Sedimentation speed 5

It is however difficult to construct tractable trial fields that satisfy boundary
conditions like (2.6), especially in Robin’s or sedimentation like problems when the
displacements (or speeds) of the spheres are the unknowns. And here comes the
advantage of employing inequalities of the type of (2.4) with an appropriate choice
of trial field, since in this way one may avoid necessity of fulfilling the boundary
conditions. That such a possibility is not fictious for the Robin’s problem under
study will be demonstrated below (§§ 3 and 4). But first of all the ‘mixed’ term〈
T̃ σ : T e

〉
in (2.5) should be explicitly calculated for an appropriate choice of trial

fields, without full knowledge of the ‘true’ field.
To this end we start by choosing, naturally enough, the tensor H in (2.3) as the

elastic tensor of the matrix, i.e. the components of H in a Cartesian system read
Hijkl = λδijδkl + µ (δikδjl + δilδjk).

It is also natural to take u(x) as the actual displacement field in the matrix
that solves the Robin’s problem, i.e. u(x) satisfies the equations (1.2), (1.3), (1.4).

Choose
T e = 1

2 (∇u + u∇)I2(x); (2.8)

recall that I2(x) is the characteristic function of the region K2 occupied by the ma-
trix. With such choices of T e and H the left-hand side of (2.4) can be transformed
as follows:

〈I2(x)T σ : T e〉 = 〈I2(x)T σ : ∇u〉

= 〈∇ · [I2(x)T σ · u] 〉 − 〈u · ∇ · [I2(x)T σ] 〉 , x ∈ K2.

}
(2.9)

The second term in the right-hand side of (2.9) vanishes due to the absence
of body sources in the matrix. The first term there, for a given realization of the
random dispersion, reads:

〈∇ · [I2(x)T σ · u] 〉 =
1

Vol (V)

∫
∂K

σn · uds

=
1

Vol (V)

∑
α

(
Uα ·

∫
Sα

σnds

)
= nU0 · F 0,


(2.10)

in virtue of (1.1), (1.5) and (1.4); n = N/Vol (V) is the number density of the
spheres. Hence

〈T σ : T e〉 = nα∗U
2

0, (2.11)

as it follows from (1.8).
Choose next

T̃ e = 1
2 (∇ũ + ũ∇), (2.12)

where the ‘trial’ displacement field ũ(x) is defined over the whole R
3, has zero mean

value
〈ũ(x)〉 = 0, (2.13)

and satisfies the inhomogeneous Lamé equation

∇ · T̃ σ = L [ũ] = −U0, x ∈ K2, (2.14)
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6 K. Z. Markov

in the matrix. Within the spheres it is assumed that〈
∇ · T̃ σ

〉
Vα

=
1
Va

∫
Vα

∇ · T̃ σ dx = W , α = 1, 2, . . . , (2.15)

where Vα is the region occupied by the α-th sphere, Va = 4
3πa3, and W is a constant

vector. Note that W cannot be arbitrary: due to (2.13),〈
∇ · T̃ σ

〉
=

〈
[I1(x) + I2(x)]∇ · T̃ σ

〉
= −η2U0 +

〈
I1(x)∇ · T̃ σ

〉
= 0.

But 〈
I1(x)∇ · T̃ σ

〉
=

NVa

Vol (V)

〈
∇ · T̃ σ

〉
Vα

= η1W , ∀ α.

Recall that the volume fraction of the spheres is η1 = nVa. Thus

W =
η2

η1
U0. (2.16)

Let
A =

{
ũ(x)

∣∣ x ∈ R
3, ũ satisfies (2.13), (2.14), (2.15)

}
(2.17)

be the class of ‘trial’ fields we just introduced. We shall show that〈
T σ : T̃ e

〉
= −U

2

0, ∀ ũ ∈ A, (2.18)

i.e. the numerator in (2.4) is a constant, independent of the choice of T̃ e. This fact
represents obviously the key point in the present study.

Indeed, observe that〈
T̃ σ : T e

〉
=

〈
I2(x)T̃ σ : ∇u

〉
=

〈
∇ ·

[
I2(x)T̃ σ · u

]〉
−

〈
u ·

(
∇ ·

[
I2(x)T̃ σ

]) 〉
,

 (2.19)

see (2.12).
Consider the first term in the right-hand side of (2.19). For a given realization

of the random dispersion one has〈
∇ ·

(
T̃ σ · u

)〉
=

〈
∇ ·

[
(I1(x) + I2(x)) T̃ σ · u

] 〉
=

1
Vol (V)

∫
V
∇ ·

(
T̃ σ · u

)
dx =

1
Vol (V)

∫
∂V

σ̃n · u ds = 0,

see (1.1). That is why〈
∇ ·

[
I2(x)T̃ σ · u

]〉
= −

〈
∇ ·

[
I1(x)T̃ σ · u

]〉
. (2.20)

But 〈
∇ ·

[
I1(x)T̃ σ · u

]〉
=

1
Vol (V)

∑
α

∫
Vα

(
∇ · T̃ σ

)
· u dx

=
1

Vol (V)

∑
α

Uα ·
∫
Vα

(
∇ · T̃ σ

)
dx =

NVa

Vol (V)
U0 · W

= η1U0 · W = η2U
2

0,


(2.21)
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see (1.5) and (2.16).
The second term in the right-hand side in (2.19) is evaluated as follows〈

u ·
(
∇ ·

[
I2(x)T̃ σ

]) 〉
= −〈I2(x)u〉 · U0,

due to (2.14). In turn,

〈u〉 = 〈u [I1(x) + I2(x)]〉 = η1U0 + 〈uI2(x)〉 = 0,

see (1.2), i.e. 〈uI2(x)〉 = −η1U0 and thus〈
u ·

(
∇ ·

[
I2(x)T̃ σ

]) 〉
= η1U

2

0. (2.22)

The validity of (2.18) now follows from (2.19)—(2.22).
Inserting (2.11) and (2.18) into (2.4) yields

nα∗ ≥ U
2

0〈
T̃ σ : T̃ e

〉 , ∀ ũ ∈ A. (2.23)

Hence the ‘mixed’ term disappears in the right-hand side of the inequality (2.4), if
ũ ∈ A, so that the latter, in the form (2.23), can already produce estimates on the
effective constant α∗.

It is noted that (2.23) resembles at a first glance a variational statement. How-
ever, the true field u(x) does not belong to the class A since there are no body
forces in the matrix, L[u] = 0, cf. (2.14). The equality sign in (2.23) is thus never
achieved there.

3. The energy of the ‘trial’ fields

It remains to specify the denominator of the left-hand side of (2.23), i.e. the elastic
energy

〈
T̃ σ : T̃ e

〉
of the ‘trial’ fields ũ ∈ A.

Let
∇ · T̃ σ + χ(rα)W = 0, rα = |x − xα| ≤ a, α = 1, 2, . . . (3.1)

The vector W is given in (2.16), so that the function f , assumed for simplicity
spherically-symmetric, is subject to the constraint

1
Va

∫
|x|≤a

χ(r) dx = 1. (3.2)

In virtue of (2.14) to (2.16), the trial fields ũ ∈ A satisfy the inhomogeneous
Lamé equation

L[ũ] + q(x)U0 = 0, (3.3)

q(x) = I2(x) − η2

η1

∑
α

χ(x − xα)h(x − xα), (3.4)

where
{
xα

}
is the set of sphere’s centers and h(x) is the characteristic function of

a single sphere located at the origin.
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To represent the source term in (3.4) in a concise form, let us introduce after
Stratonovich (1963) the random density field

ψ(x) =
∑
α

δ(x − xα) (3.5)

that corresponds to the random set
{
xα

}
. This field allows one to recast (3.4) as

q(x) = − 1
η1

q0(x), q0(x) =
∫

H(x − y)ψ′(y) dy, (3.6)

ψ′(y) = ψ(y) − n, where

H(x) = (η1 + η2χ(r)) h(x). (3.7)

The function H(x) is subject to the same constraint (3.2)

1
Va

∫
H(x) dx = 1, (3.8)

as it follows from (3.7).
Recall that 〈ψ(x)〉 = n, so that ψ′(x) = ψ(x) − n is the fluctuating part of

ψ(x). Hence q0(x) is fluctuation as well, 〈q0(x)〉 = 0, as it should be, cf. (2.13) and
(3.3). Also

〈ψ(y1)ψ(y2)〉 = nδ(y1 − y2) + n2R(y1 − y2), (3.9)

where g(x) = g(r) is the radial distribution function for the random set
{
xα

}
and

R(x) = g(x) − 1 = −h2a(x) + ν(x), ν(x) = 0, |x| ≤ 2a, (3.10)

The term h2a(x) here corresponds to the well-stirred (or hard spheres) approxima-
tion for which g(x) = 0 at |x| ≥ 2a. The function ν(x) is the binary (or total)
correlation function for set

{
xα

}
; it signifies the deviation of g(x) from the hard

spheres approximation.
The solution of (3.3) has the form

ũ(x) = U0 ·
∫

G(x − y)q(y) dy, (3.11)

where integration is spread over the whole R
3, and

G(x) =
1

16πµ(1 − ν)r

(
(3 − 4ν)I +

xx

r2

)
, r = |x|, (3.12)

is the Green (more precisely, the Kelvin-Somigliana) tensor for Lamé’s operator L,
I is the unit second-rank tensor.

After the above preliminaries, consider the denominator of (2.23) for the trial
field ũ ∈ A, represented in the integral form (3.11), with q(x) defined in (3.6).

In a Cartesian system one has〈
T̃ σ : T̃ e

〉
=

1
η2
1

U
0

αU
0

β

∫∫
LijpqGpβ,q(z1)Giα,j(z2)Q(z1 − z2) dz1dz2, (3.13)
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where
Q(x) = 〈q0(x)q0(0)〉 , (3.14)

is the two-point correlation function for the field q0(x). Repeating indices hereafter
imply summation. Integration by parts in (3.13) yields〈

T̃ σ : T̃ e

〉
=

1
η2
1

U
0

αU
0

β

∫∫
∂j [LijpqGpβ,q(z1)] Giα(z2)Q(z1 − z2) dz1dz2,

assuming that the correlation (3.14) tends fast enough to zero as |z1 − z2| → ∞
Therefore 〈

T̃ σ : T̃ e

〉
=

1
η2
1

U
0

αU
0

β

∫
Gαβ(z)Q(z) dz, (3.15)

since
∂j [LijpqGpβ,q(z)] + δiβδ(z) = 0.

The latter is just the definition of Green’s tensor for the Lamé operator.
The integral in (3.15) is an isotropic second-rank tensor, so that〈

T̃ σ : T̃ e

〉
=

4πa3

η2
1A0

θ U
2

0, (3.16)

having taken the trace of the Green tensor (3.12); the constant A0 is defined in
(1.9), and

θ =
∫ ∞

0

ρQ(aρ) dρ, ρ = r/a, (3.17)

is a certain parameter that depends on the trial field ũ and on the statistical
properties of the dispersion under study. It is positive, θ > 0, being proportional
to the elastic energy

〈
T̃ σ : T̃ e

〉
, see (3.16). The specific form of the function Q(x),

and thus the value of the parameter θ, can be found by means of (3.6), (3.9) and
(3.14).

4. Estimates for the effective constant α∗

Let
H =

{
H(x)

∣∣ H(x) satisfies (3.8), |x| ≤ a
}

(4.1)

be the (convex) set of functions which generate admissible fields ũ ∈ A by means
of (3.3) and (3.6). The parameter (3.17) is a functional over this set, θ = θ[H(·)].
To get the optimal bound on α∗ one should minimize the latter

θ[H(·)] → min, H ∈ H. (4.2)

If
T = min

H∈H
θ[H(·)], (4.3)

then
α∗ ≥ η1A0

3T
(4.4)

is the best lower bound on α∗ derivable from our procedure, as it follows from
(2.23), (3.16) and (4.3).
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The variational problem (4.2) has an interest of its own, not connected with
any Robin’s or sedimentation context. Though it will not be discussed here, it is
worth formulating it in purely elastic terms. Namely, assume that body forces with
a constant density P act in the matrix of an elastic dispersion. These forces are
balanced by means of forces with nonhomogeneous density χ(rα)Q, rα = |x −
xα|, acting within the spheres. One then looks for the force distribution χ(r) that
minimizes the resulting elastic energy of the dispersion.

Instead of trying to solve the problem (4.2) we shall simply illustrate the per-
formance of the proposed procedure by choosing particular examples of functions
H ∈ H and observing that each such function yields the lower bound

α∗ ≥ η1A0

3θ[H(·)] (4.5)

on the effective constant α∗, cf. (2.23) and (3.16). Moreover, it will turn out by
chance that the parameters θ, corresponding to the functions H(x) to be cho-
sen here, have already been evaluated by the author in different context (Markov,
1998a).

The simplest choice is obviously is

χ(r) ≡ 1, i.e. H(x) = h(x), (4.6)

which means that the force is homogeneously distributed within the spheres. Then

q0(x) =
∫

h(x − y)ψ′(y) dy = I ′1(x), q(x) = − 1
η1

q0(x), (4.7)

see (3.6), where I ′1(x) = I1(x) − η1 is the fluctuating part of the characteristic
function for the region K1, occupied by the spheres. In turn

Q(x) = 〈I ′1(x)I ′1(0)〉 = F pp(x) (4.8)

is the ‘particle-particle’ correlation function for the dispersion. The parameter θ in
this case is known to be

θ = θ pp = η1

(
2 − 9η1

5
+ mη1

)
, (4.9)

see Torquato & Rubinstein (1989), Markov & Willis (1998) or Markov (1998a).
Here

m =
∫ ∞

2

ρν(ρ) dρ, ν(ρ) = g(ρ) − 1, ρ = r/a ≥ 2, (4.10)

i.e. ν(r) = g(r) − 1, r ≥ 2a, is the total correlation function, associated with
the radial distribution function g(r) of the sphere’s centers, see (3.10). Recall that
ν(r) = 0 for the hard-sphere approximation so that m = 0 in this case. The sta-
tistical quantity m is familiar—it has already appeared in the theory of random
particulate media in different contexts: we shall point out the papers of Talbot &
Willis (1980), dealing with absorption by a system of spherical sinks and Brady &
Durlofsky (1982) in sedimentation context. .

Inserting (4.9) into (4.5) yields the lower bound

α∗ ≥ 5A0

3(2 − 9η1 + 5η1m)
(4.11)
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on the effective parameter α∗.
It is seen that the bound (4.11), though nontrivial, does not produce the exact

value A0 of the parameter α∗, yielding instead

α∗ ≥ 5
6A0 + o(η1),

cf. (1.9).
Note that the bound (4.11) is the counterpart of the ‘particle-particle’ (or ‘void-

void’) estimate of Torquato & Rubinstein (1989) for the effective absorption con-
stant of a dispersion of spheres. In the permeability context a bound of this type
was first derived by Prager (1961), see the survey of Torquato (2000) for details.

Consider next the δ-sequence

χε(r) = 1
3a

 0, 0 ≤ r < a(1 − ε),
1
aε

, a(1 − ε) ≤ r ≤ a,

so that
χ(r) = lim

ε→0
χε(r) = 1

3aδ(r − a), (4.12)

which means that the force is homogeneously concentrated over the spheres’ surfaces
only.

Obviously, both χε(r) and its limit χ(r) satisfy (3.2). The function q0(x), gen-
erated by χ(r) according to (3.6), reads

q0(x) =
∫

H(x − y)ψ′(y) dy = η1I
′
1(x) + η1η2

(
a

3η1

∑
α

δ(|x − xα| − a) − 1

)
.

But
a

3η1
=

1
S

, S = 4πa2n,

where S is easily recognized as the specific surface of the dispersion. Observe also
that ∑

α

δ(|x − xα| − a) = |∇I1(x)|.

Hence

q0(x) = η1I
′
1(x) + η1η2

(
1
S
|∇I1(x)| − 1

)
, (4.13)

is the ‘surface’ counterpart of the ‘particle’ function (4.7). Then

Q(x) = η2
1

(
F pp(x) + 2η2F

ps(x) + η2
2F

ss(x)
)
, (4.14)

where

F ps(x) =
1
S2

〈I ′1(x) (|∇I1(0)| − S)〉 ,

F ss(x) =
1
S2

〈(|∇I1(x)| − S) (|∇I1(0)| − S)〉 ,

 (4.15)
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are, respectively, the ‘surface-particle’ and the ‘surface-surface’ correlation functions
for the dispersion. In turn

θ = η2
1

(
θpp + 2η2θ

ps + η2
2θ

ss
)

(4.16)

where
θps =

∫ ∞

0

ρF ps(aρ) dρ, θss =
∫ ∞

0

ρF ss(aρ) dρ (4.17)

The parameters θps and θss has been evaluated by the author (Markov, 1998a) as

θps =
5 − 26η1

15
+ η1m, θss =

1 − 5η1

3η1
+ m, (4.18)

where m is the statistical quantity, defined in (4.10).
Utilizing (4.9), (4.16), (4.18) in the bound (4.5) yields eventually

α∗ ≥ A0

1 − 5η1 − η2
1/5 + 3η1m

. (4.19)

Obviously the bound (4.19) already reproduces the exact dilute value α∗ = A0 +
o(η1) of the coefficient α∗. Moreover, (4.19) is the counterpart of the Doi-Talbot-
Willis bound on the absorption coefficient of dispersion, see Doi (1976), Talbot &
Willis (1980), and also Markov (1998b).

It seems that the singular force distribution (4.12) solves the variational problem
(4.2), so that the bound (4.19) is the best one within the frame of our procedure.
However, we shall not discuss this point here.

To recast the foregoing bounds to a more tangible form, denote by

U s =
F 0

A0
(4.20)

the displacement of a single sphere, cemented into the matrix, due to the force F0,
see (1.9). By means of (1.8) and (4.20), (4.19) is recast as

U0 ≤ Us

(
1 − 5η1 − η2

1/5 + 3η1m
)

(4.21)

which bounds the mean displacement of the spheres when the multiparticle inter-
actions are taken into account. In sedimentation context (ν = 1

2 , U interpreted as
the mean creeping velocity), (4.21) reads

V 0 ≤ Vs

(
1 − 5η1 − η2

1/5 + 3η1m
)
, (4.22)

where Vs = F0/(6πµa) is the well-known Stokes velocity of a single sphere, due to
the force F0. Hence, if we introduce the hindered settling function f through the
relation V 0 = fVs, then (4.22) yields an upper bound for f , namely,

f ≤ 1 − 5η1 − η2
1/5 + 3η1m, (4.23)

Curiously enough, the r. h. side of (4.23) coincides with the denominator of the
Talbot-Willis bound on the effective absorption coefficient of a random array of
nonoverlapping spheres, see Talbot and Willis (1980). More important, it coincides
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with the far-field approximation f∞ for the function f , as proposed by Brady &
Durlofsky (1982). We shall comment on this fact in §5.

Recall that the sedimentation speed is usually represented as

V 0 = Vs (1 − Sη1) , (4.24)

where S is called the coefficient of sedimentation. Inserting (4.24) into (4.22) yields

S ≥ 5 + 1
5η1 − 3m. (4.25)

and this inequality, together with (4.23), are our main results.
It is to be specially emphasized that the derivation of (4.25) and (4.23) involves

here no specific assumptions, all the appearing integrals are absolutely convergent
and hence no ‘renormalization’ procedures are needed.

5. Discussion

As already pointed out, the r. h. side of (4.23) coincides with the far-field approxi-
mation f∞ for the hindered settling function f , as proposed by Brady & Durlofsky
(1982). This approximation, discussed in depth by the authors, captures correctly
the far-field interactions in a settling dispersion. The inequality (4.23) thus means
that the approximation of Brady & Durlofsky provides a rigorous upper bound on
the function f , and this fact perhaps is the central finding of the present study.

The most important feature of the estimates (4.23) and (4.25) is the presence of
the term m which accounts, in an integral form, for the binary correlation function
of the array of spheres. For the simplest hard-sphere approximation m = 0 the
bound (4.23) becomes negative at η∗

1 ≈ 0.2, and hence the approximation becomes
unrealistic at sphere fractions η1 ≥ η∗

1 . This fact was pointed out by Talbot &
Willis (1980). The hard-sphere approximation, however, fails ‘earlier’, namely at
η∗
1 = 0.125, since the appropriate two-point correlation functions loses its positive-

definiteness at this value of η1, see Markov (1996) and Markov & Willis (1998).
Presumably this is the main reason why the approximation of Glendinning–Russel
(1982) for the function f , based on the hard-sphere distribution, fails at η1 > 0.27.

For the more realistic Percus-Yevick distribution of the hard spheres the param-
eter m reads

m =
η1(22 − η1)
5(1 + 2η1)

, (5.1)

according to Talbot & Willis (1980). The bound (4.23) on the hindered settling
function f in this case is extremely simple

f ≤ fPY, fPY =
(1 − η1)3

1 + 2η1
, (5.2)

see Brady & Durlofsky (1982) and Hayakawa & Ichiki (1995). The extensive experi-
mental results, cited in these two references, agree with (5.2). Moreover, at η1 ≥ 0.3
these results are very close to the curve fPY, falling a bit lower, as it should be.
This fact indicates that the far-field contribution is predominant in sedimenting
dispersions in the non-dilute case.
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As far as the sedimentation coefficient is concerned, the bound (4.25) in the
hard-sphere approximation becomes

S ≥ 5 + 1
5η1. (5.3)

This agrees with the result of Batchelor (1972) S ≈ 6.55 + o(η1) in the dilute limit.
The bound (5.3) is also in good agreement with the experimental data, analyzed
by Feuillebois et al. (1999) and Bruneau et al. (1990), for which it turned out that
S = 5 ÷ 5.6. Such values of S indicate that either the parameter m is close to zero
or it is nonnegative for the dispersions under study.

In a number of cases, however, the sedimentation coefficient was found to be
considerably less than 5. An example is provided by the experiments of Ham &
Homsy (1988), who fitted their findings with the law S = 4−8η1, η1 ∈ (0.025, 0.10).
Since (4.25) is a rigorous result, one can claim that there is a strong attractive trend
in the studied dispersions, i.e., g(r) − 1 > 0, and thus m > 0, see (4.10). Moreover,
this trend increases with increasing sphere fraction, in order to explain the observed
decrease of S.

There were successful attempts to gather experimental information about the
binary correlation function in a settling dispersion, using the ‘N. M. R.-scattering’
experimental technique (Bruneau et al., 1998). The experimental findings of these
authors suggested again an attractive trend, g(r)− 1 > 0 which, curiously enough,
increases for smaller volume fractions, according to them. More precisely, they fitted
well their experimental data by the binary correlation

ν(r) =


0.02
η1

, 2 ≤ ρ ≤ 4,

0, ρ > 4,

valid for sphere fractions η1 between 0.05 and 0.3. The parameter m for such a
correlation is easily calculated as

m =
0.12
η1

,

see (4.10). For η1 = 0.05 the right-hand side of (4.25) us negative, and hence it
brings forth no useful information about sedimentation speed. With increasing η1

it increases monotonically, reaching the value 3.86 at η1 = 0.3.
The foregoing analysis suggests in passing that (i) the steady-state internal

structure of the settling dispersion may greatly differ from the simplest hard-sphere
approximation and (ii) this structure may drastically influences the value of the
sedimentation coefficient.
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Torquato, S. & Rubinstein, J. 1989 Diffusion-controlled reactions: II. Further bounds on
the rate constant. J. Chem. Phys. 90, 1644–1647.

Article submitted to Royal Society


