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RANDOM DISPERSIONS
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Mihail Kolev, Konstantin Markov. O KO�FFICIENTE ABSORB-
CII SLUQA�NO� DISPERSII SFER.

Rabota posv�wena zadaqe opredeleni� �ffektivnogo ko�fficienta
absorbcii sred sluqa�no� struktury. Variacionnye ocenki �togo ko�f-
ficienta, nedavno predlo�ennye avtorami, vyqisleny �vno dl� sluqa�-
no� suspensii sfer do por�dka “kvadrata koncentracii” i sravneny
s ocenkami Talbota i Uillisa. Okazyvaec�, qto ocenki avtorov ù�e,
odnako oni, v otliqii ot ocenok Talbota i Uilisa, primenimy lix dl�
koncentracii sfer, ne prevoxod�wih 0.10.

Michail Kolev, Konstantin Markov. ON THE ABSORPTION COEFFICIENT OF
RANDOM DISPERSIONS

The problem of predicting the effective absorption coefficient of random media is
discussed. The variational estimates on this coefficient, recently derived by the authors, are
explicitly evaluated for random dispersion of spheres to the order “square of concentration”.
A comparison with the bounds of Talbot and Willis is performed as well. It appears that
the proposed bounds are more restrictive but, unlike those of Talbot and Willis, are only
applicable for sphere concentrations that do not exceed 0.10.
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1. INTRODUCTION

Consider the steady-state equation

(1.1) ∆ϕ(x) − k2(x)ϕ(x) + K = 0

that governs, at the expense of some simplifying assumptions, the concentration ϕ(x) of a
diffusing species (say, irradiation defects), generated at the constant rate K , in a random ab-
sorbing (lossy) medium (see [1] for references and more details). The absorption coefficient
k2(x) is a given random field, assumed positive, statistically homogeneous and isotropic.
The problem is to evaluate the random field ϕ(x), i.e., all its multipoint correlations, and,
in particular, to find the mean defect concentration 〈ϕ(x)〉; the brackets 〈·〉 hereafter denote
ensemble averaging. The latter value allows to obtain the effective absorption coefficient
(sink strength) k∗2 of the medium, defined by the relation k ∗2〈ϕ(x)〉 = K .

Recently the authors have proposed variational estimates on the coefficient k ∗2, using
the technique of truncated functional series and a procedure of Beran’s type [2]. We shall
recall now these bounds in the particular case of a two-phase medium. Having in mind the
application to particulate media and dispersions of spheres in particular, we call one of the
constituents, for definiteness sake, filler and denote its absorption coefficient by k 2

f and its
volume fraction — by cf = c; the other constituent is called then matrix and its respective
parameters are k2

m and cm = 1 − c. Thus the random absorption field of the medium is

k2(x) =
{

k2
m, if x ∈ matrix,

k2
f , if x ∈ filler,

or

(1.2) k2(x) = k2
m + [k2]If (x) = 〈k2〉 + [k2]I ′f (x),

where [k2] = k2
f − k2

m, If (x) is the characteristic function of the region, occupied by the
filler, and I ′

f (x) = If (x) − c is its fluctuating part.
The elementary (one-point) bounds on k ∗2 read

(1.3) k2
R ≤ k∗2 ≤ k2

V ,

where
k2

V = 〈k2(x)〉 = ck2
f + (1 − c)k2

m,

k2
R =

1
〈α2(x)〉 = (cα2

f + (1 − c)α2
m)−1;

here α2(x) = 1/k2(x) is the compliance field for the medium. The bounds (1.3) are
the obvious counterparts of the well-known Voigt and Reuss estimates on the effective
conductivity or elastic moduli of a heterogeneous medium.

The bounds on k∗2, announced in [3] and detailed in [4], are already three-point and
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thus they are always tighter than the elementary ones (1.3). The bounds have the form

(1.4)

k2
R




1 − [α2]2

〈α2〉2
c(1 − c)(Iα

2 )2

Iα
2 +

[α2]
〈α2〉 (1 − 2c)Iα

3




−1

≤ k∗2 ≤k2
V


1 − [k2]2

〈k2〉2
c(1 − c)(Ik

2 )2

Ik
2 +

[k2]
〈k2〉 (1 − 2c)Ik

3


 .

The following four statistical parameters enter the bounds:

(1.5) Ik
2 =

k2
V

Mk
2 (0)

∫
GV (y)Mk

2 (y) d3y, Iα
2 = − 1

Mα
2 (0)

∫
∆GR(y)Mα

2 (y) d3y,

(1.6)

Ik
3 =

k4
V

Mk
3 (0,0)

∫ ∫
GV (y1)GV (y2)Mk

3 (y1,y2) d3y1d
3y2,

Iα
3 =

1
Mα

3 (0,0)

∫ ∫
∆GR(y1)∆GR(y2)Mα

3 (y1,y2) d3y1d
3y2.

Here GV (x) =
1

4π|x| exp(−kV |x|) is the Green function of the operator ∆ − k 2
V , i.e.

(1.7) ∆GV (x) − k2
V GV (x) + δ(x) = 0,

and similarly for GR(x) with kV replaced by kR;

(1.8) Mk
2 (y) = 〈δk2(0)δk2(y)〉, Mk

3 (y1,y2) = 〈δk2(0)δk2(y1)δk2(y2)〉

are, respectively, the two- and three-point correlation functions for the field k 2(x). The
same functions for the compliance field α2(x) are denoted by M α

2 (y) and Mα
3 (y1,y2).

Since the medium is two-phase, we have the well-known relations

(1.9) Mk
2 (0) = c(1 − c)[k2]2, Mk

3 (0,0) = c(1 − c)(1 − 2c)[k2]3,

and similarly for M α
2 (0) and Mα

3 (0,0). Hereafter the integrals are over the whole space
R

3, if the integration domain is not explicitly indicated.
Note that in [4] it was shown, in particular, that the bounds (1.4) are third-order in the

weakly-inhomogeneous case. Moreover, the explicit results, obtained in [4] for Miller’s
cellular media, indicate that the bounds remain useful even when the absorption capabilities
of the constituents differ one hundred times.

In this paper we shall consider in detail the evaluation of the statistical parameters
(1.5) and (1.6) for random dispersions of nonoverlapping spheres. In Section 2 we briefly
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summarize the needed in the sequel statistical description of random dispersions. In Section
3 we calculate the parameters Ik

2 and Iα
2 for the dispersion, given in (1.5), that depend on the

two-point correlations. Similar calculations are performed in Section 4 for the parameters
Ik
3 and Iα

3 , see (1.6), but unlike the “two-point” parameters, we are able to give analytical
results correct to the asymptotic order c2 only. In Section 5 we illustrate the performance
of the bounds and compare them with those of Talbot and Willis [1].

2. STATISTICAL DESCRIPTION OF RANDOM DISPERSIONS

We consider a random dispersion of spheres, i.e. an unbounded matrix, containing
an array of equal and nonoverlapping spherical inhomogeneities, each one of radius a.
The medium is thus completely described by the system of random points {xα} — the
centers of the spheres. The statistics of the system xα is conveniently represented by the
multipoint distribution densities fp(y1, . . . ,yp), or probability density functions. They
define the probability dP to simultaneously find a point of the random set {x} α per each
of the infinitesimal volumes yi < y < yi + dyi, i = 1, . . . , p, to be

(2.1) dP = fp(y1, . . . ,yp) d3y1 . . . d3yp.

We assume that the system {xα} is statistically isotropic and homogeneous; then, in
particular, f1 = n and fp = fp(y2,1, . . . ,yp,1), where yj,i = yj − yi and n denotes the
number density, i.e. the mean number of points per unit volume.

Let us imagine now that by means of a certain manufacturing process we produce
random point systems {x}α with different number densities n. The statistics of the system
{x}α will then depend on n as a parameter, i.e. fp = fp(Yp; n), Yp = (y1, . . . ,yp).
We shall assume, as usual, that fp ∼ np, i.e. fp has the asymptotic order np at n → 0,
p = 1, 2, . . . In particular, for the two-point distribution density f 2, which most frequently
appears in models and theoretical studies, we have

(2.2) f2(y1,y2) = n2g(r), g(r) = g0(r) + O(n),

r = |y2 − y1|. (The point system {x}α hereafter will be assumed statistically isotropic as
well.) Thus g0(r) is the zero-density limit of the radial distribution function g(r) for the
system {x}α.

A convenient characteristics of the set of random points is the so-called random density
field

(2.3) ψ(x) =
∑

α

δ(x − xα).

This field was systematically used by Stratonovich [5] in the one-dimensional case when
the role of x is played by the time. The random function ψ(x) is uniquely defined by the
random set xα. The respective formulas [5] read:

(2.4)

〈ψ(y)〉 = f1(y) = n,

〈ψ(y1)ψ(y2)〉 = f1(y1)δ(y1,2) + f2(y1,y2),

〈ψ(y1)ψ(y2)ψ(y3)〉 = f1(y1)δ(y1,2)δ(y1,3)

+ 3
{
δ(y1,2)f2(y1,3)

}
s
+ f3(y1,y2,y3),
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etc., where {·}s means symmetrization with respect to all different combinations of indices
in the braces.

The random absorption field (1.2) of the medium under study has a simple integral
representation by means of the field ψ(x), namely

(2.5) k2(x) = 〈k2〉 + [k2]
∫

h(x − y)ψ′(y) d3y,

where ψ′(y) = ψ(y)−n is the fluctuating part of the field ψ(y), h(y) is the characteristic
function of a single sphere of radius a, located at the origin.

3. EVALUATION OF THE PARAMETERS Ik
2 AND Iα

2

According to (1.2), (2.4) and (2.5), the parameter I k
2 for the dispersion has the form

(3.1)

Ik
2 =

k2
V

c(1 − c)

∫ ∫ ∫
GV (y)h(z1)h(y − z2)〈ψ′(z1)ψ′(z2)〉 d3yd3z1d

3z2

=
k2

V

c(1 − c)

∫ ∫
h(z1)χV (z2)

[
nδ(z1 − z2) − n2R(z1 − z2)

]
d3z1d

3z2

=
a0 − a1c

1 − c
; R(z) = 1 − g(z),

with the coefficients

(3.2) a0 =
k2

V

Va

∫
h(z)χV (z) d3z,

(3.3) a1 =
k2

V

V 2
a

∫ ∫
h(z1)χV (z2)R(z1 − z2) d3z1d

3z2.

Here Va = 4
3πa3 and

(3.4) χV (z) = (h ∗ GV )(z)

is the Helmholtz potential for a single sphere of radius a, located at the origin. Let us
recall that it is the continuous and bounded everywhere solution of the Helmholtz equation
∆χV − k2

V χV + h(z) = 0. A simple calculation yields

(3.5a) χV (z) =
1

k2
V




A′ aV sinh rV

rV sinh aV
+ 1, r < a,

A′′ aV

rV
eaV −rV , r ≥ a,

(3.5b) A′ = −1 + aV

aV
e−aV sinh aV , A′′ =

1
aV

e−aV (aV coshaV − sinh aV ),

where aV = akV and rV = rkV are dimensionless, r = |z|.
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Using (3.5), we find first the coefficient a0:

(3.6) a0 = 1 − F2(aV ),

where

(3.7) F2(x) = 3
1 + x

x3
e−x(x coshx − sinh x)

is the function that appeared when calculating the parameters I k
2 and Iα

2 for cellular media
with spherical shape of the cells, see [3,4].

For the coefficient a1 we get in turn:

(3.8) a1 =
k2

V

V 2
a

∫
h(z)P (z) d3z,

where P denotes the convolution P (z) = (χV ∗R)(z). Due to (1.7), the function P solves
the equation

(3.9) ∆P − k2
V P + h ∗ R = 0.

The assumption of nonoverlapping yields g(z) = 0 and thus R(z) = 1 − g(z) = 1 at
|z| ≤ 2a. That is why (h ∗ R)(z) = Va within the sphere |z| ≤ a and the solution of eqn
(3.9) within the same sphere has therefore the form

(3.10) P (z) =
Va

k2
V

(
1 + B

aV sinh rV

rV sinh aV

)
, r = |z| < a.

The unknown constant B is found by means of the obvious relation

P (0) =
Va

k2
V

(
1 + B

aV

sinhaV

)
=
∫

χV (z)R(z) d3z,

or

(3.11) B =
sinh aV

aV

[
k2

V

Va

∫
χV (z)(1 − g(z)) d3z − 1

]
.

Simple calculations, using (3.5), yield eventually

(3.12) a1 = 1 − 4a2
V e2aV

(1 + aV )2
F 2

2 (aV )I,

where

(3.13) I =

∞∫
1

se−2aV sg(s) ds, s = r/2a,

is the statistical parameter, that appeared in Talbot and Willis’ bounds on the effective
absorption coefficient k∗2 [1].
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In the simplest two-point statistics — the so-called “well-stirred” case — one has
g(s) = 1 at s ≥ 1, so that

(3.14) I = Iws(aV ) =
1 + 2aV

4a2
V

e−2aV ,

and thus

(3.15) a1 = 1 − 1 + 2aV

(1 + aV )2
F 2

2 (aV ).

Note that Talbot and Willis were able also to evaluate the parameter I in the case when
the two-point statistics of the dispersion is governed by the well-known Percus-Yevick
approximation:

I = Ipy(aV ) = G(2aV ),

(3.16) G(t) =
tL(t)

12c[L(t) + S(t)et]
, L(t) = 12c

[(
1 +

1
2
c
)
t + 1 + 2c

]
,

S(t) = (1 − c)2t3 + 6c(1 − c)t2 + 18c2t − 12c(1 + 2c).

A simple check shows that

Ipy(aV ) = Iws(aV ) + O(c),

as it should be.
Thus the needed statistical parameter I k

2 for the dispersion is

(3.17) Ik
2 =

a0 − a1c

1 − c
= ϕ2(aV ),

where a0, a1 are explicitly given in (3.6), (3.12) respectively. Hence ϕ 2 is a known function
of the dimensionless parameter aV , depending on the radial distribution function g(r) for
the dispersion through the statistical parameter I .

The evaluation of the second statistical parameter I α
2 , as given in (1.5), is now straight-

forward. Keeping in mind (1.7), we get immediately

Iα
2 = − 1

Mα
2 (0)

∫
∆GR(y)Mα

2 (y) d3y

= 1 − k2
R

Mα
2 (0)

∫
GR(y)Mα

2 (y) d3y,

so that

(3.18) Iα
2 = 1 − ϕ2(aR),

where ϕ2(aR) is the function, defined in (3.17), in which aV should be replaced everywhere
by aR.
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4. EVALUATION OF THE PARAMETERS Ik
3 AND Iα

3

Unlike Ik
2 and Iα

2 , we are able to evaluate the three-point parameters I k
3 and Iα

3 to
the order c2 only. The reason is that the three-point probability density f 3 will enter the
needed moments, so that the only way to obtain analytical results is to neglect it, assuming
f3 ∼ c3, see Section 2. Thus all formulae hereafter are correct to the order O(c 2) only.

According to (1.9), (2.4) and (2.5), the parameter I k
3 for the dispersion has the form

(4.1)

Ik
3 =

k4
V

c(1 − c)(1 − 2c)

∫ ∫ ∫ [∫
GV (y1)h(y1 − z1) d3y1

]

×
[∫

GV (y2)h(y2 − z2) d3y2

]
h(z3)〈ψ′(z1)ψ′(z2)ψ′(z3)〉 d3z1d

3z2d
3z3

=
k4

V

c(1 − c)(1 − 2c)

∫ ∫ ∫
χV (z1)χV (z2)h(z3)

×
[
nδ(z1,2)δ(z1,3) − n23

{
δ(z1,2)R0(z2,3)

}
s

]
d3z1d

3z2d
3z3

=
b0 − b1c

(1 − c)(1 − 2c)
; R0(z) = 1 − g0(z),

with the coefficients

(4.2) b0 =
k4

V

Va

∫
h(z)χ2

V (z) d3z,

(4.3) b1 = 2J1 + J2,

(4.4) J1 =
k4

V

V 2
a

∫ ∫
h(z1)χV (z1)χV (z2)R0(z1 − z2) d3z1d

3z2,

(4.5) J2 =
k4

V

V 2
a

∫ ∫
h(z1)χ2

V (z2)R0(z1 − z2) d3z1d
3z2,

g0(z) is the zero-density limit of the radial distribution function g(z) for the dispersion,
see (2.2).

Using (3.5), we find first the coefficient b0:

(4.6) b0 = 1 − 2F2(aV ) + F3(aV ),

where

(4.7) F3(x) =
3
2

(1 + x)2

x3
e−2x(sinh x cosh x − x)

is the function that appeared when evaluating the three-point statistical parameters I k
3 and

Iα
3 for a cellular medium, see [3,4], and F2(x) is defined in (3.7).
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Let us evaluate next the coefficient b1 in (4.3). To this end we first recast the integral
J1 as

(4.8) J1 =
k4

V

V 2
a

∫
h(z)χV (z)P0(z) d3z,

where P0(z) = (χV ∗R0)(z) is the convolution, similar to that used in Section 3. Keeping
in mind (3.5), (3.10) and (3.11), we find straightforwardly that

(4.9) J1 = 1 − F2(aV ) +
3
4

aV cosh aV − sinhaV

a5
V (1 + aV )

eaV
[
F3(aV ) − F2(aV )

]
I,

where I is the statistical parameter of Talbot and Willis, see (3.13), corresponding to the
zero-density limit g0(z) of the radial distribution function.

In the particular case of a well-stirred dispersion we have, due to (3.14),

(4.10) J1 = 1 − F2(aV ) +
1 + 2aV

(1 + aV )2
F2(aV )

[
F3(aV ) − F2(aV )

]
.

The evaluation of the second integral J2, entering the expression for the coefficient
b1, is more complicated. We first recast its definition (4.4) as

(4.11) J2 =
k4

V

V 2
a

∫
χ2

V (z)F0(z) d3z,

where

(4.12) F0(z) =
∫

h(z − y)R0(y) d3y = Va −
∫

h(z − y)g0(y) d3y.

Let hA(y) be the characteristic function of a sphere of radius A located at the origin.
Following [6], we denote

dAhA(y) = hA+dA(y) − hA(y) =
{

1, if A < |y| < A + dA,
0, otherwise.

It is easily seen that

g0(y) =

∞∫
2a

g0(A)dAhA(y),

which is inserted into (4.12):

(4.13)

F0(z) = Va −
∞∫

2a

g0(A)
[ ∫

h(z − y)
hA+dA(y) − hA(y)

dA
d3y

]
dA

= Va −
∞∫

2a

g0(A)
[

d

dA
FA(z)

]
dA, FA(z) = (h ∗ hA)(z).
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We introduce, in turn, (4.13) into (4.11) and integrate by parts:

(4.14)

J2 =
k4

V

V 2
a


Va

∫
χ2

V (z) d3z −
∞∫

2a

g0(A)
[

d

dA

∫
χ2

V (z)FA(z) d3z
]
dA




=
k4

V

V 2
a




∞∫
2a

g′0(A)
∫ [

χ2
V (z)FA(z) d3z

]
dA + g0(2a)

∫
χ2

V (z)F 2a(z) d3z


 ,

having used the facts that F∞(z) = Va and g0(∞) = 1.
Let

(4.15) µ(λ, aV ) =
k4

V

V 2
a

∫
χ2

V (z)Fλa(z) d3z; λ =
A

a
≥ 2.

Simple algebra, based on the analytical form (3.5) of the Helmholtz potential χ V (z), yields

(4.16) µ(λ, aV ) = 1 − 2F2(aV ) + F3(aV ) + F4(aV , λ) + F5(aV , λ),

where

(4.17)

F4(x, y) =
3
2

(x cosh x − sinh x)2

x3

(
e−2x − e−2(y−1)x

)
,

F5(x, y) =
3

128

(
x cosh x − sinh x

x3

)2 {[
(12(y3 + y2 − y) + 52)x3

− 6(y + 1)2x2 + 6(y − 1)x + 3
]
e−2(y−1)x

−
[
12(y − 1)2(y + 1)x3 − 6(y − 1)2x2 + 6(y + 1)x + 3

]
e−2(y+1)x

+ 24(y − 1)2(y + 1)2x4
[
Ei(−2(y − 1)x) − Ei(−2(y + 1)x)

]}

and F2 and F3 are the functions, defined in (3.7) and (4.7), respectively. As usual

Ei(−t) =

−t∫
−∞

es

s
ds

denotes the integral exponent.
Thus

(4.18) J2 = a

∞∫
2

g′0(λa)µ(λ, aV ) dλ + g0(2a)µ(2, aV ).

In the particular case of a well-stirred dispersion

J2 = b0 +
3

128

(
aV coshaV − sinh aV

a3
V

)2
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(4.19) ×
{[

172a3
V − 54a2

V + 6aV + 3
]
e−2aV −

[
36a3

V − 6a2
V + 18aV + 3

]
e−6aV

+216a4
V

[
Ei(−2aV ) − Ei(−6aV )

]}
.

Eventually, the needed parameter I k
3 is

(4.20) Ik
3 =

b0 − b1c

(1 − c)(1 − 2c)
= ϕ3(aV ),

where a0, a1 are explicitly given in (4.6), (4.3), etc., respectively. Hence ϕ 3 is a known
function of the dimensionless parameter aV , depending on the zero-density limit g0(r) of
the radial distribution function for the dispersion through the integrals I and J 2, see (3.13)
and (4.18) respectively.

The evaluation of the statistical parameter I α
3 is already easy. From its definition

(1.6)2 and eqn (1.7) (with k2
V replaced by k2

R) we have

(4.21)

Iα
3 = 1 − 2k2

R

Mα
3 (0,0)

∫
GR(y)Mα

3 (0,y) d3y

+
k4

R

Mα
3 (0,0)

∫ ∫
GR(y1)GR(y2)Mα

3 (y1,y2) d3y1d
3y2.

But

Mα
3 (0,y) = [α]3

〈
I ′2f (0)I ′f (y)

〉
= (1 − 2c)[α]3

〈
I ′f (0)I ′f (y)

〉
= (1 − 2c)[α]Mα

2 (y),

since I ′2
f (0) = (If (0) − c)2 = (1 − 2c)If (0) + c2. (Note that I2

f (x) = If (x).) Hence

k2
R

Mα
3 (0,0)

∫
GR(y)Mα

3 (0,y) d3y =
k2

R

Mα
2 (0)

∫
GR(y)Mα

2 (y) d3y = ϕ2(aR),

see (3.17), so that

(4.22) Iα
3 = 1 − 2ϕ2(aR) + ϕ3(aR),

because the last term in the r.-h. side of (4.21) is immediately recognized as the function
ϕ3 from (4.20) in which aV is to be replaced everywhere by aR.

5. COMPARISON WITH THE BOUNDS OF TALBOT AND WILLIS

The results of Sections 3 and 4 allow us to evaluate the bounds (1.4) for the dispersion
to the order c2. Indeed the relations (3.17) and (3.18) give us the values of the two-point
statistical parameters Ik

2 and Iα
2 for an arbitrary radial distribution function g(r). In turn,

eqns (4.20) and (4.22) provide the values of the three-point statistical parameters I k
3 and

Iα
3 , again for an arbitrary radial distribution function g(r), but to the order c 2 only.

Let us recall that in [1] Talbot and Willis derived bounds on the effective absorption
coefficient k∗2 for a dispersion of spheres, using an original variational principle of Hashin–
Shtrikman’s type. Their bounds have the form

(5.1a)
k∗2

k2
0

= 1 +
λδ + µγ

αδ + βγ

with the coefficients
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α =
3c(af coshaf − sinh af )

(1 − c)a3
f

, β =
a2k2

0

k2
f

〈k2〉,

γ = e−ak0(cosh af +
k0

kf
sinh af ) −

3c(k2
f − k2

0)(af coshaf − sinh af )η
k2
0a

3
f (1 − c)

+ θ,

(5.1b) η = (1 + ak0)e−ak0 − 12cI

ak0
(ak0 coshak0 − sinh ak0),

θ =
12cI

ak0

[
coshakf sinh ak0 −

k0

kf
sinhakf cosh ak0

]
,

δ =
k2
0

k2
f

(a2
f − a2

m)η, λ =
3c(k2

f − k2
0)(af coshaf − sinh af )
(1 − c)k2

0a
3
f

,

µ = c
k2

m

k2
f

(a2
f − (ak0)2) + (1 − c)(a2

m − (ak0)2), af = akf , am = akm.

(Our notations differ a bit from the original ones used in [1].)
Upon inserting k0 = min(km, kf ) in (5.1) one obtains a lower bound on k ∗2 and,

similarly, inserting k0 = max(km, kf ) — an upper one. In (5.1b) I is the statistical
parameter, defined in (3.13), which carries information about the two-point statistics of the
dispersion. In this sense the bounds (5.1) are two-point and therefore should be expected
to be less restrictive than ours (1.4) which are three-point.

It is to be pointed out, however, that Talbot and Willis’ bounds (5.1) are useful for
all values c ∈ (0, 1) of the sphere volume fraction while the bounds (1.4) have been
calculated in the foregoing analysis only for dilute fractions — to the order c 2 — and thus
may be expected to provide useful results for values of c not exceeding 0.10 − 0.15. The
numerical calculations confirm these expectations. The c2-bounds (1.4) are closer to the
exact values of k∗2 and more restrictive than the Talbot and Willis estimates (5.1) only at
sphere fractions c not exceeding 0.1. This is illustrated in Tables 1 and 2 for a well-stirred
dispersion of spheres in the two cases k2

f/k2
m = 10 and k2

f/k2
m = 0.1 respectively (at

am = 1). The exact values are found by means of the numerical procedure, developed in
[7] which employs the techniques of the factorial functional series [8] and allows to obtain
explicitly the full statistical solution of eqn (1.1) to the order c 2 for the dispersion and, in
particular, the effective absorption coefficient k ∗2 to the same order. The results for other
values of am (am = 10 and am = 0.1) are similar and therefore they are not shown here.
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Table 1

Estimates on the effective absorption coefficient k∗2 for a well-stirred
dispersion at am = 1, k2

f/k2
m = 10:

KM — the bounds (1.4); TW — the bounds (5.1) of Talbot and Willis.

c TW-lower KM-lower exact KM-upper TW-upper
0.0 1 1 1 1 1

0.02 1.071 1.071 1.071 1.072 1.089
0.04 1.147 1.147 1.147 1.147 1.183
0.06 1.229 1.230 1.230 1.231 1.281
0.08 1.317 1.318 1.318 1.319 1.384
0.10 1.413 1.414 1.415 1.417 1.492

Table 2

The same as in Table 1 at k2
f/k2

m = 0.1.

c TW-lower KM-lower exact KM-upper TW-upper
0.0 1 1 1 1 1

0.02 0.977 0.978 0.979 0.979 0.979
0.04 0.955 0.957 0.958 0.958 0.958
0.06 0.934 0.937 0.937 0.937 0.937
0.08 0.914 0.917 0.917 0.917 0.917
0.10 0.894 0.896 0.896 0.897 0.897
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