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Muzaun Koaes, Koncmarwmun Mapxos. O KODPOPUIIMEHTE ABCOPB-
VU CJIIYYANHON NNCIEPCUN CPEP.

Pabora mocesmena 3amaue ompeneneHus s(QGEeKTUBHOrO KO®(PUIMEHTA
abcopbuum cpen CIydaiiHON CTPYKTYPHI. BapuanuoHHBIE OIEHKU 9TOTO KOD (-
¢uIenTa, HeJTaBHO IPEIIOKEHHBIE aBTOPAMU, BLIYKUCIIEHDLI IBHO IJIA CIIyJaii-
HOU cycmeHcuu cgep OO NOpAAKa ‘KBaapaTa KOHIEHTpaIuu U CPaBHEHLI
¢ omenkamu Tambora m Yunnauca. Oxra3bBaens, YTO OINEHKU aBTOPOB ViKe,
OHAKO OHU, B OTJIMYUU OT OIEHOK lanbora m Ymnmca, IPUMEHUMBI JIUIT  [1JI5
KOHIeHTpanuu chep, He npesomogamux 0.10.

Michail Kolev, Konstantin Markov. ON THE ABSORPTION COEFFICIENT OF
RANDOM DISPERSIONS

The problem of predicting the effective absorption coefficient of random mediais
discussed. Thevariational estimates on this coefficient, recently derived by the authors, are
explicitly evaluated for random dispersion of spheresto the order “ square of concentration”.
A comparison with the bounds of Talbot and Willis is performed as well. 1t appears that
the proposed bounds are more restrictive but, unlike those of Talbot and Willis, are only
applicable for sphere concentrations that do not exceed 0.10.
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1. INTRODUCTION
Consider the steady-state equation

(1.1) Ap(x) — K (x)p(x) + K =0

that governs, at the expense of some simplifying assumptions, the concentration p(x) of a
diffusing species (say, irradiation defects), generated at the constant rate i, in arandom ab-
sorbing (lossy) medium (see[1] for referencesand moredetails). The absorption coefficient
k?(x) isagiven random field, assumed positive, statistically homogeneous and isotropic.
The problem is to evaluate the random field p(x), i.e,, al its multipoint correlations, and,
in particular, to find the mean defect concentration {(p(x)); the brackets (-) hereafter denote
ensemble averaging. The latter value alows to obtain the effective absorption coefficient
(sink strength) k*2 of the medium, defined by the relation & *?(p(x)) = K.

Recently the authors have proposed variational estimates on the coefficient k& *2, using
the technique of truncated functional series and a procedure of Beran's type [2]. We shall
recall now these boundsin the particular case of atwo-phase medium. Having in mind the
application to particulate media and dispersions of spheresin particular, we call one of the
constituents, for definiteness sake, filler and denote its absorption coefficient by kj% and its
volumefraction — by ¢y = ¢; the other constituent is called then matrix and its respective

parametersare k2, and c¢,,, = 1 — ¢. Thusthe random absorption field of the medium s
k2, if x € matrix
2 o mo ’
k(%) = {k]%, if x  filler,
or
(1.2) K2 (x) = ky, + [R5 (%) = (k) + [B*] 17 (x),

where [k?] = k3 — k2, Iy(x) is the characteristic function of the region, occupied by the
filler, and I';(x) = I¢(x) — cisitsfluctuating part.
The elementary (one-point) bounds on & *2 read

(1.3) kp < k™ < ki,

where
ki = (k*(x)) = ck} + (1 — ¢)kp,,

1 _
k% = @) (cat + (1 —=c)ai,) ™

here o?(x) = 1/k*(x) is the compliance field for the medium. The bounds (1.3) are
the obvious counterparts of the well-known Voigt and Reuss estimates on the effective
conductivity or elastic moduli of a heterogeneous medium.

The bounds on k£*2, announced in [3] and detailed in [4], are already three-point and
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thus they are aways tighter than the elementary ones (1.3). The bounds have the form
—1

[0 (1 —o)(15)?

[2?]

g+ @(1 —20)I%

E5<1—

(K22 c(1—c)(15)?
(k2)?

<k <k |1-

[%°]
Iy + @(1 —2¢)I¥

Thefollowing four statistical parameters enter the bounds:

k2 1
1. Ik: %4 / Mk 3 ]a:_—/A Moz 3
(15) I VE () Gy (y)My(y)d’y, I3 15 (0) Gr(y)M3 (y)d’y,
15 = i/ Gv(y1)Gy (y2)M§ (y1,y2) d®y1d®y»
87 Mk(0,0) WD ’
(1.6)

1 . .
I3 = W//AGR(YI)AGR(YQ)M?(YMY2)dd}’ldd}’z

Here Gy (x) = exp(—ky|x|) isthe Green function of the operator A — k2., i.e.

L
dm|x|
(1.7) AGy (x) = ki Gy (x) +d(x) = 0,

and similarly for G  (x) with kv replaced by kg;

(1.8) My (y) = (6k*(0)0K*(y)), M5 (y1,y2) = (0k*(0)3k>(y1)dk>(y2))

are, respectively, the two- and three-point correlation functions for the field k£ 2(x). The
same functions for the compliance field a%(x) are denoted by M (y) and M$ (y1,y2)-
Since the medium is two-phase, we have the well-known relations

(1.9) M¥(0) = c¢(1—)[K*?, ME0,0) = c(1 —c)(1 —20)[k?)?,

and similarly for M$(0) and M$(0,0). Hereafter the integrals are over the whole space
R3, if the integration domain is not explicitly indicated.

Notethat in [4] it was shown, in particular, that the bounds (1.4) are third-order in the
weakly-inhomogeneous case. Moreover, the explicit results, obtained in [4] for Miller's
cellular media, indicate that the boundsremain useful evenwhen the absorption capabilities
of the constituents differ one hundred times.

In this paper we shall consider in detail the evaluation of the statistical parameters
(1.5) and (1.6) for random dispersions of nonoverlapping spheres. In Section 2 we briefly
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summarizethe needed in the sequel statistical description of randomdispersions. In Section
3wecalculatethe parameters 15 and I for thedispersion, givenin (1.5), that depend on the
two-point correlations. Similar calculations are performed in Section 4 for the parameters
I} and 1§, see (1.6), but unlike the “two-point” parameters, we are able to give analytical

results correct to the asymptotic order ¢2 only. In Section 5 we illustrate the performance
of the bounds and compare them with those of Talbot and Willis[1].

2. STATISTICAL DESCRIPTION OF RANDOM DISPERSIONS

We consider a random dispersion of spheres, i.e. an unbounded matrix, containing
an array of equa and nonoverlapping spherical inhomogeneities, each one of radius a.
The medium is thus completely described by the system of random points {x,} — the
centers of the spheres. The statistics of the system x, is conveniently represented by the
multipoint distribution densities f,(y1,...,yp), or probability density functions. They
define the probability d P to simultaneously find a point of the random set {x} ,, per each
of theinfinitesimal volumesy; <y <y, +dy:;,i=1,...,p, tobe

(2.1) dP = fo(y1,--,¥p) dy1 ... d%y,.
We assume that the system {x,} is statistically isotropic and homogeneous; then, in
particular, f1 = nand f, = fp(y2.1,...,¥p,1), Wherey;, = y; —y; and n denotes the

number density, i.e. the mean number of points per unit volume.

Let us imagine now that by means of a certain manufacturing process we produce
random point systems {x} , with different number densitiesn. The statistics of the system
{x}o Will then depend on n as a parameter, i.e. f, = f,(Yp;n), Y, = (y1,--.,¥p)-
We shall assume, as usudl, that f, ~ nP, i.e. f, hasthe asymptotic order n” at n — 0,
p=1,2,... Inparticular, for the two-point distribution density f, which most frequently
appears in models and theoretical studies, we have

(2.2) f2(y1,y2) = n’g(r), g(r) = go(r) + O(n),

r = |y2 — y1|- (The point system {x} ., hereafter will be assumed statistically isotropic as
well.) Thus go(r) is the zero-density limit of the radial distribution function g(r) for the
system {x},.

A convenient characteristicsof the set of random pointsisthe so-called random density
field

(2.3) B(x) = 5(x —Xa).

This field was systematically used by Stratonovich [5] in the one-dimensional case when
the role of x is played by the time. The random function v (x) is uniquely defined by the
random set x,. The respective formulas[5] read:

(W(y)) = Aly) =n,
(W(y)v(y2)) = fiy1)d(y1.2) + fa(y1,¥2)
(W(y1)Y(y2)(ys)) = fi(y1)d(y1,2)0(y1,3)

+ 3{5(Y1,2)f2()’1,3)}s + f3(y1,¥2,¥3),

(2.4)
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etc., where {- } s means symmetrization with respect to all different combinationsof indices
in the braces.

The random absorption field (1.2) of the medium under study has a simple integral
representation by means of the field ¢)(x), namely

(2.5) K (x) = (1) + 1] / hx -y (v) &y,

wherey’(y) = ¢(y) — n isthefluctuating part of thefield ¢)(y), h(y) isthe characteristic
function of a single sphere of radius a, located at the origin.

3. EVALUATION OF THE PARAMETERS I¥ AND I§
According to (1.2), (2.4) and (2.5), the parameter 1% for the dispersion has the form

1 17 c) // Gv(y Yy — 20) (' (1) (22)) APy d>z1d>zs
(3.1) = 1 =) // z1) XV(ZQ)[né(zl —25) —n*R(z; — zz)} Pz dzy
- aoszlc; R(z) = 1 - g(a),

with the coefficients
k2

(3.2) ap = VV h(z)xv(z) d*z,
(3.3) a) = %//h(Z1)XV(Z2)R(Z1 — Zg)d3Z1d3Z2.

HereV, = —m and

(3.4) xv(z) = (h*Gy)(z)

is the Helmholtz potential for a single sphere of radius a, located at the origin. Let us
recall that it is the continuous and bounded everywhere solution of the Helmholtz equation
Axy — k¥ xv + h(z) = 0. A smple calculation yields

inh
) R
3.5a zZ) = — Vv 14
(3.50) wi =gy e
Ty
1 1
(3.5b) A = —ﬂe_“" sinhay, A" =—e " (ay coshay — sinhay),
ay ay

whereay = aky and ry = rky aredimensionless, r = |z|.
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Using (3.5), we find first the coefficient aq:

(36) apg = 1-— Fg(av),
where
1 .
(3.7) Fy(z) =3 —er_“ (z coshx — sinh x)

T

isthe function that appeared when calculating the parameters 15 and I for cellular media
with spherical shape of the cells, see [3,4].
For the coefficient a, we get in turn:

k2
(3.8) ay = V—‘g/h(z)P(z) dz,
where P denotesthe convolution P(z) = (xv * R)(z). Dueto (1.7), thefunction P solves
the equation
(3.9) AP — k¥ P+h*R=0.

The assumption of nonoverlapping yields g(z) = 0 andthus R(z) = 1 —g(z) = 1 a
|z| < 2a. Thatiswhy (h * R)(z) = V, within the sphere |z| < a and the solution of egn
(3.9) within the same sphere has therefore the form

Va ay sinh ry
3.10 P = —|1+B——— = .
( ) (2) k% ( + ry sinhav) » r=lzl <a

The unknown constant B is found by means of the obviousrelation

p(o) = Ya (1+B av ):/XV(Z)R(Z)CPZ,

- E sinh ay
or
inh 2 .
(3.11) p =20 {k—V/XV(Z)(l —g(z))d*z — 1} .
ay Va
Simple calculations, using (3.5), yield eventualy
4a?,e20v

12 =1- Y~ Fay)I
(3 ) ai (1+aV>2 Q(GV) ’
where
(3.13) 1 :/se*Q“VSg(s) ds, s =r/2a,

1

is the statistical parameter, that appeared in Talbot and Willis bounds on the effective
absorption coefficient &£*2 [1].
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In the simplest two-point statistics — the so-called “well-stirred” case — one has
g(s)=1as >1,sothat

1+ 2ay 9
(3.14) I=1%(ay) = e,
4a3,
and thus
1+ 2(1\/
(315) a; = 1-— mFg(av)

Notethat Talbot and Williswere able a so to evaluate the parameter I inthe case when
the two-point statistics of the dispersion is governed by the well-known Percus-Yevick
approximation:

I = Ipy(av) = G(Qav),

tL(t)

(3.16) ) = 2L + S’

L(t) = 12¢[(1+ %C)t 142,

S(t) = (1 — )%t + 6¢(1 — c)t? + 18¢* — 12¢(1 + 2c).
A simple check shows that
I"(ay) = I'"*(av) + O(c),

asit should be.
Thus the needed statistical parameter 14 for the dispersion is
o agp — aic -

(3.17) Iy = .~ wo(ay),

whereag, a1 areexplicitly givenin (3.6), (3.12) respectively. Hence ¢ 5 isaknownfunction
of the dimensionless parameter a v, depending on the radial distribution function g(r) for
the dispersion through the statistical parameter 1.

The evaluation of the second statistical parameter 15, asgivenin (1.5), isnow straight-
forward. Keeping in mind (1.7), we get immediately

1

5 =~y | ACRME () Py

= 1= gt [ Gt () Py,

so that
(3.18) I3 =1—pa(ar),

where p2(ar) isthefunction, definedin (3.17), inwhich a v should bereplaced everywhere
by aR.
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4. EVALUATION OF THE PARAMETERS I} AND I§

Unlike I} and I, we are able to evaluate the three-point parameters 7% and IS to
the order ¢2 only. The reason is that the three-point probability density 73 will enter the
needed moments, so that the only way to obtain analytical resultsisto neglect it, assuming
f3 ~ 3, see Section 2. Thus all formulae hereafter are correct to the order O(c?) only.

According to (1.9), (2.4) and (2.5), the parameter I ¥ for the dispersion has the form

Iy = ﬁ%_%)///[/&/(yﬂh(m — 1)’y

[ Jevisaiis: - =) d3y2] () (0 (2 ) (22)0 (2)) P P22

(41 _ C(lf)—%m///x‘/(zl)xy(zg)h(m)

X

X [né(z172)5(z173) — n23{5(Z172)R0(Z273)}S] d3Z1d3Z2d3Z3
bo — blc
= -— = 1 —_
I—oi—29 M 90(2),
with the coefficients
ké’ 2 3
(4.2) bo = 3 [ Mz)xy (2) d°z,
(43) by =2J1 4+ Jo,
k4
(44) Jl = V—‘g//h(Z1>XV(Z1>Xv(Z2)R0(Z1 — Z2) d3Z1d3Z2,
k?4

(45) JQ = V—‘/Q//h(zl)x%/(ZQ)R()(Zl - ZQ) d3Z1d3Z2,

go(z) is the zero-density limit of the radial distribution function g(z) for the dispersion,
see (2.2).
Using (3.5), we find first the coefficient b:

(46) bp=1-— 2F2(av) + F3(av),
where
2
(4.7) Fs(z) = ;Me*%(smhxcoshx —x)
x

is the function that appeared when evaluating the three-point statistical parameters 75 and
IS for acellular medium, see [3,4], and F(x) isdefinedin (3.7).
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Let us evaluate next the coefficient b, in (4.3). To this end wefirst recast the integral
Ji as

kv

(4.8) =15

h(z)xv(z)Py(z) d’z,

where Py(z) = (xv * Ro)(z) isthe convolution, similar to that used in Section 3. Keeping
inmind (3.5), (3.10) and (3.11), we find straightforwardly that

3 ay coshay — sinhay
4.9 Jp=1-F: - v | F: - F I
(4.9) 1 2(av) + 1 &+ ay) e [F3(av) — Fa(av)]1,

where I is the statistical parameter of Talbot and Willis, see (3.13), corresponding to the
zero-density limit go(z) of the radial distribution function.
In the particular case of awell-stirred dispersion we have, dueto (3.14),

1+2av

(4.10) Ji=1-Fy(ay) + Ot av)?

Fg(av) [F3(av) — Fg(av)}.

The evaluation of the second integral .J», entering the expression for the coefficient
b1, is more complicated. We first recast its definition (4.4) as

4
(4.11) Jo = %/X%(Z)FO(Z) d*z,
where
@12)  Fa) = [ba=y)Ro(y) 'y = Ve~ [hlz = y)n(y) &y

Let h4(y) bethe characteristic function of a sphere of radius A located at the origin.
Following [6], we denote

1, ifA<|y| <A+dA,

daha(y) = hataa(y) — ha(y) = {0 otherwise.

Itiseasily seen that

Fo(s) = Vi~ [ () [ [#ta =y tea) el sy g4
(4.13) 2;
=V, f/go(A) [diAFA(z)} dA, FA(z) = (h*ha)(2)
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We introduce, in turn, (4.13) into (4.11) and integrate by parts:

o= @—V {va [t —7gO<A> 51 [ @@ dA}

2a

(4.14)
- { Jab) [ @#4 @ #ajia + go(2a) [ @) F> (2 d%} ,

having used the facts that F', (z) = V,, and go(c0) = 1.
Let
4
(115) pOvav) = 1% [ @F @) P A=

A
—>2
a

Simplealgebra, based on the analytical form (3.5) of the Helmholtz potential x v (z), yields
(416) M()\, av) =1- 2F2(av) + F3(av) + F4(av, )\) -+ F5(av, )\),

where
3 (zcoshx —sinhz)? , _ ol
F4(m,y):§( - ) (6 2:8_6 2(y l)x),
3 zcoshz —sinh ) 2 ) )
Fa(ow) = 79 ( “ R0 {[026° +07 - ) + 5208
(4.17)

—6(y +1)%% + 6(y — 1)z + 3] 212
_ [12(y —1)2(y+ D)2 — 6(y — 1)%22 + 6(y + 1)z + 3}6*2(?!4’1)1
+24(y — 1)*(y + 1)%2* [Bi(—2(y — 1)z) — Ei(—2(y + 1)z)] }

and F; and F3 are the functions, defined in (3.7) and (4.7), respectively. As usua

—t

Emﬂz/i@

denotes the integral exponent.
Thus
(4.18) Jo = a/g{)(ka)u(% av) dA + go(2a) (2, av ).
2

In the particular case of awell-stirred dispersion

3 (av coshay — sinh av>2

Jo = bo+ ——
2= 0" 158 al,
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(4.19)  x { (1724 — 54a% + 6ay + 3]e=2* — [36a — Ga + 18ay + 3]e—0v

+216a%[Ei(—2ay) — Ei(—6ay)] }
Eventually, the needed parameter I} is

k bo — blc

(4.20) I3 = A—oi-20 p3(av),
where ag, a; are explicitly given in (4.6), (4.3), etc., respectively. Hence ¢ 3 is a known
function of the dimensionless parameter a v, depending on the zero-density limit go(r) of
the radial distribution function for the dispersion through theintegrals I and .J 2, see (3.13)
and (4.18) respectively.

The evaluation of the statistical parameter I is already easy. From its definition
(1.6)2 and eqn (1.7) (with k% replaced by k%) we have

22
I3 =1- W(I:'O)/GR(Y)M:?(O,Y)dBY
(4.21) ) 2
k
+ Wgo)/ Gr(y1)Gr(y2) M§ (y1,y2) d’y1d%ys.
3 bl
But

Mg (0,y) = [a’ (IR(0)I}(y)) = (1 - 2¢)[a]’ (I3(0)I}(y)) = (1 — 20)[a] M5 (y),
since I?(0) = (I7(0) — ¢)*> = (1 — 2¢)I;(0) + ¢*. (Notethat 77(x) = I;(x).) Hence

2 . k2 p
e / Grly)M (0.y) Py =l / Gr(y)M§(y) d*y = palar),
see (3.17), so that
(4.22) I =1-2ps(ar) + p3(ar),

because the last term in ther.-h. side of (4.21) is immediately recognized as the function
3 from (4.20) in which a isto be replaced everywhereby a p.

5. COMPARISON WITH THE BOUNDS OF TALBOT AND WILLIS

Theresults of Sections 3 and 4 allow usto evaluate the bounds (1.4) for the dispersion
to the order ¢2. Indeed the relations (3.17) and (3.18) give us the values of the two-point
Statistical parameters 1% and IS for an arbitrary radial distribution function g(r). In turn,
eqgns (4.20) and (4.22) provide the values of the three-point statistical parameters 7' ¥ and
I$, again for an arbitrary radial distribution function g(r), but to the order ¢ 2 only.

Let usrecall that in [1] Talbot and Willis derived bounds on the effective absorption
coefficient £*2 for adispersion of spheres, using an original variational principleof Hashin-
Shtrikman’'stype. Their bounds have the form

k2 A+ py

1 - =1
(5.1a) k2 +a5+ﬁ7

with the coefficients
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3c(aycoshay —sinhay)

= _ = 2 0 /2
(&% (1 70)01(; ) ﬂ k]% < >’
k 3c(k? — kZ)(ag coshay —sinhay)n
— e~ (coshay + — sinhay) — —L— 0
v =e *(coshay + B sinhay) Rl o) +46,
12cl
(5.1b) n = (1+ aky)e 0 — - ¢ (ako cosh akg — sinh aky),
0
12cl k
= ak:co [cosh aky sinh ako — k—; sinh ak s cosh akyo|,
k2 3c(k} — kg)(ay coshay —sinhay)

0= _(a’2 - a'%n)"% A= s
k? f (1 = c)kga}

2
= (03— (ko)) + (1= c)(a2, — (ako)?), af = aky, am = akn.
f

(Our notations differ a bit from the original onesused in[1].)

Upon inserting ko = min(ky,, k¢) in (5.1) one obtains a lower bound on & *2 and,
similarly, inserting ky = max(k,, kr) — an upper one. In (5.1b) I is the statistical
parameter, defined in (3.13), which carriesinformation about the two-point statistics of the
dispersion. In this sense the bounds (5.1) are two-point and therefore should be expected
to be less restrictive than ours (1.4) which are three-point.

It is to be pointed out, however, that Talbot and Willis' bounds (5.1) are useful for
al values ¢ € (0,1) of the sphere volume fraction while the bounds (1.4) have been
calculated in the foregoing analysis only for dilute fractions — to the order ¢ > — and thus
may be expected to provide useful results for values of ¢ not exceeding 0.10 — 0.15. The
numerical calculations confirm these expectations. The ¢2-bounds (1.4) are closer to the
exact values of k£*? and more restrictive than the Talbot and Willis estimates (5.1) only at
spherefractions ¢ not exceeding 0.1. Thisisillustrated in Tables 1 and 2 for awell-stirred
dispersion of spheres in the two cases k7 /k;, = 10 and k7 /k;, = 0.1 respectively (at
a,, = 1). The exact values are found by means of the numerical procedure, developed in
[7] which employs the techniques of the factorial functional series[8] and allowsto obtain
explicitly the full statistical solution of egn (1.1) to the order ¢2 for the dispersion and, in
particular, the effective absorption coefficient & *2 to the same order. The results for other
valuesof a,, (a,, = 10 and a,,, = 0.1) are similar and therefore they are not shown here.

Acknowledgement. The support of this work by the Bulgarian Ministry of Science,
Education and Culture under Grant No MM 26-91 is gratefully acknowledged.
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Table 1

Estimates on the effective absorption coefficient & *2 for awell-stirred
dispersionat a, = 1, k%/k7, = 10:
KM — the bounds (1.4); TW — the bounds (5.1) of Talbot and Willis.

¢ | TW-lower KM-lower exact KM-upper TW-upper

0.0 1 1 1 1 1

0.02 1.071 1.071 1.071 1.072 1.089
0.04 1.147 1.147 1.147 1.147 1.183
0.06 1.229 1.230 1.230 1.231 1.281
0.08 1.317 1.318 1.318 1.319 1.384
0.10 1.413 1414 1.415 1.417 1.492

Table 2

2 =0.1.

m

Thesameasin Table 1 at k7 /k

¢ | TW-lower KM-lower exact KM-upper TW-upper

0.0 1 1 1 1 1

0.02 0.977 0.978 0.979 0.979 0.979
0.04 0.955 0.957 0.958 0.958 0.958
0.06 0.934 0.937 0.937 0.937 0.937
0.08 0.914 0.917 0.917 0.917 0.917
0.10 0.8%4 0.896 0.896 0.897 0.897
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