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Abstract

This work concerns steady state diffusion in a medium containing a random distribution of sinks. The
physical properties of the medium are described in terms of geometrical correlation functions, for example,
two or three point correlations. Variational principles of classical type are developed and configuration
dependent trial fields are substituted into them. Restrictions on certain integrals of the two and three point
correlation functions then follow from the avoidance of mathematical contradictions. The consequences of
the restrictions and the relationship between the classical variational principles and variational principles of
Hashin-Shtrikman type are discussed.

1 Introduction

The main focus of this work is the problem of determining the overall sink strength of an in-
homogeneous “lossy” material. In the steady state, the problem is described mathematically
by the equation

∆c− k2(x)c + K = 0, (1.1)

where c represents the concentration of some diffusing species, K is its generation rate (which
may depend on position) and the loss term −k2(x)c models a continuous distribution of sinks.
The sink strength k2 varies on a microscopic length scale characterized by a length scale a,
say. The problem is then to find an ‘overall sink strength’ k̃2, so that, when K varies slowly
relative to the microscale, some ‘local average’ c̃ of c satisfies a ‘homogenized’ version of
(1.1):

∆c̃− k̃2c̃ + K = 0. (1.2)

If k2(x) is bounded, it has been proved that k̃2 exists and is equal to the mean value, k2, in
the homogenization limit a → 0 (Papanicolaou (1980). We are interested also in the limit
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a → 0 while max(ka) remains finite, however. We are not aware of any homogenization
theorem in this case. A number of methods have been proposed for estimating k̃2 including
the simple self-consistent scheme of Brailsford and Bullough (1981) and methods based on
variational principles developed by Reck and Prager (1965), and Talbot and Willis (1984a,
b). Under the assumption that (1.1) indeed can be homogenized to the form (1.2), Talbot
and Willis (1984b) gave a definition of k̃2 analogous to the definition of overall elastic moduli
given by Hill (1963). In this work k̃2 is defined in terms of certain energy principles.

Talbot and Willis (1984b) considered a variational characterization of (1.1) for a finite
body with boundary condition ∂c/∂n = 0 where n is the outward normal to the surface of
the body. This meant that the trial fields that were substituted into the variational principle
also had to satisfy the boundary condition. The trial fields involved a Green function and
in turn this meant that a finite body Green function was used. As the shape of the body
was unspecified, the finite-body Green function was, in general, unknown and this meant
that a careful limiting process had to be undertaken in order to obtain results using the
infinite-body Green function. In this paper energy principles are considered which are free of
this restriction. Configuration-dependent trial fields which involve the infinite-body Green
function can now be employed directly and, by comparing the resulting bound on the energy
with that obtained using a constant trial field, restrictions on certain integrals involving
two and three point correlation functions can be derived, analogous to those obtained by
Milton (1981). The bounds involve both two and three point correlation functions and
the restrictions imply a range of values which the bounds can assume. This range is also
compared with bounds of Hashin-Shtrikman type.

In what follows, a random, statistically uniform medium of infinite extent is considered.
The medium has two phases, with labels 1 and 2. It occupies d-dimensional space Rd. Phase
1 (which need not be connected) occupies Ω1 and phase 2 occupies its complement, Ω2. The
characteristic function of Ω1 is f1. Thus,

f1(x) = 1 if x ∈ Ω1 (1.3)

= 0 otherwise.

The statistical properties of the medium follow from the set of multipoint probabilities, or
moments of f1, Vanmarcke, (1983)

η1 = 〈f1(0)〉, (1.4)

ηr(z1, z2, · · · zr−1) = 〈f1(0)f1(z1)f1(z2) · · · f1(zr−1)〉, r = 2, 3, · · · ,

where each zk ∈ Rd. The angled brackets signify ensemble averaging. Such multipoint
probabilities are symmetric in their arguments. One point could be taken at the origin,
because of the assumed statistical uniformity.

It is, in fact, convenient to work with η1 and the multipoint moments

Mr(z1, z2, · · · zr−1) = 〈f ′
1(0)f ′

1(z1)f
′
1(z2) · · · f ′

1(zr−1)〉, (1.5)

where
f ′

1(z) = f1(z)− η1. (1.6)
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The sink strength k2(x) in (1.1) is taken to have the form

k2(x) = k2
1f1(x) + k2

2(1− f1(x)), (1.7)

where k2
1 and k2

2 are constants.
The plan of the remainder of this work is as follows. In the next two sections, vari-

ational principles and general bounds are derived. Bounds of Hashin-Shtrikman type are
then considered. The bounds are then compared and some results presented.

2 Variational principles

Two variational principles associated with equation (1.1) will be considered. In each case,
although the domain Ω over which the problem is defined will be taken to be finite, the field
k(x) will be considered to be defined over the whole of Rd. Thus, the given domain Ω could
be regarded as a “test specimen” cut from a much larger piece of material. It is convenient,
to avoid the need for explicit volume averaging, to select units so that Ω has unit volume.
Then, integrals over Ω coincide with volume averages.

The first variational problem to be considered is

V ∗(K) = sup
c∈H1(Ω)

∫
Ω

[
Kc− 1

2
[(∇c)2 + k2c2]

]
dx. (2.1)

A closely related principle is

V (c) = inf
c∈S

1

2

∫
Ω

[
(∇c)2 + k2c2

]
dx, (2.2)

where S is the set

S =
{
c ∈ H1(Ω) :

∫
Ω

c dx = c
}

. (2.3)

The functions V and V ∗ are convex duals; the principle (2.1) is the more useful for present
purposes because the field c(x) is subject to no constraint.

The second variational principle that will be considered is

W (c) = sup
(q,s)∈T

∫
Ω

[
cs− 1

2
(q2 + s2/k2)

]
dx, (2.4)

where T is the set of fields

T =
{
(q, s) : q ∈ [L2(Ω)]3, s ∈ L2(Ω), (2.5)∫

Ω [∇φ · q + φ s]dx = 0 for all φ ∈ H0
1 (Ω),

∫
Ω

φ dx = 0
}
.

This is closely related to the principle

W ∗(s) = inf
(q,s)∈T

1

2

∫
Ω

[q2 + s2/k2]dx, (2.6)

3



with the additional restriction that
∫
Ω s dx = s. Note that (2.2) and (2.6) are not quite

natural duals, in the sense of Toland and Willis (1989): the principle dual to (2.2) has the
additional restriction that q · n = 0 on ∂Ω. Likewise, the natural dual to (2.4) is like (2.1),
except for the additional restriction that c = c on ∂Ω. It follows that

V (c) ≤ W (c) and W ∗(s) ≤ V ∗(s). (2.7)

3 Implications of the variational principles

For a two-phase medium as defined by (1.6), substitute into the integral in (2.1) the configuration-
dependent trial field

c(x) = c0 − λ
∫

G(x, y)f ′
1(y)dy, (3.1)

where c0 and λ are constants and G(x, y) is any function defined for all x ∈ Ω and all y ∈ Rd.
Even though x is restricted to lie in Ω, the integral with respect to y is over all space. Since
(1.6) is expressible in the form

k2(x) = k2 + [k2]f ′
1(x); k2 = η1k

2
1 + (1− η1)k

2
2, [k2] = k2

1 − k2
2, (3.2)

this yields the inequality

V ∗(K) ≥ K
(
c0 − λ

∫
G(y)f ′

1(y)dy
)
− 1

2
λ2
∫
Ω

dx
∫

dy∇G(x, y)f ′
1(y) ·

∫
dz∇G(x, z)f ′

1(z)

− 1

2
k2
[
c2
0 − 2λc0

∫
G(y)f ′

1(y)dy + λ2
∫
Ω

dx
∫

dy G(x, y)f ′
1(y)

∫
dz G(x, z)f ′

1(z)
]

− 1

2
[k2]

∫
Ω

dx f ′
1(x)

[
c2
0 − 2λc0

∫
dy G(x, y)f ′

1(y)

+λ2
∫

dy G(x, y)f ′
1(y)

∫
dz G(x, z)f ′

1(z)
]
, (3.3)

where
G(y) =

∫
Ω

G(x, y)dx. (3.4)

Ensemble averaging (3.3) gives

〈V ∗(K)〉 ≥ K c0 −
1

2
λ2L2 −

1

2
k2(c2

0 + λ2J2) +
1

2
[k2](2λc0I2 − λ2I3), (3.5)

where

L2 =
∫
Ω

dx
∫

dy∇G(x, y) ·
∫

dz∇G(x, z)M2(z − y),

I2 =
∫
Ω

dx
∫

dy G(x, y)M2(y − x), J2 =
∫
Ω

dx
∫

dy G(x, y)
∫

dz G(x, z)M2(z − y),

I3 =
∫
Ω

dx
∫

dy G(x, y)
∫

dz G(x, z)M3(y − x, z − x). (3.6)
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Two particular bounds will now be deduced from (3.5). First, choose λ = 0 and then
optimize with respect to c0. This gives

〈V ∗(K)〉 ≥ 1

2
(k2)−1K2. (3.7)

Next, optimize (3.5) with respect to c0 and λ:

〈V ∗(K)〉 ≥ 1

2

(
L2 + k2J2 + [k2]I3

k2(L2 + k2J2 + [k2]I3)− [k2]2I2
2

)
K2. (3.8)

The bound (3.8) has to be at least as good as (3.7); it follows, therefore, that

L2 + k2J2 + [k2]I3 − [k2]2I2
2/k

2 ≥ 0 (3.9)

for every choice of k1 and k2, and for every kernel function G.
Now substitute into the right side of (2.4) the trial field

q = −λ
∫
∇G(x, y)f ′

1(y)dy, s = s0 − λ
∫

∆G(x, y)f ′
1(y)dy, (3.10)

where s0 and λ are constants. This gives, upon ensemble averaging,

〈W (c)〉 ≥ c s0 −
1

2
λ2L2 −

1

2
k−2(s2

0 + λ2K2) +
1

2
[k−2](2λs0N2 − λ2N3), (3.11)

where
k−2 = η1k

−2
1 + (1− η1)k

−2
2 , [k−2] = k−2

1 − k−2
2 (3.12)

and

N2 =
∫
Ω

dx
∫

dy∆G(x, y)M2(y − x),

K2 =
∫

dx
∫

dy∆G(x, y)
∫

dz∆G(x, z)M2(z − y),

N3 =
∫

dx
∫

dy∆G(x, y)
∫

dz∆G(x, z)M3(y − x, z − x). (3.13)

Choosing λ = 0 and then optimizing with respect to s0 gives

〈W (c)〉 ≥ 1

2
(k−2)−1c2, (3.14)

whereas optimizing with respect to s0 and λ gives

〈W (c)〉 ≥ 1

2

(
L2 + k−2K2 + [k−2]N3

k−2(L2 + k−2K2 + [k−2]N3)− [k−2]2N2
2

)
c2. (3.15)

The observation that the bound (3.15) has to be at least as good as (3.14) leads to an
inequality similar to (3.9). It has, in fact, exactly the same information content and so is
not given explicitly.
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Since the inequality (3.9) holds for all k1 and k2, it implies (and is implied by)

L2 ≥ 0, J2 ≥ 0 (3.16)

and
η2

1J2 + η1I3 ≥ I2
2 , η2

2J2 − η2I3 ≥ I2
2 , (3.17)

where η2 = 1− η1. Relations (3.16) are both elementary: with the definition

χ(x) =
∫

G(x, y)f ′
1(y)dy, (3.18)

they state, respectively, that

〈|∇χ|2〉 ≥ 0 and 〈χ2〉 ≥ 0. (3.19)

4 Hashin-Shtrikman structure

The Hashin-Shtrikman variational principle corresponding to (2.1) is found by introducing a
comparison material with sink strength k2

0, with k2
0 ≥ k2, and a polarization field π. It then

follows from the equality

1

2
(k2 − k2

0)
−1π2 = inf

c

{
πc− 1

2
(k2 − k2

0)c
2
}

, (4.1)

that for any π and c,
1

2
k2c2 ≤ 1

2
k2

0c
2 + πc− 1

2
(k2 − k2

0)
−1π2. (4.2)

Substituting (4.2) into (2.1) leads to the inequality

V ∗(K) ≥ sup
c∈H1(Ω)

∫
Ω

[
Kc− 1

2

(
(∇c)2 + k2

0c
2 + 2πc− (k2 − k2

0)
−1π2

)]
dx, (4.3)

for any field π.
To derive the alternative principle from (2.4), introduce a field ν and k2

0 such that k2
0 ≤ k2.

Then similar manipulations starting from the equality

1

2
(k−2 − k−2

0 )−1ν2 = inf
s

{
νs− 1

2
(k−2 − k−2

0 )s2
}

, (4.4)

lead to the inequality

W (c) ≥ sup
(q,s)∈T

∫
Ω

[
cs− 1

2

(
q2 +

s2

k2
0

+ 2νs− (k−2 − k−2
0 )−1ν2

)]
dx, (4.5)

for any field ν. The inequalities (4.3) and (4.5) are the Hashin-Shtrikman variational princi-
ples associated with (2.1) and (2.4). The best bounds are obtained by optimizing the right
sides over π and ν. The derivation here follows that of Talbot and Willis (1986) in the con-
text of a nonlinear problem. It is equivalent to the derivation in Talbot and Willis (1984b),
although that paper subsequently considered spherical inclusions embedded in a matrix.
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Next, starting from (4.3), further progress is made by restricting π to be piecewise con-
stant, so that

π(x) = π1f1(x) + π2(1− f1(x)), (4.6)

where π1, π2 are constants, and taking as a trial field

c(x) = c0 − (π1 − π2)
∫

G0(x− y)f ′
1(y)dy. (4.7)

The kernel G0 in (4.7) is the infinite-body Green function, satisfying

∆G0(x)− k2
0G0(x) + δ(x) = 0. (4.8)

On substituting (4.7) into (4.3) and taking the ensemble average, the inequality

〈V ∗(K)〉 ≥ Kc0 −
1

2
k2

0c
2
0 − πc0 −

1

2
(π1 − π2)

2
[
L

(0)
2 + k2

0J
(0)
2 − 2I

(0)
2

]
+

1

2
η1(k

2
1 − k2

0)
−1π2

1 +
1

2
η2(k

2
2 − k2

0)
−1π2

2 (4.9)

is obtained, where π = η1π1 + η2π2 and the superscript 0 indicates that L2, J2 and I2 are
found using G0 satisfying (4.8). The optimum value of c0 follows as

c0 =
1

k2
0

(K − π) , (4.10)

and (4.9) becomes

〈V ∗(K)〉 ≥ 1

2k2
0

(K − π)2 − 1

2
(π1 − π2)

2
[
L

(0)
2 + k2

0J
(0)
2 − 2I

(0)
2

]
(4.11)

+
1

2
η1(k

2
1 − k2

0)
−1π2

1 +
1

2
η2(k

2
2 − k2

0)
−1π2

2.

Next, by using (4.8) to obtain a representation for G0 in terms of itself, it is easy to show

that L
(0)
2 = −k2

0J
(0)
2 + I

(0)
2 so that (4.11) becomes

〈V ∗(K)〉 ≥ 1

2k2
0

(K − π)2 +
1

2
(π1 − π2)

2I
(0)
2 (4.12)

+
1

2
η1(k

2
1 − k2

0)
−1π2

1 +
1

2
η2(k

2
2 − k2

0)
−1π2

2.

If now k2
1 ≥ k2

2, the Hashin-Shtrikman bound follows by taking k2
0 = k2

1, π1 = 0 and maxi-
mizing the right side of (4.12) over π2. The result is

〈V ∗(K)〉 ≥ 1

2
K2 η2 − [k2]I

(1)
2

η2k2 − k2
1[k

2]I
(1)
2

. (4.13)

A lower bound for 〈W (c)〉 is found by choosing ν so that

ν(x) = ν1f1(x) + ν2(1− f1(x)), (4.14)
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where ν1 and ν2 are constants, and taking as trial fields

q = k2
0(ν1 − ν2)

∫
∇G0(x− y)f ′

1(y)dy,

s = s0 + k2
0(ν1 − ν2)

∫
∆G0(x− y)f ′

1(y)dy. (4.15)

Substituting into (4.5) and optimizing over s0 leads to the bound

〈W (c)〉 ≥ 1

2
k2

0(c− ν)2 − 1

2
k4

0(ν1 − ν2)
2

[
L

(0)
2 +

1

k2
0

K
(0)
2 +

2

k2
0

N
(0)
2

]

+
1

2
η1(k

−2
1 − k−2

0 )−1ν2
1 +

1

2
η2(k

−2
2 − k−2

0 )−1ν2
2 . (4.16)

The integrals L
(0)
2 , K

(0)
2 and N

(0)
2 are easily written in terms of I

(0)
2 using equation (4.8) and

on setting −k2
0 = k2

2, ν2 = 0 and optimizing the right side of (4.16) over ν1, a little algebra
produces the bound

〈W (c)〉 ≥ 1

2
c2η1k2 + k2

2[k
2]I

(2)
2

η1 + [k2]I
(2)
2

. (4.17)

5 Results and discussion

As remarked in the Introduction we are unaware of a rigorous proof of the existence of an
overall sink strength k̃2. However it seems reasonable to define k̃2

V and k̃2
W by

〈V (K)〉 =
1

2

K2

k̃2
V

, 〈W (c)〉 =
1

2
k̃2

W c2. (5.1)

The first inequality in (2.7) implies that

k̃2
V ≤ k̃2

W . (5.2)

If equation (1.1) really does homogenize, then k̃2
V = k̃2

W = k̃2. Only the inequality (5.2) is
employed here, however. It now follows from (4.13) and (4.17) that

k̃2
V ≤ HS+

V =
η2k2 − k2

1[k
2]I

(1)
2

η2 − [k2]I
(1)
2

(5.3)

and

k̃2
W ≥ HS−

W =
η1k2 + k2

2[k
2]I

(2)
2

η1 + [k2]I
(2)
2

, (5.4)

which define HS+
V and HS−

W .
In order to see the relationship between the bound (3.8) and (5.3) and (5.4), first specialise

to the case where G in (3.8) is the solution G0 to (4.8). Then from the right hand inequality
in (3.17)

η2I
(0)
3 ≤ η2

2J
(0)
2 − I

(0)
2

2
, (5.5)
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and on replacing I3 by η2J
(0)
2 − I

(0)
2

2
/η2 and choosing k2

0 = k2
1, the bound HS+

V is recovered.
If the right side of the other inequality, in the form

η1I
(0)
3 ≥ I

(0)
2

2
− η2

1J
(0)
2 , (5.6)

is used in a similar way, the right side of (3.8) is no longer strictly a bound. However, in

this case, with k2
0 = k2

2, HS−
W is recovered. Thus, as I

(0)
3 ranges over all its allowed values,

the upper bound on k̃2
V induced by (3.8) ranges from the lower bound (5.4) on k̃2

W to the
upper bound (5.3) on k̃2

V . If only two point information is available, the “worst case” of (3.8)
must be chosen, namely HS+

V . This Hashin-Shtrikman bound is thus obtained directly from
the classical principle (2.1) coupled with simple reasoning comparing the three-point bound
with the elementary bound (3.7).

With G replaced by G0 it is possible to rewrite (3.15) in terms of L
(0)
2 , J

(0)
2 and I

(0)
2 .

In this case, the best lower bound on k̃2
W , obtained by using the right side of (5.5) and

k2
0 = k2

1, coincides with HS+
V and the worst lower bound, found by using the right side of

(5.6) with k2
0 = k2

2 coincides with HS−
W . It follows that the situation here is analogous to

the relationship between bounds on the conductivity of an isotropic two-phase composite
obtained using the classical energy principles and the Hashin-Shtrikman bounds. It is well
known, see Milton (1981), that as the value of a parameter containing information about
the three point statistics of the medium is varied, an upper bound derived from the classical
minimum energy principle can take all values between the lower and upper Hashin-Shtrikman
bounds.

In order to evaluate the bounds (5.3) and (5.4) it is necessary to have information about
the parameter I2. First, note that when G(x, y) = G0(x − y), the solution to (4.8), the
integrals over Ω in (3.6) are trivial and

I
(0)
2 =

∫
G0(x)M2(x)dx, J

(0)
2 =

∫
dxG0(x)

∫
dyG0(y)M2(x− y), (5.7)

are obtained. It is convenient to introduce the two-point correlation

ρ2 = M2(x)/M2(0) = M2(x)/(η1η2), (5.8)

and the parameter
i2(k0) = k2

0I
(0)
2 /(η1η2). (5.9)

Next, since J
(0)
2 ≥ 0 (see (3.16)) for any G(x, y), this inequality holds in particular when

G(x, y) = φ(x − y) for any function φ. The expression for J then takes the form shown in

(5.7) for J
(0)
2 , except that G0 is replaced by φ. This implies the inequality ρ̂2 ≥ 0 for the

Fourier transform ρ̂2 of ρ2. It now follows that

i2(k0) = k2
0

∫
Ĝ0(−ξ)ρ̂2(ξ)dξ = k2

0

∫ ρ̂2(ξ)

|ξ|2 + k2
0

dξ ≤
∫

ρ̂2(ξ)dξ = ρ2(0) = 1. (5.10)

Hence,
0 ≤ i2(k0) ≤ 1. (5.11)
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It is easy to see that when i2 = 0 both the bounds reproduce the simple upper bound
k2 induced by (3.7) and when i2 = 1 the simple lower bound k−2 from (3.14) is recovered.
Some sample results are now presented for the simple correlation function

ρ2(x) = e−r/a, (5.12)

where r = |x| and d = 3. This is chosen for convenience only and is not meant to model any
particular composite. In this case G0(x) = e−k0r/(4πr) and

i2(k0) =
(k0a)2

(1 + k0a)2
. (5.13)

For illustration, the bounds (5.3) and (5.4) are plotted against i2(k2), for η1 = η2 = 0.5,
in Figure 1 for k2

1/k
2
2 = 2 and in Figure 2 for k2

1/k
2
2 = 10. The bounds are normalized by

k2
2. The plots were obtained by choosing values of k2a between zero (when i2(k2) = 0) and

infinity (when i2(k2) = 1). It can be seen that the bounds remain reasonably close, even for
k2

1/k
2
2 = 10. Also, they improve significantly on the simple upper and lower bounds k2 and

k−2, which are obtained from i2(k2) = 0 and i2(k2) = 1, respectively.
It is worth noting that the bounds (5.3) and (5.4) are valid for any statistically uniform

microstructure and any dimension d. The bounds obtained by Talbot and Willis (1984b)
were for a distribution of spheres with sink strength k2

1 embedded in a matrix with sink
strength k2

2 and the polarization π in the spheres was allowed to vary. It follows that the
bounds obtained here will not in general be as restrictive for that type of microstructure.

Finally, the restriction ρ̂(ξ) ≥ 0 imposes a necessary condition on realizable two point
correlation functions. It implies that Λ, defined by

Λ = ρ̂(0) =
∫

ρ2(x)dx, (5.14)

should be positive. Now, it is common to use approximations, such as (5.12), for the two-
point correlation functions of a random medium. Another that has been used in a variety of
applications is the well-stirred approximation for the pair distribution function of a random
array of spheres. In the context of bounding the effective sink strength of a medium contain-
ing voids produced by irradiation Talbot and Willis (1980) found that a lower bound (which
mathematically had to be finite) tended to infinity at a void fraction around 0.2 when this ap-
proximation was used. Later, Willis (1980) and Talbot and Willis (1982) demonstrated that
use of the well-stirred approximation predicted the growth rather than attenuation of long
waves through a matrix containing spherical inclusions, at volume fractions greater than 1/8.
Their method of calculation relied upon an approximation, however. Thus, although some-
thing was wrong, this calculation did not directly discredit the well-stirred approximation.
In either problem, however, all results behaved as they should, when the Percus-Yevick pair
distribution function (Percus and Yevick 1957) was used. In the wave propagation problem
it was precisely the sign of Λ that determined whether growth or attenuation was predicted.
The observation that Λ ≥ 0 thus guarantees attenuation, as expected physically, for any
realizable two-point statistics. The well-stirred approximation cannot be valid at volume
fractions greater than 1/8 because, at such volume fractions, the value of Λ calculated from
it is negative.
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Figure Captions

Fig. 1. Plots of the bounds for the case k2
1/k

2
2 = 2 when η1 = η2 = 0.5. The top line is HS+

V

and the bottom line is HS−
W .

Fig. 2. Plots of the bounds for the case k2
1/k

2
2 = 10 when η1 = η2 = 0.5.
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