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Tome 89, 1995

ON THE “TRIANGULAR” INEQUALITY IN THE THEORY

OF TWO-PHASE RANDOM MEDIA
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A necessary condition on the two-point correlation function of binary random media,

noticed by Matheron [1] and called by him “triangular” inequality, is studied in this
note. An appropriate result, due to Achiezer and Glazman [2], is first recalled. Simple

consequences of this inequality are given, as well as a necessary condition for its va-

lidity in a statistically isotropic medium. It is shown that it represents a requirement,
independent of that of the familiar positive definiteness, that should be additionally

imposed on the two-point correlation function of any realistic binary medium.

Key words. random materials, two-phase media, correlation functions

1991/95 Math. Subject Class. 60G60, 73B35

Consider a random and statistically uniform medium that occupies d-dimen-
sional space Rd. The medium is “binary”, i.e., it consists of two phases labelled 1
and 2. Phase 1 (which needs not to be connected) occupies Ω1 and phase 2 occupies
its complement Ω2. The characteristic function of Ω1 is f1. Thus,

f1(x) =

{
1, if x ∈ Ω1,

0, otherwise.

As it is well-known, the statistical properties of the medium follow from the set of
multipoint probabilities or moments of f1:

η1 = 〈f1(0)〉 , 〈f1(0)f1(z1)〉 , . . . , (1)
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where each zk ∈ Rd, see for instance [3]. The angled brackets signify ensemble
averaging. Such multipoint probabilities are symmetric in their arguments. One
point could be taken at the origin, because of the assumed statistical uniformity.

It is, in fact, convenient to work with η1 and the multipoint moments

Mp(z1, z2, . . . , zp−1) = 〈f ′1(0)f ′1(z1)f ′1(z2) . . . f ′1(zp−1)〉 , p = 2, 3, . . . , (2)

where
f ′1(z) = f1(z)− η1 (3)

is the fluctuating part of the field f1(z).
Of course, not any infinite hierarchy of functions Mp can represent moments

derived from a random medium and, moreover, from a two-phase one. The reason,
well recognized and very clearly explained by Frisch [4], is that the function Mp

should satisfy, in particular, certain compatibility conditions. The real problem in
this connection arises when modelling a random constitution of practical interest.
In such cases the first few moments (as a rule the two-point and, more rarely, the
three-point ones) are prescribed using certain, very often heuristic and not very
rigorous arguments. Though the form of the prescribed moments can, in principle,
be checked experimentally, the question remains as to whether these moments can
be inserted into the infinite hierarchy of multipoint moments (2), i.e. whether they
pertain to a real random medium. The problem is even tougher when the two-phase
media are dealt with, having in mind that the latter very often appear in applica-
tion. Frisch [4], for example, presented examples of two-point probability densities
that look plausible but cannot belong to any real random medium. Another more
recent example is connected with the often used “well-stirred” approximation for
random dispersion of spheres, for which, as far as the two-point moment is only
concerned, overlapping is forbidden and the sphere location is not statistically in-
terconnected otherwise. This approximation turns out to be realistic only at sphere
fraction η1 ≤ 1/8 in 3D, as shown in [5, 6].

For any statistically homogeneous medium one restriction that is generally
known is that its two-point correlation function should be positive definite, so that
its Fourier transform must be positive. The converse is also true, namely, for any
positive-definite function there exists a random medium for which this function
represents its two-point correlation (the Bochner or Bochner-Khinchine theorem,
see, e.g., [3]). Further restrictions are known if the medium is also statistically
isotropic [3]. For two-phase media, as introduced above, it ought to be possible to
find more restrictions but none are known; a conjecture on how to recognize realistic
two-point correlation functions for such media was recently made by Matheron [1].
As a matter of fact, a method for deriving relations of such a type has been proposed
in the recent work [6] on the basis of a certain variational reasoning.

Here we shall study in more detail a requirement, specific for the correlation of
a two-phase medium. This is an inequality first noticed, to the best of the author’s
knowledge, by Matheron [1] and called by him “triangular” due to obvious geomet-
rical reasons. It appears that this inequality closely resembles a certain property
of the positive definite functions, first pointed out by Achiezer and Glazman [2]
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almost forty years ago. That is why we shall first recall the appropriate result of
Achiezer and Glazman.

Following these authors, introduce the class G of real and even functions g(x),
x ∈ Rd, for which the kernel

Γ(x, y) = g(x) + g(y)− g(x− y) (4)

is positive definite, i.e.

k∑
i,j=1

[
g(xi) + g(xj)− g(xi − xj)

]
aiaj ≥ 0, ∀xi ∈ Rd, ai ∈ R. (5)

Proposition 1. Let γ2(x) be a real positive definite and even function on Rd.
Then 1− γ2(x) ∈ G (and thus λ(1− γ2(x)) ∈ G as well, ∀λ ≥ 0).

Proof. Due to the definition (5), 1− γ2(x) ∈ G if the kernel

T (x, y) = 1 + γ2(x− y)− γ2(x)− γ2(y) (6)

is positive definite. To prove this, consider the identity

2k∑
i,j=1

γ2(yi − yj)bibj =
2k∑

i,j=1

γ2(y2i − y2j−1)b2ib2j−1

+
2k∑

i,j=1

γ2(y2i − y2j)b2ib2j +
2k∑

i,j=1

γ2(y2i−1 − y2j−1)b2i−1b2j−1

+
2k∑

i,j=1

γ2(y2i−1 − y2j)b2i−1b2j .

Choose now y2i = 0, y2i−1 = xi, b2i = −ai, b2i−1 = ai, i = 1, . . . , k. Then

0 ≤
2k∑

i,j=1

γ2(yi − yj)bibj =
k∑

i,j=1

[
1 + γ2(xi − xj)− γ2(xi)− γ2(xj)

]
aiaj .

Hence the kernel T (x, y), see (6), is indeed positive definite, which proves the
proposition.

Remark 1. The Proposition 1 and its simple proof, given here for the sake of
completeness, belong to Achiezer and Glazman [2], see also [7, p. 265].

Let the medium be two-phase and let

γ(x′, x′′) = γ(x′ − x′′) =
1
2

〈
|f1(x′)− f1(x′′)|2

〉
(7)
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denote the so-called variogramme of the field f1(x). Using the definition of the
two-point correlation, it is easily seen that

γ(x) = η1η2(1− γ2(x)), (8)

where

γ2(x) =
M2(x)
M2(0)

=
〈f ′1(0)f ′1(x)〉
〈f ′21 (0)〉

, M2(0) =
〈
f ′21 (0)

〉
= η1η2,

so that γ2(x) is the most often used two-point correlation for which γ2(0) = 1.
According to Proposition 1, γ ∈ G, since γ2(x) is positive definite. Hence

the field Γ(x, y), generated by γ(x), see (4), is positive definite. The following
proposition shows, however, that for a two-phase medium an additional fact holds.

Proposition 2. The variogramme of any two-phase random medium generates
a field Γ(x, y) which is not only positive definite, but which is nonnegative itself.
In other words, the so-called triangular inequality of Matheron [1] holds:

γ(x− y) ≤ γ(x) + γ(y), ∀x, y ∈ Rd. (9)

Proof. Obviously,

γ(x, y) =
1
2

〈
|f1(x)− f1(y)|2

〉
=

1
2

〈
|f1(x)− f1(0) + f1(0) + f1(y)|2

〉
=

1
2

〈
|f1(x)− f1(0)|2

〉
+

1
2

〈
|f1(0)− f1(y)|2

〉
− α(x, y)

= γ(x) + γ(y)− α(x, y),

where
α(x, y) =

〈
(f1(0)− f1(x))(f1(0)− f1(y))

〉
.

To prove (9) it suffices to show that α(x, y) ≥ 0. But, if the origin 0 lies in the
constituent ‘2’, then f1(0) = 0 and α(x, y) = 〈f1(x)f1(y)〉 ≥ 0. Similarly, if 0 lies in
the constituent ‘1’, then f1(0) = 1 and again α(x, y) = 〈(1− f1(x))(1− f1(y))〉 ≥ 0.

Combining (8) and (9) yields

γ2(x) + γ2(y)− γ2(x− y) ≤ 1 (10)

or
1 + γ2(r′ + θr′′) ≥ γ2(r′) + γ2(r′′), ∀θ ∈ [−1, 1], (11)

having chosen |x| = r′, r′′ = |y|. This inequality should thus be satisfied by the two-
point correlation of any realistic statistically homogeneous and two-phase random
medium.

Corollary 1. Let the medium be statistically isotropic as well, so that γ2(x)
= γ2(r), r = |x|. Then

γ′2(0) ≤ ±γ′2(r), ∀r ∈ (0,∞). (12)
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Indeed, choose the vectors x, y colinear, once with the same directions and
then with the opposite directions; |y| = ∆r, |x| = r, r > ∆r > 0. Then

γ2(∆r) + γ2(r) ≤ 1 + γ2(r ±∆r)

which, at ∆r � 1, implies (12).
Since γ2(0) = 1 and γ2(r) ≤ 1, we have obviously γ′2(0) ≤ 0. The inequality

(12) is then equivalent to

|γ′2(r)| ≤ |γ′2(0)|, ∀r ∈ (0,∞), (13)‘

which means, in particular, that the steepest decrease of the two-point correlation
function γ2(r) of an isotropic two-phase medium is at the origin r = 0.

Corollary 2. A positive definite function γ2(r) may serve as a two-point
correlation of a two-phase statistically homogeneous and isotropic medium, only if
γ′2(0) < 0.

Indeed, (13) immediately shows that γ′2(0) = 0 yields γ′2(r) = 0, ∀r ∈ (0,∞),
i.e. γ2(r) ≡ 1, which is impossible.

The inequality γ′2(0) < 0 for a two-phase medium follows also from the fact
that −γ′2(0) is proportional to S/V , where S is the specific surface (i.e. phase
boundary) within the small volume V , see [8] and especially [9, p. 177] for details
and a proof. More precisely, S/V = −4η1(1 − η1)γ′2(0), which obviously implies
γ′2(0) < 0 for such media.

Remark 2. As it is well-known, not every real and positive function is positive
definite and vice versa. Hence the triangular inequality represents a necessary
condition that should be imposed on the two-point correlations of random media
in addition to their positive definiteness, if the modelled medium is two-phase. To
illustrate this consider as an example first the function

γ2(r) =
1

(1 + (r/β)2)2
.

It is positive definite (since its Fourier transform is positive) and hence it rep-
resents, according to the Bochner-Khinchine theorem, a two-point correlation of
a certain statistically homogeneous and isotropic random medium. On the other
hand, γ′2(0) = 0, so that the triangular inequality fails for this medium and the
latter therefore cannot be two-phase.

Conversely, consider again the above mentioned “well-stirred” dispersion of
spheres. Its two-point correlation satisfies the triangular inequality for all values of
the sphere fraction η1 ∈ (0, 1) (since the field f1(x) is binary). On the other hand,
the Fourier transform of this correlation is positive definite only at η1 ≤ 1/8, as
it can be directly shown. Hence the positive definiteness and triangular inequality
are indeed two mutually independent necessary conditions that should be satisfied
by the two-point correlation of binary random media.

In general, it seems hard to give a complete description of the functions that
satisfy the triangular inequality (10). (The variogrammes under study cannot ob-
viously be homogeneous of degree 1, i.e. γ(λx) 6= λγ(x), and thus they are not
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semi-norms on Rd.) A simple and rich class of such function can be easily de-
scribed though. To this end note that (11) implies γ′′2 (0) ≥ 0 for such a function
and thus γ2(r) is convex and monotonically increasing in a certain vicinity of the
origin. If the latter properties hold for all r ∈ [0,∞), it suffices to claim that the re-
spective function is an admissible two-point correlation. More precisely, recall that
in 1D a bounded even function which is convex on the right half-axis is positive
definite [10, p. 187]. A radially symmetric function γ2(r) in 3D with these proper-
ties is not obliged to be of that kind.1 However, for such functions the following
result holds:

Proposition 3. If γ2(r) is monotonically decreasing, nonnegative and convex,
then it satisfies the triangular inequality (10).

Proof. Since γ2(r) is monotonically decreasing, in order to prove (10) it suffices
to show that

1 + γ2(r′ + r′′) ≥ γ2(r′) + γ2(r′′),

having taken the vectors x, y colinear, with the same direction; r′ = |x|, r′′ = |y|.
Let r′ > r′′ for definiteness. Then

1− γ2(r′′) = γ2(0)− γ2(r′′) = −γ′2(ξ
′)r′′, ξ′ ∈ (0, r′′),

γ2(r′)− γ2(r′ + r′′) = −γ′2(ξ
′′)r′′, ξ′′ ∈ (r′, r′ + r′′).

The convexity of γ2(r) means that γ′′2 (r) ≥ 0, so that γ′2(ξ
′′) ≥ γ′2(ξ

′), because
ξ′′ > ξ′. Hence

1− γ2(r′′) ≥ γ2(r′)− γ2(r′ + r′′),

which proves the proposition.

A simple example of an admissible and physically reasonable two-point corre-
lation is

γ2(r) = e−µr, (14)

proposed by Debye et al. [8]. This is the so-called exponential correlation, dis-
cussed, for instance, in the book of Stoyan et al. [9] (where a planar random set
with this correlation is explicitly constructed in Sec. 10.5.1). Being convex, positive
and monotonically decreasing, the function (14) satisfies the triangular inequality
(10), as it follows from Proposition 3. Its Fourier transform is positive. Hence this
function may represent a two-point correlation for a two-phase statistically homo-
geneous and isotropic medium in Rd for any d. A more general class of similarly
admissible correlations is obviously given by

γ2(r) =

∞∫
0

e−rt dσ(t); (15)

1The function in 3D

γ2(r) =

{
1− r/a, if r ≤ a,
0, if r > a,

r = |x|, is bounded and convex, but its Fourier transform γ̂2(k) is proportional to 2(1− cos ak)−
ak sin ak and hence it is not positive everywhere.
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here σ(t) is an arbitrary bounded and non-increasing function on (0,∞) such that∫∞
0

dσ(t) = 1. (If σ(t) = H(t − µ), Debye’s function (14) is recovered from (16),
H(t) being the Heaviside function.) In other words, the class (16) gathers the
Laplace transforms of all nonnegative functions on (0,∞) (more precisely, of all
bounded measures there).

Note finally that the class (15) coincides with the class of the so-called com-
pletely monotonic functions, according to the well-known Bernstein theorem, see,
for instance, [11] or [7]. It is curious, however, that such completely monotonic
functions (15) may represent correlations only for dispersions of overlapping or
touching particles. The reason is that non-overlapping always implies the condi-
tion γ′′2 (0) = 0, as it follows from the results of Kirste and Porod [12], see also [13]
and [5]. This condition, however, never holds for the functions (15).

Another example of an admissible two-point correlation is the function

γ2(r) =

 1− 3r

4a
+

r3

16a3
, if r ≤ 2a,

0, if r > 2a,
(16)

since it is obviously positive definite, nonnegative and convex. Hence it satisfies
the triangular inequality (10) as well. Note that (16) is the two-point correlation
of the so-called Miller’s cell material [14] in the simplest case when the cells are
spherical, see also [15].
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