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ON THE TWO-POINT CORRELATION FUNCTIONS
IN RANDOM ARRAYS OF NONOVERLAPPING SPHERES
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For a random dispersion of identical spheres, the known two-point correlation functions like “particle-
center," “center-surface," “particle-surface," etc., are studied. Geometrically, they give the probability
density that two points, thrown at random, hit in various combinations a sphere’s center, a sphere,
or a sphere’s surface. The basic result of the paper is a set of simple and integral representations of
one and the same type for these correlations by means of the radial distribution function for the set
of sphere’s centers. The derivations are based on the geometrical reasoning, recently employed by
Markov and Willis when studying the “particle-particle" correlation. An application, concerning the
effective absorption strength of a random array of spherical sinks, is finally given.
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1. INTRODUCTION

In many cases of great practical interest the macroscopic behaviour of a two-phase
medium is strongly influenced by the amount and the internal distribution of the interfacial
surface. A classical problem of such a kind is supplied first of all by the theory of diffusion-
controlled reactions, as initiated by Smoluchowski in 1916. Formally, this is equivalent
to the problem, concerning a species (defects) diffusing in the presence of an array of
ideally absorbing traps (sinks). Another classical problem is the quest for the permeability
of porous solids. The reason is that in both problems the observed macroscopic response



is ruled by the events that take place at the boundary between the phases: in the first
case chemical reactants’ encounter (or absorption of defects) happens there and in the
second case the viscous fluid flows around the particle surfaces, where no-slip boundary
condition is to be satisfied. Hence it is natural that in studying both these phenomena
the interfacial statistics should essentially enter the appropriate theories. Perhaps the first
example was provided by Doi [3] who derived bounds on both the effective sink strength and
the permeability. These bounds were put on a firmer base and generalized by Torquato and
co-authors [9, 16, 10, 1]. The bounds include integrals of the interfacial two-point statistical
correlations, which later on were thoroughly studied within a more general framework by
Torquato [15, 14]. An alternative approach in the absorption context has been proposed by
Talbot and Willis [12] who, using a Hashin-Shtrikman’s type variational principle, derived
a bound on the effective sink strength for a dispersion of nonoverlapping spheres which
eventually utilizes only an integral incorporating the total correlation function. At a first
glance this bound is entirely different from Doi’s one since no interfacial statistics is even
mentioned in Talbot and Willis’ reasoning. As we shall see below, the Talbot and Willis
bound turns out, however, to be identical to that of Doi.

The evaluation of the interfacial statistical characteristics for realistic two-phase ran-
dom models meets with considerable difficulties. Only for the simplest model of fully
penetrable spheres (the Boolean model) the needed quantities can be comparatively easily
evaluated, as done by Doi himself. For dispersions of nonoverlapping spheres — a model
that very often is appropriate for particulate type media — such an evaluation is much more
involving, and the reason can be well seen from the already mentioned paper of Torquato
[15]. In the same paper the author notes that the needed interfacial correlations have a
convolution structure which allows, in principle, to reduce them to single integrals con-
taining the total correlation functions for the dispersions, provided the Fourier transform is
employed in the statistically isotropic case. No further details are given in [14], however,
apart from appropriate formulae valid for a dilute dispersion, and numerical results for the
semi-empirical Verlet-Weis distribution [18], see also [13]. (Note that the dilute results
have been derived by Berryman [2] by means of a different approach.)

In the recent paper [7], a simple geometrical reasoning was proposed, which allowed
the authors to represent the two-point correlation function of the region, occupied by the
spheres (that is, the “particle-particle" correlation), as a simple integral that contains the
radial distribution function of the spheres. The aim of the present work is to demonstrate
that the same geometrical reasoning can be straightforwardly applied when considering
the two-point interfacial correlations, if combined with a formula, noted by Doi [3]. In
this way the said correlations will be reduced to even simpler integrals of thesame type as
that for the “particle-particle" one. To accomplish this, the definitions of the three basic
interfacial characteristics are first introduced in Section 2, preceded by that of the simple
“particle-center" correlation. The investigation of the latter in Section 3 serves as a model
for a similar treatment of the interfacial characteristics, performed in Sections 4 – 6 5 and
6. (The study of the “particle-center" correlation, detailed here, is outlined in the author’s
paper [6].) The formulae for all two-point correlations have a fully similar structure, which
is summarized in Table 1 (Section 9). In Section 7 the first two moments of the various
two-point correlations are directly evaluated by means of an alternative and simpler method
which is applicable in the 2-D case as well. As an elementary application of the obtained
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formulae it is finally shown (Section 8) that the Doi’s bound on the effective sink strength
of the dispersion coincides with that of Talbot and Willis.

2. DEFINITIONS OF THE BASIC TWO-POINT STATISTICAL CHARACTERISTICS

Consider a dispersion of equal and nonoverlapping spheres of radiusa in R
3, whose

centers form the random set of points
{
xα

}
. The assumption of statistical isotropy and

homogeneity is adopted henceforth. Introduce after Stratonovich [11] the so-called random
density field for the dispersion

ψ(x) =
∑
α

δ(x− xα), (2.1)

δ(x) is the Dirac delta-function. All multipoint moments of the fieldψ(x) can be easily
expressed by means of the multipoint probability densities of the random set

{
xα

}
, but in

what follows only the first two simplest formulae of this kind will be needed, namely,

〈ψ(x)〉 = n, F cc(x) = 〈ψ(x)ψ(0)〉 = nδ(x) + n2g(x), (2.2)

wheren is the number density of the spheres, andg(x) = g(r), r = |x|, is their radial
distribution function, see [11]. The brackets〈·〉 signify ensemble averaging. Note that the
assumption of nonoverlapping implies thatg(x) = 0 if |x| ≤ 2a. The notationF cc(x)
in (2.2) is justified by the interpretation of the quantity〈ψ(x)ψ(0)〉 — this is the “center-
center" correlation, in the sense that it obviously gives the probability densities of finding
centers of particles both at the origin and at the pointx.

Let

I1(x) =
{ 1, if x ∈ K1,

0, otherwise,
(2.3)

be the characteristic function of the regionK1, occupied by the spheres. Then

I1(x) = (ha ∗ ψ)(x) =
∫
ha(x− y)ψ(y) dy, I ′1(x) =

∫
ha(x− y)ψ′(y) dy, (2.4)

whereψ′(y) = ψ(y) − n is the fluctuating part of the fieldψ(y) andha(y) is the charac-
teristic function of a single sphere of radiusa, located at the origin. All integrals hereafter
are over the wholeR3 and, as usual,f ∗ g denotes the convolution of the functionsf and
g. The simple integral representation (2.4), combined with the formulae (2.2), serves as
a basis for evaluating the needed interfacial statistical characteristics in what follows. Its
simplest consequence reads

η1 = 〈I1(x)〉 = nVa, Va = 4
3πa

3, (2.5)

having taken averages of both sides of (2.4);η1 is the volume fraction of the spheres.
In turn, the two-point correlation most often used is

F pp(x) = 〈I1(0)I1(x)〉 . (2.6)
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The interpretation of〈I1(0)I1(x)〉 is obvious — this is the probability that two points,
separated by the vectorx, when thrown into the medium both fall within a sphere. That is
why 〈I1(0)I1(x)〉 can be called “particle-particle" correlation, which explains its notation
F pp(x) in (2.6).

Before introducing the interfacial characteristics, it is noted that another correlation,
closely related toF pp(x), will be useful as well. This is the “particle-center" one

F pc(x) = 〈I1(x)ψ(0)〉 , (2.7)

which obviously gives the probability that for a pair of points, separated by the vectorx,
one hits a sphere’s center while the other falls into a sphere.

It is natural to represent the above introduced correlations as

F cc(x) = n2 + F
cc

(x), F pc(x) = nη1 + F
pc

(x), F pp(x) = η2
1 + F

pp
(x), (2.8)

where, as it follows from (2.2), (2.4), (2.6) and (2.7) ,

F
cc

(x) = 〈ψ′(0)ψ′(x)〉 = nδ(x) + n2ν2(x),

F
pc

(x) = 〈I ′1(x)ψ′(0)〉 = (ha ∗ F cc
)(x) = nha(x) + n2

∫
ha(x− y)ν2(y) dy,

F
pp

(x) = 〈I ′1(x)I ′1(0)〉 =
(
ha ∗ Fpc)

(x) =
(
ha ∗ ha ∗ F cc)

(x).

(2.9)

Here
ν2(y) = g(y) − 1 (2.10)

is the so-called binary (or total) correlation function for the dispersion. Due to the no
long-range assumption, allν2(x), F

cc
(x), F

pc
(x) andF

pp
(x) vanish asx → ∞, since

the constants in the right-hand sides of (2.8) are just their long-range values.
Let us recall now the definitions of the interfacial correlations. The first one,

F sc(x) = 〈 |∇I1(x)|ψ(0)〉 , (2.11)

can be called “surface-center." Since|∇I1(x)| andψ(x) are delta-functions, the former
concentrated over the surface∂K1 of the spheres and the latter over the set{xα

}
, the

interpretation ofF sc(x) is obvious — this is the probability that if two points, separated
by the vectorx, are thrown into the medium, one of them falls on the surface of a sphere,
while the other hits a centerxα of a sphere. This interpretation explains the terminology
used here (note that it differs from that used by Torquato [15], where (2.11) is called
“surface-particle" correlation).

The second interfacial correlation is

F sp(x) = 〈 |∇I1(x)| I1(0)〉 (2.12)

— obviously the “surface-particle" one. The reason is that it gives the probability that
one of the two points, separated by the vectorx, when thrown into the medium, falls on
the surface of a sphere, and the other falls within a sphere. (Note again the difference
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in terminology used here: Torquato [15] calls (2.11) “surface-particle" correlation, while
(2.12) is very closely connected to the “surface-void" correlation of Doi [3].)

Finally, let
F ss(x) = 〈 |∇I1(x)| |∇I1(0)| 〉 (2.13)

be the “surface-surface" correlation, which gives the probability that the two points, sep-
arated by the vectorx, thrown into the medium, both fall on the spheres’ surfaces. (The
terminology agrees here with that of Doi [3] and Torquato [15].)

Let nowhb(x) be the characteristic function of the sphere of variable radiusb, located
at the origin. Then

∂

∂b
hb(x)

∣∣∣∣
b = a

= δ(|x| − a). (2.14)

As a matter of fact, the formula (2.14) was noted by Doi [3] who employed it for
evaluating the interfacial correlations for the Boolean model of fully penetrable spheres.
Coupled with Stratonovich density field (2.1), it gives

|∇I1(x)| =
∫

∂

∂b
hb(x− y)ψ(y) dy

∣∣∣∣
b = a

, (2.15)

since|∇I1(x)| is a sum of delta functions, concentrated on the surfaces of the spheres. The
formula (2.15) will play a central role in our study. Its first and simplest consequence is
the formula for the specific surface,S, of the dispersion, i.e. the amount of the interface in
a unit volume. Due to the nonoverlapping assumption, obviouslyS = 4πa 2n. Formally,
the latter formula immediately follows after averaging (2.15):

S = 〈|∇I1(x)|〉 = n
∂

∂b

∫
hb(x− y) dy

∣∣∣∣
b = a

= n
d
db

(
4
3πb

3
) ∣∣∣∣

b = a

= 4πa2n. (2.16)

Similarly to (2.8), represent the interfacial correlations in the form

F sc(x) = nS + F
sc

(x), F sp(x) = η1S + F
sp

(x), F ss(x) = S2 + F
ss

(x), (2.17)

where, as it follows from (2.11), (2.4), (2.12) and (2.13) ,

F
sc

(x) = 〈|∇I1(x)|ψ′(0)〉 = n
∂

∂b
hb(x)

∣∣∣∣
b = a

+n2 ∂

∂b

∫
hb(x− y)ν2(y) dy

∣∣∣∣
b = a

,

F
sp

(x) = 〈|∇I ′1(x)|I ′1(0)〉 = (ha ∗ F sc
)(x) =

∫
ha(x− y)F

sc
(y) dy,

F
ss

(x) = 〈|∇I1(x)| (|∇I1(0)| − S)〉 = (
∂

∂b
hb ∗ F sc

)(x)
∣∣∣∣

b = a

(2.18)

=
∫

∂

∂b
hb(x − y)F

sc
(y) dy

∣∣∣∣
b = a

.

Similarly to (2.8), allF
sc

(x), F
sp

(x), F
ss

(x) vanish at infinity, since the constants in the
right-hand sides of (2.17) are the appropriate long-range values.
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It is noted after Torquato [15] that the “surface-center" correlation (2.11) is the most
important in the sense of (2.18), i.e. the other two —F sp(x) andF ss(x) — can be easily
represented by means ofF sc(x).

It should be pointed out also that all the correlation functions, mentioned in this
section, are particular case of the much more general statistical characteristics for two-
phase random media, as introduced by Torquato [15]. Our aim here will be however much
more specific, namely, derivation of simple integral representations of these correlations
by means of the total correlation function for the set

{
xα

}
of sphere’s centers of the type

of Eq. (3.13) below.

3. THE “PARTICLE-CENTER" CORRELATION

Let us split the radial distribution function,g(x), as

g(x) = gws(x) + g̃(x), (3.1)

where

gws(x) = 1 − h2a(x) =

{
0, if |x| ≤ 2a,

1, if |x| > 2a,
(3.2)

corresponds to the simplest “well-stirred" distribution of spheres;g̃(x) is then the “cor-
rection" to the latter. In turn, the total correlationν2(x), defined in (2.10), is represented
as

ν2(x) = −h2a(x) + ν̃2(x). (3.3)

Moreover, one has
ν2(x) =ν̃2(x) = g̃(x), if |x| ≥ 2a,

ν̃2(x) =g(x), if |x| < 2a,
(3.4)

as a consequence of the nonoverlapping assumption. The formula (3.4)1 will allow us to
replace below̃g(x) by the binary correlationν2(x) when|x| = r ≥ 2.

Let us recall now the well-known formula for the common volume of two spheres of
radii b andξ, the first centered at the origin, the other at the pointx, |x| = r:

(
hb∗hξ

)
(x) =

∫
hb(x−y)hξ(y) dy = Va


τ3, if 0 ≤ ρ ≤ µ− τ ,

Ψ(ρ;µ, τ), if µ− τ ≤ ρ ≤ µ+ τ ,

0, if ρ > µ+ τ ,

(3.5)

where

Ψ(ρ;µ, τ) =
1

16ρ
(µ+ τ − ρ)2(ρ2 + 2(µ+ τ)ρ− 3(µ− τ)2), (3.6)

with the dimensionless variables

ρ = r/a, µ = ξ/a, τ = b/a. (3.7)
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It is assumed in (3.5) thatξ ≥ b, i.e.µ ≥ τ . The elementary formulae (3.5) and (3.6) will
play a central role in the sequel.

From (2.8), (3.1) and (3.2) it now follows

F
pc

(x) = F
pc

ws(x) + F̃ pc(x), (3.8)

where

F
pc

ws(x) = nha(x) − n2(ha ∗ h2a)(x)

= nη2ha(x) − nη1
16ρ

(3 − ρ)2(ρ2 + 6ρ− 3)
[
h3a(x) − ha(x)

]
,

(3.9)

F̃ pc(x) = n2

∫
ha(x− y)g̃(y) dy. (3.10)

This formula implies that
F̃ pc(x) = 0, if |x| ≤ a, (3.11)

sinceg̃(x) = 0 at |x| ≤ 2a, see (3.4)2.
To represent̃F pc(x) as a simple one-tuple integral, containing the functiong̃(x), write

down the latter as

g̃(y) =
∫ ∞

2a

g̃(A)
∂

∂A
hA(y) dA, (3.12)

which follows from (2.14). Then, in virtue of (3.5) (atτ = 1) and (3.4)2,

F̃ pc(x) =n2

∫ ∞

2

dµ g̃(µ)
∂

∂µ

(
ha ∗ hξ

)
(r)

=
3nη1
4ρ

∫ ρ+1

max{2,ρ−1}

[
1 − (µ− ρ)2

]
µν2(µ) dµ.

(3.13)

The obtained simple representation ofF pc(x) by means of the total correlation allows
one to interconnect the moments

θpc
k =

∫ ∞

0

ρk F
pc

(r) dρ, k = 0, 1, . . . , (3.14)

of F pc(r) on the semiaxis(0,∞) with the appropriate moments of the total correlation.
Indeed, due to (3.8) and (3.9),

θpc
k = θpc

k,ws + θ̃pc
k . (3.15)

The first term in (3.15) corresponds to the well-stirred distribution whenF
pc

(r) = F
pc

ws(x)
is given in (3.9); the appropriate integration is elementary. In turn,θ̃pc

m corresponds to
the deviatioñg(r) of the radial distribution function from the well-stirred statistics. Using
(3.13) and changing the order of integration give

θ̃pc
k =nη1

∫ ∞

2

Hpc
k (µ)µν2(µ)dµ,

Hpc
k (µ) =

3
4

∫ µ+1

µ−1

ρk−1
[
1 − (µ− ρ)2

]
dρ.

(3.16)
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The functionsHpc
k (µ) in (3.16) are polynomials whose explicit evaluation is straightfor-

ward. In particular,
Hpc

1 (µ) = 1, Hpc
2 (µ) = µ, etc. (3.17)

Hence, if

mk =
∫ ∞

2

ρkν2(ρ) dρ, k = 0, 1, . . . , (3.18)

are the moments on(2,∞) of the binary correlationν2(ρ) or, which is the same, of the
“correction" g̃(ρ) to the radial distribution function, then the formulae (3.16) and (3.17),
together with (3.9), imply

θpc
1 = nη1

(
5 − 19η1

10η1
+m1

)
, θpc

2 = nη1

(
1 − 8η1

3η1
+m2

)
, etc. (3.19)

4. THE “SURFACE-CENTER" CORRELATION

Inserting (3.3) into (2.18)1 gives

F
sc

(x) = F
sc

ws(x) + F̃ sc(x), (4.1)

where

F
sc

ws(x) = nδ(r − a) − n2 ∂

∂b

∫
hb(x− y)h2a(y) dy

∣∣∣∣
b = a

, (4.2)

F̃ sc(x) = n2 ∂

∂b

∫
hb(x − y)g̃(y) dy

∣∣∣∣
b = a

. (4.3)

Hence, the first term,F sc
ws(x), in (4.1) corresponds to the well-stirred distribution, while

the second one,̃F sc(x), is due to the deviation,̃g(x), of the radial distribution function
from the latter.

Combining (2.18)1 and (4.2), and using (4.3) (atξ = 2a) give eventually the “surface-
center" correlation (2.11) in the well-stirred case:

F
sc

ws(x) = nδ(|x| − a) − nS


0, if 0 ≤ ρ ≤ 1,

(ρ+ 1)(3 − ρ)
4ρ

, if 1 < ρ ≤ 3,

0, if ρ > 3.

(4.4)

To evaluate the deviatioñF sc(x) from (4.3), we shall use once again the representation
(3.12):

F̃ sc(x) = n2

∫ ∞

2a

dξ g̃(ξ)
{

∂2

∂b∂ξ

∫
hb(x − y)hξ(y) dy

}
b=a

. (4.5)

Applying (3.5) yields the needed formula

F̃ sc(x) =
nS

2ρ


0, if 0 ≤ ρ ≤ 1,∫ ρ+1

max{2,ρ−1}
µν2(µ) dµ, if ρ > 1.

(4.6)
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Similarly to Section 3, consider the evaluation of the moments ofF sc(x), i.e. the
quantities

θsck =
∫ ∞

0

ρk F
sc

(r)dρ, k = 0, 1, . . . (4.7)

Due to (4.1), again
θsck = θsck,ws + θ̃sck (4.8)

— the first term in (4.8) corresponds to the well-stirred distribution and its evaluation is
elementary; the second is due to the “deviation"g̃(r). To evaluate the latter, insert (4.6)
into (4.7) and change again the order of integration:

θ̃sck =nS

∫ ∞

2

Hsc
k (µ)g̃(µ)dµ,

Hsc
k (µ) =

1
2

∫ µ+1

µ−1

ρk−1 dρ =
(µ+ 1)k − (µ− 1)k

2k
.

(4.9)

HenceH sc
1 (µ) = 1,Hsc

2 (µ) = µ, etc. Together with (4.8), (4.4) and (4.9), this implies

θsc1 = nS

(
1 − 11η1/2

3η1
+m1

)
, θsc2 = nS

(
1 − 8η1

3η1
+m2

)
, etc. (4.10)

5. THE “SURFACE-PARTICLE" CORRELATION

First, let us evaluateF sp(0):

F sp(0) = 〈 |∇I1(0)| I1(0)〉 =
∂

∂b

∫ ∫
ha(y1)hb(y2) 〈ψ(y1)ψ(y2)〉 dy1dy2

∣∣∣∣
b = a

=
∂

∂b

∫
ha(y)hb(y) dy

∣∣∣∣
b = a

,

(5.1)

having used (2.2) and the fact thatg(y1 − y2) = 0, if |y1 − y2| ≤ 2a, due to the
nonoverlapping assumption. But

∂

∂b

∫
ha(y)hb(y) dy =

∂

∂b

{
4
3πa

3, if b > a,
4
3πb

3, if b < a,
(5.2)

which equals 0 ifb > a and4πb2, if b < a. Hence, a question appears, which of the two
values,0 or S = 4πa2n, should be attributed toF sp(0) when puttingb = a in (5.1) and
(5.2). The correct answer isone-half of these two values, i.e.

F sp(0) =
1
2
S. (5.3)
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This will be confirmed by the formal calculations below. Roughly speaking, 1/2 in (5.3)
means that the boundary∂K is “equally shared" between the constituents. We imagine, in
other words, that if a point lies in∂K, “half" of it belongs toK1 and the other “half" toK2.

To evaluateF
sp

(x), employ its definition from (2.18) and the formula (2.2):

F
sp

(x) =
∂

∂b

∫ ∫
ha(y1)hb(x−y2) 〈ψ′(y1)ψ′(y2)〉 dy1dy2

∣∣∣∣
b = a

= A1n+A2n
2, (5.4)

where

A1 =
∂

∂b

∫
ha(y)hb(x− y) dy

∣∣∣∣
b = a

, (5.5)

A2 =
∂

∂b

∫ ∫
ha(y1)hb(x− y2) ν2(y1 − y2) dy1dy2

∣∣∣∣
b = a

. (5.6)

The coefficientA1 can be immediately found differentiating (3.5) atξ = b and putting
b = a in the result:

∂

∂b
(ha ∗ hb)(r)

∣∣∣∣
b = a

= πa2

{ 2 − ρ, if 0 ≤ r ≤ 2a,

0, if r > 2a,
(5.7)

and hence

A1n =
1
2
S

{ 1 − ρ/2, if 0 ≤ r ≤ 2a,

0, if r > 2a.
(5.8)

The formula (5.8) means that

F sp(x) = F
sp

(x) =
1
2
S

(
1 − r

2a

)
h2a(x) + o(n),

which agrees with the result of Berryman [2], see also [14], found by means of different
arguments.

To evaluate the coefficientA2 from (5.6), we shall literally follow the reasoning of
[7]. Consider to this end the triple convolution(

ha ∗ ∂

∂b
hb ∗ hA

)
(r)

∣∣∣∣
b = a

=
((
ϕsp(t)h2a

) ∗ hA

)
(r), (5.9)

where, according to (5.7),

ϕsp(t) =
(
ha ∗ ∂

∂b
hb

)
(r)

∣∣∣∣
b = a

= πa2(2 − t), t = r/a. (5.10)

Similarly to [7], we treatϕsp(t) as pertaining to an inhomogeneous and radially-
symmetric ball whose density decreases along the radius according to (5.10). This inho-
mogeneous ball is then approximated, for a given division0 = ξ 0 < ξ1 < . . . ξN−1 <
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ξN = 2a of the interval(0, 2a), by a family of concentric spherical layersξ i < r < ξi+1,
each one homogeneous and of densityϕ sp(ξi). In the limit
ξi = ξi − ξi−1 → 0 one finds((

ϕsp(t)h2a

) ∗ hA

)
(r) =

∫ 2a

0

ϕsp(ξ/a)
∂

∂ξ

(
hξ ∗ hA

)
(r) dξ

= ϕsp(ξ/a)
(
hξ ∗ hA

)
(r)

∣∣∣ξ=2a

ξ=0
− 1
a

∫ 2a

0

(
hξ ∗ hA

)
(r)

∂

∂ξ
ϕsp(ξ/a) dξ

= πa2

∫ 2

0

(
hξ ∗ hA

)
(r) dµ = 4πa2VaUsp(ρ; τ),

(5.11)

sinceϕsp(2) = 0 andhξ ∗ hA

∣∣∣
ξ=0

= 0. In accordance with the notations (3.7),µ = ξ/a

andτ = A/a ≥ 2. The evaluation of the functionU sp(ρ; τ) is obvious, using (3.5) at
b = A in (5.11), and the final result reads

Usp(ρ; τ) =



U
(I)
sp (ρ; τ), if 0 ≤ ρ ≤ τ − 2,

U
(II)
sp (ρ; τ), if τ − 2 ≤ ρ ≤ τ ,

U
(III)
sp (ρ; τ), if τ ≤ ρ ≤ τ + 2 ,

0, if ρ > τ + 2,

(5.12)

where

U (I)
sp (ρ; τ) =

1
4

∫ 2

0

µ3dµ = 1,

U (II)
sp (ρ; τ) =

1
4

∫ τ−ρ

0

µ3 dµ+
1
4

∫ 2

τ−ρ

Ψ(ρ; τ, µ) dµ,

U (III)
sp (ρ; τ) =

1
4

∫ 2

ρ−τ

Ψ(ρ; τ, µ) dµ,

(5.13)

with Ψ(ρ; τ, µ) defined in (3.6). The integrals in (5.13) can be analytically evaluated, but
the only formulae that will be important for the sequel are(

ha ∗ ∂

∂b
hb ∗ h2a

)
(r)

∣∣∣∣
b = a

= 4πa2VaUsp(ρ; 2),

Usp(ρ; 2) =


1 − 1

4
ρ2 +

5
160

ρ3 +
1

160
ρ4, if 0 ≤ ρ ≤ 2,

(4 − ρ)3(ρ2 + 7ρ− 4)
160ρ

, if 2 < ρ < 4,

0, if ρ ≥ 4.

(5.14)
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Also, it turns out that

∂

∂τ
Usp(ρ; τ) =

τ

ρ
Gsp(ρ− τ),

Gsp(t) =


f sp(t), if −2 ≤ t ≤ 0,

f sp(−t), if 0 ≤ t ≤ 2,

0, if |t| ≥ 2,

f sp(t) =
1
8
(2 + t)2 (1 − t).

(5.15)

As a first application of the foregoing formulae, consider the well-stirred approxima-
tion, see (3.2). The coefficientA2 from (5.6) then becomes

A2n
2 = −n2

(
ha ∗ ∂

∂b
hb ∗ h2a

)
(r)

∣∣∣∣
b = a

and application of (5.4), (5.8) and (5.14) gives eventually

F sp
ws(r) = η1S + F

sp

ws(r),

F
sp

ws(r) =S



1
2
− ρ

4
− η1

[
1 − 1

4
ρ2 +

5
160

ρ3 +
1

160
ρ4

]
, if 0 ≤ ρ ≤ 2,

(4 − ρ)3(4 − 7ρ− ρ2)
160ρ

η1, if 2 < ρ < 4,

0, if ρ ≥ 4.

(5.16)

In the general case the radial correlation functiong(r) is decomposed again as the
sum (3.1), so that

F sp(r) = F sp
ws(r) + F̃ sp(r), (5.17)

with the well-stirred contribution, given in (5.16), and

F̃ sp(r) = n2 ∂

∂b

∫ ∫
ha(y1)hb(x− y2) g̃(y1 − y2) dy1dy2

∣∣∣∣
b = a

. (5.18)

The evaluation of this integral follows the reasoning of Section 3. Namely, inserting (3.12)
in the right-hand side of (5.18) yields

F̃ sp(r) =n2

∫ ∞

2a

g̃(A)
∂

∂A

(
ha ∗ ∂hb

∂b
∗ hA

)
(r) dA

∣∣∣∣
b = a

=4πa2n2Va

∫ ∞

2

g̃(τ)
∂

∂τ
Usp(ρ; τ) dτ

=
η1S

ρ

∫ ρ+2

max{ρ−2,2}
Gsp(ρ− τ) τν2(τ) dτ,

(5.19)

162



as it follows from (2.16) and (5.15).
The formulae (5.16), (5.17), (5.15) and (5.19) provide the needed representation of the

“surface-particle" correlationF sp(r) for an arbitrary dispersion of nonoverlappingspheres.
They imply, in particular, that indeedF sp(0) = S/2, as it was argued in the beginning of
this Section, see (5.3). The correction to the total correlation function,g̃(r) = ν 2(r), see
(3.4), for the set of sphere centers features in the expression forF sp(r) through a simple
one-tuple integral in (5.19). It is noted that the obtained formula forF sp(r) is fully similar
to that of Markov and Willis [7], for the “particle-particle" correlationF pp(r) defined in
(2.6). (In the latter case, let us recall, the counterpart of the functionf sp(t) from (5.15) is
f(t) = fpp(t) = (2 + t)3(4 − 6t+ t2), see [7, eq. (33b)].)

Similarly to the previous Sections, the formula (5.19) allows us to evaluate the mo-
ments ofF

sp
(x) on the semiaxis(0,∞) to be

θspk =
∫ ∞

0

ρk F
sp

(ρ)dρ = θspk,ws + θ̃spk , (5.20)

k = 0, 1, . . . The well-stirred contributionθsp
k,ws can be found by means of an elementary

integration, using (5.16). For the “corrections"θ sp
k we have

θ̃spk = η1S

∫ ∞

2

Hsp
k (µ)µν2(µ)dµ,

Hsp
k (µ) =

∫ µ

µ−2

ρk−1f sp(ρ− µ) dρ+
∫ µ−2

µ

ρk−1f sp(µ− ρ) dρ,

(5.21)

as it follows from (5.19) and (5.20). Recalling the form off sp(t) from (5.15), one easily
finds, in particular,H sp

1 (µ) = 1,Hsp
2 (µ) = µ, etc., and hence, using (5.16),

θsp1 = Sη1

(
5 − 26η1

15η1
+m1

)
, θsp2 = Sη1

(
1 − 8η1

3η1
+m2

)
, etc., (5.22)

wheremk are the moments (3.18).

6. THE “SURFACE-SURFACE" CORRELATION

Due to (2.17), (2.15) and (2.2), we have in this case

F
ss

(x) =
∂2

∂b∂c

∫ ∫
hb(y1)hc(x− y2) 〈ψ′(y1)ψ′(y2)〉 dy1dy2

∣∣∣∣
b,c = a

= B1n+B2n
2,

(6.1)
where

B1 =
∂2

∂b∂c

∫
hb(y)hc(x− y) dy

∣∣∣∣
b,c = a

, (6.2)

B2 =
∂2

∂b∂c

∫ ∫
hb(y1)hc(x− y2) ν2(y1 − y2) dy1dy2

∣∣∣∣
b,c = a

. (6.3)

163



The coefficientB1 can be immediately found, evaluating the second mixed derivative
∂2/∂µ∂τ of the functionΨ, see (3.5), and puttingµ = τ = 1 in the result:

B1 =
2πa
ρ

{ 1, if ρ ≤ 2,

0, if ρ > 2,
(6.4)

which means that in the dilute case

F ss(x) = F
ss

(x) =
S

2r
h2a(x) + o(n).

The latter agrees with the result of Berryman [2], see also [14], found by means of different
arguments.

To calculateB2, consider again the appropriate triple convolution, similar to (5.9):( ∂

∂b
hb ∗ ∂

∂c
hc ∗ hA

)
(r)

∣∣∣∣
b,c = a

=
((
ϕss(ξ/a)h2a

) ∗ hA

)
(r)

=ϕss(ξ/a)
(
hξ ∗ hA

)
(r)

∣∣∣∣ξ=2a

ξ=0

−
∫ 2

0

(
hξ ∗ hA

)
(r)

d
dµ
ϕss(µ) dµ

= πa
(
h2a ∗ hA

)
(r) + 4πaVaUss(ρ; τ),

(6.5)

having used that

ϕss(t) =
(
∂

∂b
hb ∗ ∂

∂c
hc

)
(r)

∣∣∣∣
b,c = a

=
2πa
t
h2a(t),

t = r/a, see (6.2) and (6.4). The functionU ss(ρ; τ) in (6.5) has the same form as that of
its “surface-particle" counterpartUsp(ρ; τ) in (5.12), with the functions

U (I)
ss (ρ; τ) =

1
2

∫ 2

0

µdµ = 1,

U (II)
ss (ρ; τ) =

1
2

∫ τ−ρ

0

µdµ+
1
2

∫ 2

τ−ρ

1
µ2

Ψ(ρ; τ, µ) dµ,

U (III)
ss (ρ; τ) =

1
2

∫ 2

ρ−τ

1
µ2

Ψ(ρ; τ, µ) dµ,

(6.6)

whereΨ(ρ; τ, µ) is defined in (3.6). The integrals in (6.6) can be analytically evaluated,
similarly to those in (5.13), but again the only formulae important for the sequel are, first,(

∂

∂b
hb ∗ ∂

∂c
hc ∗ h2a

)
(r)

∣∣∣∣
b,c = a

= πa
(
h2a ∗ h2a

)
(r) + 4πaVaUss(ρ; 2),

Uss(ρ; 2) =


1 − 1

8
ρ2 − 1

64
ρ3, if 0 ≤ ρ ≤ 2,

(4 − ρ)3(ρ+ 4)
64ρ

, if 2 < ρ < 4,

0, if ρ ≥ 4.

(6.7)
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Second, it turns out that

∂

∂τ
Uss(ρ; τ) =

3τ
16ρ

Gss
0 (ρ− τ),

Gss
0 (t) =


f ss
0 (t), if −2 ≤ t ≤ 0,

f ss
0 (−t), if 0 ≤ t ≤ 2,

0, if |t| ≥ 2,

f ss
0 (t) = (2 + t)2.

(6.8)

In the well-stirred case, as it follows from (3.5), (6.1), (6.3), (6.4) and (6.7),

F
ss

ws(x) =
S2

12η1

{
2
ρ
h2a(x) − η1

[
1
16

(ρ− 4)2(ρ+ 8)h4a(x) + 4Uss(ρ; 2)
]}

. (6.9)

In the general caseg(r) is once again decomposed into the form (3.1), so that

F
ss

(r) = F
ss

ws(r) + F̃ ss(r), (6.10)

with the well-stirred part,F
ss

ws(r), given in (6.7), and

F̃ ss(r) =n2

∫ ∞

2a

g̃(A)
∂

∂A

(
∂hb

∂b
∗ ∂hc

∂c
∗ hA

)
(r) dA

∣∣∣∣
b,c = a

=
∫ ∞

2

g̃(τ)
∂

∂τ

{
πa(h2a ∗ hA)(r) + 4πaVaUss(ρ; τ) dτ

}
=

1
16ρ

S2

∫ ρ+2

max{ρ−2,2}

[
4 − (ρ− τ)2 +Gss

0 (ρ− τ)
]
τ g̃(τ) dτ,

(6.11)

as it follows from (2.16), (3.5), (3.6) and (6.8),τ = A/a. Taking into account (6.8), we
can recast (6.11) into the following final form:

F̃ ss(r) =
S2

ρ

∫ ρ+2

max{ρ−2,2}
Gss(ρ− τ) τν2(τ) dτ, (6.12)

where the functionGss has the same form asGss
0 in (6.8), but with the functionf ss

0 (t)
replaced by

f ss(t) =
1
4
(2 + t). (6.13)

For the moments ofF
sp

(x) on the semiaxis(0,∞) we have, similarly to the previous
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sections,

θssk =
∫ ∞

0

ρk F
ss

(r)dρ = θssk,ws + θ̃ssk , k = 0, 1, . . . ,

θ̃ssk =S2

∫ ∞

2

Hss
k (µ)µg̃(µ)dµ,

Hss
k (µ) =

1
4

{∫ µ

µ−2

ρk−1(2 + ρ− µ) dρ+
∫ µ−2

µ

ρk−1(2 + µ− ρ) dρ
}
,

Hsp
1 (µ) = 1, Hsp

2 (µ) = µ, etc.

(6.14)

The well-stirred contribution,θss
k,ws, can be elementary found by means of (6.9). In

particular,

θss1 = S2

(
1 − 5η1

3η1
+m1

)
, θss2 = S2

(
1 − 8η1

3η1
+m2

)
, (6.15)

wheremk are the moments (3.18).
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7. DIRECT EVALUATION OF THE FIRST TWO MOMENTS OF THE
CORRELATION FUNCTIONS

In the application to be dealt with below (Section 8), the first moments likeθ pp
1 ,

θps
1 , etc., will be of central importance. They were evaluated in the preceding sections

as consequences of the appropriate integral representations of the two-point correlations
through the radial distribution functions. There exists, however, a simpler and more direct
method, based on the interconnections (2.9) and (2.18). The method works equally well in
the 2-D case, when the derivation of the counterparts of the above integral representations
for the two-point correlations should be considerably more complicated. (The reason is
that the common surface of two circles in the plane is not already a rational function of
the distance between the circle’s centers and their radii, in contrast with the 3-D simple
function (3.6) that gives the common volume of two balls.)

Integrate (2.9)2 over the wholeR3 and introduce (3.1) in the result:∫
F

pc
(x) dx = 4πa3θpc

2 = nVa + n2Va(−V2a + 4πa3m2),

having used the definition ofm2, see (3.18). SinceV2a = 8Va andnVa = η1, the already
known formula forθpc

2 immediately follows, cf. (3.19).
Integrate next (2.9)3 overR3:∫

F
pp

(x) dx = Va

∫
F

pc
(x) dx, i.e. θpp

2 = Vaθ
pc
2 ,

or

θpp
2 = η2

1

(
1 − 8η1

3η1
+m2

)
(7.1)

— a formula derived in [7] by means of the appropriate integral representation ofF pp(x)
through the radial distribution function.

The reasoning is fully similar in 2-D; only the volumeVa = 4
3πa

3 is replaced by the
surfaceSa = πa2, η1 = nSa andS2a = 4Sa, which yields∫

F
pc

(x) dx = 2πa2

∫
ρF

pc
(x) dρ = 2πa2θpc

1 , θpp
1 = Saθ

pc
1 ,

θpc
1 = n

(
1 − 4η1

2
+ η1m1

)
, θpp

1 = η2
1

(
1 − 4η1

2η1
+m1

)
in 2-D.

(7.2)

Note that the correlation functionF pp(x) should be positive definite for any realistic
random constitution, see, e.g. [17]. This implies, in particular, that in the 3-D caseθ pp

2 > 0,
becauseθpp

2 is proportional to the value of the Fourier transform ofF pp(x) at the origin;
similarly, θpp

1 > 0 in 2-D. From (7.1) and (7.2) it follows then that the well-stirred
approximation (3.2) (for whichm1 = m2 = 0) is admissible only ifη1 < 1/8 in 3-D and
η1 < 1/4 in 2-D (more generally, ifη1 < 1/2d in a d-dimensional space). Both these
critical 3-D and 2-D values have been conjectured by Willis [19] who noticed that the
quasi-crystalline approximation in the wave propagation problem in random dispersions
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fails if η1 is bigger. A rigorous justification of this conjecture in 3-D was proposed, e.g., in
[5] and [7].

For the interfacial correlation, the formulae (2.18) are to be employed in a similar
manner. Namely, integrating (2.18)1 overR3, together with (3.1), gives

4πa3θsc2 =n
∂

∂b

(
4
3πb

3
) ∣∣∣∣

b = a

+n2

∫
∂

∂b

(
4
3πb

3
) ∣∣∣∣

b = a

ν2(y) dy

= 4πa2n+ 4πa2n2(−8Va + 4πa3m2),

(7.3)

and it remains to notice thatn/a = nS/(3η1) in order to reproduce the formula forθ sc
2 , cf.

(4.10).
Integrate next (2.18)2 overR3:∫

F
sp

(x) dx = Va

∫
F

sc
(x) dx, i.e. θsp2 = Vaθ

sc
2 , (7.4)

cf. (5.22). Finally, from (2.18)2 it follows∫
F

ss
(x) dx = 4πa2

∫
F

sc
(x) dx, i.e. θss2 =

S

n
θsc2 =

S

η1
θsp2 ,

cf. (7.4) and (6.15).
The 2-D counterparts of the above moments are immediately derived. The counterpart

of (7.3) now reads

2πa2θsc1 =n
∂

∂b

(
πb2

) ∣∣∣∣
b = a

+n2

∫
∂

∂b

(
πb2

) ∣∣∣∣
b = a

ν2(y) dy

= 2πan+ 2πan2(−4Sa + 2πa2m1),

so that

θsc1 = nL

(
1 − 4η1

2η1
+m1

)
in 2-D, (7.5)

whereL = 2πan is the “specific length" — the 2-D counterpart of the specific surface
S = 4πa2n in the dispersion; we have also noted that1/a = L/(2η1) in this case. In turn,

θsp1 = Saθ
sc
1 = Lη1

(
1 − 4η1

2η1
+m1

)
, θss1 =

L

n
θsc1 = L2

(
1 − 4η1

2η1
+m1

)
in 2-D.

(7.6)
To find in 3-D the momentsθpc

1 , θpp
1 , etc., multiply first the formula (2.9)2 byG(x) =

1/(4π|x|) and integrate the result overR
3:

a2θpc
1 =

∫
G(x)F

pc
(x) dx = n

∫
G(x)ha(x) dx + n2

∫
ϕa(y)ν2(y) dy

= n
a2

2
− n2

∫
ϕa(y)h2a(y) dy + n2

∫
|y|≥2a

ϕa(y)ν2(y) dy,
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where

ϕa(x) = (G ∗ ha)(x) =

{
(3a2 − r2)/6, if r < a,

a3/(3r), if r ≥ a,
(7.7)

is the well-known harmonic potential of a sphere of radiusa. Elementary integration, using
(7.7), reproduces the formula forθpc

1 , cf. (3.19).
In turn, multiply (2.18)3 byG(x) and integrate overR3:

a2θpp
1 =

∫
G(x)F

pp
(x) dx =

∫
ϕa(y)F

pc
(y) dy. (7.8)

But, as it follows from (7.7),

ϕa(x) = VaG(x) +
[
1
6
(3a2 − r2) − Va

4πr

]
ha(x), (7.9)

which is introduced into (7.8):

a2θpp
1 = a2Vaθ

pc
1 +

∫ [
1
6
(3a2 − r2) − Va

4πr

]
ha(x) dx.

It remains to notice thatF
pc

(x) = nη2 if |x| ≤ a, as it follows from (3.8), (3.9) and (3.11),
so that the integral in the last formula equals−a2η1/10 and therefore

θpp
1 = Vaθ

pc
1 − η1

10
= η2

1

(
2 − 9η1

5η1
+m1

)
(7.10)

— a result, also derived in [7] by means of the appropriate integral representation of
F pp(x).

For the interfacial correlation we have, first of all,

a2θsc1 =
∫
G(x)F

sc
(x) dx

=n

∫
G(x)

∂

∂b
hb(x)

∣∣∣∣
b = a

dx+ n2

∫
∂

∂b
ϕb(y)

∣∣∣∣
b = a

ν2(y) dy,

(7.11)

see (2.18)1. Using (7.7) and (3.1) reproduces the formula (4.10) forθ sc
1 after simple

integration. In turn, from (2.18)2 it follows

a2θsp1 =
∫
G(x)F

sp
(x) dx =

∫
ϕ(y)F

sc
(y) dy.

Inserting here (7.9) elementary yields the already known formula forθ sp
1 , cf. (5.22).

Finally, from (2.18)3 one has

a2θss1 =
∫
G(x)F

ss
(x) dx =

∫
∂

∂b
ϕb(y)

∣∣∣∣
b = a

F
sc

(y) dy

=4πa2

∫
G(x)F

sc
(x) dx +

∫
a

(
1 − a

r

)
F

sc
(x)ha(x) dx,
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having used that

∂ϕb(x)
∂b

∣∣∣∣
b = a

= 4πa2G(x) + a
(
1 − a

r

)
ha(x), (7.12)

which follows from (7.9). ButF
sc

(x) = nδ(r − a) − nS, as it is seen from (4.1), (4.2)
and (4.6), and the known formula (6.15) forθ ss

1 shows up once again.

8. THE DOI-TALBOT-WILLIS BOUND

As a first and simplest application of the integral representations of the various kinds
of two-point correlations, derived in Sections 2 to 6, consider a dispersion of ideal and
nonoverlapping spherical sinks (the phase ‘1’), immersed into an unbounded matrix. The
governing equations of this well-known problem read

∆c(x) +K = 0, x ∈ K2, c(x)
∣∣∣

∂K2

= 0. (8.1)

This equation describes the steady-state behaviour of a species (defects), generated
at the rateK within the matrix phase ‘2’, occupying the regionK 2, and absorbed by the
sinks (the “trapping" phase ‘2’) in the regionK1 = R

3\K2. Then the creation of defects is
exactly compensated by their removal from the sinks, so that in the steady-state limit under
study

k∗2 〈c(x)〉 = K(1 − η1). (8.2)

The rate constantk∗2 is just the effective absorption coefficient (the sink strength) of the
medium. Its evaluation and bounding for special kinds of random constitution and, above
all, for random dispersion of spheres, have been the subject of numerous works, starting
with classical studies of Smoluchowski (1916), see, e.g. [4, 3, 12, 9, 16]et al. (Note that
we have added the factor1− η1 in (8.2), due to the fact that in the case under study, defects
are createdonly within the phase ‘2’ (the sink-free region), see Richards and Torquato [8]
for a discussion.)

We shall confine the analysis to variational bounding of the sink strengthk ∗2, taking
into account the foregoing two-point statistical characteristics. Recall to this end the
variational principle of Rubinstein and Torquato [9].

LetA be the class of smooth and statistically homogeneous trial fields such that

A =
{
u(x)

∣∣ ∆u(x) +K = 0, x ∈ K2

}
. (8.3)

Then

k∗2 ≥ K2(1 − η1)
〈I2(x)|∇u(x)|2〉 . (8.4)

The equality sign in (8.4) is achieved ifu(x) = c(x) is the actual field that solves the
problem (8.1).
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Since
〈
I2(x)|∇u(x)|2〉 ≤ 〈|∇u(x)|2〉, another bound immediately follows from

(8.4), namely,

k∗2 ≥ K2(1 − η1)
〈|∇u(x)|2〉 , (8.5)

see [9]. Though weaker than (8.4), the evaluation of the bound (8.5) is simpler, be-
cause it obviously employs smaller amount of statistical information about the medium’s
constitution.

Following Doi [3] and Rubinstein and Torquato [9], consider the trial fields

u(x) = K

∫
G(x− y)

[
I2(y) − ξ|∇I1(y)|

]
dy, (8.6)

whereG(x) = 1/(4π|x|). Since∆G0(x) + δ(x) = 0, it is easily seen that∆u(x) = K if
x ∈ K2, and therefore the fieldsu(x) in (8.6) are admissible. The constantξ is uniquely
defined from the condition that the integrand in (8.6) should possess zero mean value:

〈I2(y)〉 − ξ 〈|∇I2(y)〉 = η2 − ξS = 0, i.e. ξ = ξ0 = η2/S. (8.7)

For this choice ofξ, the trial field (8.6) becomes

u(x) = −K
∫
G(x− y)

[
I ′1(y) + ξ0

(|∇I1(y)| − S)
)
dy,

and hence 〈|∇u(x)|2〉 = K2
(
θpp
1 + 2ξ0θ

sp
1 + ξ20θ

ss
1

)
,

after an obvious integration by parts. Using (8.7), (8.5) and the formulae for the appropriate
moments (7.10), (5.22) and (6.15) leads eventually to the bound

k∗2a2 ≥ 3η1(1 − η1)
1 − 5η1 − η2

1/5 + 3η1m1
, (8.8)

which coincides with the bound derived by Talbot and Willis [12] by means of an ingenious
variational procedure of Hashin-Shtrikman’s type, see [6] for more details and discussion.
The fact that the original Doi’s result, for a dispersion of nonoverlapping spheres, can
be recast in the elegant Talbot and Willis’ form (8.8) was noticed by Talbot (unpublished
manuscript) and, independently, by Beasley and Torquato [1], who apparently were not
aware of the paper [12]. Due to all these reasons it seems proper to call (8.8) Doi-Talbot-
Willis bound. Another variational procedure that leads to (8.8) has been recently proposed
by the author [6].

9. CONCLUDING REMARKS

In the present paper we have represented all two-point correlation functions (2.9) and
(2.18) for a random dispersion of nonoverlappingspheres, as single integrals containing the
binary correlation functionν2(r) for the random set of sphere’s centers. The reasoning of
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the recent paper [7], where only the “particle-particle" correlation has been treated in detail,
has served as a basis of the analysis. The representations for all two-point correlations have
one and the same structure, which can be summarized in the following formulae:

F cor(ρ) =F cor
∞ + F

cor
(ρ), lim

ρ→∞F
cor

(ρ) = 0,

F cor(ρ) =F cor
ws + F̃ cor(ρ),

F̃ cor(ρ) =F cor
∞

∫ ρ+β

max{ρ−β,2}
Gcor(ρ− τ) τν2(τ) dτ,

(9.1)

where

Gcor(t) =


f cor(t), if −β ≤ t ≤ 0,

f cor(−t), if 0 ≤ t ≤ β,

0, if |t| ≥ β.

(9.2)

In (9.1) and (9.2), F cor
∞ is the long-range value of the appropriate correlation,

F
cor

(ρ) — its part that decays at infinity;F cor
ws is the contribution to the latter, generated

by the well-stirred part (3.2) of the radial distribution functiong(r) for the set of sphere’s
centers, and̃F cor(ρ) is due to the “deviation"̃g(r) of g(r) from the well-stirred one, cf.
(3.1) (recall that̃g(r) = ν2(r) if r ≥ 2a, see (3.4)). The parameterβ takes the values 1 or
2, depending on the kind of correlation under study. We note also that

Gcor(t) = f cor(t), if |t| ≤ β,

providedf cor(t) is even, which is the case with “particle-center" and “surface-center"
correlations (for whichβ = 1), see (3.13) and (4.6).

For the sake of completeness, the functionf cor(t) for the “particle-particle" correlation
F

pp
(x) is also given, see [7]. In this case, the well-stirred contribution reads

F
pp

ws(r) =



1 − 3ρ
4(1 − η1)

+
(1 + 3η1)ρ3

16(1 − η1)
− 9η1ρ4

160(1 − η1)

+
η1ρ

6

2240(1− η1)
, if 0 ≤ ρ ≤ 2,

η1
1 − η1

(ρ− 4)4 (36 − 34 ρ− 16 ρ2 − ρ3)
2240ρ

, if 2 ≤ ρ ≤ 4,

0, if ρ ≥ 4,

(9.3)

see once again [7] for details and references.
Another set of useful formulae, derived in the paper, concerns the moments

θcork =
∫ ∞

0

ρk F
cor

(ρ) dρ, k = 1, 2, . . . , (9.4)

of the two-point correlations (2.9) and (2.18). For an arbitraryk, they can be evaluated by
means of the representations (9.1), summarized in Table 1, and thus interconnected to the
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TABLE 1. Notations, parameters and functions in the integral representations (9.1)

of the various two-point correlations

Correlation Notation F cor
∞ F

cor

ws (r) f cor(t) β

center-center F cc n2 nδ(x) − n2h2a(x) − −

particle-center F pc nη1 Eq. (3.9)
3
4
(1 − t2) 1

surface-center F sc nS Eq. (4.4)
1
2

1

particle-particle F pp η2
1 Eq. (9.3)

3
160

(2 + t)3(4 − 6t+ t2) 2

surface-particle F sp η1S Eq. (5.16)
1
8
(2 + t)2 (1 − t) 2

surface-surface F ss S2 Eq. (6.9)
1
4
(2 + t) 2

appropriate moments (3.18) of the binary correlation. In the casesk = 1 andk = 2, which
seem to be most interesting for applications, evaluation of (9.4) does not need however the
aforementioned representations, but can be done directly, using, as a matter of fact, just
their definitions. This was illustrated in Section 7. The results, concerningθ cor

2 (in 3-D)
andθcor

1 (in 2-D), can be concisely summarized in the simple formulae

θcor2 =F cor
∞

(
1 − 8η1

3η1
+m2

)
in 3-D,

θcor1 =F cor
∞

(
1 − 4η1

2η1
+m1

)
in 2-D,

(9.5)

whereF cor
∞ are the long-range values of the appropriate correlation, see Table 1 and Eqs.

(7.1), (7.2), (3.19), (4.10), (6.15), (7.5) and (7.6).
In 3-D the momentsθcor

1 have a form, similar to (9.5):

θcor1 = F cor
∞ (T cor

1 (η1) +m1) , (9.6)

but now the functionsT cor
1 (η1) are specific for different correlations. They are listed in

Table 2, in which the foregoing formulae (3.19), (4.10), (6.15) and (7.10) are simply put
together.

TABLE 2. The functionsT cor
1 (η1) in Eq. (9.6) for the various two-point correlations
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Correlation Fpc F sc F pp F sp F ss

T cor
1 (η1)

5 − 19η1

10η1

1 − 11η1/2

3η1

2 − 9η1

5η1

5 − 26η1

15η1

1 − 5η1

3η1
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