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Random dispersions of spheres are useful and appropriate models for a wide
class of particulate random materials. They can be described in two equivalent
and alternative ways—either by the multipoint moments of the characteristic
function of the region, occupied by the spheres, or by the probability densities of
the spheres’ centers. On the “two-point” level, a simple and convenient integral
formula is derived which interconnects the radial distribution function of the
spheres with the two-point correlation of the said characteristic function. As
one of the possible applications of the formula, the behaviour of the correlation
function near the origin is studied in more detail and related to the behaviour of
the radial distribution function at the “touching” separation of the spheres.

1. Introduction
The heterogeneous internal structure of almost all natural and man-made
materials requires that any adequate theory concerning their macroscopic
behaviour should start with modeling them as random media. This means,
let us recall very briefly,1,2 that we should possess from the very beginning a
number of macroscopically identical samples, labeled by a certain ω, chosen
from a suitable sample space Ω. The sampling procedure depends on the
specific problem and, as a rule, is not of direct concern to us, and neither is
the measure on Ω, with respect to which ensemble averaging is defined in a
standard way. A random medium can then be characterized by means of the
probability distributions of its relevant physical properties, see, e.g,. Refs. 3
and 4.

Among random media, perhaps most important are the two-phase (or
binary) ones, an example of which are the porous bodies. Each realization
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360 Two-point Correlation for Random Dispersions

ω ∈ Ω, assumed to occupy the entire space R
3, can be divided in this case

into two nonintersecting parts, K1 and K2, containing the constituent ‘1’
and ‘2’, respectively. From a practical point of view, instead of dealing with
probability distributions, it is more convenient to introduce, say, the random
field

I1(x) =
{

1, if x ∈ K1,
0, otherwise,

(1)

i.e., the characteristic function of the region occupied by the phase ‘1’. The
statistical properties of the medium follow from the set of multipoint prob-
abilities, or moments of I1 (see, for instance, Refs. 1 to 4)

η1 = 〈I1(0)〉,

ηp(y1, y2, . . . , yp−1) = 〈I1(0)I1(y1)I1(y2) . . . I1(yp−1)〉, p = 2, 3, . . . , (2)

where each yk ∈ R
3; η1 is the volume fraction of the phase ‘1’. The angled

brackets signify ensemble averaging. Such multipoint probabilities are sym-
metric in their arguments. One point could be taken at the origin, because of
the statistical uniformity, assumed hereafter. The interpretation of the mo-
ments (2) is obvious—they give the probability for p points 0, y1, . . . , yp−1,
thrown at random, to be found in the phase ‘1’. This interpretation provides
a Buffon needle game to find experimentally the lower-order moments η2 and
η3 for real two-phase media.5

Among the multipoint moments (2), the two-point moment 〈I1(0)I1(x)〉
shows up most often in various applications of random media. We shall
only mention here flow through porous materials or diffusion-controlled re-
actions, where this moment plays a key role in evaluating or bounding the
needed macroscopic quantities, see, e.g., Refs. 6, 7 and 8. Usually, instead of
〈I1(0)I1(x)〉 the so-called two-point correlation function, γ2(x), is introduced

γ2(x) =
〈I ′1(0)I ′1(x)〉
〈I ′21 (0)〉 , 〈I ′21 (0)〉 = η1(1 − η1), (3)

where I ′1(x) = I1(x)−η1 is the fluctuating part of the random field I1(x). Ob-
viously, γ2(0) = 1; if there is no long-range order in the dispersion, γ2(x) → 0
as |x| → ∞. It is noted that

〈I1(0)I1(x)〉 = η1Pr (x | 0), Pr (x | 0) = (1 − η1)γ2(x) + η1, (4)

with Pr (x | 0) standing for the conditional probability that x lies in the
phase ‘1’, provided the origin also lies in the same phase.

In turn, two-phase media of practical interest are often particulate, in the
sense that one of the constituents, labeled ‘2’ hereafter, is connected, playing
the role of a matrix, within which well distinguishable inclusions of the other
phase, labeled ‘1’, are distributed at random. In many important cases it
suffices to imagine the inclusions spherical and hence to model the material
as a dispersion of nonoverlapping and identical spheres. Classical examples of
media of this kind are supplied by the liquid-state theory, fluid suspensions of
rigid particles, or solids reinforced or weakened by spherical inhomogeneities
(pores, in particular). Due to the specific “point-wise” structure of such
dispersions, they can alternatively be described statistically by means of
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the multipoint probability densities fp(y1, . . . , yp) that give the probability
dP = fp(y1, . . . , yp) dV1 . . . dVp to find a sphere center in the vicinities dV1,
. . . , dVp of the points y1, . . . , yp respectively. Note that f1 = n, where n is
the number density of the spheres and η1 = nVa, Va = 4

3πa3. Most often the
two-point density f2(x) = f2(0, x) is used and is traditionally expressed as

f2(x) = n2g(x). (5)

The function g(x) in Eq. (5) is the well-known radial distribution function,
whose theoretical and experimental investigation in liquid state theory has
been a subject of many works, see, e.g., the book of Balescu.9

Hence, random dispersions of spheres can be described in two alternative
and equivalent ways: either by means of the multipoint moments (2) or by
the set of probability density functions fp. In various applications it is
necessary that these two kinds of descriptions be interconnected as simply
as possible. Such is the case, for example, when the two- and three-point
functions f2 and f3 are assumed known, and integrals involving the two- and
three-point moments η2 and η2 should be evaluated in bounds on the effective
properties of dispersions.10 Similarly, in diffusion-controlled reaction models,
one needs integrals involving the two-point moment η2 for a known radial
distribution function.11 Here we shall discuss this interconnection for the
simplest “two-point” level, and will finally propose (Section 5) an elementary
formula that expresses γ2(x) as a simple one-tuple integral containing the
radial distribution function. But first a general and well-known formula of
this kind should be recalled (Section 2). In Section 3 the triple convolution
ha∗ha∗hA of characteristic functions of spheres is found by means elementary
geometrical reasoning. This allows explicit development of the correlation
function γ2(r) for the simplest “well-stirred” sphere distribution. For general
sphere statistics, the formula for γ2(r) splits into two parts: an explicit
algebraic expression which applies for the “well-stirred” approximation, and
a “correction” in the form of an integral, for an arbitrary radial distribution
function. In the final Section 6, as an application of the obtained formula,
the behaviour of the correlation function near the origin is studied in detail
and interconnected with the behaviour of the radial distribution function
at the “touching” separation of the spheres. In this way results of Kirste
and Porod12 and Frisch and Stillinger13 are generalized. Other possible
applications are briefly mentioned in the concluding Section.

2. The Basic Formula

It is clear that the “two-point” information incorporated in the function g(x)
must suffice for the evaluation of the two-point correlation function γ2(x). A
formula of this kind can be immediately derived in a formal and straightfor-
ward way, if one introduces after Stratonovich14 the so-called random density
field for the dispersion

ψ(x) =
∑
α

δ(x − xα),

where the random points {xα} are the centers of the spheres, and δ(x) is the
Dirac delta function. Recall that

〈ψ(y)〉 = n,
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〈ψ(y1)ψ(y2)〉 = nδ(y1 − y2) + n2g(y1 − y2), (6)

etc., see Ref. 14. In turn, the random field I1(x), see Eq. (1), has a simple
integral representation by means of the field ψ(x), namely,

I1(x) =
∫

ha(x − y)ψ(y) dy, I ′1(x) =
∫

ha(x − y)ψ′(y) dy, (7)

where ψ′(y) = ψ(y) − n is the fluctuating part of the field ψ(y) and ha(y)
is the characteristic function of a single sphere of radius a, located at the
origin.

The correlation function, due to Eqs. (3) to (7), is

γ2(x) =
1

η1(1 − η1)

∫ ∫
ha(x − z1)ha(z2)〈ψ′(z1)ψ′(z2)〉 dz1 dz2

=
1

η1(1 − η1)

{
n

∫
ha(x−y)ha(y) dy+n2

∫ ∫
ha(x−z1)ha(z2)ν2(z1−z2) dz1dz2

}
,

(8)
since 〈I ′21 (0)〉 = η1(1 − η2) for the dispersion under study; in Eq. (8)

ν2(y) = g(y) − 1. (9)

In the liquid state theory ν2 is the so-called binary correlation function, see,
e.g., Ref. 9, ch. 7.1.

Note that the formula (8) is well-known in the literature, in this or in
equivalent forms. We have supplied here the above derivation in order to
underline the usefulness of Stratonovich14 formalism in the theory of ran-
dom particulate media. (For further applications and development of this
formalism for random solids, see, e.g., Ref. 15.)

Due to the importance and the key role played by the formula (8) in
the theory of random dispersions, it is worth mentioning that it also can be
derived by means of very simple and instructive arguments, without invoking
the random density function and the related formalism of Stratonovich, see,
e.g., Ref. 16, in which not only the two-point, but the multipoint correlations
are discussed for both cases of overlapping and nonoverlapping dispersions
of spheres.

Indeed, consider two points y1, y2 thrown at random in the dispersion.
The average quantity 〈I1(y1)I1(y2)〉, we are interested in, represents just
the probability that both points y1, y2 fall into a sphere. There are only
two possibilities for such an event: either both y1, y2 fall into one and
the same sphere, or they fall into different spheres. The probability of the
former event is the product of n (the number density of the spheres) and the
common volume of two spheres of radius a centered at y1, y2. The reason
is that this common volume comprises the centers of all spheres of radius
a which contain both y1 and y2. If the second possibility takes place, i.e.,
y1 and y2 fall into different spheres, then the centers z1, z2 of the latter
should lie within spheres of radius a around each one the points y1 and
y2. The probability of this event is an integral over these two spheres; the
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integrand is the probability density for finding sphere centers at z1 and z2,
i.e., n2g(z2 − z1), see Eq. (5). Hence

〈I1(y1)I1(y2)〉 = n

∫
ha(y1 − y)ha(y2 − y) dy

+ n2
∫ ∫

ha(y1 − z1)ha(y2 − z2)g(z2 − z1) dz1dz2 (10)

which yields immediately Eq. (8), taking into account the definition of γ2(x),
see Eqs. (3) and (4).

The first integral in Eq. (8) is just the convolution square ha ∗ ha of the
characteristic function ha of a sphere. Its analytical form is well-known since
it represents geometrically, as already discussed, the volume of intersection
of two equal spheres of radius a, whose centers are separated by r:

(ha ∗ ha)(x) = Va




1 − 3
4

r

a
+

1
16

(
r

a

)3

, if r/a ≤ 2,

0, if r/a > 2; r = |x|.
(11)

The second integral in Eq. (8) is much more complicated however—it is
six-tuple obviously. Our aim here is to reduce it to a simple one-tuple integral
in the case when the distribution of the spheres is statistically isotropic, so
that g becomes a function of r = |x| only.

3. Evaluation of the Triple Convolution ha ∗ ha ∗ hA

The key point in our analysis is the evaluation of the triple convolution
ha ∗ ha ∗ hA, where hA denotes the characteristic function of a sphere of
radius A located at the origin; hereafter we assume A ≥ 2a, though the
reasoning that follows is not limited by this assumption. Such a convolution,
among others of similar kind, has been first found by McQuarrie17 in a
different context, by means of a method initiated by Katsura:18 namely,
application of the Fourier transform combined with some nontrivial formulae
from Bessel function theory (Weber-Schafheitlin’s discontinuous integral and
its generalizations19). Here an elementary method with simple and clear
geometrical interpretation will be employed. As a matter of fact, the method
was used by one of the authors,20 when evaluating a statistical parameter for
a dispersion. The method also has the advantage that it can be easily applied
when evaluating not only convolutions of characteristic functions, but of
radially symmetric functions as well, as will be demonstrated elsewhere.

Note first that, due to Eq. (11),

ha ∗ ha ∗ hA = Va

(
ϕ(t)h2a(r)

)
∗ hA,

ϕ(t) = 1 − 3
4
t +

1
16

t3, t = r/a. (12)

Approximate ϕ(t)h2a(r) by the step-constant function

ϕ(t)h2a(r) ≈
N−1∑
i=1

ϕ(ξi/a)[hξi+�ξi
(r) − hξi

(r)], (13)
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where 0 = ξ0 < ξ1 < . . . ξN−1 < ξN = 2a, 
ξi = ξi − ξi−1, see Fig. 1.

Fig. 1. Step-function approximation to ϕ(t).

In other words, the inhomogeneous ball of radius 2a, whose density varies
radially according to the law ϕ = ϕ(t), is replaced by a family of concentric
spherical layers ξi ≤ r < ξi+1, each one homogeneous and of density ϕ(ξi),
i = 0, . . . , N − 1. Then

(ϕ(t)h2a) ∗ hA ≈
N−1∑
i=1

ϕ(ξi/a) [hξi+�ξi
∗ hA − hξi

∗ hA]

=
N−1∑
i=1

ϕ(ξi/a)
hξi+�ξi

∗ hA − hξi
∗ hA


ξi

ξi,

which, in the limit 
ξi → 0, yields

(
(ϕ(t)h2a) ∗ hA

)
(r) =

∫ 2a

0
ϕ(ξ/a)

d

dξ
(hξ ∗ hA)(r) dξ

= ϕ(ξ/a)(hξ ∗ hA)(r)
∣∣∣ξ=2a

ξ=0
− 1

a

∫ 2a

0
ϕ′(ξ/a)(hξ ∗ hA)(r) dξ. (14)

But (hξ ∗ hA)(ξ) = 0 at ξ = 0, i.e., r = 0; also, in our case ϕ(2) = 0, see
Eq. (12), so that the nonintegral term in Eq. (14) vanishes:

(
(ϕ(t)h2a) ∗ hA

)
(r) = −

∫ 2

0
ϕ′(µ)(hξ ∗ hA)(r) dµ

=
3
16

∫ 2

0
(4 − µ2)

(
hξ ∗ hA

)
(r) dµ = VaF (ρ; τ), (15)

having used the expression (12) for ϕ(t); hereafter ρ = r/a, τ = A/a ≥ 2
and µ = ξ/a ∈ [0, 2] are nondimensional.
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To evaluate F (ρ; τ), recall the known formula for the convolution hξ ∗hA,
i.e., for the common volume of two spheres of radii ξ and A, which we shall
write as follows

(hξ ∗ hA)(ρ) = Va




µ3, if 0 ≤ ρ ≤ τ − µ,

Ψ(ρ; τ, µ), if τ − µ ≤ ρ ≤ τ + µ,

0, if ρ > τ + µ,

(16)

where

Ψ(ρ; τ, µ) =
1

16ρ
(τ + µ − ρ)2[ρ2 + 2(τ + µ)ρ − 3(τ − µ)2]. (17)

Fig. 2. The range of integration in Eq. (15).

The integration domain for the integral (15), with the convolution hξ ∗hA

given in Eqs. (16) and (17), is shown in Fig. 2. The integration is elementary
and the final result reads

F (ρ; τ) =




F (I)(ρ; τ), if 0 ≤ ρ ≤ τ − 2,

F (II)(ρ; τ), if τ − 2 ≤ ρ ≤ τ ,

F (III)(ρ; τ), if τ ≤ ρ ≤ τ + 2 ,

0, if ρ > τ + 2,

(18)

where

F (I)(ρ; τ) =
3
16

∫ 2

0
(4 − µ2)µ3 dµ = 1, (19a)

F (II)(ρ; τ) =
3
16

∫ τ−ρ

0
(4 − µ2)µ3 dµ +

3
16

∫ 2

τ−ρ
(4 − µ2)Ψ(ρ; τ, µ) dµ

=
1

2240ρ

{
−576 + 1120ρ − 672ρ2 + 140ρ4 + 42ρ5 − ρ7
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+ 21(ρ + 2)3 (ρ2 − 6ρ + 4)τ2 − 70ρ (ρ − 4) (ρ + 2)2τ3

+105 (ρ + 2) (ρ2 − 2ρ − 2)τ4 + 84 (2 − ρ2) τ5 + 35 ρ τ6 − 6 τ7
}
, (19b)

F (III)(ρ; τ) =
3
16

∫ 2

ρ−τ
(4 − µ2)Ψ(ρ; τ, µ) dµ =

1
2240ρ

(2 + τ − ρ)4

×
{
(ρ− 2) (ρ2 +10ρ+18)+4 (ρ2 +10ρ+18)τ − (48+11ρ) τ2 +6τ3

}
. (19c)

Hence
(ha ∗ ha ∗ hA)(r) = F (ρ; τ)V 2

a , ρ = r/a, (20)

with the function F (ρ; τ) given explicitly in Eqs. (18) and (19).

Note that the function F (ρ; τ) and its first three derivatives
d(k)F (ρ; τ)

dρ(k)
,

k = 1, 2, 3, are continuous for all ρ ∈ (0,∞); the fourth derivative
d(4)F (ρ; τ)

dρ(4)

has, however, jumps at the points ρ = τ − 2, τ , τ + 2, so that F (ρ; τ) ∈
C3([0,∞)) only with respect to ρ.

In the particular case A = 2a, i.e., τ = 2, the formulae (18) and (19)
simplify, yielding

(ha ∗ ha ∗ h2a)(r) = F 2a(ρ)V 2
a , ρ = r/a, (21)

F 2a(ρ) = F (ρ; 2) =




1 − 3
16

ρ3 +
9

160
ρ4 − ρ6

2240
, if 0 ≤ ρ ≤ 2,

(ρ − 4)4 (−36 + 34 ρ + 16 ρ2 + ρ3)
2240ρ

, if 2 ≤ ρ ≤ 4,

0, if ρ > 4.
(22)

4. The Two-Point Correlation of a “Well-stirred” Dispersion

Consider the simplest case of a “well-stirred” dispersion of nonoverlapping
spheres for which the radial distribution function is simply g(r) = 1, if
r ≥ 2a, and vanishes otherwise. This means that as far as the two-point
statistics is concerned, the spheres are only forbidden to overlap; otherwise
their location is statistically independent. This assumption, despite its ob-
vious crudeness, is very often adopted when modeling random dispersions,
due to its extreme simplicity.

For a well-stirred dispersion the binary correlation (9) becomes ν2(r) =
−h2a(r), so that

γ(r) = γws
2 (r) =

1
1 − η1

{
(ha ∗ ha)(r)/Va − η1(ha ∗ ha ∗ h2a)(r)/V 2

a

}
.
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Fig. 3. The two-point correlation function for a well-stirred dispersion

for sphere fractions η1 = 0.05, 0.125 and 0.25.

Using Eqs. (11) and (22) gives

γws
2 (r) =




1 − 3ρ
4(1 − η1)

+
(1 + 3η1)ρ3

16(1 − η1)
− 9η1ρ

4

160(1 − η1)

+
η1ρ

6

2240(1 − η1)
, if 0 ≤ ρ ≤ 2,

η1

1 − η1

(ρ − 4)4 (36 − 34 ρ − 16 ρ2 − ρ3)
2240ρ

, if 2 ≤ ρ ≤ 4,

0, if ρ ≥ 4.
(23)

The two-point correlation γws
2 (r) is always negative for 2 ≤ ρ < 4. It is

shown in Fig. 3 for sphere volume fractions η1 = 0.05, 0.125 and 0.25.
The formula (23) was first given in an equivalent form by Torquato and

Stell,21 who used the triple convolution (22) as evaluated by McQuarrie.17
Independently, (23) was also derived, in a concise and purely geometrical
way, by Berryman22 in his analysis of variational bounds on permittivity of
random aggregates of spheres.

Note that the formula (23) allows the evaluation of the statistical param-
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eter, proportional to the Laplace transform of rγws
2 (r)

i2(p) = p2
∫ ∞

0
re−prγws

2 (r) dr, p ∈ (0,∞), (24)

which appears in variational bounds on the effective absorption coefficient
for a dispersion (see, e.g., Ref. 23), namely

i2(p) =
A(pa) − η1B(pa)

1 − η1
, A(pa) = 1− 3

1 + pa

(pa)3
e−pa(pa cosh pa− sinh pa),

B(pa) = 1 − 9(1 + 2pa)(pa cosh pa − sinh pa)2

(pa)6
e−2pa. (25)

The formula (25) can be derived directly from the definition of i2(p) with-
out using the explicit form (23) for γws

2 (r), as done in Ref. 24. In turn
Eq. (23) can be restored by inverting the Laplace transform i2(p), as given
in Eq. (25). Note that an appropriate analysis of the asymptotic behaviour
of the parameter i2(p) as p → ∞ also allows one to find the analytical form
(23) of γws

2 (r) in a certain (but unspecified) vicinity of the origin, see Ref. 25
for details.

The formula (23) makes possible the analytic evaluation of the moments
of γws

2 (r) on the semiaxis (0,∞), that is the quantities

θws
k =

∫ ∞

0
rkγws

2 (r) dr = ak+1
∫ ∞

0
ρkγws

2 (ρ) dρ = ak+1 Tk − η1Sk

1 − η1
,

Tk =
1
Va

∫ ∞

0
ρk(ha ∗ ha)(ρ) dρ =

3.2k+1

(k + 1)(k + 2)(k + 4)
, k ≥ 0,

S0 =
18 (9 − 8 ln 2)

35
≈ 1.77676,

Sk =
∫ ∞

0
ρkF 2a(ρ) dρ =

9.2k+4(k + 8 + (k − 1) 2k+3)
k(k + 1)(k + 2)(k + 4)(k + 5)(k + 7)

, (26)

k = 1, 2, . . . . In particular,

θws
1 =

2 − 9η1

5(1 − η1)
a2, θws

2 =
1 − 8η1

3(1 − η1)
a3. (27)

Note that for any statistically homogeneous and isotropic random medium
the moment θ2 should be nonnegative, as pointed out, e.g., in Ref. 4. (As a
matter of fact, this is a consequence of the well-known positive-definiteness
of the two-point correlation function γ2(x) for any statistically homogeneous
medium.4) Hence from Eq. (27) it follows that the well-stirred approximation
is realistic only at η1 ≤ 1/8—something first conjectured by Willis,26 who
noticed that a certain well-known approximate scheme of the mechanics of
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composites in the context of wave propagation yields unrealistic predictions
for this approximation, if η1 > 1/8.

It is to be remarked that the well-stirred distribution is the roughest
zeroth-order virial approximation for the radial distribution function in the
liquid-state theory. As such, it has never been of any interest in this theory,
where much more realistic and refined approximations have been extensively
studied, say, the Percus-Yevick or Verlet-Weis ones, see, e.g., any basic book
on the subject, such as that of Balescu.9 This explains why the above criti-
cal value of sphere fraction, though elementary, has never been noted in the
liquid-state theory. On the other hand, in the literature on homogenization
of heterogeneous media, and of random dispersions in particular, people fo-
cused on predicting the overall properties for a given sphere statistics, very
often choosing the well-stirred distribution for the sake of simplicity. At
the same time no attention was paid, as a rule, to the elementary neces-
sary conditions (like positive-definiteness of the two-point correlation and,
in particular, of θ2, which can obviously be checked through an elementary
integration, using Eq. (23)). This may elucidate the reason why the criti-
cal values of applicability for the well-stirred case were only conjectured by
Willis26 in the study of certain approximate homogenization schemes, and
not found using the obvious arguments, concerning, say, positive-definiteness
of the appropriate correlation.

Fig. 3 illustrates geometrically the reason why the well-stirred approx-
imation fails at η1 > 1/8. Indeed, as already pointed out, the correlation
γws

2 (r) becomes negative in the region (r0, 4a), for a certain r0 ∈ (0, 2a).
Moreover, the higher the sphere fraction η1 becomes, the deeper below the
abscissa axis the function γws

2 (r) “dives.” On the other hand θ2, i.e., the in-

tegral
∫ ∞

0
r2 γws

2 (r) dr should be nonnegative which is violated at η1 > 1/8,

since γws
2 (r) “dives” in this case too deep and the well-stirred approximation

“suffocates” as a result, cf. Fig. 3.

5. The General Case
Represent the radial distribution function g(r) (r = |y|) in the form

g(r) = 1 − h2a(y) + g̃(y), (28)

where g̃(y) vanishes for |y| < 2a and g̃(y) → 0 at y → ∞. Obviously g̃(y) = 0
corresponds to the well-stirred case. The binary correlation is then

ν2(y) = g(y) − 1 = −h2a(y) + g̃(y), (28)

so that g̃(y) coincides with ν2(y) at |y| ≥ 2a. The two-point correlation (8)
has in turn the form

γ2(r) = γws
2 (r) + γ̃2(r); (29)

here γws
2 (r) is the correlation (23), corresponding to the well-stirred case,

and
γ̃2(r) =

η1

1 − η1

1
V 2

a

∫ ∫
ha(x − z1)ha(z2)g̃(z1 − z2) dz1dz2. (30)

The evaluation of the integral in Eq. (30) is based on the formula

g̃(y) =
∫ ∞

2a
g̃(ξ)

d

dξ
hξ(y) dξ, (31)
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whose derivation follows the reasoning of Section 3. Indeed, approximate
g̃(r), r ≥ 2a, by the step-constant functions of the type, shown in Fig. 1:

g̃(r) ≈
N∑

i=1

g̃(ξi)[hξi+�ξi
(r) − hξi

(r)],

where 2a = ξ0 < ξ1 < . . . < ξN , 
ξi = ξi − ξi−1. Divide each term in the
right side by 
ξi and multiply by 
ξi; Eq. (31) is generated in the limit

ξi → 0.

Insert Eq. (31) into Eq. (29) and write the result as

γ̃2(r) =
η1

1 − η1

1
V 2

a

∫ ∞

2a
ν2(ξ)

d

dξ

{ ∫ ∫
ha(x − z1)ha(z2)hξ(z1 − z2) dz1dz2

}
dξ,

having replaced g̃(ξ) by the binary correlation ν2(ξ), because the integration
in Eq. (31) is over the region ξ ≥ 2a in which g̃(ξ) and ν2(ξ) coincide, see
Eq. (28).

The integral in the braces is just the triple convolution ha∗ha∗hξ, ξ ≥ 2a,
evaluated in Sec. 2. According to Eq. (20),

γ̃2(r) =
η1

1 − η1

∫ ∞

2a
ν2(ξ)

d

dξ
F (ρ; ξ/a) dξ =

η1

1 − η1

∫ ∞

2
ν2(τ)

d

dτ
F (ρ; τ) dτ,

(32)

ρ = r/a, τ = ξ/a ≥ 2. In turn, the derivative
d

dτ
F (ρ; τ) has a simple and

concise representation:

d

dτ
F (ρ; τ) =

3τ
160ρ

G(ρ − τ),

with the function

G(t) =




f(t), if −2 ≤ t ≤ 0,

f(−t), if 0 ≤ t ≤ 2,

0, if |t| ≥ 2,

(33a)

where

f(t) = (2 + t)3 (4 − 6t + t2). (33b)
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Fig. 4. The range of integration in Eq. (32).

The integration domains for the integral (32) with the appropriate values
of the kernel G(t), according to Eq. (33), are shown in Fig. 4. Hence,

ργ̃2(r) =
3η1

160(1 − η1)

∫ ρ+2

max{ρ−2,2}
G(ρ − τ)τν2(τ) dτ, (34)

i.e.,

ργ̃2(r) =
3η1

160(1 − η1)

×




∫ ρ+2

2
f(ρ − τ)τν2(τ) dτ, if 0 ≤ ρ ≤ 2,

∫ ρ+2

2
f(ρ − τ)τν2(τ) dτ +

∫ ρ

2
f(τ − ρ)τν2(τ) dτ, if 2 ≤ ρ ≤ 4,

∫ ρ

ρ−2
f(τ − ρ)τν2(τ) dτ +

∫ ρ+2

ρ
f(ρ − τ)τν2(τ) dτ, if ρ ≥ 4.

(35)

The formula (35), together with Eqs. (23) and (29), is our central result
which accomplishes the needed representation of the two-point correlation
as a simple one-tuple integral containing the radial distribution function of
a statistically isotropic dispersion of nonoverlapping spheres.

6. The Behaviour of the Two-Point Correlation for r ≤ 2a
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As a nontrivial application of the formula (35) consider in more detail the be-
haviour of the two-point correlation γ2(r) in the vicinity of the origin r = 0.
This behaviour is important, because it can be simply associated with that
of the so-called scattering curve for the dispersion in the long wave-length
limit. (Recall that the scattering curve is directly connected to the Fourier
transform of γ2(r), see Ref. 9 for details.) Hence experimental data con-
cerning the leading terms in this long wave-length limit allow determination
of the coefficients of the correlation γ2(r) in its Taylor expansion at r = 0.
The latter coefficients, in turn, provide nontrivial information for the radial
distribution function, as first pointed out in Refs. 12 and 13.

Indeed, in the vicinity of the origin r = 0 and, more precisely, for r ≤ 2a,
Eq. (35) implies

ργ̃2(r) =
3η1

160(1 − η1)

∫ ρ

0
P (ρ, u) ν2(u + 2) du, u = r/a − 2, (36)

with the polynomial

P (ρ, u) = (ρ − u)3(u + 2) [(ρ − u)2 − 10 (ρ − u) + 20], (37)

since ν2(τ) = 0 at τ < 2.
Hence, as seen from Eq. (36), knowledge of the radial distribution func-

tion g(r) in the interval (2a, 2a + r0) defines the values of the two-point
correlation in the interval (0, r0). Moreover, let us assume that g(r) is ana-
lytic in the vicinity (2a, 2a + r0) of 2a, so that

ν2(2 + u) =
∞∑

k=0

akν
(k)
2 (2a)
k!

(
r

a
− 2

)k

=
∞∑

k=0

(2a)kν
(k)
2 (2a)
k!

(s − 1)k

= g0 + g1(s − 1) + g2(s − 1)2 + · · · , s ≥ 1, s =
r

2a
, (38)

the series converging for 0 ≤ u ≤ u0, u0 = r0/a − 2 ≤ 2. In Eq. (38),

gk =
1
k!

(2a)kν
(k)
2 (2a). (39)

The series expansion in powers of s − 1 with the notations g0, g1, etc., for
its coefficients was introduced by Frisch and Stillinger.13

From Eq. (36) it follows that once g(r) is analytic in the interval (2a, 2a+
r0), the function γ̃2(r) is analytic in(0, r0), and

γ̃2(r) =
∞∑

k=0

akγ̃
(k)
2 (0)
k!

(
r

a

)k

=
3η1

160(1 − η1)

∞∑
k=0

akν
(k)
2 (2a)
k!

1
ρ

∫ ρ

0
ukP (ρ, u) du , ρ = r/a. (40)
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The integral in Eq. (40) is elementary, see Eq. (37), and the final result
reads

γ̃2(r) =
∞∑

k=0

akγ̃
(k)
2 (0)
k!

(
r

a

)k

=
9η1

4(1 − η1)
ρ3

×
∞∑

k=0

k!gk

2k
ρk

[
2

(k + 4)!
+

k − 3
(k + 5)!

ρ − 2k
(k + 6)!

ρ2 +
k + 1

(k + 7)!
ρ3

]
. (41)

Hence the behaviour of γ̃2(r) and thus of the correlation γ2(r) in a cer-
tain vicinity of the origin r = 0 is uniquely defined by the behaviour of g(r)
in a certain vicinity of the “touching” distance r = 2a. In other words, as
it follows from Eqs. (40), (29) and (23), the derivatives γ

(k)
2 (0) are uniquely

and simply expressible in terms of the derivatives g(k)(2a) of the radial distri-
bution function or, equivalently, by means of the derivatives ν

(k)
2 (2a) of the

binary correlation (since ν
(k)
2 (2a) = g(k)(2a), k ≥ 1, and ν2(2a) = g(2a) − 1,

see Eq. (9)).
Indeed, Eq. (41) yields first of all

γ̃
(k)
2 (0) = 0, k = 0, 1, 2,

which means, when combined with Eqs. (29) and (23), that

γ′
2(0) = − 3

4(1 − η1)a
, γ′′

2 (0) = 0, (42)

independently of the sphere statistics, i.e., of the radial distribution function
g(r).

The first of Eqs. (42) is an obvious consequence of Debye’s formula27

S

V
= −4η1(1 − η1)γ′

2(0), (43)

which connects the specific surface S/V (i.e., that of the phase boundary
S in the small volume V ) with the derivative γ′

2(0) of the two-point corre-
lation, see also Stoyan et al..28 Indeed, the assumption of nonoverlapping
yields S/V = 4πa2n, where n is the number density of the spheres in the
dispersion. But n = η1/Va, Va = 4πa3/3, and therefore S/V = 3a/η1, which,
when inserted into (42), gives the same value of γ′

2(0) as in Eqs. (43). Thus
for any dispersion of nonoverlapping spheres γ′

2(0) is not sensitive to the
sphere statistics depending, at a fixed radius a, on the sphere fraction η1
only. A stronger and more curious fact is embodied in the second relation of
Eqs. (42), namely, the vanishing at the origin of the second derivative of the
correlation function for such a dispersion whatever the sphere statistics may
be. As argued by Markov,25 the assumed spherical shape of the particles is
not important here; the fact that γ′′

2 (0) = 0 is essentially connected with the
assumption of nonoverlapping and, in particular, with the prohibition for



374 Two-point Correlation for Random Dispersions

particles to touch each other. Indeed, consider a statistically isotropic dis-
persion of particles of fixed shape, whose location and orientation are both
random but not interconnected statistically; the particles should not overlap
whatever their orientations at fixed locations. An averaging with respect to
orientation first (which is possible, due to the statistical independence of the
latter), leads just to a dispersion of nonoverlapping spheres. (Each one is
obtained through rotation of the particle, centered at the same location; the
rotation represents simply the averaging with respect to all possible orien-
tations of the particle.) Note that the fact that γ′′

2 (0) = 0 for a dispersion
of nonoverlapping particles was first noticed by Kirste and Porod12 using
different and more complicated geometrical arguments; they also assumed
that there are no corner points on the particle’s surfaces. The results of
Kirste and Porod were rederived and extended by Frisch and Stillinger,13
who expanded directly γ2(r) at r = 0 starting, as a matter of fact, with
its integral representation (8). In these references it also was shown that if
the particles were allowed to touch each other, γ′′

2 (0) would be a nonzero
constant, proportional to the mean number of contact points.

As far as the higher derivatives of the two-point correlation are concerned,
Eq. (41) yields

γ̃
(3)
2 (0) =

9η1

8(1 − η1)a3
ν2(2a), γ̃

(4)
2 (0) =

9η1

20(1 − η1)a4
[2a ν ′

2(2a) − 3ν2(2a)],

γ̃
(5)
2 (0) =

3η1

4(1 − η1)a5
[a2ν ′′

2 (2a) − aν ′
2(2a)], etc., (44a)

and, in general,

γ̃
(k)
2 (0) =

9η1

4(k + 1)(1 − η1)ak

{
2a3 ν

(k−3)
2 (2a) + a4(k − 7) ν

(k−4)
2 (2a)

−2a5 (k − 5)ν2
(k−5)(2a) + (k − 5)a5 ν

(k−6)
2 (2a)

}
, (44b)

for k ≥ 6. In terms of the coefficients gk, see (38), the relations (44) become

γ̃′′′
2 (0) =

9g0η1

8(1 − η1)a3
, γ̃

(4)
2 (0) =

9(g1 − 3g0)η1

20(1 − η1)a4
,

γ̃
(5)
2 (0) =

3(g2 − g1)η1

8(1 − η1)a5
, γ̃

(6)
2 (0) =

9(3g3 − g2 − 2g1 + g0)η1

56(1 − η1)a6
,

γ
(k)
2 (0) = γ̃

(k)
2 (0) =

9η1

2k−2(k + 1)(1 − η1)ak

(
(k − 3)! gk−3

+ (k−7)(k−4)! gk−4 −4(k−5)(k−5)! gk−5 +4(k−5)! gk−6

)
, k ≥ 7. (45)

Note that indeed γ
(k)
2 (0) = γ̃

(k)
2 (0) for k ≥ 7, since γws

2 (r) is a polynomial of
sixth degree in a vicinity of the origin, see Eqs. (23) and (29).
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The formulae (44) were derived independently by Markov25 using an
asymptotic analysis of the statistical parameter i2(p) for arbitrary sphere
statistics, see Eq. (24), in the limit p → ∞.

The foregoing formulae (23), (29) and (45) imply, in particular, that

γ̃2(r) = 1− 3ρ
4(1 − η1)

+
(1 + 3η1 + 3η1g0)

16(1 − η1)
ρ3− 9η1 − 3(g1 − g0)η1

160(1 − η1)
ρ4 + o(ρ4).

(46)
It is remarked finally that the value of γ̃′′′

2 (0) in Eq. (45) coincides
with that of Kirste and Porod12 (for spherical particles) and of Frisch and
Stillinger.13 However, the value of γ

(4)
2 (0), as given by Frisch and Stillinger,

contains an obvious misprint, since it does not reproduce correctly the ρ4-
coefficient in the well-stirred case, i.e., at g0 = g1 = 0, see Eq. (23).

Concluding Remarks

The formula (35) represents the central result of this study. It is a novel and
useful relation which allows a straightforward and elementary evaluation of
the two-point correlation γ2(r) for a dispersion whose radial distribution
function is known.

Many applications of the the formula (35) for random dispersions can be
envisaged. In Section 6 it allowed, for example, to elucidate the reason why
and how the behaviour of γ2(r) at the origin is interconnected to that of
the radial function at the “touching” distance 2a, thus generalizing results
of Refs. 12 and 13.

Another important implication of (35) is the possibility to evaluate ex-
plicitly the moments of γ2(r) on the semiaxis (0,∞), defined in the first line
of Eq. (26). Obviously,

θk = θws
k + θ̃k, (47)

where θws
k are the appropriate moments, corresponding to the well-stirred

approximation, see Eq. (26), and

θ̃k =
∫ ∞

0
rkγ̃2(r) dr (48)

is the correction, due to the binary correlation ν2(r). It is to be noted that
the first moment θ1 appears, e.g., in the variational estimates on the trap-
ping (sink) constant and Darcy’s permeability of a random dispersion.11,6,22

The same moment θ1 showed up very recently29 as a quantity of central
importance when rigorously estimating the size of the representative volume
elements of elastic solids, reinforced with spherical inclusions. To evaluate θ1
in this Ref. 29, Drugan and Willis have applied the formula (35), inserting it
into (48) at k = 1, changed the order of integration and grouped the terms
appropriately. Their method is applicable, however, for arbitrary k, yielding

θ̃k = ak+1 η1

1 − η1

∫ ∞

2
Hk(τ) τν2(τ) dτ,
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Hk(τ) =
3

160

{ ∫ τ

τ−2
f(ρ − τ) ρk−1 dρ +

∫ τ+2

τ
f(τ − ρ) ρk−1 dρ

}
. (49)

With the function f(t), given in Eq. (34b), the functions Hk(τ) in (49)
are polynomials of τ , whose explicit evaluation is elementary. For example,

H1(τ) = 1, H2(τ) = τ, H3(τ) =
2
5

+ τ2, H4(τ) =
6
5

τ + τ3, (50)

etc. This means that the moments θ̃k are simply connected to the moments
of the binary correlation, i.e., the quantities

ml =
∫ ∞

2
τ lν2(τ) dτ, l = 0, 1, . . . .

In particular, the first two of the relations (50) yield

θ̃1 = a2 η1

1 − η1
m1, θ̃2 = a3 η1

1 − η1
m2. (51)

Without going into detail, we shall only mention that for the Percus-Yevick
distribution, widely used and explored in the liquid-state theory, the mo-
ments ml can be easily found by means of the simple algebraic expression30,9

for the Laplace transform of the function rg(r). In this way Drugan and
Willis29 have obtained an extremely simple expression for the needed mo-
ment θ1 in the Percus-Yevick case. At the same time the radial distribution
function g(r) itself is extremely cumbersome for this distribution.

Let us point out at last that the basic ideas of the above proposed ap-
proach can also be applied in studying the so-called “surface-void” and
“void-void” correlations in a random dispersion, thus opening the possi-
bility of representing them as simple one-tuple integrals of the type (35),
involving again the radial distribution function. We can only recall here
that these correlations are very important in the above mentioned theories
of diffusion-controlled reactions and permeability of dispersions. A detailed
study, however, goes beyond the scope of the present paper.
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