
Mathematical Models and Methods in Applied Sciences,

4 No 6, 755 – 772, 1994

ON THE ABSORPTION PROBLEM FOR

RANDOM DISPERSIONS

KONSTANTIN Z. MARKOV and MIKHAIL K. KOLEV

Faculty of Mathematics and Informatics, University of Sofia,
5 blvd J. Bourchier, 1126 Sofia, Bulgaria

The paper is devoted to the steady-state problem of absorption of a diffusing species
(say, irradiation defects) in a random dispersion of spheres. The defects are created at
a constant rate throughout the medium and are absorbed afterward, with different sink
strengths, by the matrix and by the inclusions. One is to find the random diffusing species
field and, in particular, the effective sink strength of the dispersion, having assumed the
statistics of the spheres known. The problem is modelled by a Helmhotz equation with
a random coefficient (the randomly fluctuating sink strength of the dispersion). The
statistical solution of the latter is explicitly constructed, in a simple form, by means
of the so-called factorial functional series, recently introduced by one of the authors.
In particular, analytical formulae, correct to the order “square of sphere fraction”, are
obtained for the effective sink strength of the dispersion and for the two-point correlation
function of the diffusing species field. An effective numerical procedure, allowing to
specify these quantities, is described and numerical results are finally presented and
discussed.

1. Introduction

Imagine a diffusing species is created with a rate K in a heterogeneous, say,
two-phase medium and is simultaneously absorbed with a certain sink strength that
has different values in each of the constituents. In what follows, the particular case
of a random dispersion of equi-sized and nonoverlapping spheres will be considered
only. The reason is that this case is of primary importance for both application
and theory as a reasonable model for real particulate media with small or moderate
filler fraction. In the steady-state limit, which will be treated here, the diffusing
species concentration ϕ(x) is governed by the equation

∆ϕ(x) − k2(x)ϕ(x) + K = 0. (1.1)
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(We neglect the variance of the diffusion coefficient in the medium since Eq. (1.1)
already reflects the most intriguing feature of the situation under study—the com-
petition between the constituents for absorbing the diffusing species.) Note that the
species may represent the defects appearing in a solid due to irradiation, see, e.g.,
the extensive survey of Brailsford and Bullough3 for references and more details.
The absorption coefficient (sink strength) k2(x) is a given random field, assumed
nonnegative and statistically homogeneous and isotropic. In the case of a dispersion
the field k2(x) has the form

k2(x) =
{

k2
m, if x ∈ matrix,

k2
f , if x ∈ spheres. (1.2)

From a theoretical point of view, the basic problem we are interested in consists
in evaluating, in statistical sense,2 the random field ϕ(x), i.e., all its multipoint
correlations and the joint correlations of ϕ(x) and k2(x) and, in particular, in
finding the mean diffusing species concentration 〈ϕ(x)〉; the brackets 〈·〉 hereafter
denote ensemble averaging. The latter value would allow us to obtain the effective
absorption coefficient, k∗2, of the medium defined by the relation

k∗2 =
K

〈ϕ(x)〉 . (1.3)

The coefficient k∗2 enters the “homogenized” equation

∆〈ϕ(x)〉 − k∗2〈ϕ(x)〉 + K = 0, (1.4)

obtained from Eq. (1.1) after averaging. Eq. (1.4) describes the overall behaviour
of the medium; it means that from a macroscopical point of view the heterogeneous
medium absorbs the diffusing species as if it were homogeneous, with a constant
(due to the assumed statistical homogeneity) sink strength k∗2. In this sense the
absorption problem (1.1) belongs to the wide class of homogenization problems,
extensively dealt with in the literature, especially in the context of scalar conduc-
tivity and elasticity, see, e.g., Beran’s book,2 the survey of Willis24 or the recent
revue of Torquato.23 An effective method for treating these problems for particulate
solids and for dispersions of spheres, in particular, has been recently introduced,
applied to a number of specific problems and discussed by Christov and Markov,
see Ref. 14 for more details and bibliography. The essence of the method is the
utilization of functional (Volterra-Wiener) series with certain unknown kernels for
representing the needed random fields. The kernels are to be specified by means of
the respective governing equations. In turn, a special regrouping of the series allows
to obtain, after truncation, approximations for these fields with a known accuracy.
The regrouped series are called factorial due to the special properties of the fields
that generate them. An essential feature of the method is that it allows to obtain
not only the average values of the needed fields but all multipoint correlations as
well. The application of this technique for the heat conduction problem in random
dispersions of spheres (which could even overlap) is thoroughly described in Ref. 14.
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Details of the general procedure and some rigorous proofs are given, e.g., in Ref. 13;
as an illustration, Eq. (1.1) has also been treated there, but in rather cumbersome
a way, without any numerical results and discussion.

Note that the theory of diffusion-controlled reaction is modelled by the limiting
(“degenerate”) case of Eq. (1.1) for a dispersion of spheres. In this theory the
spheres are perfect absorbers (k2

f = ∞) while the matrix does not absorb at all
(k2

m = 0). That is why in the literature much attention has been paid to this case
only and a number of approximate schemes and variational estimates have been
proposed for k∗2, see, e.g.,6,16,18,21−23 and the references therein. On the other
hand, the only detailed study of the random equation (1.1) from the point of view
of its homogenization, for an arbitrary function k2(x), is due, as far as we know, to
Talbot and Willis,21 who considered certain approximate schemes for evaluating k∗2

and then derived bounds on this quantity upon introducing a variational principle
of Hashin-Shtrikman’s type. More recently the authors proposed and investigated
in15 certain three-point bounds on k∗2 of the type of those of Beran2 for scalar
conductivity and specified them afterward11 for random dispersions of spheres.

The aim of the present study is a detailed study of the absorption problem
(1.1) for dispersion of spheres, with an arbitrary absorption field (1.2), by means of
the factorial series approach.

The outline of the paper is as follows. We first recall very briefly (Section 2) the
statistical description of a random dispersion of spheres, as well as the definition and
the basic properties of the factorial fields which play the central role in the sequel (for
more details, see, e.g., Refs. 12-14, 20 et al.). In Section 3 we outline the arguments
that allow us to represent the solution of Eq. (1.1) as a factorial series—a functional
series with respect to the factorial fields of the dispersion, with certain unknown
kernels.13 A simple procedure for identifying the kernels is proposed in Section 4
which yields, in particular, the full statistical solution of Eq. (1.1), correct to the
order c2, where c is the volume fraction of the spheres, provided the solutions of
the respective one- and two-sphere absorption problems are known. The similarity
with the cluster expansion technique as developed by Matern and Felderhof16 is
pointed out. The procedure is illustrated by evaluating in a closed integral form
the effective sink strength for the dispersion and the covariance function of the
diffusing species concentration ϕ(x) to the same order c2. To get numerical results
for those quantities, a twin expansion solution for the two-sphere absorption problem
is developed in Section 5. The obtained numerical results for the aforementioned
quantities—the effective sink strength and covariance—are discussed in the final
Section 6.

2. Statistics of the Dispersion and the Factorial Fields

Let xα be the system of random points that serve as centers of the spheres. The
statistics of the system xα is conveniently represented by its multipoint distribution
densities fp = fp(y1, . . . ,yp). We assume the dispersion statistically isotropic and
homogeneous; then, in particular, fp = fp(y2,1, . . . ,yp,1), where yj,i = yj − yi.
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Moreover, f1 = n, where n is the number density of the spheres, so that c = nVa is
their volume fraction; Va = 4

3πa3 and a is the radius of the spheres.
Let us imagine now that by means of a certain manufacturing process we pro-

duce random dispersions with different number densities n. The statistics of the
systems xα will then depend on n as a parameter, i.e., fp = fp(y1, . . . ,yp; n). We
shall assume, as usual, that fp ∼ np, i.e., fp has the asymptotic order np at n → 0,
p = 1, 2, . . . . In particular, for the two-point distribution density f2 we have

f2(y1,y2) = n2g(r), g(r) = g0(r) + O(n), (2.1)

r = |y2 − y1|; g0(r) is the zero-density limit of the radial distribution function g(r)
for the system xα.

Next we introduce the so-called random density field20

ψ(x) =
∑
α

δ(x − xα). (2.2)

Its moments are uniquely defined by the probability densities of the set xα. The
respective formulas read:

〈ψ(y)〉 = f1(y) = n,

〈ψ(y1)ψ(y2)〉 = nδ(y1,2) + f2(y1,y2),

〈ψ(y1)ψ(y2)ψ(y3)〉 = nδ(y1,2)δ(y1,3)

+3
{
δ(y1,2)f2(y1,3)

}
s
+ f3(y1,y2,y3), (2.3)

etc., where {·}s means symmetrization with respect to all different combinations of
indices in the braces, see, e.g., Ref. 20.

Let
∆(0)

ψ (y) = 1, ∆(1)
ψ (y) = ψ(y),

∆(k)
ψ (y1, . . . ,yk) = ψ(y1)[ψ(y2) − δ(y2,1)] . . .

× [ψ(yk) − δ(yk,1) − . . . − δ(yk,k−1)], k = 2, 3, . . . , (2.4)

be the so-called factorial fields for the set xα. The factorial fields have two basic
properties. First,

∆(k)
ψ (y1, . . . ,yk) =

{
ψ(y1) . . . ψ(yk), if yi �= yj ,
0, if yi = yj for a pair i �= j, (2.5)

(which explains to a certain extent the term factorial). Second,〈
∆(k)

ψ (y1, . . . ,yk)
〉

= fk(y1, . . . ,yk), k = 0, 1, . . . , (2.6)

see Refs. 5, 13, 14 for details and rigorous proofs.
Note also the formula

∆(1)
ψ (y1)∆

(1)
ψ (y2) = ∆(2)

ψ (y1,y2) + ∆(1)
ψ (y1)δ(y1,2), (2.7a)

or, more generally,
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∆(p)
ψ (y1, . . . ,yp)∆

(1)
ψ (yp+1) = ∆(p+1)

ψ (y1, . . . ,yp,yp+1)

+∆(p)
ψ (y1, . . . ,yp)

{ p∑
i=1

δ(yi,p+1)
}

, p = 2, 3, . . . , (2.7b)

which follow immediately from the definition (2.4). More general formulae for prod-
ucts of the factorials are given in Ref. 13, but we shall need in what follows only
the fact that 〈

∆(k1)
ψ . . . ∆(km)

ψ

〉
= O(nM ), (2.8)

M = max(k1, . . . , km), which holds under the assumption fp ∼ np.

3. Factorial Series Solution of the Absorption Problem

It could be easily shown, using the variational formulation of the problem (1.1)
and some facts from the convex analysis, that the problem (1.1) possesses solution
which is unique (see Ref. 15). Thus Eq. (1.1) defines implicitly a nonlinear operator
F which transforms the known random field of the sink strength k2(x) into the
random field ϕ(x) of the diffusing species concentration:

F : k2(·) −→ ϕ(·). (3.1)

Using the terminology of the general system theory,19 we can consider k2(x)
as the “input” in a “black box” whose “output” is ϕ(x). Following the general idea
of this theory, we develop the operator F into the so-called functional (Volterra-
Wiener) series

ϕ(x) = F
[
k2(·)

]
= Φ0(x) +

∫
Φ1(x − y)k2(y) d3y

+
∫ ∫

Φ2(x − y1,x − y2)k
2(y1)k2(y2) d3y1d

3y2 + · · · (3.2)

with certain nonrandom kernels Φ0, Φ1, . . . . (Hereafter the integrals are over R3

if the integration domain is not explicitly indicated.)
In turn, the random absorption field (1.2) of the dispersion has a simple integral

representation of the form

k2(x) = k2
m + [k2]

∫
h(x− y)∆(1)

ψ (y) d3y, (3.3)

[k2] = k2
f −k2

m, where h(y) is the characteristic function of a single sphere of radius
a, located at the origin.

Let us now rearrange the series (3.1), inserting there Eq. (3.3) and replacing
the products of the ψ’s by the factorials (2.4):

ϕ(x) = Φ0(x) +
∫

Φ1(x − y)∆(1)
ψ (y) d3y
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+
∫ ∫

Φ2(x − y1,x − y2)∆
(2)
ψ (y1,y2) d3y1d

3y2 + · · · . (3.4)

The new kernels Φp can be expressed through those in Eq. (3.2) (for brevity we use
the same notation Φp for the former).

After13 we call the series of the type (3.4) factorial. The central result of Ref. 13
states that for the class of point sets xα which comply with the assumption fp ∼ np,
the factorial series (3.4) are virial in the following sense.

Let us denote by ϕ(N)(x) the series (3.4) truncated after the N -tuple term.
Then

ϕ(x) = ϕ(N)(x) + o(cN ) (3.5a)

in a statistical sense, i.e., all multipoint correlation functions of the fields ϕ(x) and
ϕ(N)(x) differ by infinitesimals of the order o(cN ) at c → 0. The same holds true
for the field κ(x)ϕ(x), i.e.,

κ(x)ϕ(x) = κ(x)ϕ(N)(x) + o(cN ). (3.5b)

Thus the solution of the absorption problem (1.1), asymptotically correct to the
order cN , requires specification of the first N +1 kernels of the factorial series (3.4).
The needed to this end technique is discussed in Refs. 13, 14 et al.: the truncated
series (3.4) (after a certain “orthogonalization”) are introduced in (1.1), the result
is multiplied by the factorials ∆(k)

ψ (y1, . . . , yk), k = 0, 1, . . . , N , and then averaged.
This procedure leads to a complicated system of integro-differential equations for
the unknown kernels even in the case N = 2, see Ref. 13. Here we shall employ a
much simpler method, based on the multiplication formulae (2.7) for the factorial
fields.

4. Explicit Solution of the Absorption Problem to the Order c2

According to the aforesaid (Section 3), for the solution of the random problem
(1.1), asymptotically correct to the order c2, it suffices to specify the three kernels
Φ0, Φ1 and Φ2 in the truncated factorial series:

ϕ(x) ∼ ϕ(2)(x) = Φ0 +
∫

Φ1(x − y)∆(1)
ψ (y) d3y

+
∫ ∫

Φ2(x − y1,x − y2)∆
(2)
ψ (y1,y2) d3y1d

3y2. (4.1)

(It is easily seen that Φ0(x) = Φ0 is a constant due to the statistical homogeneity
of the dispersion.) To this end we insert the representations (3.3) and (4.1) of k2(x)
and ϕ(x), respectively, into Eq. (1.1) and group the terms, containing the factorials
∆(p)

ψ for one and the same p, p = 0, 1, 2, using the formulae (2.7a) and (2.7b) at

p = 2. (The term, containing ∆(3)
ψ , that appears due to Eq. (2.7b), is neglected

since it contributes quantities of the order c3 or higher, as it follows from Eq. (2.8)
and the assumption f3 ∼ n3.) The eventual result of such a regrouping reads:{

−k2
mΦ0(x) + K

}
∆(0)

ψ
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+
∫ {

∆Φ1(x − y) − k2
0(x − y)Φ1(x − y) − [k2]h(x − y)Φ0

}
∆(1)

ψ (y) d3y

+
∫ ∫ {

∆Φ2(x − y1,x− y2) −
[
k2
0(x − y1) + [k2]h(x − y2)

]
Φ2(x − y1,x − y2)

−1
2
[k2]
[
h(x − y1)Φ1(x − y2) + h(x − y2)Φ1(x − y1)

]}
∆(2)

ψ (y1,y2) d3y1d
3y2 = 0.

(4.2)
(Recall that ∆(0)

ψ = 1.) Here

k2
0(x) = k2

m + [k2]h(x) =
{

k2
f , at |x| < a,

k2
m, at |x| ≥ a.

(4.3)

The equation (4.2) is satisfied if the multipliers in the braces in front of the factorials
∆(0)

ψ , ∆(1)
ψ and ∆(2)

ψ vanish. This leads us immediately to the following system of
equations

k2
mΦ0(x) = K, i.e., Φ0(x) =

K

k2
m

= const , (4.4a)

∆Φ1(x) − k2
0(x)Φ1(x) − [k2]h(x)Φ0 = 0, (4.4b)

2∆Φ2(x − z,x) − 2
[
k2
0(x) + [k2]h(x − z)

]
Φ2(x − z,x)

−[k2]
{
h(x)Φ1(x − z) + h(x − z)Φ1(x)

}
= 0, (4.4c)

from which the kernels Φ0, Φ1 and Φ2 will be determined. (In Eq. (4.4c) the
differentiation is with respect to x, and z plays the role of a parameter.)

Denote by H(1)(x) the solution of the equation

∆H(1)(x) − k2
0(x)H(1)(x) − [k2]h(x) = 0, (4.5)

which is continuous in the whole R3, and its normal derivative is continuous on the
sphere |x| = a. According to Eqs. (4.3) and (4.5), H(1)(x) is the steady-state con-
centration of the diffusing species in an unbounded medium with sink strength k2

m,
generated at the rate −[k2] in a spherical inhomogeneity of sink strength k2

f . Due
to this interpretation Eq. (4.5) represents the single-sphere problem for Eq. (1.1).

Simple arguments, using the radial symmetry of the function H(1)(x) and the
continuity conditions allow us to find it explicitly:

H(1)(x) =
[k2]
k2

f




A1
af sinh rf

rf sinh af
− 1, at |x| < a,

A2
am

rm
eam−rm , at |x| ≥ a,

(4.6a)

where
A1 =

1 + am

am + af cothaf
, A2 =

1 − af coth af

am + af coth af
, (4.6b)

am = akm, af = akf , rm = rkm, rf = rkf , (4.6c)

are dimensionless parameters and r = |x|.
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From Eq. (4.4b) it is obvious that

Φ1(x) =
K

k2
m

H(1)(x), (4.7)

i.e., the kernel of the one-tuple integral term of the series (4.1) is proportional to
the solution of the respective single-sphere problem.

Consider finally Eq. (4.4c) for the kernel Φ2. It is easily seen that if we set

Φ2(x − z,x) =
K

k2
m

H20(x − z,x), (4.8)

then
2H20(x − z,x) = H(2)(x; z) − H(1)(x) − H(1)(x − z), (4.9)

where H(2)(x; z) is the bounded and continuous everywhere solution of the equation

∆H(2)(x; z)−
{
k2

m + [k2]
(
h(x) +h(x − z)

)}
H(2)(x; z)− [k2]

{
h(x) + h(x − z)

}
= 0.

(4.10)
Similarly to the single-sphere solution, we require also that the normal derivatives
of the solution of Eq. (4.10) be continuous on the spheres |x| = a and |x − z| = a.

Obviously, the field H(2)(x; z) is the two-sphere solution for our problem (1.1),
since it gives the concentration of the diffusing species in an unbounded matrix, gen-
erated with the rate −[k2], from sources located into two spherical inhomogeneities
of radius a, one centered at the origin, the other—at the point z, |z| > 2a, see
Eq. (4.10).

The above results (4.1)–(4.10) indicate the strong resemblance between the
factorial series approach advocated here and the cluster expansion technique as
developed by Matern and Felderhof, see Ref. 16 and the citations therein. Recall
that such a resemblance showed up in the scalar conductivity context as well, when
heat conduction problem through a random dispersion was treated in Refs. 13, 14
by means of the factorial series; the eventual result was shown14 to coincide with
the appropriate cluster expansion developed in this context by Felderhof et al.7.
It can be suggested therefore that the factorial series approach represents a rigor-
ous formalization of the more intuitive and physically appealing cluster expansions
method, but such a discussion goes beyond the scope of this paper and should be
done elsewhere.

According to Eq. (4.9) the kernel Φ2 in the expansion (4.1) is, to the order
o(c2), proportional to the field that should be added to the single-sphere solutions,
H(1)(x) and H(1)(x − z), generated by the two spheres (centered at the origin and
at the point z respectively), in order to obtain the two-sphere solution H(2)(x; z). A
similar result holds in the problems of scalar conductivity and elasticity of random
dispersions, see, e.g., Refs. 7, 8, 14 et al.

The relations (4.4a), (4.6a) and (4.7)–(4.10) determine the kernels in Eq. (4.1).
Thus the solution to the random absorption problem (1.1), correct to the order
o(c2), is obtained as the truncated factorial series (4.1). This allows to evaluate
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all the statistical characteristics we are interested in. For instance, in virtue of
Eqs. 2.6), (4.4a) and (4.6)–(4.9), one gets

〈ϕ(x)〉 =
K

k2
m

(1 + a1c + a2c
2) + o(c2), (4.11a)

where

a1 = − [k2]
k2

f

{
1 − 3

[k2]
k2

m

(1 + am)(1 − af coth af )
a2

f (am + af coth af )

}
, (4.11b)

a2 = − 1
V 2

a

[k2]
k2

m

∫
h(y1)

{∫
g0(y2 − y1)

[
H(1)(y2) + 2H20(y1,y2)

]
d3y2

}
d3y1,

(4.11c)
and g0(r)s the zero-density limit of the radial distribution function for the set xα

of sphere centers, see Eq. (2.1).
In turn, the definition (1.2) of the effective sink strength together with

Eqs. (4.11), yields
k∗2

k2
m

= 1 + b1c + b2c
2 + o(c2),

b1 = −a1, b2 = a2
1 − a2. (4.12)

It is noted that to the order O(c) the formula (4.12) coincides with the predic-
tion of the self-consistent theory of Brailsford and Bullough.3

Let k2
m → 0 and k2

f → ∞ which corresponds to the case of ideally absorbing
spherical sinks distributed throughout a nonabsorbing matrix. This case, let us
recall is of primary importance for the theory of diffusion-controlled reactions, see
Section 1 and the references cited therein. Taking these two limits in Eq. (4.11b),
one easily gets the well-known Smoluchowski formula

k∗2 =
3
a2

c + o(c) = ksn + o(n),

where ks = 4πa.
However, having taken the same limits k2

m → 0 and k2
f → ∞ in Eq. (4.11c), we

find that |a2| = ∞ and thus the c2-coefficient b2 = ∞ as well. This means that the
dependence of the effective sink strength on the sphere fraction, k

2
= k∗2(c), has in

the case under study the form

k∗2 =
3
a2

(
c + f(c)

)
, f(c) = o(c),

where f(c) is a nonanalytic function of c in the vicinity of the point c = 0. This
conclusion is corroborated by the results of Felderhof and Deutch6, Matern and
Felderhof16 and Talbot and Willis22 who argued, using different kinds of arguments,
that

f(c) = c
√

3c + o(c3/2).
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It is an open question how the factorial series approach can be modified in order to
cover properly the limiting situation under discussion in general, and the nonana-
lytic dependence of the statistical characteristics upon sphere fraction in particular.
Note that certain approximations of self-consistent type can be naturally introduced
within the frame of the cluster expansion technique16; they yield the first few terms
of above indicated nonanalytic function k∗2(c) for dilute sphere fractions c 
 1.

Consider next the covariance function for the diffusing species field ϕ(x), i.e.,
the function Mϕ

2 (x) = 〈ϕ′(0)ϕ′(x)〉, where ϕ′(x) = ϕ(x)−〈ϕ(x)〉 is the fluctuating
part of ϕ(x). From Eq. (4.1) and the relations〈

∆(2)
ψ (y1,y2)∆

(1)
ψ (y3)

〉
= n2g0(y1,2)[δ(y1,3) + δ(y2,3)] + o(n2),

〈
∆(2)

ψ (y1,y2)∆
(2)
ψ (y3,y4)

〉
= n2g0(y1,2)[δ(y1,3)δ(y2,4) + δ(y1,4)δ(y2,3)] + o(n2),

which easily follow from Eqs. (2.4) and (2.3), one gets

Mϕ
2 (x) =

K2

k4
m

F (x), F (x) = cF1(x) + c2F2(x) + o(c2), (4.13a)

where
F1(x) =

1
Va

∫
H(1)(y)H(1)(x − y) d3y, (4.13b)

F2(x) = − 1
V 2

a

{∫ ∫
H(1)(y)H(1)(x + t− y)R0(t) d3t d3y

+
∫ ∫ [

H(1)(y) + H(1)(y − t) − H(2)(y; t)
] [

H(1)(x + y − t)

+
1
2

(
H(1)(x + t− y) + H(2)(y − x; t) − H(1)(y − x)

)]
g0(t) d3t d3y

}
. (4.13c)

With the same ease other statistical characteristics, pertaining to the prob-
lem (1.1), can be obtained in a closed form. Their evaluation needs, however, a
convenient for numerical implementation solution of the two-sphere problem (4.10).

5. Twin Expansion Solution of the Two-Sphere Problem

In order to find the solution of the two-sphere problem, we shall use the so-
called twin expansion method. We shall expose here only the main idea and the
results, see Ref. 10 for more details. It is to be noted also that a fully similar in
spirit method has been successfully employed already in the respective two-sphere
problems for heat conduction,7,8 elasticity,4 diffraction,9 etc.

Let us introduce two Cartesian systems and two systems of spherical coordi-
nates as shown in Fig. 1. Both spheres are of radius a, the origins of the systems are
at the centers of the spheres, the χ-coordinate is common for them and the distance
between the centers, |O1O2|, is denoted by R, so that

x1 = x2, y1 = y2, z1 = z2 + R.
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Fig. 1.

Then, obviously,
x1 = r1 sin θ1 cosχ, x2 = r2 sin θ2 cosχ,

y1 = r1 sin θ1 sin χ, y2 = r2 sin θ2 sin χ,

z1 = r1 cos θ1, z2 = −r2 cos θ2,

where 0 ≤ r1, r2 < ∞, 0 ≤ θ1, θ2 ≤ π, 0 ≤ χ < 2π.
We start with the formula

1√
kmr2

Kn+ 1
2
(kmr2)Pn(cos θ2) = (−1)n

√
2π

kmR

1√
kmr1

×
∞∑

s=0

(−1)s

N0s
Is+ 1

2
(kmr1)Ps(cos θ1)


 s+n∑

σ=|s−n|
(−1)σb(s0n0)

σ Kσ+ 1
2
(kmR)


 (5.1)

which connects the spherical wave functions given in the two spherical coordinate
systems in Fig. 1. Here Is+ 1

2
and Kσ+ 1

2
denote the respective modified Bessel

functions, N0s =
2

2s + 1
, Ps(x) are the Legendre polynomials and

b(n1m1n2m2)
n = (−1)m2

√
(n1 + m1)!(n2 + m2)!(n − m1 + m2)!
(n1 − m1)!(n2 − m2)!(n + m1 − m2)!

×(n1n200|n0)(n1n2m1,−m2|n, m1 − m2),

with (n1n2m1m2|n, m1 + m2) denoting the Clebsh-Gordon coefficients, see Refs. 1,
8, 9 for details. We recall that a spherical wave function is a particular solution of
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Eq. (1.1) obtained after separating the variables in a spherical coordinate system.
Here, moreover, these solutions will not depend on the coordinate χ due to the
obvious symmetry of the two-sphere configuration (Fig. 1).

We look for the solution H(2)(x; z) of the Eq. (1) in the following form:
—inside the sphere “i” as

H
(2)
(i) = − [k2]

k2
f

+
∞∑

n=0

An

√
a

ri
In+ 1

2
(kfri)Pn(cos θi), i = 1, 2; (5.2a)

—outside the spheres as

H
(2)
(out) =

∞∑
n=0

{
C(1)

n

√
a

r1
Kn+ 1

2
(kmr1)Pn(cos θ1)

+C(2)
n

√
a

r2
Kn+ 1

2
(kmr2)Pn(cos θ2)

}
. (5.2b)

Due to the obvious symmetry of the problem under study we have Cn = C
(1)
n =

C
(2)
n , n = 0, 1, . . . . Thus

H
(2)
(out) =

∞∑
n=0

Cn

{√
a

r1
Kn+ 1

2
(kmr1)Pn(cos θ1)

+
√

a

r2
Kn+ 1

2
(kmr2)Pn(cos θ2)

}
. (5.3)

The coefficients An and Cn are to be found from the boundary conditions—
the continuity of the field H(2)(x; z) and its normal derivative across each spherical
interface (with respect to x; recall that z plays the role of a parameter).

According to Eq. (5.1), we recast the solution (5.2b) of Eq. (1) outside the
spheres as

H
(2)
(out) =

√
a

r1

∞∑
n=0

Pn(cos θ1)
{

CnKn+ 1
2
(kmr1) +

√
2π

kmR

1
N0n

In+ 1
2
(kmr1)

×
∞∑

s=0

(−1)n+sCs


 s+n∑

σ=|s−n|
(−1)σb(s0n0)

σ Kσ+ 1
2
(kmR)




 . (5.4)

Making use of the above mentioned boundary conditions, the orthogonality of
the Legendre polynomials and the fact that b(s000) = 1, s = 0, 1, . . . , see Ref. 9, we
find the following relations between the unknown coefficients

A0I 1
2
(af ) − [k2]

k2
f

= C0K 1
2
(am) +

1
N00

I 1
2
(am)

√
2π

kmR

∞∑
s=0

CsKs+ 1
2
(kmR), (5.5a)

AnIn+ 1
2
(af ) = CnKn+ 1

2
(am) +

1
N0n

In+ 1
2
(am)

√
2π

kmR

766



×
∞∑

s=0

Cs

[ s+n∑
σ=|s−n|

(−1)n+s+σb(s0n0)
σ Kσ+ 1

2
(kmR)

]
, n = 1, 2, . . . ; (5.5b)

A0

[
2afI ′1

2
(af ) − I 1

2
(af )
]

= C0

[
2amK ′

1
2
(am) − K 1

2
(am)

]

+
1

N00

√
2π

kmR

[
2amI ′1

2
(am) − I 1

2
(am)

] ∞∑
s=0

CsKs+ 1
2
(kmR), (5.6b)

An

[
2afI ′n+ 1

2
(af ) − In+ 1

2
(af )
]

= Cn

[
2amK ′

n+ 1
2
(am) − Kn+ 1

2
(am)

]

+
1

N0n

√
2π

kmR

[
2amI ′n+ 1

2
(am) − In+ 1

2
(am)

]

×
∞∑

s=0

Cs


 s+n∑

σ=|s−n|
(−1)n+s+σb(s0n0)

σ Kσ+ 1
2
(kmR)


 , n = 1, 2, . . . . (5.6b)

Simple manipulations, employing the well-known properties

I ′s(x) =
1
2
[
Is+1(x) + Is−1(x)

]
, K ′

s(x) = −1
2
[Ks+1(x) + Ks−1(x)]

of the modified Bessel functions, allow to exclude An from Eqs. (5.5) so that
Eq. (5.6) yields the needed equations for the coefficients Cn:

C0U0 + V0

∞∑
s=0

CsKs+ 1
2
(kmR) = −2

[k2]
k2

f

afI 3
2
(af ),

CnUn + Vn

∞∑
s=0

Cs


 s+n∑

σ=|s−n|
(−1)n+s+σb(s0n0)

σ Kσ+ 1
2
(kmR)


 = 0, (5.7)

n = 1, 2, . . . , where

Un = afKn+ 1
2
(am)

[
In− 1

2
(af ) + In+ 3

2
(af )
]

+amIn+ 1
2
(af )
[
Kn− 1

2
(am) + Kn+ 3

2
(am)

]
, (5.8a)

Vn =
1

Non

√
2π

kmR

{
afIn+ 1

2
(am)

[
In− 1

2
(af ) + In+ 3

2
(af )
]

−amIn+ 1
2
(af )
[
In− 1

2
(am) + In+ 3

2
(am)

]}
, (5.8b)

and af = akf , am = akm are dimensionless parameters, see Eq. (4.6c).
For the coefficients An we get in turn:

A0 =
1

I 1
2
(af )

{
[k2]
k2

f

+ C0K 1
2
(am) +

1
2
I 1

2
(am)

√
2π

kmR

∞∑
s=0

CsKs+ 1
2
(kmR)

}
, (5.9a)
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An =
1

In+ 1
2
(af )

{
CnKn+ 1

2
(am) +

1
N0n

In+ 1
2
(am)

√
2π

kmR

×
∞∑

s=0

Cs


 s+n∑

σ=|s−n|
(−1)n+s+σb(s0n0)

σ Kσ+ 1
2
(kmR)




 , n = 1, 2, . . . . (5.9b)

In this way the two-sphere problem (4.10) is reduced to the solution of the
infinite system of linear equations (5.7) for any given separation distance R between
the spheres.

Note that if the spheres are well apart, the following asymptotic formula for
the coefficient A0 holds

A0 =
[k2]
k2

f

√
πaf

2
1 + am

af coshaf + am sinh af
+ o

(
1√
Rm

e−Rm

)
, Rm � 1 (5.10)

which is a simple consequence of Eqs. (5.7), (5.8a), (5.9a) and the well known asymp-
totic behaviour of the spherical Bessel functions; Rm = Rkm is the dimensionless
distance.

The natural numerical procedure to solve the system (5.7) is the method of
truncation. Namely, assuming Cn = 0 at n > N in Eq. (5.7), we get a linear system
of N + 1 equations for the first N + 1 coefficients Cn, n = 0, 1, . . . . Solving the
latter, we find the approximate values C

(N)
n of these coefficients. Then, at N → ∞,

the approximations C
(N)
n will converge to the exact values Cn. The proof of this

fact, i.e., the justification of the truncation method, needs a bit more detailed
investigation of the asymptotic behaviour of the coefficients in the system (5.7),
which is performed in Ref. 10.

Due to the exponential decay of the modified Bessel functions Kn+ 1
2
(x), n =

0, 1, . . . , the series solution developed in the present section converges very rapidly
when the spheres are well apart. For instance, to obtain the values of the coefficients
An, Cn and the field H(2)(x; z) with three decimal digits, it suffices to take N = 10
if R/a ≥ 3. However, as the spheres approach each other, more equations should
be kept in the truncated system, e.g., at 2.1 < a/R < 3 we should take N = 20 in
order to have the same three decimal digits correct.

6. Results and Discussion

Having described an effective procedure for solving the two-sphere problem
(4.10) (Section 5), we are now in a position to evaluate numerically all statistical
characteristics connected with the solution of Eq. (1.1). We start with the simplest
one—the effective sink strength k∗2 of the dispersion. Since the c-coefficient b1

is given in Eqs. (4.13b) and (4.11b) in a closed form, we are interested in the
c2-coefficient only. Upon inserting the solutions (4.6) and (5.2) for the one- and
two-sphere problems, respectively, into Eq. (4.11c) and using the orthogonality of
the Legendre polynomials, we find

b2 = b2
1 + 9

[k2]
k2

m

I 3
2
(af )

afa3
m

∫ ∞

2am

R2
mg0(Rm/km)G0(Rm) dRm,
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G0(Rm) = A0(Rm) − [k2]
k2

f

√
πaf

2
1 + am

af coshaf + am sinh af
, (6.1)

where Rm = Rkm, A0(Rm) = A0 is the value of the coefficient A0 in the spherical
wave expansion (5.2a) for the function H(2)(x; z). According to Eq. (5.10), the func-
tion G0 decays exponentially at infinity which guarantees the absolute convergence
of the integral in Eq. (6.1). The truncation method for the system (5.7) is then
used together with the Simpson formula for numerical integration. The number
of equations N in the truncated system is so chosen as to guarantee three correct
decimal digits for the values of A0 (see the comments at the end of Section 5). The
integral in Eq. (6.1) is replaced by one over the finite interval (0, R0

m); using the
asymptotic (5.10), the value R0

m is so chosen, in turn, as to make the contribution
of the integral over the interval (R0

m,∞) less than 0.0001. The step in the Simp-
son integration formula for the remaining integral over the finite interval (0, R0

m) is
appropriately decreased until the three decimal digits of the values of the integral
become stable. The obtained numerical values of the coefficient b2 are given in the
Table 1 for the simplest case when g0(r) = 1 at r ≥ 2a and vanishes otherwise.

TABLE 1

Values of the c2-coefficient b2 of the sink strength of the dispersion
at am = akm = 1, 10 and various af = akf .

af/am 0.01 0.1 0.25 0.5 1 2 5 10 100

am = 1 0.792 0.748 0.650 0.381 0 1.801 10.219 15.927 22.624

am = 10 4.492 3.402 2.604 1.729 0 0.248 0.390 0.426 0.430

Some comments, concerning the values of b2, as shown in Table 1, are war-
ranted. Let us recall the result of Papanicolaou, see, e.g., Ref. 17, concerned with
the limiting cases of Eq. (1.1). First, if af , am 
 1, then k∗2 ≈ ck2

f + (1 − c)k2
m,

i.e.,
k∗2

k2
m

= 1 + c
[k2]
k2

m

. This means that b2 
 1 if af 
 1 and af/am < 1.

Second, if af , am � 1, then

1
k∗2 ≈ c

k2
f

+
1 − c

k2
m

, i.e.,
k∗2

k2
m

≈ 1

1 + c
[k2]
k2

f

,

so that

b2 ≈
(

[k2]
k2

f

)2

=

(
(af/am)2 − 1

a2
f/a2

m

)2

< 1

at am � 1 and af/am > 1, approaching 1 as af/am → ∞.
Considerable values of b2 are this to be expected only when am and af have

widely different magnitudes, say, am ≤ 1 and af � 1, or af = 1, am � 1. The
numerical results, shown in Table 1, confirm this conclusion.
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TABLE 2

Autovariance F (0); am = 1;
af = 0.1, 10; c = 0.05, 0.10, 015.

c 0.05 0.10 0.15

af = 0.1 0.006 0.013 0.022

af = 10 0.154 0.420 0.799

The numerical evaluation of the covariance function Mϕ
2 (x), as given in

Eq. (4.13), is performed in the same manner as that of b2. In Table 2 the val-

ues of the (dimensionless) autovariance F (0) =
k4

m

K2
Mϕ

2 (0) are first shown, for

c = 0.05, 0.10 and 0.15. (Since Eq. (4.14) is correct to the order c2 only, the values
it predicts for c > 0.15 are already unreliable.)

In turn, the values of the correlation function

ρϕ
2 (r) =

Mϕ
2 (r)

Mϕ
2 (0)

=
F (r)
F (0)

, r = |x|,

are given in Tables 3 and 4 as functions of the dimensionless length r/a for the
same values of am, af and c. The results shown in these tables indicate that the
two-point correlation is not very sensitive to the sphere fraction c, especially at
af > am (Table 4). Thus we can approximately factorize Mϕ

2 (r)

Mϕ
2 (r) ≈ Mϕ

2 (0)m(r/a),

where m(r/a) does not depend on the volume fraction c; the fraction c influences
strongly only the autovariance function Mϕ

2 (0), see Table 2.

TABLE 3

Dimensionless two-point correlation function ρϕ
2 (r/a);

am = 1, af = 0.1; sphere fractions c = 0.05, 0.10, 015.

x/a 0 1 2 3 4 5 6 7

c = 0.05 1 0.707 0.379 0.155 0.052 0.017 0.006 0.001

c = 0.10 1 0.735 0.402 0.167 0.061 0.023 0.008 0.002

c = 0.15 1 0.757 0.420 0.180 0.067 0.025 0.009 0.003

TABLE 4

The same as in Table 3 for af = 10.

x/a 0 1 2 3 4 5 6 7

c = 0.05 1 0.755 0.423 0.194 0.078 0.031 0.012 0.005

c = 0.10 1 0.776 0.451 0.211 0.088 0.036 0.014 0.005

c = 0.15 1 0.788 0.464 0.221 0.094 0.039 0.015 0.006
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