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ABSTRACT

The paper is concerned with the problem of predicting macroscopic properties of solids,
containing randomly distributed penny-shaped microcracks. It is proposed to employ the
formalism of marked sets of random points, treating the mark as orientation of the crack
located at a given point. As a first and simplest application of this approach the so-called
first-order cluster bound of Torquato (1986 J. Chem. Phys. 84, 6345–6359) on the effective
scalar conductivity is derived. It turns out that the bound does not depend on the two- and
three-point statistics of the distribution of cracks, unlike the case of dispersions of spheres
or spheroids. The “optimality” of the bound within a much wider class of “cluster type”
trial fields is demonstrated. In the elastic case the cluster bounds are explicitly derived as
well, and are again found to be independent of cracks’ statistics. In both scalar and elastic
cases the bounds coincide with the so-called “approximation of non-interacting cracks” thus
rigorously proving that for the assumed isotropic cracks’ statistics the interactions always
decrease the conductivity and the elastic moduli of a microcracked solid.

1. INTRODUCTION

The paper is devoted to the problem of the macroscopic behaviour of solids, containing
randomly distributed penny-shaped microcracks. As is well known, the literature on this
subject is extensive, and many of the basic references can be found in the comprehensive
review paper of Kachanov (1992) [see also Section II.6 of the book of Nemat-Nasser and Hori
(1993) for an elucidating introduction]. We shall point out only that there exist two main
approaches to the problem that differ, above all, in the way the cracks are introduced and
treated. The first one, adopted, e.g., in the pioneering works of Bristow (1960), Walsh (1965),
Budiansky and O’Connell (1976) and many others, deals directly with the singular stress field
generated by a single crack, considered as a cut [or a slit in 2-D] along a surface within the



body. For example, in the dilute case the change of the elastic energy introduced by a single
crack has been used to produce rigorous results, in the first order in crack density, for the
overall elastic moduli of a solid (Bristow, 1960; Walsh, 1965). However, this approach invokes
from the very beginning a number of specific notions and results from fracture mechanics
such as energy release rate, stress concentration factors, etc. The second approach addresses
first the more general situation concerning the overall behaviour of a random [or aligned]
dispersion of oblate spheroids and then, in the obtained results, the “crack” limit is taken in
which the aspect ratio of the spheroids tends to zero and hence they degenerate into penny-
shaped cracks in 3-D [or just slits in 2-D]. This approach has been advocated and successfully
utilized by a number of authors, to mention only Willis (1977), Benveniste (1987), Huang
et al. (1993) and recently by Ponte Castañeda and Willis (1995). In the author’s view
this second approach is preferable and more fruitful in general [apart from the possibility
to treat in an entirely similar manner short-fiber composites by modelling them again as
dispersions of spheroids, but prolate]. The reason is that the theory of microcracked solids
can be naturally included in this way within the more general and widely examined theory
of two-phase particulate media as a simple [at least conceptually if not technically] limiting
particular case. In turn all the general and intuitively appealing ideas from mechanics of
such media which try to incorporate, to some extent, inclusion interactions—self-consistency
(Budiansky and O’Connell, 1976), differential scheme (Hashin, 1988), Mori-Tanaka method
(Benveniste, 1985, 1987), etc.—can be easily recast and adapted for a microcracked solid
in the “crack” limit. With similar ease the variational bounds on the effective properties
of dispersions of spheroids, derived by Willis (1977, 1980) and Ponte Castañeda and Willis
(1995), using the Hashin-Shtrikman (HS) variational principle (Hashin and Shtrikman, 1962),
produce in the “crack” limit rigorous and nontrivial estimates on the effective properties of
microcracked solids.

The second approach has one more advantage that we want to emphasize and exploit
to a certain extent here. Namely, it allows us to introduce the useful formalism of marked
sets of random points into the theory of microcracked solids. The basic idea is simple
and physically clear: each spheroid is specified by a random point—its center—to which a
“mark” that describes its orientation is associated. Then, from a statistical point of view, the
dispersion is characterized by the random density field of a type of Stratonovich (1963). This
allows in turn use of the formalism of functional [Volterra-Wiener] series as employed by the
author in a number of studies (Markov, 1991; Markov and Zvyatkov, 1991, 1995; Markov and
Christov, 1992, et al.). Details and the needed formulae are given in Section 2. As a nontrivial
application of this formalism the evaluation of the so-called cluster bound of Torquato (1986)
and a certain generalization will be addressed here. This bound follows from the classical
variational principle if one uses trial fields formed as superpositions of the single inclusion
[i.e. single spheroid] fields, multiplied by an adjustable scalar parameter. To this end it is
necessary that the single spheroid field be recalled in Section 3 in the scalar context, focusing
on its asymptotic form in the above mentioned “crack” limit. The variational procedure in
the “marked” case is discussed in Section 4, where first the cluster bound is derived in a
general form containing the two- and three-point probability densities for the random set of
cracks’ centers. The explicit form of the bound is evaluated in the scalar context in Section 5
which, from a formal and technical point of view is central for the paper. In Section 6 a
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natural generalization of the cluster bound is discussed in which the single spheroid solution
is replaced by an adjustable kernel. The central result there is the fact that this bound
cannot be improved, if much wider class of trial fields is employed. The most curious finding,
however, is that the cluster bound does not feel both two- and three-point crack statistics,
depending only on crack density. Treating the elastic case is conceptually and technically
straightforward and is very briefly discussed in Sections 7 and 8. The cluster bounds on
the effective bulk and shear moduli in this case coincide [in 3-D] with the prescriptions
of the so-called “approximation of non-interacting cracks” or, which is the same, with the
prescriptions of the Mori-Tanaka type approximation [see Benveniste, 1987 and especially, the
review papers of Kachanov, 1992], being again independent of the statistics. This rigorously
proves that for the assumed isotropic cracks’ statistics the interactions always decrease the
conductivity and the elastic moduli of a microcracked solid. The concluding Section 9
contains a brief discussion of plausible reasons for the observed independence of statistics of
the cluster bounds, as well as some of the possible further generalizations of the approach.

2. RANDOM DISPERSIONS OF SPHEROIDS

Consider a random array of identical and nonoverlapping oblate spheroids with semiaxes
a = b > c. The array is assumed statistically homogeneous. The spatial orientation ω of
each spheroid is specified by the unit vector e3 = eω directed along the shortest semiaxis c.
The array is uniquely determined by the set S =

{
xj,ωj

}
, comprising the location xj ∈ R3

of the jth spheroid center and its orientation ωj ∈ Ω; hereafter Ω = {z ∈ R3 | |z| = 1}
denotes the unit sphere in R3. The arguments in the sequel will be fully similar in the 2-D
case, when the spheroids are replaced by aligned elliptical cylinders whose cross-sections have
semiaxes a and c, a > c. The orientations ω of the ellipses are specified again by the unit
normal vectors e2 = eω, directed along the shorter semiaxis, which span this time the unit
circle Ω = {z ∈ R2 | |z| = 1} in R2, centered at the origin. For brevity, we shall sometimes
speak of spheroids in the 2-D case as well.

The set S can be treated as a marked system of random points in the sense that with
each point xj its “mark” ωj is associated, interpreted here as the orientation of the spheroid,
located at xj. [For the general definition and basic properties of sets of marked random points
see Snyder (1975).]

The set S is defined statistically by the multipoint probability densities Fk such that

dP = Fk(y1, . . . ,yk; ω1, . . . ,ωk) dy1 . . . dyk dSΩ1 . . . dSΩk
(2.1)

is the probability to find simultaneously in the vicinities yi < y < yi + dyi of the spatial
positions yi, k members of the system with marks (i.e. with orientations) ω ∈ Ω, whose
end points lie in the vicinities dSΩi

of the points ωi ∈ Ω, respectively (i = 1, . . . , k). The
condition of nonoverlapping yields certain restrictions on the functions Fk which would be
quite complicated in general, especially if there exists a spatial correlation between location
and orientation of the spheroids.

We shall adopt, however, the first of our basic simplifying assumptions, namely, that there
is no such correlation, i.e. spatial location and orientation are statistically independent. Then
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the probability density functions factorize

Fk(y1, . . . ,yk; ω1, . . . ,ωk) = fk(y1, . . . ,yk)Pk(ω1, . . . ,ωk). (2.2)

The no long-range order hypothesis is assumed (Willis, 1981), so that fk(y1, . . . ,yk) → nk

when |yi − yj| → ∞, for all i, j = 1, 2, . . . k, i 6= j, k ≥ 2, and n is the number density of
the spheroids.

The second basic assumption, adopted hereafter, is that the spatial orientation of different
spheroids is also statistically independent—the orientation of a given spheroid does not
influence the orientation of any of the rest. This means that the mark density functions Pk

factorize as well
Pk(ω1, . . . ,ωk) = P (ω1) . . . P (ωk), (2.3)

for any k.
A simple condition that suffices (but is not necessary of course) to forbid overlapping of

cracks reads, in terms of the functions fk, as

fk(y1, . . . ,yk) = 0, if |yi − yj| ≤ 2a for a pair i 6= j, (2.4)

(i, j = 1, . . . , k), since, if the centers of two spheroids lie closer than 2a, their orientations
cannot be mutually independent due to the fact that overlapping is forbidden. The condition
(2.4) is assumed by many authors, e.g., by Kanaun (1980) or Ponte Castañeda and Willis
(1995). As pointed out by Kachanov (1992, p. 324), its imposition makes the effective
moduli of the microcracked solid a bit “softer,” since crack configurations of shielded type,
say, closely located parallel cracks, are excluded. This fact is also corroborated by Kanaun’s
approximate scheme (Kanaun, 1980) in which the values of the effective properties for a solid,
containing a Poissonian system of cracks, do decrease, if the nonoverlapping assumption is
additionally imposed.

Note that the assumption (2.4) can be simply interpreted in the following manner. Insert
each spheroid within a sphere of radius a, both having a common center. Equation (2.4)
then means that the so appearing spheres are impenetrable and hence their volume fraction
is αd = nVa, i.e.

α3 = 4
3
πna3 (in 3-D) or α2 = πnα2 (in 2-D); (2.5)

recall that n is the number density of the spheroids. Since the maximum packing value for
impenetrable spheres is close to 0.65 – 0.7 in both 3-D or 2-D cases, the theory that follows
is realistic, concerning realizable random distributions, only at values of αd not exceeding
these maximum packing values. Hence, to be on the safe side, we shall assume in the sequel
that αd ≤ 0.6. Though the basic ideas of the approach herein proposed are applicable for
higher values of αd as well, the price is severe: Allowing the above mentioned spheres to
intersect, one has to reject immediately the factorization assumptions (2.2) and (2.3) and to
take into account the fact that if, say, the centers of two spheroids are closer than 2a, not
all of their orientations are realizable, due to the nonoverlapping assumption. The resulting
analysis, if analytically tangible at all, would be extremely cumbersome.

Another interpretation of (2.4) is that the spheroid, centered at xj is surrounded by a
“security” sphere of the radius 2a, also centered at xj, such that the centers of the rest of
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the spheroids are forbidden to fall within this sphere, for all j = 1, 2, . . . . Note that a more
general situation, when the spheroids can be prolate as well and their spatial distribution
possesses macroscopic symmetry of a similar ellipsoidal type, has been recently treated by
Ponte Castañeda and Willis (1995), using earlier ideas of Willis (1977).

The statistical homogeneity of the array under study yields, in particular,

F1(y,ω) = nP (ω). (2.6)

The function P (ω) satisfies the obvious condition∫
Ω
P (ω) dω = 1.

Moreover, we shall assume that there is no preferable orientation of the spheroids, which
means that

P (ω) =
1

4π
(in 3-D) or P (ω) =

1

2π
(in 2-D). (2.7)

A convenient statistical description of the set S, corresponding to the array of spheroids
under study, is the marked random density function of the type of Stratonovich (1963)

ψ(x; ω) =
∑
j

δ(x− xj) δ(ω − ωj). (2.8)

The moments of the field ψ(x; ω) can be expressed by the multipoint probability densities Fk

and vice versa; the general formulae are given in Stratonovich (1963) [in the “non-marked”
case, but their generalization to the “marked” one is straightforward and causes no problems].
Under the simplifying assumptions (2.2) and (2.3) the first few moments of ψ(x; ω), needed
in what follows, are

〈ψ(y; ω)〉 = F1(y; ω) = nP (ω),

〈ψ(y1; ω1)ψ(y2; ω2)〉 = nP (ω1)δ(y1,2)δ(ω1,2) + f2(y1,2)P (ω1)P (ω2),

〈ψ(y1; ω1)ψ(y2; ω2)ψ(y3; ω3)〉 = nP (ω1)δ(y1,2)δ(y1,3)δ(ω1,2)δ(ω1,3)

+3
{
f2(y1,2)P (ω1)P (ω2)δ(y1,3)δ(ω1,3)

}
s
+ f3(y1,y2,y3)P (ω1)P (ω2)P (ω3), (2.9)

etc., where
{
·
}

s
denotes symmetrization [more precisely, one third of the sum of the three

terms obtained by means of the cyclic change 1 → 2 → 3 → 1 of the indices in the brackets].
For brevity hereafter we denote yi,j = yi − yj and ωi,j = ωi − ωj; due to the assumed
statistical homogeneity f2(y1,y2) = f2(y1 − y2).

The microcracked solids in 3-D in the sequel, as already pointed out, will be viewed as
limiting cases of solids, containing spheroidal cavities when the aspect ratio w = c/a → 0.
Similarly, in 2-D we shall deal with a solid containing aligned elliptical cavities and take again
the limit as w = c/a → 0, assuming the external traction to be applied perpendicularly to
the cylinders’ axes. In the quest for the effective behaviour of such solids, we shall encounter
certain quantities depending on the aspect ratio w, averaged over all possible orientations of
the spheroids. The basic interest for us will lie in the limits of these quantities when w → 0,
i.e. when the cavities degenerate into cracks [penny-shaped in 3-D and aligned cylindrical
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ones in 2-D]. The needed limits can be easily found, as it will be seen, making use of the
following basic lemma.

Lemma 2.1. Let hω(x) = h(x; ω) be the characteristic function of a spheroid located at
the origin, with the orientation ω. Then in Rd (d = 2, 3), and under the assumption (2.7),

lim
w→0

1

w

∫
Ω
h(x; ω)P (ω) dω = Hd(ρ)ha(x), (2.10a)

where ha(x) is the characteristic function of a sphere [in 3-D] or of a disk [in 2-D] of radius
a, located at the origin, ρ = r/a, r = |x|, and

Hd(ρ) =
bd
ρ

√
1− ρ2, bd =


2

π
in 2-D,

1 in 3-D.

(2.10b)

Note that the explicit form of the function Hd(ρ) is given here for the sake of completeness
only since it will not be needed in the present study. Only the following property∫

Sa

H2(ρ) dx = Sa (in 2-D) or
∫

Va

H3(ρ) dx = Va (in 3-D) (2.11)

of Hd(ρ) will be repeatedly used. [It can be deduced immediately from equation (2.10a), if
one integrates both sides of the latter over the unit disk [or ball], noticing that

∫
h(x; ω) dx

equals the volume of the appropriate ellipse (or ellipsoid)]. A simple geometrical proof of
Lemma 2.1 will be given elsewhere.

Corollary 2.1. Let eω be the unit vector along the shorter semiaxis c of the ellipsoid or
ellipse in the 3-D and 2-D cases respectively. Then in Rd (d = 2, 3)

lim
w→0

1

w

∫
Ω
eωeω h(x; ω)P (ω) dω =

1

d− 1
ha(x)Hd(ρ) r∇∇ r, (2.12)

with the notations used in Lemma 2.1.
Proof. Due to obvious symmetry, the second-rank tensor in the left-hand side of (2.12) has

the form ha(x)A(r) [ I−B(r) erer ], with I denoting the unit second-rank tensor, er = x/r.
It is clear on the other hand that, in the limit w → 0, h(x,ω) 6= 0 only for er ⊥ eω which
implies that B(r) = 1. A simple contraction then immediately yields (2.12), taking into
account (2.11) and the formulae I− er er = r∇∇ r, tr ( I− er er ) = r∆r = d− 1.

3. THE SINGLE SPHEROID FIELD AND ITS AVERAGING

Denote by T (1)(x; ω) the disturbance to the temperature field G · x in an unbounded
matrix of conductivity κm, produced by the presence of a single spheroidal inhomogeneity
Sω of conductivity κf , located at the origin. The field T (1)(x; ω) is the continuous and
everywhere bounded solution of the equation

κm∆T (1)(x; ω) + [κ]∇ ·
{
h(x; ω)[G +∇T (1)(x; ω)]

}
= 0, [κ] = κf − κm. (3.1)
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As is well-known, the gradient ∇T (1)(x; ω) is constant within Sω

∇T (1)(x; ω) = B(ω) ·G, x ∈ Sω. (3.2)

The second rank tensor B(ω) [we underline its dependence on the orientation ω] is well-
known [see, e. g., the book of Mura, 1988], and it has the form

B(ω) = A(ω)− I, A(ω) = (I + [κ]P)−1 , P = − 1

κm

∇∇ϕω, (3.3)

where P is the so-called P-tensor for the case under study, when there is only one kind of
inclusions, immersed into a matrix of conductivity κm [see, e.g., Willis, 1978], and ϕω(x) =

(hω ∗G0) (x) =
∫
h(x−y; ω)G0(y) dy denoting the Newtonian potential for the spheroid Sω;

G0(y) is the Green function for the Laplace operator in Rd, i.e. 1/4π|x| in 3-D or − ln |x|/2π
in 2-D. Recall that the potential ϕω solves the equation ∆ϕω(x) + h(x; ω) = 0. An obvious
consequence of the latter equation, when comparing it with (3.1) and (3.2), is that

T (1)(x; ω) =
[κ]

κm

G · (I + B(ω)) · ∇ϕω(x). (3.4)

In turn, citing Mura (1988) or Muratov (1975):

∇∇ϕω = −M⊥(e1e1 + e2e2)−Me3e3, x ∈ Sω, (3.5a)

where, for an oblate spheroid (w < 1)—the only case of interest for us in this study—one
has

M⊥ =
1

2
(1−M) =

π

4
w + o(w), M =

1

e2

(
1− w

e
arcsin e

)
= 1− π

2
w + o(w), (3.5b)

with e1, e2, e3 denoting the orthonormal vectors along the semiaxes of the spheroids Sω, such

that ω = e3; e =
√

1− w2 is spheroid’s eccentricity. The obvious asymptotic expansions of
the quantities M⊥ and M in the limit w = c/a→ 0 are given as well in (3.5b).

Having in mind the application to microcracked solids, only the case of a spheroidal
cavity will be treated hereafter, i.e. κf = 0. In this case

B(ω) =
M⊥

1−M⊥
(e1e1 + e2e2) +

M

1−M
e3e3 (3.6)

[see eqs (3.3) to (3.5)]. Hence in the limit w = c/a → 0, i.e. when the cavities degenerate
into penny-shaped cracks,

A(ω) ∼ B(ω) =
2

πw
e3e3 +O(1) in 3-D, (3.7a)

as it easily follows from (3.5) and (3.6). The sign ∼ hereafter indicates that both tensors
A(ω) and B(ω) have the same leading term in their asymptotic expansions in the limit
w → 0.
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In 2-D, as already pointed out, instead of a spheroid, we have an elliptical cylinder with
semiaxes a > c of its the cross-section Sω. Then ∇∇ϕω = −M1e1e1 −M2e2e2 , where e1

and e2 are the orthonormal vectors along the semiaxes of Sω, such that e2 = eω is along the
shorter axis c. In the limit w = c/a → 0 one has M1 = w + o(w) and M2 = 1 − w + o(w)
[see again Mura, 1988, or Muratov, 1975]. In turn, according to (3.3), this means that in
2-D the tensor B(ω) [at κf = 0 again] has in the same limit w → 0 the form

A(ω) ∼ B(ω) =
1

w
e2e2 +O(1) in 2-D. (3.7b)

The formulae (3.7a, b) can be written in both 2-D and 3-D as

A(ω) ∼ B(ω) =
Kd

w
eωeω +O(1), Kd =


1 in 2-D,

2

π
in 3-D.

(3.7c)

Note that Kd is a certain kind of a “stress-concentration” factor for the ellipsoidal cavity
in the scalar conduction problem under discussion, in its degeneration into a crack.

The asymptotic formulae (3.7) will play a central role later on [Sections 5 and 6] when
evaluating the appropriate coefficients in the variational estimate on the effective conductiv-
ity of the microcracked solid. Together with Lemma 2.1 and its Corollary 2.1 they allow us
to show, in particular, that the field

U (1)(x) = lim
w→0

∫
Ω
T (1)(x; ω)P (ω) dω (3.8)

is finite everywhere in Rd (d = 2, 3). The explicit form of U (1)(x) can be found by means of
Lemma 2.1, but it will not be needed in the sequel.

4. THE VARIATIONAL PROCEDURE

Let κ(x;S) be the conductivity field of the dispersion for a given realization S = {xj,ωj}
of spheroid centers and orientations. In the heat conduction context assume that the
spheroids possess conductivity κf = 0 and the matrix κm, that is,

κ(x;S) =

{
κm, if x ∈ matrix,

0, if x ∈ spheroids.
(4.1)

With the aid of the random density field (2.8), this field admits a simple integral represen-
tation

κ(x;S) = κm

(
1−

∫
Rd

∫
Ω
h(x− y; ω)ψ(y; ω) dy dω

)
= 〈κ(x;S)〉+ κ′(x;S),

where
κ′(x;S) = −κm

∫
Rd

∫
Ω
h(x− y; ω)ψ′(y; ω) dy dω (4.2)
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is the fluctuating part of the field κ(x;S). Obviously,

〈κ(x;S)〉 = κm(1− nVω) → κm as w → 0, (4.3)

due to (2.9), where Vω is the volume of a single spheroid and n denotes the number density
of the spheroids. In (4.2), ψ′(y; ω) = ψ(y; ω) − nP (ω) is the fluctuating part of ψ(y; ω),
so that 〈ψ′(y; ω)〉 = 0. [If not explicitly indicated, the integration hereafter with respect to
spatial coordinates is over the whole Rd, and that with respect to the “mark,” i.e. spheroid’s
orientation, is over the unit sphere (or circle) Ω.]

The heat conduction through the dispersion is governed by the equations

∇ · (κ(x;S)∇θ(x;S)) = 0, 〈∇θ(x;S)〉 = G, (4.4)

where θ(x;S) is the random temperature field and G is the prescribed value of the macro-
scopically imposed temperature gradient. Then

〈κ(x;S)∇θ(x;S)〉 = κ∗G, (4.5)

with κ∗ denoting the effective conductivity of the dispersion and the brackets 〈·〉 standing
for ensemble averaging. It is emphasized however that the latter hereafter is over the set of
all possible realizations of both locations and orientations of the spheroids.

Replace now (4.4) with the variational principle of classical type

κ∗G2 ≤ W [θ̃(·)], W [θ̃(·)] = 〈κ(x;S) |∇θ̃(x;S)|2〉. (4.6)

The functional W is considered over the class of fields with a prescribed mean gradient
〈∇θ̃(x;S)〉 = G. The minimum value of W is achieved on the actual temperature field
θ(x;S) which solves the problem (4.4).

The proof of the variational principle (4.6) is entirely similar to the non-marked case when
ensemble averaging is used [see Beran, 1968, and especially the reasoning in the footnote on
pages 128, 129 there]. The only difference is that while the realizations in the non-marked
case are point sets in R3, in the marked case they are again point sets, but in R3×Ω, which
conceptually does not influence the reasoning at all. That is why the proof of the principle
(4.6) will be omitted.

In the sequel a simple Ritz type procedure for the functional (4.6) will be employed,
namely, trial fields of the form

θ̃(x;S) = G · x + λθ1(x;S) (4.7)

will be chosen, where λ is an adjustable parameter, and θ1(x;S) is fixed, with the only
constraint that 〈θ1(x;S)〉 = 0. Recall that the idea of using trial fields (4.7) for bounding the
effective properties of heterogeneous solids was originated by Beran (1965), who additionally
took θ1 in a form suggested by the first-order term in the perturbation solution for a weakly
inhomogeneous two-phase medium. In the context under discussion, this choice of Beran
means that

θ1(x;S) = G ·
∫
∇G0(x− y)κ′(y;S) dy, (4.8)
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where G0(x) is the above mentioned Green function for the Laplace operator in Rd. In the
resulting bound [having optimized the functional (4.6) over the class (4.7) with respect to
λ], the two- and three-point moments of the field κ′(x,ω) will enter, e.g., Mκ

2 (y1 − y2) =
〈κ′(y1;S)κ′(y2;S)〉, etc. However, a simple check using equations (4.2), (2.9) and Lemma
2.1 [more precisely, only the fact that∫

Ω
h(x; ω)P (ω) dω = O(w)

as the aspect ratio w → 0], demonstrates that Mκ
2 → 0 as w → 0. The same conclusion

holds true for the three- [and multi-] point moments of the field κ′(x,ω). This means that
in the “crack” limit w → 0 the conductivity field κ(x;S) [see (4.1)] does not “feel” at all
the presence of the cracks, i.e. it coincides, from a statistical point of view, just with the
constant field κm, pertaining to a homogeneous matrix with no defects. In other words the
trial fields (4.8) lose the information about the shape of the inclusion when w → 0. As a
consequence, the exact counterpart of the original Beran’s bounds, corresponding here to
the field θ1(x) from (4.8), will yield for the microcracked solid the trivial upper bound κm.

The above result indicates that nontrivial bounds for the effective properties of cracked
materials can be only obtained if one employs trial fields that retain information about the
shape of the inclusions after taking the appropriate limit [w → 0 in our case]. At least two
classes of such trial fields can be immediately proposed. The first is a natural modification of
the Beran choice (4.7)—(4.8). The second class will yield the so-called cluster bounds on the
effective properties, which are of central interest in the present study. The common feature
of both classes, as we shall see, is the replacement of the conductivity field κ(x;S) by the
random density field ψ(x;S) in the right-hand side of (4.8), together with an appropriate
change of the kernel function in the integrand there.

The first class of trial fields that leads to a nontrivial upper bound on the effective
properties emerges if we divide the right-hand side of (4.8) by the aspect ratio w

θ
(b)
1 (x;S) =

1

w
G ·

∫
∇G0(x− y)κ′(y;S) dy.

Inserting here the representation (4.2) of κ′(x;S) gives

θ
(b)
1 (x;S) = κm

∫ ∫
T (b)(x− y; ω)ψ′(y; ω) dydω, (4.9)

where ψ′(x; ω) = ψ(x; ω)−nP (ω) is the already mentioned fluctuating part of ψ(x; ω), and

T (b)(x; ω) = − 1

w
G · ∇ϕω(x). (4.10)

It can be easily seen that in the “crack” limit w → 0 the appropriate integrals containing
the ratio ∇ϕω(x)/w do not degenerate. Also, the moments of the field ψ′(y; ω) depend on
the statistics of the cracks’ centers only. Thus optimizing, with respect to λ, the energy
W over the class (4.7) at θ1 = θ

(b)
1 produces a nontrivial upper bound, κb, on the effective

conductivity, which can be called the modified Beran bound; accordingly, T (b)(x; ω) should
be then called the modified Beran kernel. Due to reasons to be explained below, there is no
need to examine κb in full detail.
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It is now clear that other nontrivial bounds can be extracted from trial fields in the
form (4.9) if one replaces T (b)(x; ω) by any kernel with a similar to T (b)(x; ω) asymptotic
behaviour in the “crack” limit. [The problem about the “best” such kernel is postponed until
Section 6.] In particular, we can replace T (b)(x; ω) by the single spheroid field T (1)(x; ω),
discussed in Section 3, which possesses in the said limit the asymptotic form

T (1)(x; ω) ∼ −Kd

w
G · eωeω · ∇ϕω(x), (4.11)

similar to (4.10), see (3.4) and (3.7). Hence instead of the Beran type choice (4.9), let us
take in (4.7)

θ1(x;S) = θ
(cl)
1 (x;S) =

∫ ∫
T (1)(x− y; ω)ψ′(y; ω) dy dω. (4.12)

As a matter of fact the resulting bound will be just the so-called [first-order] cluster bound of
Torquato (1986). The reason is clear, if one recalls the definition (2.8) of ψ(y; ω): the field

θ
(cl)
1 (x,ω) represents a superposition of disturbances, introduced by the inclusions (spheroids)

if each of them were alone in the unbounded matrix, subjected to constant temperature
gradient at infinity. This interpretation indicates that the choice of the kernel as T (1)(x; ω)
is indeed most natural since for a dilute array of spheroids the temperature is a superposition
of the single-spheroid fields, centered at the points xj. The adjustable parameter λ allows
then to account, at least to a certain degree, for the mutual interaction of the spheroids
when their concentration becomes higher.

As emphasized by Torquato (1986), the Beran and cluster bounds do not coincide in
general, and their evaluations rely on different amounts of statistical information about the
medium constitution. These bounds coincide only in certain special cases, e.g., for disper-
sions of nonoverlapping spheres (Torquato, 1986; Markov and Zvyatkov, 1987). [Torquato
(1986) also noted that for some important random constitutions the cluster bounds are eas-
ier to be evaluated, say, for dispersions of overlapping spheres.] For microcracked solids the
difference between the Beran and cluster bounds is even more striking: While the former
degenerates for such solids, as already demonstrated, the latter provides a nontrivial upper
bound on the effective conductivity under study [Section 5]. Even the modified Beran bound
[corresponding to the kernel (4.10)], though nontrivial in the “crack” limit, is inferior to the
cluster one, as we shall see below.

It is remarked that trial fields of the “cluster type” (4.12) seem to have first been used by
Weissberg (1963) in the context of diffusion in a porous solid. A similar idea for bounding
the elastic moduli of cracked bodies [fiber composites, to be precise] was used, perhaps for
the first time, by Gottesman et al. (1980) but without optimizing with respect to λ. The
authors just took λ = 1 and evaluated the elastic energy for the superposition of the single
crack fields in the composite [see their equation (3.3), p. 753], which lead to fairly simple
estimates on the needed moduli. As we shall see, this intuitive choice of λ turns out to be
very appropriate, due to reasons which will be discussed later [Section 5].

It is important to emphasize also that introducing the fluctuating part ψ′(x; ω) in
(4.12), instead of the field ψ(x; ω) itself, is important from a formal point of view, since
in this way all the integrals that appear in the sequel are absolutely convergent and thus
there is no need for a [tacit or explicit] “renormalization” of conditionally convergent inte-
grals.
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Now, to evaluate the cluster bounds, (4.12) and (4.7) should be inserted into the energy
(4.6), thus turning the latter into a quadratic function of λ

W = W (λ) = κm(A− 2Bλ+ Cλ2), (4.13a)

with the coefficients
A = G2〈κ〉/κm,

B = G ·
∫ ∫ ∫ ∫

h(x− y1; ω1)∇T (1)(x− y2; ω2)〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 dy1dy2 dω1dω2,

C =
∫ ∫ ∫ ∫

∇T (1)(x− y1; ω1) · ∇T (1)(x− y2; ω2)〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 dy1dy2 dω1dω2

−
∫ ∫ ∫ ∫ ∫ ∫

h(x− y1; ω1)∇T (1)(x− y2; ω2) · ∇T (1)(x− y3; ω3)

×〈ψ(y1; ω1)ψ
′(y2; ω2)ψ

′(y3; ω3)〉 dy1dy2dy3 dω1dω2dω3, (4.13b)

since 〈ψ(y1; ω1)ψ
′(y2; ω2)〉 = 〈ψ′(y1; ω1)ψ

′(y2; ω2)〉.
Minimizing the quadratic function in (4.13a) and taking the “crack” limit w = c/a→ 0

yields the estimate

κ∗ ≤ κcl, κcl = κm

 lim
w→0

A−

[
lim
w→0

B
]2

lim
w→0

C


/
G2. (4.14)

This will be exactly the first-order cluster bound of Torquato for the microcracked solid
under study. The estimate (4.14) is obviously three-point in the sense that it depends on
the k-point probability densities fk for the set of cracks’ centers up to k = 3.

To find the bound (4.14) explicitly the problems to be overcome become now purely
technical: Making use of the formulae (2.9) for the moments of the random density field and
the results of Sections 2 and 3, one should evaluate the coefficients A, B and C from (4.13b)
for a given spatial statistics in the aforementioned “crack” limit w = c/a→ 0. The eventual
result will be reported in the next section.

It is to be pointed out that the very form of the trial fields (4.12) suggests an obvious
generalization, namely, to take the kernel T (1)(x; ω) adjustable, instead of fixing it as the
single-spheroid field. In this way, the “best” three-point bound, obtainable within such a
broader class of trial fields can be derived. This idea will be treated in more details in
Section 6. However, it is convenient to consider first in detail the particular case (4.12),
since the intermediate calculations and remarks will prove useful and serve as a lead in this
more general situation.
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5. THE CLUSTER BOUND IN THE SCALAR CASE

First, as it follows from (4.13b) and (4.3),

A0 = lim
w→0

A = G2. (5.1)

To evaluate B, note that

〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 = nP (ω1)δ(y1,2)δ(ω1,2)− n2P (ω1)P (ω2)R(y1,2), (5.2)

as a consequence of (2.9), where

R(y) = 1− g(y), g(y) = f2(0,y)/n2, (5.3)

so that g(y) is just the radial distribution function for the spheroids’ centers and hence
−R(y) is the so-called binary [or total] correlation function, often denoted as ν2(y) in the
liquid state theory. Inserting (5.2) into the formula for B [see (4.13b)] gives

B = nB1 − n2B2, (5.4)

with the coefficients

B1 = G ·
∫ ∫

h(z; ω)∇T (1)(z; ω)P (ω) dz dω, (5.5a)

B2 = G ·
∫ ∫ ∫ ∫

h(z1; ω1)∇T (1)(z2; ω2)R(z1 − z2)P (ω1)P (ω2) dz1dz2 dω1dω2, (5.5b)

having made obvious changes of variables in the integrals.
The evaluation of the coefficient B1 can be done by means of Corollary 2.1, but it is even

simpler if one employs (3.2): h(x; ω)∇T (1)(x; ω) = h(x; ω)B(ω) ·G, so that

B1 = VωG ·
∫
Ω
B(ω)P (ω) dω ·G. (5.6)

The tensor ∫
Ω
B(ω)P (ω) dω

is isotropic; using the asymptotic formulae (3.7) of B(ω) in the “crack” limit w → 0, we
have ∫

Ω
B(ω)P (ω) dω =

Kd

wd
I +O(1) as w → 0.

Hence, in virtue of (3.7b) and (5.6),

lim
w→0

B1 =
Kd

d
VaG

2 = G2


1

2
πa2 in 2-D,

8

9
a3 in 3-D.

(5.7)
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In turn, the coefficient B2 in the “crack” limit vanishes, since it can be recast as

lim
w→0

B2 = G ·
∫ ∫

∇U (1)(z2)
[

lim
w→0

∫
Ω
h(z1; ω1)P (ω1) dω1

]
R(z1 − z2) dz1dz2 = 0, (5.8)

with U (1)(x) given in (3.8); the reason is that the function U (1)(x) is finite everywhere, as
already pointed out, and R(z1 − z2) does not depend on w, while the term in the square
brackets in (5.8) vanishes in the limit w → 0 [see (2.10a)].

To evaluate the coefficient C from (4.13b), note first that

〈ψ(y1; ω1)ψ
′(y2; ω2)ψ

′(y3; ω3)〉 = nP (ω1)δ(y1,2)δ(y1,3)δ(ω1,2)δ(ω1,3)

− n2 3{P (ω1)P (ω2)R(y1,2)δ(y1,3)δ(ω1,3)}s + n2 P (ω1)P (ω2)δ(y2,3)δ(ω2,3)

+ n3P (ω1)P (ω2)P (ω3)G3(y1,y2,y3), (5.9)

with
G3(y1,y2,y3) = g3(y1,y2,y3)− 1 +R(y1,2) +R(y1,3), (5.10)

which again simply follows from (2.9); recall that {·}s means symmetrization with respect
to the indices in the braces [in our case {1, 2, 3}]. In (5.10), g3(y1,y2,y3) = f3(y1,y2,y3)/n

3

is the three-point counterpart of the radial distribution function g(r) [see (5.3)]. As a conse-
quence of the no long-range order hypothesis in the crack’s spatial location, G3(y1,y2,y3) →
0 when all distances between the points y1, y2 and y3 go to infinity.

Inserting now (5.2) and (5.9) into the formula (4.13b) for C gives

C = nC1 − n2C2 − n3C3, (5.11)

C1 = C11 − C12, C2 = C21 − C22 + C23, C22 = 2C ′
22 + C ′′

22. (5.12)

Appendix A contains the explicit forms of the coefficients C’s in (5.11) and (5.12) and
details of their evaluation. The eventual result reads

lim
w→0

B = B0, C0 = lim
w→0

C = B0(1 +B0), B0 =
Kd

d
αd, (5.13)

where the value of B0 follows from (5.4), (5.7) and (5.8). Hence the “best” cluster kernel,
T cl(x; ω), in the class (4.7), (4.12) is

T cl(x; ω) = λ0T
(1)(x; ω), λ0 =

B0

C0

=
1

1 +B0

. (5.14)

With the values of B and C in the “crack” limit [see (5.1) and (5.13)], the cluster bound
(4.14) on the effective conductivity of the microcracked solid under study becomes

κcl

κm

=
1

1 +
Kd

d
αd

=



1

1 + 8
9
na3

in 3-D,

1

1 + 1
2
πna2

in 2-D,

(5.15)

370



where αd = nVa is the dimensionless crack “fraction” in the body, as already introduced
in (2.5), i.e. α2 = πε in 2-D and α3 = 4

3
πε in 3-D; ε is the often used crack concentration

measure [na2 or na3 in 2-D and 3-D respectively, see Kachanov (1992)].
The cluster bound (5.15) admits a simple and important interpretation. Namely, imagine

that each spheroid is isolated and embedded into the constant flux field q = G/κm. Then
the effective “compliance,” 1/κ∗, of the solid is a linear function of the spheroids’ density
n, since their mutual interactions are neglected. Summing appropriately the contributions
from each spheroid, averaging over orientation and taking the “crack” limit reproduces the
cluster bound (5.15). Thus the latter exactly corresponds to the well-known approximation,
called by Kachanov (1992) “approximation of non-interacting cracks.” The same coincidence
will be noticed and discussed in the elastic case as well [Section 8].

Note that one can directly take λ = 1 in (4.7), without optimizing the right-hand side of
(4.13a). This yields the upper bound

κup

κm

= 1− 2B0 + C0 = 1− Kd

d
αd +

(
Kd

d

)2

α2
d. (5.16)

The bound (5.16) is very close to the cluster one (5.15) and the difference between them
is less than 1.5 % at αd ≤ 0.6. The reason is that for these values of αd, the optimal
multiplier λ0 in (4.12) is very close to 1 [see (3.7c), (5.13) and (5.14)]. It is the scalar
conductivity counterpart of the above mentioned bounds of Gottesman et al. (1980) for the
elastic moduli of a fiber-reinforced material, because at λ = 1 the trial field (4.7), (4.12)
represents a superposition of the single [isolated] crack fields T (1)(x−xj; ωj), located at the

crack centers xj, plus the field G̃ · x with a certain constant gradient G̃ [in order to satisfy
the condition (4.4) of prescribed macroscopic gradient]. However, use of such a trial field
in the variational principle (4.12) would give rise to conditionally convergent integrals; the
latter are avoided here, let us point out once again, by using the fluctuating part ψ′(x; ω) of
the random density field (2.8), instead of ψ(x; ω) itself, in the representation (4.12).

It is to be also observed that the bound κup coincides formally with the quadratic ap-
proximation in crack density αd of the cluster bound (5.15). Since κcl ≤ κup, the fact that
κup represents a bound is trivial. We have mentioned it only because it corresponds to the
above discussed special choice of trial fields at λ = 1.

It is important to point out the close resemblance between (5.15) and the bound derived
by Willis (1977). Namely, Willis considered a matrix containing a family of identical and
aligned spheroids, all of them perpendicular to an axis Ox1, and then applied appropriately
the Hashin-Shtrikman variational principle. When the spheroids are voids and degenerate
into penny-shaped cracks of density αd, the result of Willis was the estimate

κ∗11
κm

≤ 1

1 +Kd αd

(5.17)

for the effective conductivity component κ∗11 of the solid along the axis Ox1. [The estimate
(5.17) was rederived by Torquato and Lado, 1991, using different arguments.] Formally, the
cluster bound (5.15) “follows” from (5.17) if a special microstructure of cracks’ distribution is
assumed. Indeed, consider a solid containing three [in 3-D or two in 2-D] mutually orthogonal
families of penny-shaped cracks, whose opening vectors are along the axes Oxi (i = 1, . . . , d)
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of given Cartesian system. Each crack family is statistically homogeneous with density αd/d.
Such a microcracked solid is obviously macroscopically isotropic as far as its heat conduction
properties are considered. In the case under study

κ∗ = κ∗11 = κ∗22 = κ∗33 in 3-D or κ∗ = κ∗11 = κ∗22 in 2-D, (5.18)

since the effective conductivity is affected only by the cracks perpendicular to the applied
microscopic temperature gradient G, and each family has one and the same crack density
αd/d. Then (5.18) and (5.17) [with αd replaced by αd/d] imply the cluster bound (5.15).

The foregoing reasoning clearly indicates that though the bound (5.15) closely resembles
the bound of Willis (5.17), they pertain to different kinds of cracks’ statistics. Indeed, (5.15)
is inherently connected with the fundamental assumption (2.2) and (2.3) of non-correlated
location and orientation in the cracks’ assemblage. At the same time the bound (5.17)
requires aligned systems of microcracks or an appropriate assemblage of such systems in
order to reproduce (5.15).

A remark concerning the above mentioned [Section 4] modified Beran bound, κb, is finally
warranted. Its evaluation can be performed in a manner, entirely similar to that of the cluster
one, upon replacing the kernel T (1)(x; ω) by the kernel T (b)(x; ω), as given in (4.10). The
bound κb is evaluated in the dilute case in Appendix B. It turns out that even in this case
it is worse than the cluster bound and, unlike the latter, fails to reproduce the exact αd-
coefficient of the effective conductivity, underestimating it twice. But this is fully natural,
since in the dilute case, when the cracks’ interactions are negligible, the appropriate kernel
in the class (4.9) should be indeed the single-spheroid field T (1)(x; ω); any other field, in
particular, T (b)(x; ω), would produce results, incorrect even in this simplest case.

6. ON THE “OPTIMIZED” CLUSTER BOUND IN THE SCALAR CASE

As already mentioned, one can try improving the cluster bound, if instead of the class
(4.7), (4.12), the more general class of trial fields is introduced, namely,

θ(x;S) = G · x + λ
∫ ∫

T (x− y; ω)ψ′(y; ω) dy dω, (6.1)

with both λ and T (x; ω) adjustable. Of course, it suffices to take λ = 1 in (6.1), but it
will prove useful later to allow both quantities to vary independently. The upper bound on
the effective conductivity of the microcracked solid that follows from minimizing the energy
(4.12) over the class (6.1) [in the “crack” limit w = c/a→ 0] is denoted by κ̃, i.e.

κ∗ ≤ κ̃, κ̃ G2 = lim
w→0

min
λ, T (·)

W,

and will be referred to as the optimized cluster-type bound. The reason is clear: the trial
fields (6.1) represent, similarly to (4.1), a superposition of the fields T (x−xi; ωi), “centered”
at the crack locations xi. However, the “disturbance” T (x; ω) is now adjustable, feeling the
presence of the rest of the cracks. Note that a similar class of trial fields was first introduced,

372



to the best of the author’s knowledge, by Prager (1963) in his study of variational bounds
on the effective behaviour of dispersions of spheres in a scalar context, where he derived an
integral equation for the “best” kernel T (x). [For further development see also Markov and
Zvyatkov (1991) and the references therein.]

The restriction of the energy functional W [see (4.12)] over the class (6.1) has the
quadratic form (4.13a) with respect to λ

W = W [λ, T (·)] = κm(A− 2Bλ+ Cλ2), (6.2)

with the same A [see (4.13a)], and with the coefficients B and C of the form, given in
the same equation (4.13b). The important difference is that the fixed single-spheroid field
T (1)(x; ω) is everywhere replaced there by the adjustable kernel T (x; ω), so that B = B[T (·)]
and C = C[T (·)] are known functionals of this kernel, depending in an explicit manner on
the two and three-point cracks’ statistics.

To get a simpler formula for the cluster-type bound κ̃∗, let us minimize (6.2) in two
different ways. First, at fixed T (x; ω), minimize it with respect to λ:

min
λ
W ≤ κm

(
A− B2

C

)
,

and then minimize the right-hand side of the latter with respect to T (x; ω)

κ̃G2 = min
λ, T (·)

W ≤ κm

(
A−max

T (·)

B2

C

)
. (6.3)

But this is equivalent to minimizing (6.2) with respect to the kernel T (x; ω) at λ = 1:

κ̃G2 = min
λ=1, T (·)

W ≤ κm

[
A−max

T (·)
(2B − C)

]
. (6.4)

The functionals B2/C and 2B −C are maximized at one and the same kernel T (x; ω)—the
optimal one which brings forth the best possible bound, κ̃, on the effective conductivity,
derivable from the class (6.1). This optimal kernel will be denoted in the sequel as T̃ (x; ω).
Moreover, the maximum values of these two functionals coincide, that is

B2[T̃ (·)]
C[T̃ (·)]

= 2B[T̃ (·)]− C[T̃ (·)],

which immediately yields
B[T̃ (·)] = C[T̃ (·)]. (6.5)

Hence, as it follows from (6.3) or (6.4),

κ̃ G2 = κm lim
w→0

(
A−B[T̃ (·)]

)
. (6.6)

In turn, the functional B[T (·)], according to (4.13b) and (5.2), can be recast as

B[T (·)] = nG ·
∫ ∫

H(x; ω)∇T (x; ω)P (ω) dxdω
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= nG ·
∫ ∫

h(x; ω)∇S(x; ω)P (ω) dxdω, (6.7)

where
S(x; ω) = R [T ] (x; ω), H(x; ω) = R [h] (x; ω), (6.8)

and R denotes the integral operator acting on the functions u(x; ω) over Rd × Ω as

R [u](x; ω) = u(x; ω)− n
∫ ∫

R(x− y)u(y; ω1)P (ω1) dydω1. (6.9)

By means of the operator R the optimized bound (6.6) can be recast as

κ̃ G2 = κm lim
w→0

(
A− n

∫ ∫
H(x; ω)∇T̃ (x; ω)P (ω) dxdω

)
, (6.10)

with H(x; ω) defined in (6.8). Note that the very form (6.8) of this function suggests that
the bound κ̃ is nontrivial only if the kernel T̃ (x; ω) has in the “crack” limit the following
asymptotic behaviour

T̃ (x; ω) =
const

w
+O(1) as w → 0. (6.11)

Since the leading term in the asymptotic expansion of the single-spheroid field T (1)(x; ω) is
also 1/w [see (3.4) and (3.7)], this implies that the optimal kernel can be sought, for example,
in the form

T̃ (x; ω) = λT (1)(x; ω) + Φ(x; ω), (6.12)

where both the scalar λ and the function Φ(x; ω) are adjustable; moreover, Φ(x; ω) is in-
dependent of the aspect ratio w. [More precisely, the “regular” part Φ(x; ω) of the kernel
T̃ (x; ω) should remain finite in the limit w → 0 and since we are interested only in what
remains after taking this limit, we can indeed assume Φ(x; ω) independent of w already
in this stage of the analysis.] As a consequence, all integrals containing Φ(x; ω) and the
characteristic function h(x; ω) disappear in the “crack” limit. This drastically simplifies the
form of the energy functional W [see (4.13)], when restricted over the class (6.12), namely,

W = W [λ; Φ(·)] = κm(A− 2Bλ+ Cλ2) + F [λ; Φ(·)], (6.13)

with the same coefficients A, B, C as in (5.13), and

F [λ; Φ(·)] =

〈 ∣∣∣∣∫ ∫ ∇Φ(x; ω)ψ′(x; ω) dxdω

∣∣∣∣ 2
〉

+ 2λF1[λ; Φ(·)], (6.14)

where

F1[Φ(·)] =
∫ ∫ ∫ ∫

∇T (1)(y1; ω1) · ∇Φ(y2; ω2)〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 dy1dy2dω1dω2

−
∫ ∫ ∫ ∫ ∫ ∫

h(y1; ω1)∇T (1)(y2; ω2) · ∇Φ(y3; ω3)

×〈ψ(y1; ω1)ψ
′(y2; ω2)ψ

′(y3; ω3)〉 dy1dy2dy3dω1dω2dω3. (6.15)

It is clear that only the terms for which y1 = y2 will not vanish in the six-fold integral
in (6.15), i.e. we should keep only the terms containing δ(y1 − y2) in the formula (5.9).
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What remains from the latter is just the two-point moment 〈ψ′(y1; ω1)ψ
′(y2; ω2)〉, so that

the functional F1[λ; Φ(·)], defined in (6.15), can be written as

F1[Φ(·)] =
∫ ∫ ∫ ∫

[1− h(y1; ω1)]∇T (1)(y1; ω1) · ∇Φ(y2; ω2)

×〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 dy1dy2dω1dω2. (6.16)

The two-point moment 〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 contains a singular part, proportional to δ(y1−

y2)δ(ω1−ω2), and a regular part that depends on y1−y2 only [see (5.2)]. Consequently, an
obvious integration by parts in (6.16) allows F1[Φ(·)] to be recast in an integral form with
an integrand, containing the factor

∆T (1)(y1; ω1)−∇ ·
(
h(y1; ω1)∇T (1)(y1; ω1)

)
. (6.17)

This factor vanishes in the “crack” limit, as it follows from (3.2) at κf = 0. Hence, the
additional term in the energy W , introduced by the adjustable kernel Φ(x; ω), is

F [λ; Φ(·)] =

〈 ∣∣∣∣ ∫ ∫ ∇Φ(x; ω)ψ′(x; ω) dxdω

∣∣∣∣ 2
〉
≥ 0

[see (6.13)] and therefore it does not depend on λ, being always nonnegative. From (6.13)
it then follows that λ = B/C and Φ(x; ω) ≡ 0 minimize the energy W . But, as already
pointed out, the coefficients A, B and C are the same as in (5.13) which means that the
cluster bound (5.15) cannot be improved for a microcracked solid, if the much broader class
(6.12) of trial fields is employed instead of (4.7) and (4.12).

It is important to point out that the latter result does not yet imply that the cluster
bound (5.15) coincides with the optimal one, κ̃, and hence the problem of evaluating κ̃ for
the microcracked solid remains open. The reason lies in the fact that (6.11) does not yield
that the singular part of the optimal kernel is proportional to T (1)(x; ω). For example, the
modified Beran kernel T (b)(x; ω) [see (4.10)] has the same asymptotic form (6.11) as w → 0.
One can therefore repeat the foregoing reasoning literally, replacing the class (6.12) of trial
fields by the class λT (b)(x; ω) + Φ(x; ω). The factor (6.17) in this case does not vanish,
however, containing a singular part whose support is the surface of the spheroid Sω. Hence
F1[Φ(·)] does not vanish either and one cannot claim as a result that Φ(x; ω) = 0 is the best
choice. The modified Beran bound κb can be therefore improved upon adding an appropriate
“regular” part Φ(x; ω) to the kernel T (b)(x; ω). In view of the fact that κb is worse than
the cluster bound even in the dilute case [see Appendix B], this conclusion should not be a
surprise however.

7. THE ELASTIC CASE

Consider an isotropic elastic matrix with tensor of elastic moduli

Lm = km J′ + 2µm J′′, (7.1)
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where J′ and J′′ are the two basic isotropic fourth-rank tensors with the components

J ′ijkl = δijδkl, J ′′ijkl =
1

2

(
δikδjl + δilδjk −

2

3
δijδkl

)
; (7.2)

km = λm + 2
3
µm is the bulk modulus.

Let the matrix contain an isotropic spheroidal elastic inhomogeneity Sω with elastic
moduli κf and µf . The notations of Section 2 will be used afterward, in particular, the axis
x3 is again along the shortest semiaxis of the spheroid. Denote by u(1)(x; ω) the disturbance
to the displacement field, introduced by the inhomogeneity within the unbounded matrix,
provided the strain tensor at infinity equals E [a prescribed constant second-rank symmetric
tensor]. As is well-known, the strain tensor in the inhomogeneity is then also constant;
moreover

ε(1)(x; ω) = B(ω) : E , x ∈ Sω. (7.3)

Here
ε(1)(x; ω) = def u(1)(x; ω) = 1

2
(∇u(1)(x; ω) +

(
∇u(1)(x; ω)

)T
)

is the [small] strain tensor associated with the displacement u(1)(x; ω), the colon standing
for contraction with respect to two pairs of indices. The field u(1)(x; ω) solves an equation,
similar to (3.1). Hereafter only the case of a spheroidal cavity [kf = µf = 0] will be dealt
with for which this equation can be recast as

∇ ·
(
Lm : ∇u(1)(x; ω)

)
−∇ ·

(
h(x; ω)Lm : (B(ω) + J) : E

)
= 0 (7.4)

—having used (7.3) and the symmetry properties of the elastic tensor Lm; in (7.4) J denotes
the unit fourth-rank tensor.

The notations of Hill (1963a) are not so useful here in this particular situation as they
are for a general transversely isotropic symmetry], and it is better to write the fourth-rank
tensor B(ω) in a direct polyadic form, for the case of a spheroidal cavity under study, and
keeping only the leading term in its asymptotic in the “crack” limit w → 0:

B(ω) =
4

πw

{
e3e3

[
E ′(e1e1 + e2e2) + E ′′e3e3

]
+ E ′′′

[
e(1e3) e(1e3) + e(2e3) e(2e3)

]}
+O(1), (7.5a)

where e(iej) = 1
2
(eiej + ejei). The coefficients in (7.5a) depend on the Poisson ratio νm of

the matrix only, namely,

E ′ =
νm(1− νm)

1− 2νm

, E ′′ =
(1− νm)2

1− 2νm

, E ′′′ =
1− νm

2− νm

. (7.5b)

The formulae (7.5) can be extracted from the appropriate results collected and compre-
hensively discussed in the book of Mura (1988).

It is noted that the tensor B(ω), averaged over all orientations ω, is isotropic and hence
it has the form (7.1),

B =
∫
Ω

B(ω)P (ω) dω =
1

w
Bω

+O(1) , Bω
= lim

w→0
wB,
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Bω
= k

ω J′ + 2µω J′′. (7.6a)

The coefficients k
ω

and µω can be easily found from (7.5):

k
ω

=
4

3π

1− ν2
m

1− 2νm

, µω =
4

15π

(1− νm)(5− νm)

2− νm

. (7.6b)

The elastic moduli field of the dispersion has the form

L(x;S) = k(x;S) J′ + 2µ(x;S) J′′, (7.7)

where

k(x;S) = km

(
1−

∫
R3

∫
Ω
h(x− y; ω)ψ(y; ω) dy dω

)
, (7.8a)

µ(x;S) = µm

(
1−

∫
R3

∫
Ω
h(x− y; ω)ψ(y; ω) dy dω

)
. (7.8b)

Moreover, similarly to (4.3), one has in the “crack” limit w → 0,

〈k(x;S)〉 → km, 〈µ(x;S)〉 → µm. (7.9)

To get the cluster bounds on the elastic moduli, consider the trial fields

u(x;S) = E · x + λ
∫ ∫

u(1)(x− y; ω)ψ′(y; ω) dy dω, (7.10)

which represent the counterpart of the fields (4.7), (4.12) in the scalar case, and apply the
variational principle of the type (4.6):

E : L∗ : E ≤ W [u(·)] =
〈
∇u(1)(x;S) : L(x;S) : ∇u(1)(x;S)

〉
. (7.11)

In (7.11)
L∗ = k∗J′ + 2µ∗J′′ (7.12)

is the effective elastic moduli tensor of the dispersion of spheroids under study.
Inserting the trial fields (7.10) into the energy functional (7.11) makes the latter a

quadratic function of λ
W = W (λ) = A− 2Bλ+ Cλ2, (7.13)

with the coefficients
A = E : 〈L(x;S)〉 : E, (7.14a)

B = E : Lm :
∫ ∫ ∫ ∫

h(x− y1; ω1) ε(1)(x− y2; ω2)

× 〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 dy1dy2 dω1dω2, (7.14b)

C =
∫ ∫ ∫ ∫

ε(1)(x− y1; ω1) : Lm : ε(1)(x− y2; ω2)〈ψ′(y1; ω1)ψ
′(y2; ω2)〉 dy1dy2 dω1dω2

−
∫ ∫ ∫ ∫ ∫ ∫

h(x− y1; ω1) ε(1)(x− y2; ω2) : Lm : ε(1)(x− y3; ω3) (7.14c)

×〈ψ(y1; ω1)ψ
′(y2; ω2)ψ

′(y3; ω3)〉 dy1dy2dy3 dω1dω2dω3.
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Optimizing (7.13) with respect to λ gives

E : L∗ : E ≤ E : Lcl : E, E : Lcl : E = lim
w→0

(
A− B2

C

)
, (7.15)

thus providing obviously an upper bound, Lcl, on the effective elastic moduli tensor L∗. This
will be exactly the first-order cluster bound of Torquato for the microcracked elastic solid
under study. Its evaluation will be briefly reported in the next Section.

8. EVALUATION OF THE CLUSTER BOUND IN THE ELASTIC CASE

First, as it follows from (7.9),

lim
w→0

A = E : Lm : E. (8.1)

Next, for the coefficient B [see (7.14b)], we have, similarly to (5.4), B = nB1 − n2B2,
where

B1 = E : Lm :
∫ ∫

h(z; ω) ε(1)(z; ω)P (ω) dz dω,

B2 = E : Lm :
∫ ∫ ∫ ∫

h(z1; ω1) ε(1)(z2; ω2)R(z1 − z2)P (ω1)P (ω2) dz1dz2 dω1dω2.

But, due to (7.3) and (7.6), B1 = VωE : B : E, so that

lim
w→0

B1 = Va E : Lm : Bω
: E

with the tensor Bω
defined in (7.6a).

The coefficient B2 in the “crack” limit vanishes, since it can be recast as

lim
w→0

B2 = E : Lm :
∫ ∫

def U(1)(z2)
[

lim
w→0

∫
Ω
h(z1; ω1)P (ω1) dω1

]
R(z1 − z2) dz1dz2 = 0,

(8.2)
where

U(1)(x) = lim
w→0

∫
Ω

u(1)(x; ω)P (ω) dω (8.3)

is a field which can be easily shown to be finite everywhere [similarly to the field U (1)(x) in
Section 3, see (3.8)]; the term in the square brackets in (8.2) vanishes in the limit w → 0,
again due to (2.10a). Hence,

lim
w→0

B = n lim
w→0

B1 = αE : Lm : Bω
: E; (8.4)

α = α3 = nVa since only the 3-D case is treated in this Section.
For the coefficient C [see (7.13c)], the same virial expansion (5.10) applies with appro-

priate values of the factors C1, C2 and C3. Note immediately that the three-point statistics
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once again does not show up [in both 2-D and 3-D], since the n3-coefficient C3 vanishes. The
reason is that it can be recast in the “crack” limit as

lim
w→0

C3 = lim
w→0

w
∫ ∫ ∫

Hd(|z1|/a)ha(|z1|)∇U(1)(z2) : Lm : ∇U(1)(z3)

×
[
g3(z1, z2, z3)− 1 +R(z1,2) +R(z1,3)

]
dz1 dz2 dz3 = 0, (8.5)

see (A.17), since the field U(1)(x), defined in (8.3), remains finite in the same limit.

In turn, for the n-coefficient C1 we have now

n lim
w→0

C1 = αE : Lm : Bω
: E, (8.6)

having integrated by parts and using, similarly to the scalar case, eqn (7.4) for the sin-
gle inclusion field ε(1)(x,ω). [All fourth-rank tensors hereafter, being isotropic, commute,
e.g. Lm : Bω

= Bω
: Lm, etc.]

Finally, for the n2-coefficient C2 the representations (5.10) and (A.2) can be written
down once more with, for instance, ∇T (1)(z; ω) · ∇T (1)(z; ω) replaced by ∇u(1)(z; ω) : Lm :
∇u(1)(z; ω). Manipulations, entirely similar to the scalar case [see Appendix A], give

C2 = −C21 = −
∫ ∫

R(z1 − z2)

×
[ ∫

Ω
∇u(1)(z1; ω1)P (ω1) dω1

]
: Lm :

[ ∫
Ω
∇u(1)(z2; ω2)P (ω2) dω2

]
dz1dz2,

which, having integrating by parts twice with respect to the spatial variables and taking

again (7.4) into account, yields in the “crack” limit

n2 lim
w→0

C2 = −α2 E : Bω
: Lm : Bω

: E. (8.7)

Equations (8.1) and (8.4) to (8.7), when inserted into (7.15), give the cluster bound

E : Lcl : E = E : Lm : E− α(E : Lm : Bω
: E)2

E : Lm : Bω
: E + αE : Bω

: Lm : Bω
: E

, (8.8)

which, due to the isotropy of all fourth-rank tensors, entering (8.8), reduces to the following

estimates on the effective bulk and shear moduli of the microcracked solid under study:

k∗ ≤ kcl , µ∗ ≤ µcl, (8.9)

where
kcl

km

=
1

1 + αk
ω =

{
1 +

4

3π

1− ν2
m

1− 2νm

α

}−1

, (8.9a)

µcl

µm

=
1

1 + 2αµω
=

{
1 +

8

15π

(1− νm)(5− νm)

2− νm

α

}−1

. (8.9b)
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The bounds (8.9) represent the eventual form of the three-point cluster bounds of Torquato
for a cracked solid [in 3-D] with randomly oriented penny-shaped cracks.

Similarly to the scalar case [Section 5], the bounds (8.9) admit a simple interpretation,
coinciding with the “approximation of the non-interacting cracks.” Recall that the latter
corresponds to the situation when each crack is considered as isolated and immersed into
the homogeneous stress field L−1

m : E that equals the stress in the virgin matrix. The ef-
fective compliance L∗−1 in this case is a linear function of the crack density α which, upon
averaging over cracks’ orientations, brings forth the formulae (8.9) [see Kachanov, 1992].
Numerous computer simulations, reported by Kachanov (1992) and Mauge and Kachanov
(1994), indicate that the aforementioned approximation remains accurate at high crack den-
sities, provided the mutual positions of cracks are random. The explanation, proposed by
the authors, is the approximate cancellation of the competing interaction effects of shielding
and amplifying, due to the fact that the average [macroscopic] stress tensor is unaffected by
the presence of cracks. A key question, posed by Kachanov (1992, p. 321) in this connection,
is whether the interactions increase or reduce the effective moduli as compared to those for
non-interacting cracks. The bounds (5.15) and (8.9) allow us to offer a rigorous answer to
this question. Namely, in the statistically isotropic case and under the basic assumptions
(2.2) and (2.3) of lack of correlations between location and orientation of cracks, the cracks’
interactions always decrease the effective properties [conductivity and elastic moduli] of the
solid.

It is also noted that the bounds (8.9) coincide with the prescriptions of the Mori-Tanaka
method, proposed by Benveniste (1987) as certain approximations for the effective bulk
and shear moduli of a microcracked solid. Hence it turns out that the latter prescriptions
represent rigorous bounds on the effective elastic moduli of randomly microcracked solids.
The formulae (8.9) however seem to have appeared for the first time in Kanaun (1980)
as approximations of the effective field type for the elastic moduli of a solid, containing
a Poissonian set of microcracks [see also Kanaun and Levin, 1994, for more details of the
approach]. In the dilute case, i.e. to the order O(α), the bounds (8.9) reproduce the rigorous
results of Bristow (1960) and Walsh (1965).

9. DISCUSSION

In the present paper we have introduced and developed a formalism for a rigorous treat-
ment of microcracked solids by means of marked random point processes. The first and
simplest application, chosen here for illustrating the needed technique and the typical prob-
lems that may be expected in further studies, is the evaluation of the cluster bounds of
Torquato, and of certain their generalizations, for such solids. The obtained results have a
simple form: the bound (5.15) and (8.9) on the effective conductivity and elastic moduli,
respectively. The bounds themselves deserve a more thorough discussion since their eventual
appearance here is a bit surprising and unexpected at first glance.

The first and the most important fact to be pointed out is that the two- and three-
point statistics do not influence the cluster bounds for a microcracked solid. The underlying
reason for this independence is not entirely clear to the author. A certain explanation may
be sought in the very geometrical nature of the inhomogeneities under studies—i.e. of the
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cracks—which possess infinitesimally small thickness along the cuts in the medium, and hence
represent lower dimension [(N − 1)-D] defects immersed into an N -D medium, N = 2, 3.
This observation suggests that the statistics could explicitly enter the final expressions for
the bounds only if a kind of “surface-surface” correlations, similar to those introduced by
Doi (1976) in a different homogenization context, are incorporated into the trial fields from
the very beginning. The detailed discussion of this possibility and of its implications lies
however beyond the scope of the present study. We shall only recall that the situation
when the thickness of the inclusions is finite [i.e. the dimension of the defects and of the
medium coincide] is drastically different, as is well known. For example, for a dispersion of
nonoverlapping spheres, when the cluster and Beran’s bounds coincide, both the two-and
three point spatial statistics of sphere centers considerably influence the bounds, as is well
seen from the results of Felderhof (1982) and Beasley and Torquato (1986).

Second, the fact that the three-point statistics does not influence the energy for the class
of trial fields under study indicates that the bounds, obtained by means of the classical
and by the Hashin-Shtrikman (HS) variational principles, should coincide as a matter of
fact. Recall that this follows from the elucidating derivation of the HS principle due to
Hill (1963b), through neglecting sign-definite terms in the energy functional that depend
on the three-point statistics. This remark explains why the HS-type bounds on the elastic
moduli for microcracked solids, recently derived by Ponte Castañeda and Willis (1995), are
tighter than the cluster bounds (8.9), found here by means of the “more powerful” classical
principle. Indeed, in the foregoing cluster bound procedure, the trial fields (7.10) contain
only one adjustable scalar parameter λ. At the same time, in the HS-procedure used by Ponte
Castañeda and Willis (1995), the cracked body is considered as containing different families
of ellipsoids [degenerating into cracks], each one of fixed orientation. Then the polarization
field is taken step-constant, but with different values in each family, which obviously permits
to command a bigger amount of adjustable parameters than in the cluster procedure. Due to
the same reasons, a similar HS-procedure, when applied to the scalar conductivity problem
of Section 5, will produce a bound on the effective conductivity, sharper than the cluster one
(5.15).

It is to be remarked finally that the HS-procedure of Ponte Castañeda and Willis (1995)
suggests a natural generalization of the cluster trial fields like (7.10). Namely, one can assume
that the scalar λ there depends upon orientation ω. The fields (7.10) are then replaced by

u(x;S) = E · x +
∫ ∫

λ(ω)u(1)(x− y; ω)ψ′(y; ω) dy dω, (9.1)

and the adjustable quantity is now the function λ(ω), defined over the “mark” space, i.e. over
the unit sphere Ω [or unit circle in 2-D]. Another possible generalization is to choose u(1)(x; ω)
in (7.10) or (9.1) again as the single spheroid field, but for the case of a matrix with adjustable
elastic moduli k0, µ0. This will bring forth, besides the scalar λ [or the function λ(ω)], a
second adjustable quantity [the dimensionless ratio k0/µ0] in the energy functional (7.11).
The detailed analysis of these possibilities is nontrivial and, once again, goes far beyond
the aim of the present paper—introduction and “promotion” of the marked sets of random
points as a natural tool in studying the effective behaviour of microcracked solids.

381



ACKNOWLEDGEMENTS

The author gratefully acknowledges the critical remarks and helpful and stimulating
suggestions of J. R. Willis. The work was supported by the Bulgarian Ministry of Education,
Science and Technology under Grant No. MM 416-94.

REFERENCES

Beasley, J. D. and Torquato, S. (1986) Bounds on the conductivity of a suspension of random
impenetrable spheres. J. Appl. Physics 60, 3576–3581.

Benveniste, Y. (1985) On the Mori-Tanaka’s method in cracked bodies. Mech. Res. Commun.
13, 193–201.

Benveniste, Y. (1987) A new approach to the application of the Mori-Tanaka’s theory in
composite materials. Mech. Materials 6, 147–157.

Beran, M. (1965) Use of a variational approach to determine bounds for the effective per-
mittivity of a random medium. Nuovo Cimento 38, 771–782.

Bristow, J. R. (1960) Microcracks, and the static and dynamic elastic constants of annealed
and heavily cold-worked metals. British J. Appl. Physics 11, 81–85.

Budiansky, B. and O’Connell, R. (1976) Elastic moduli of a cracked solid. Int. J. Solids
Structures 12, 81–97.

Doi, M. (1976) A new variational approach to the diffusion and the flow problem in porous
media. J. Phys. Soc. Japan 40, 567–572.

Felderhof, B. U. (1982) Bounds for the effective dielectric constant of a suspension of uniform
spheres. J. Phys. C 15, 3953–3966.

Gottesman, T., Hashin, Z. and Brull, M. A. (1980) Effective elastic moduli of cracked fiber
composites. In Advances in Composite Materials, ed. M. Bunsell et al., pp. 749–758.
Pergamon Press, Oxford.

Hashin, Z. (1988) The differential scheme and its application to cracked materials. J. Mech.
Phys. Solids 36, 719–734.

Hashin, Z. and Shtrikman, S. (1962) On some variational principles in anisotropic and non-
homogeneous elasticity. J. Mech. Phys. Solids 10, 335–342.

Hill, R. (1963a) Elastic properties of reinforced solids: some theoretical principles. J. Mech.
Phys. Solids 11, 357–362.

Hill, R. (1963b) New derivations of some elastic extremum principles. In Progress in Applied
Mechanics, Prager Anniversary Volume, pp. 99–106. MacMillan, New York and London.

Huang, Y., Xu, K. X. and Chandra, A. (1993) The effective elastic moduli of microcracked
composite materials. Int. J. Solids Structures 30, 1907–1918.

Kachanov, M. (1992) Effective elastic properties of cracked solids: critical review of some
basic concepts. Appl. Mech. Review 45, 304–335.

Kanaun, S. K. (1980) Poisson’s field of cracks in elastic medium. J. Appl. Math. Mech. 44,
808–815.

382



Kanaun, S. K. and Levin, V. M. (1994) Effective field method in mechanics of matrix com-
posite materials. In Recent Advances in Mathematical Modelling of Composite Materials,
ed. K. Z. Markov, pp. 1–58. World Sci.

Markov, K. Z. (1981) “One-particle” approximations in mechanics of composite materials. In
Continuum Models and Discrete Systems, ed. O. Brulin and R. K. T. Hsieh, pp. 441–448.
North-Holland.

Markov, K. Z. (1991) On the factorial functional series and their application to random
media. SIAM J. Appl. Math. 51, 172–186.

Markov, K. Z. and Christov, C. I. (1992) On the problem of heat conduction for random
dispersions of spheres allowed to overlap. Mathematical Models and Methods in Applied
Sciences 2, 249–269.

Markov, K. Z. and Zvyatkov, K. D. (1987) On the bounds for the effective properties of
random suspensions of spheres. C. R. Acad. bulg. Sci. 40 (3), 17–20.

Markov, K. Z. and Zvyatkov, K. D. (1991) Optimal third-order bounds on the effective prop-
erties of some composite media, and related problems. Advances in Mechanics (Warsaw)
14(4), 3–46.

Markov, K. Z. and Zvyatkov, K. D. (1995) Functional series and Hashin-Shtrikman’s type
bounds on the effective conductivity of random media. European Journal of Applied
Mathematics 6, 611–629.

Mauge, C. and Kachanov, M. (1994) Effective elastic properties of an anisotropic material
with arbitrarily oriented interacting cracks. J. Mech. Phys. Solids 42, 561–584.

Mura, T. (1988) Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Dordrecht.

Muratov, R. Z. (1975) The Potentials of an Ellipsoid. “Atomizdat”, Moscow (in Russian).

Nemat-Nasser, S. and Hori, M. (1993) Micromechanics: Overall Properties of Heterogeneous
Solids. Elsevier.
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APPENDIX A: EVALUATION OF THE COEFFICIENTS C’s

The coefficients C’s that enter (5.12), have the forms

C11 =
∫ ∫

Ω
| ∇T (1)(z; ω) |2P (ω) dz dω, (A.1a)

C12 =
∫ ∫

Ω
h(z; ω) | ∇T (1)(z; ω) |2P (ω) dz dω, (A.1b)

C21 =
∫ ∫

R(z1 − z2)
[ ∫

Ω
∇T (1)(z1; ω1)P (ω1) dω1

]
·
[ ∫

Ω
∇T (1)(z2; ω2)P (ω2) dω2

]
dz1dz2,

(A.2a)

C ′
22 =

∫ ∫
R(z1 − z2)

[ ∫
Ω
h(z1; ω1)∇T (1)(z1; ω1)P (ω1) dω1

]
·
[ ∫

Ω
∇T (1)(z2; ω2)P (ω2) dω2

]
dz1dz2, (A.2b)

C ′′
22 =

∫ ∫
R(z1 − z2)

[ ∫
h(z1; ω1)P (ω1) dω1

] [ ∫
|∇T (1)(z2; ω2) |2 P (ω2) dω2

]
dz1dz2,

(A.2c)

C23 =
∫ ∫

h(z1; ω1)P (ω1) dω1 dz1

[ ∫
|∇T (1)(z2; ω2) |2 P (ω2) dω2 dz2

]
, (A.2d)

C3 =
∫ ∫ ∫ ∫ ∫ ∫

h(z1; ω1)∇T (1)(z2; ω2) · ∇T (1)(z3; ω3)

×G3(y1,y2,y3)P (ω1)P (ω2)P (ω3) dz1 dz2 dz3 dω1 dω2 dω3. (A.2e)

To evaluate C11, integrate by parts in (A.1a) and use (3.1) for the single spheroid field
T (1)(z; ω). This yields

C11 = VωG ·
∫
Ω

[ I + B(ω) ] ·B(ω)P (ω) dω ·G. (A.3)

As far as the coefficient C12 is concerned [see (A.1b)], employ (4.2)

C12 = VωG ·
∫
Ω

B(ω) ·B(ω)P (ω) dω ·G,

which means that

C1 = C11 − C12 = B1 and thus lim
w→0

C1 = lim
w→0

B1 (A.4)
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[see (5.6)]. The value of
lim
w→0

B1,

let us recall, is given in both 2-D and 3-D cases in (5.7).
Before evaluating

lim
w→0

C21,

we shall first show that
lim
w→0

C ′
22 = lim

w→0
C21. (A.5)

Indeed, recast C ′
22 [see (A.2b)] as

C ′
22 =

∫ ∫
R(z1 − z2)

[ ∫
Ω
h(z1; ω1) [G +∇T (1)(z1; ω1) ]P (ω1) dω1

]

·
[ ∫

Ω
∇T (1)(z2; ω2)P (ω2) dω2

]
dz1dz2,

since the term, contributed through adding G, is proportional to the volume Vω [or surface
Sω in 2-D] of the ellipsoid [ellipse] and therefore it vanishes in the limit w → 0. Integrating
appropriately by parts and using (3.1) for the field T (1)(z2; ω2) at κf = 0, easily yields (A.5).

To evaluate
lim
w→0

C21,

recast it as

lim
w→0

C21 = lim
w→0

∫ ∫
P (ω1)P (ω2) dω1dω2

∫ ∫
R(z1 − z2)∇T (1)(z1; ω1) · ∇T (1)(z2; ω2) dz1dz2.

An appropriate integration by parts with respect to the spatial coordinates, combined with
application of (3.1) [at κf = 0], gives

lim
w→0

C21 = lim
w→0

∫ ∫
P (ω1)P (ω2) dω1dω2

∫ ∫
h(z1; ω1)h(z2; ω2)R(z1 − z2)

× G · [ I + B(ω1)] · [ I + B(ω2)] dz1dz2 ·G

= K2
dG ·

∫ ∫
eω1eω1 P (ω1) dω1 ·

∫ ∫
eω2eω2 P (ω2) dω2 ·G =

K2
d

d2
V 2

a G
2, (A.6)

since R(z1 − z2) = 1 [because |z1|, |z2| ≤ a imply |z1 − z2| < 2a and hence g(|z1 − z2|) = 0
due to the assumption of nonoverlapping].

The key point is the evaluation in the “crack” limit of the coefficient C ′′
22, defined in

(A.2c), i.e. the quantity
lim
w→0

C ′′
22.

The reason is that this is the only term through which the two-point statistics of the cracks’
spatial distribution may enter the bound κcl.

To calculate
lim
w→0

C ′′
22
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insert into the integral (A.2c) R(x) = 1− g(x) [see (5.3)]. Then C ′′
22 splits into two parts

C ′′
22 = N −M[g]. (A.7)

Moreover,

lim
w→0

N =
∫ [

lim
w→0

1

w

∫
Ω
h(z1; ω1)P (ω1) dω1

]
dz1

×
[

lim
w→0

w
∫ ∫

Ω
|∇T (1)(z2; ω2) |2 P (ω2) dω2

]
dz2 = Va lim

w→0
wC11,

having used the formula (A.1a) for C11, equation (3.1) and the property (3.2) of the function
Hd(ρ). In turn, the expression (A.3) for C11 and the asymptotic (4.8) produce after obvious
manipulations

lim
w→0

N =
K2

d

d
V 2

a G
2. (A.8)

Consider the second term in (A.7), M[g], which is the only one that depends on the
two-point statistics [something reflected in its notation, underlying in this way that M[g] is
a linear functional of the radial distribution function g(r)]. In the “crack” limit w → 0 it
has the form

lim
w→0

M[g] =
∫ ∫

g(z1 − z2)
[

lim
w→0

1

w

∫
Ω
h(z1; ω1)P (ω1) dω1

]

×
[

lim
w→0

w
∫
Ω
|∇T (1)(z2; ω2) |2 P (ω2) dω2

]
dz1 dz2

=
∫ ∫

g(z1 − z2)Hd(|z1|/a)ha(z1) T (z2) dz1 dz2

and hence
lim
w→0

M[g] =
∫

Λ(z) T (z) dz, (A.9)

where
T (z) = lim

w→0
w
∫
Ω
|∇T (1)(z; ω) |2 P (ω) dω, (A.10)

Λ(z) =
∫
g(z− y)Hd(|y|/a)ha(y) dy. (A.11)

Note that in the integral (A.9) the integration is over the region |z| > a due to the
presence of ha(y) in the integrand of Λ(z) [see (A.11)] and the assumption of nonoverlapping
(g(z− y) = 0, if |z− y| < 2a). But we shall prove in a moment that

T (x) =
K2

d

d− 1
G·(r∇∇ r)·GHd(ρ)ha(x), (A.12)

r = |x|, which implies that T (x) = 0 at |x| > a. Hence M[g] ≡ 0, which means that

lim
w→0

C ′′
22 =

K2
d

d
V 2

a G
2 (A.13)

[see (A.7) and (A.8)].
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To prove (A.12), note that obviously

w
∫
Ω
h(z; ω) |∇T (1)(z; ω) |2 P (ω) dω ≤ w

∫
Ω
|∇T (1)(z; ω) |2 P (ω) dω,

and take the limit w → 0 in this inequality

0 ≤ T̃ (z) ≤ T (z), (A.14)

where
T̃ (z) = lim

w→0
w
∫
Ω
h(z; ω) |∇T (1)(z; ω) |2 P (ω) dω.

The field T̃ (z) can be easily evaluated, however, making use of (3.2) and (3.3):

T̃ (z) = K2
d lim

w→0

1

w
G ·

∫
Ω
eωeω h(x; ω)P (ω) dω ·G

=
K2

d

d− 1
G · (r∇∇ r) ·GHd(ρ)ha(x). (A.15)

Due to the inequality (A.14), to prove (A.12) it suffices to show that
∫
T (z) dz =∫

T̃ (z) dz. But

∫
T (z) dz = lim

w→0
wC11 = lim

w→0
wVω G ·

∫
B(ω) ·B(ω)P (ω) dω ·G =

K2
d

d
VaG

2

[see (A.3)]. On the other hand, the same value of the integral
∫
T̃ (z) dz can be easily deduced

from (A.15), if (3.3) is taken into account together with obvious symmetry arguments. Hence
(A.12) indeed holds true.

Next, in virtue of (A.2d) and (A.3), one has C23 = N so that, due to (A.8),

lim
w→0

C23 =
K2

d

d
V 2

a G
2. (A.16)

Consider finally the coefficient C3 [see (A.2e)], through which the three-point statistics of
the crack centers may only enter the bound (4.14). But it is easily seen that it also vanishes
in the “crack” limit since it can be recast as

lim
w→0

C3 = lim
w→0

w
∫ ∫ ∫

Hd(|z1|/a)ha(z1)

×∇U (1)(z2) · ∇U (1)(z3)G3(z1, z2, z3) dz1 dz2 dz3 = 0, (A.17)

with G3 given in (5.10), and the field U (1)(x), defined in (3.8), which remains finite in the
said limit.

Combining equations (4.4), (5.1), (5.4), (5.7), (5.11), (5.12), (A.4), (A.6), (A.13), (A.16)
and (A.17) gives eventually (5.13) and hence the formula (5.15) for the cluster bound.
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APPENDIX B: THE MODIFIED BERAN BOUND IN THE DILUTE CASE

With the same notations (5.4)

B1 = G ·
∫ ∫

h(z; ω)∇T (b)(z; ω)P (ω) dz dω

= − 1

w
G ·

∫ ∫
h(z; ω)∇∇ϕω(z)P (ω) dz dω ·G,

since T (b)(z; ω) = −G · ∇ϕω(z)/w, see (4.10) and (5.5a). Using the formula (3.5) for
∇∇ϕω(z) within the spheroid Sω together with obvious symmetry arguments gives

lim
w→0

B1 =
1

d
G2 lim

w→0

1

w
Vω =

1

d
VaG

2. (B.1)

In turn, the needed n-coefficient of C in the case under study reads

C1 = C11 − C12 =
∫ ∫

Ω
| ∇T (b)(z; ω) |2P (ω) dz dω

−
∫ ∫

Ω
h(z; ω) | ∇T (b)(z; ω) |2P (ω) dz dω, (B.2)

see (5.12) and (A.1a,b). Integrating by parts in the first integral in (B.2) and using once again
the formula (3.5) for ∇∇ϕω(z) within the spheroid Sω yields, after simple manipulations,

lim
w→0

C1 =
1

d
G2 lim

w→0

1

w2

[
1−

(
1− 1

Kd

w
)2
]
Vω =

2

dKd

VaG
2. (B.3)

Hence, upon combining (B.1) and (B.3),

κb

κm

= 1− n lim
w→0

B2
1

C1

+ o(n) = 1− Kd

2d
αd + o(αd),

so that the term, linear in crack density αd, of the modified Beran bound, κb, is twice smaller
than the exact value −Kd/d.
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