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On the inhomogeneity problem in micropolar elasticity1

K. Markov

Abstract. The problem of determining the stress and couple-stress fields within a single mi-
cropolar inhomogeneity, immersed into an unbounded micropolar matrix loaded at infinity, is
discussed. Using Eshelby’s method, an approximate solution of the problem is found for the
case of spherical inhomogeneity. In order to analyse the applicability of this solution, a system
of integral equations is delivered which describes the strain fields in the micropolar body with a
micropolar inhomogeneity in it, and an iterative process, solving the system, is proposed. The
first step of this process leads to the approximate solution, found by Eshelby’s method. It is
shown, too, that the approximate solution is the linear part of the asymptotic expansion in the
case of vanishing difference between the micropolar moduli of the matrix and the inhomogeneity.

1. Inclusion Problem for a Micropolar Body

At first, we would like to remind of some well known facts from the micropolar elasticity [1,
2].

Let u and ϕ be the independent vector fields of displacements and rotations of the points
of the micropolar body and

T γ = ∇u − E · ϕ, T κ = ∇ϕ, (1.1)

be the strain tensors; here E = ‖εijk‖ is Ricci’s alternator, the dot means a contraction with
respect to one of the indices, so (E · ϕ)ij = εijkϕk. Tensors (1.1) are connected with the stress
tensor T σ To and the couple-stress tensor T µ by the following linear tensor relations:

T σ = L : T γ = (µ + α)T γ + (µ + α)T ∗
γ + I spT γ ,

Tµ = M : T κ = (γ + ε)T κ + (γ − ε)T ∗
κ + I sp Tκ ,

(1.2)

here I is the unit tensor, T ∗ is the tensor conjugated with T ; the colon denotes a contraction
with respect to two pair of indices.

Hooke’s law (1.2) together with the equations of motion yields to the known system of
Lamé’s type for the micropolar body, namely

(µ + α)∆u+ (λ + µ − α)∇∇ · u + 2α∇× ϕ + f = 0 ,

(γ + ε)∆ϕ − 4αϕ+ (β + γ − ε)∇∇ · ϕ + 2α∇× u + m = 0 ,
(1.3)
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where ∆ is Laplace’s operator, ∇ · a = div a, ∇× a = rota = curla.
Green’s tensor for the system (1.3) can be constructed by several methods. We give only

the final-expressions for the components of this-tensor (in the case of an unbounded body)

G11 =
1

4πµ

(
I

(
1
R

− α

µ + α

e−R/�

R

)
−∇∇

(
λ + µ

2(λ + 2µ)
R +

γ + ε

4µ
1 − e−R/�

R

))
,

G12 = G21 = − 1
8πµ

E · ∇1 − e−R/�

R
, (1.4)

G22 =
1

4π(γ + ε)
e−R/�

R
I +

1
16πµ

∇∇
(

1 − eR/�

R
+

µ

α

e−R/h − e−R/�

R

)
,

R = |x − x′ — see, for example, [1 – 4]. It is to note that Green’s tensor is written here in a
matrix form: the vector fields[

u(x)
ϕ(x)

]
=

[
G11(x − x′) G12(x − x′)
G21(x − x′) G22(x − x′)

]
·
[

fx′

mx′

]
(1.5)

present the displacement and rotation in the point x, generated by concentrated force fx′ and
moment mx′ in the point x′. In (1.4) the length-dimensional parameters � and h are introduced
as usual

�2 =
(µ + α)(γ + ε)

4αµ
, h2 =

β + γ

4α
. (1.6)

Let (V ) be an arbitrary region in a micropolar body B. We consider (V ) as an “inclusion”
in the sense of Eshelby [5], so that (V ) undergoes a change of shape and size, described by the
constant strain tensors (“distortion”) tensors T 0

γ and T 0
κ.

In order to determine the constrained fields of displacements uc and rotations ϕc, due to
the inclusion (V ), we apply the same simple set of imaginary cutting, straining and welding
operations as those used by Eshelby [5]. These operations yield the fact that the fields uc and
ϕc are generated in the micropolar case considered by the layers of surface tractions σ0

n = n·T 0
σ

and moments µ0
n = n · T µ, acting on (S), as well as by the body moment σ0

a = E : T 0
σ, acting

into (V ); here n denotes the outward normal unit vector to the surface (S) of the region (V )
and T 0

σ = L : T 0
γ , T 0

µ = M : T 0
κ are the stresses, connected formally with the distortion tensors

T 0
γ and bT 0

κ by Hooke’s law (1.2). Then

[
uc(x)
ϕc(x)

]
=

∫
S

[
G11(x − x′) G12(x − x′)
G21(x − x′) G22(x − x′)

]
·
[

σ0
n

µ0
n

]
ds′

+
∫

S

[
G12(x − x′)
G22(x − x′)

]
· σ0

a dv′ ,

(1.7)

where G = ‖Gij(x,x′)‖,i, j = l, 2, is Green’s tensor for the micropolar body B. It is worth
noting that the same result (1.7) could be also found using the consideration of W. Nowacki [6,
7].
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With the aid of Gauss’ theorem we rewrite (1.7) in the following form:

uc = − T 0∗
σ :

∫
V

(
∇G11(x − x′) − E · G12(x − x′)

)
dv′

+ T 0∗
µ :

∫
V
∇G12(x − x′) dv′ ,

ϕc = T 0∗
σ :

∫
V

(
∇G21(x − x′) − E · G22(x − x′)

)
dv′

− T 0∗
µ :

∫
V
∇G22(x − x′) dv′ ;

(1.8)

here nabla operator relates to the point x, so it could be taken out in front of the integrals.
In the case of an unbounded body B, inserting Green’s tensor (1.4) into (1.8), we get that

the constraint fields uc and ϕc are expressed by the three potentials of the region (V ), namely,

ϕ(x) =
1
4π

∫
V

dv′

R
, ψ(x) =

1
4π

∫
V

R dv′ , χ�(x) =
1
4π

∫
V

e−R/�

R
dv′ , (1.9)

R = |x − x′|, in the following form:

uc =
1
µ

(
−

(
∇ϕ − α

µ + α
∇χ�

)
· T 0

σ

+ S0
σ : ∇∇∇

(
λ + µ

2(λ + 2µ)
ψ +

γ + ε

4µ
(ϕ − χ�)

)

−A0
σ · ∇ (ϕ − χ�) +

1
2
E : ∇∇ (ϕ − χ�) · T 0

µ

)
, (1.10)

ϕc = − 1
γ + ε

(
∇χ� · T 0

µ + �2S0
µ : ∇∇∇

(
µ

µ + α
χh − χ� +

α

µ + α
ϕ

))

+
1
2µ

E : ∇∇(ϕ − χ�) · T 0
σ

+
1

γ + ε
A0

σ : E ·
(

χ�I + �2∇∇
(

µ

µ + α
χh − χ� +

α

µ + α
ϕ

))
.

Here the distortion tensors are decomposed into symmetric and skew-symmetrical parts: T 0
σ =

S0
σ + A0

σ, T 0
µ = S0

µ + A0
µ and S∗ = S, A∗ = −A.

2. Case of a Spherical Inclusion

Having in mind the possible applications of the inhomogeneity problem to the theory of
micropolar composite material with spherical particles in it, we shall consider in details the
average and couple-stress fields within a spherical inclusion of the unbounded micropolar body.

The potentials (1.9) for the sphere (Va) with a radius a are well known to be

ϕ =
1
6

(
3a2 − R2

)
, ψ =

1
12

(
3a4 + 2a2R2 − 1

5
R4

)
,

χ� = �2
(

1 −
(

1 +
a

�

)
e−a/� sinh(R/�)

R/�

)
, R = |x| ≤ a .

(2.1)
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They are central-symmetric functions, obviously, which solve the equations [5, 8]:

∆ϕ + 1 = 0 , ∆∆ψ + 2 = 0 ,

∆χ� −
1
�2

χ� + 1 = 0 , R = |x| ≤ a .
(2.2)

As a simple consequence of the equations (2.2) and the central-symmetry of the potentials (2.1)
we find the following relations for the average gradients:

∇∇ϕ = 〈∇∇ϕ〉 = −1
3
I , 〈∇∇χ�〉 = −1

3
f(δ�)I ,

〈∇∇∇∇ψ〉 = − 2
15

H , 〈∇∇∇∇χ�〉 = − 1
15�2

f(δ�)H ,

(2.3)

where 〈·〉 =
1
Va

∫
Va

· dv denotes, as usual, an averaging over the sphere (Va); H = ‖Hijkl‖ is the

isotropic, fourth-order and fully-symmetric tensor with components Hijkl = δijδkl+δikδjl+δilδkj

and

f(δ�) = −3
χ′

�(a)
a

= 3
1 + δ�

δ3
�

e−δ� (δ� cosh δ� − sinh δ�) (2.4)

with the dimensionless parameter δ� = a/�.
It is worth to point out that the constrained field ∇uc is not constant into the sphere in the

micropolar case considered, unlike the elastic case. The reason is the presence of the “Helmholtz
potential” χ� in (1.10).

In order to construct the average strain fields in the spherical inclusion we insert first (2.3)
into the expression for 〈∇uc〉, calculated by (1.10). Finally we get

〈∇uc〉 =
1
µ

(
1 − 2ν

18(1 − ν)
I spT 0

σ

+
(

4 − 5ν
15(1 − ν)

− 1
5

α

α + µ
f(δ�)

)
D0

σ +
1
3

µ

α + µ
f(δ�)A0

σ

) (2.5)

The distortion stress tensor T 0
σ is decomposed in (2.5) into spherical, deviatoric and skew-

symmetrical parts, so

T 0
σ =

1
3

I sp T 0
σ + D0

σ + A0
σ ; D0

σ = D0∗
σ ,A0

σ = −A0∗
σ . (2.6)

With the aid of similar calculations we obtain from (1.10) and (2.3) that

〈ϕc〉 =
1

12α
(3 − 2f(δ�) − f(δh))σ0

a , σ0
a = E : T 0

σ , (2.7)

〈T c
κ〉 = 〈∇ϕc〉 =

1
9

1
β + 2γ

f(δh)I spT 0
µ

+
1
5

(
1

γ + ε
f(δ�) +

2
3

1
β + 2γ

f(δh)
)

D0
µ +

1
3

1
γ + ε

f(δ�)A0
µ ,

(2.8)

where T 0
µ = 1

3 IspT 0
µ + D0

µ + A0
µ is the decomposition of the type (2.6) for the couple-stress

distortion tensor T 0
µ and δh = a/h.
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From the relations (2.5) and (2.7) we obtain now the average value of the constrained field
T 0

γ : 〈
T c

γ

〉
= 〈∇uc〉 − E · 〈ϕc〉

=
1
µ

(
1 − 2ν

18(1 − ν)
I spT 0

σ +
(

4 − 5ν
15(1 − ν)

− 1
5

µ

µ + α
f(δ�)

)
D0

σ (2.9)

+
1
2

µ

α

(
1 − 1

3
f(δh) − 2

3
µ

µ + α
f(δ�)

)
A0

σ

)
.

It is to note that the average strain tensor
〈
T c

γ

〉
depends only on the distortion stress tensor

T 0
σ and on the radius of the inclusion through the quantities δ� = a/� and δh = a/h. Similarly,

according to (2.8), the average tensor T c
κ depends only on the distortion couple-stress tensor

T 0
µ and on radius a through the same quantities δ� and δh.

Taking into account Hooke’s law (1.2), we obtain by (2.8) and (2.9) the following formulae
for the average constrained stress and couple-stress tensors within the spherical inclusion:

sp T c
σ = B1spT 0

σ

(
k = λ + 2

3 µ
)

〈Dc
σ〉 = B2D

0
σ (µ)

〈Ac
σ〉 = B2A

0
σ (α)

spT c
µ = B4spT 0

µ

(
β + 2

3 γ
)

Dc
µ = B5D

0
µ (γ)

Ac
µ = B6A

0
µ (ε)

(2.10)

with the coefficients

B1 =
3k

3k + 4µ
, B2 =

6
5

k + 2µ
3k + 4µ

− 2
5

α

µ + α
f(δ�) ,

B3 = 1 − 1
3

f(δh) − µ

µ + α
f(δ�) , B4 =

1
3

2γ + 3β
β + 2γ

f(δh) , (2.11)

B5 =
2
5

γ

(
1

γ + ε
f(δ�) +

2
3

1
β + 2γ

f(δh)
)

, B6 =
2
3

ε

γ + ε
f(δ�) .

The relations (2.10) are given for spherical, deviatoric and skew-symmetric parts of the
corresponding stress and couple-stress tensors.

It should be noted that the first relation of (2.10), connecting the spherical parts of the
distortion and constrained stress tensors, is the same one as in the elastic case [5]. The reason
is the absence of the potential χ� in (1.10), when T 0

σ, is a spherical tensor. The first relation
of (2.10) is valid, therefore, not only for a sphere; it does not depend on the geometry of the
inclusion.

3. Micropolar Spherical Inhomogeneity — an Approximate Solution

The relations (2.10) allow solving approximately the spherical inhomogeneity problem for
an unbounded micropolar body.

Let us imagine that an unbounded micropolar body (matrix) contains a micropolar spherical
inhomogeneity in it. If we assume that the constant stress S∞ acts to the matrix at infinity,
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then the stress field Sv appears within the inhomogeneity. From now on S denotes one of the
six stresses or couple-stresses, cited in (2.10); the index ‘0’ refers to the matrix and the index
‘1’ — to the inhomogeneity.

For the determination of stress fields Sv we apply Eshelby’s method, at which the inhomo-
geneity is replaced by an inclusion with unknown distortion stress tensor S0 [5]. Let Sc be the
stress into the inclusion, due to the distortion S0. According to (2.10), we have 〈Sc〉 = B(0)S0,
with the coefficient B

(0) from (2.11), corresponding to the stress S under consideration; the
index ‘0’ means that B

(0) is calculated using the matrix micropolar moduli (the inhomogeneity
is replaced by a “homogeneity” with the same moduli as those of the matrix).

Firstly, it is necessary to make the stress Sv equal to the same stress, generated by the
inclusion:

Sv = Sc + S∞ − S0 . (3.1)

Since the tensor fields in (3.1) are nonhomogeneous within the spherical inclusion (Sect. 2), we
shall require the validity of (3.1) only for the average values of the fields:

〈Sv〉 = 〈Sc〉 + S∞ − S0 . (3.1)

Secondly, it is necessary to make the average strains of the inhomogeneity L−1
1 〈Sv〉 equal

to the same strains L−1
0 (〈Sc〉 + S∞), due to the inclusion:

1
L1

〈Sv〉 =
1
L0

(〈Sc〉 + S∞) , (3.3)

where L are the elastic moduli, corresponding to the stresses S and given in the brackets in
(2.10).

Employing (3.2) and (3.3) we arrive at the following six relations:

〈Sv〉 =
L1

L0 + B(0)(L1 − L0)
S∞ (3.4)

for the average stress fields 〈Sv〉 within the spherical inhomogeneity, immersed into an un-
bounded micropolar body loaded at infinity with constant S∞.

The relations (3.4) present, naturally, an approximate solution for the micropolar spherical
inhomogeneity problem, because the nonhomogeneity of the stress fields within the sphere (Va)
is not taken into account. Merely the first relation of (3.4), connecting the spherical parts spT v

σ

and spT∞
σ is exact, moreover, it is the same one as in the elastic body and does not depend on

the geometry of the inhomogeneity (see the end of Sect. 2).
However, these considerations give no information about the “distance” between the exact

values of the average stress fields and those, calculated by the approximate solution (3.4). That
is why we consider below the micropolar inhomogeneity problem in a rigorous way.

4. Micropolar Inhomogeneity Problem — Integral Equations

Let us consider again an unbounded micropolar body (matrix), containing a micropolar
inhomogeneity (V ) in it. For such a nonhomogeneous material Hooke’s law (1.2) micropolar
fourth-order tensors L(x) and M(x) are step-constant functions of the following form:

L(x) = L0 + δL(x) , M (x) = M0 + δM (x) , (4.1)
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where δL(x) = (L1 − L0)hV (x), δM (x) = (M 1 − M 0)hV (x) and hV (x) is the characteristic
function of the region (V ); as in Sect. 3 the index ‘0’ refers to the matrix and ‘1’ — to the
inhomogeneity.

Let T γ(x) and T κ(x) be the strain fields (1.1), which appear in the body with the inhomo-
geneity in it, when stresses T∞

σ and T∞
µ act at infinity. According to Hooke’s law (1.2),

T σ(x) = L(x) : T γ(x) , T µ(x) = M(x) : T κ(x) (4.2)

are the stress fields in the body. The fields (4.2) satisfy the known balance equations (1.2), so
that we have

∇ · (L0 : T γ(x)) + ∇ · (δL(x) : T γ(x)) = 0 ,

∇ · (M 0 : T κ(x)) − E : L0 : T γ(x) (4.3)

+∇ · (δM (x) : T κ(x) − E : δL(x) : T γ(x)) = 0

with (4.1) taken into account. The interpretation of (4.3) is quite simple: the existence of an
inhomogeneity in the micropolar body is equivalent to the action of fictitious body forces and
moments.

Inserting (1.1) into (4.3) we can rewrite the system (4.3) in the following integral form by
using Green’s tensor (1.4):

u(x) = u∞(x) +
∫

G11(x − x′) · ∇′ ·
(
δL(x′) : T γ(x′)

)
dv′

+
∫

G12 (x − x′) · ∇′ ·
(
δM (x′) : T κ(x′) − E : δL : T γ(x)

)
dv′ ,

ϕc(x) = ϕ∞(x) +
∫

G12(x − x′) · ∇′ ·
(
δL(x′) : T γ(x′)

) (4.4)

+
∫

G22(x − x′) ·
(
∇′ ·

(
δM (x′) : T κ(x′)

)
− E : δL : T γ(x)

)
dv′ .

With the aid of Gauss theorem, we get from (4.4) the basic system of integral equations:

T γ(x) = T∞
γ +

∫
V

G11(x − x′) : δL : T γ(x′) dv′ +
∫

V
G12(x − x′) : δM : T κ(x′)

T κ(x) = T∞
κ +

∫
V

G21(x − x′) : δL : T γ(x′) dv′ +
∫

V
G22(x − x′) : δM : T κ(x′) ,

(4.5)

δL = L1 − L0, δM = M1 − M0; here the fourth-order tensor functions Γi,j, i, j = l, 2, are
expressed by the gradients of Green’s tensor (1.4), viz.

Γ11 = ∇G11∇−∇G12 · E − E · G12∇ + E · G22 · E ,

Γ12 = ∇G12∇− E · G22∇ , Γ21 = ∇G12∇−∇G22 · E , (4.6)

Γ22 = ∇G22∇ .

The system (4.5) determines the strain state of an unbounded micropolar body, containing
a micropolar inhomogeneity in it.
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5. Iterative Solution of the System of Integral Equations

Let us consider the case of constancy of the field T∞
γ and T∞

κ . Then we can assume first
that the solution T γ(x) and T κ(x) of (4.5) is also constant within the inhomogeneity (V ),
so that T γ = 〈T γ〉 and T κ = 〈T κ〉. When we insert these values of the strain fields in the
right-hand side of (4.5), we get

T γ(x) ≈ T∞
γ + Γ̃11 : δL : 〈T γ〉 + Γ̃12 : δM : 〈T κ〉 ,

T κ(x) ≈ T∞
κ + Γ̃21 : δL : 〈T γ〉 + Γ̃22 : δM : 〈T κ〉 ,

(5.1)

where
Γ̃ij =

∫
V
Γij(x − x′) dv′ , (5.2)

i, j = 1, 2. According to (1.4) and (4.6), the tensor fields Γ̃ij can be expressed by the potentials
(1.9) of the region (V ).

Let us suppose the inhomogeneity (V ) to be a centrosymmetric one. If we take the average
values over (V ) on both sides of (5.1), we get

〈T γ〉1 =
(
J −

〈
Γ̃11

〉
: δL

)−1
: T∞

γ ,

〈T κ〉1 =
(
J −

〈
Γ̃22

〉
: δM

)−1
: T∞

κ ,

(5.3)

where J is the “unit” fourth-order tensor, so that J : T = T for each second-order tensor T .
Note that the average values

〈
Γ̃12

〉
and

〈
Γ̃21

〉
are absent in (5.3) because the functions Γ̃12 and

Γ̃21 are expressed in the case under consideration by odd gradients of centrosymmetric potentials
(1.9). The average strain values (5.3) are denoted by the index ‘1’ in view of our interpretation
for them as the first approximation for the average fields within the inhomogeneity (V ).

We find the second approximation 〈T γ〉2, 〈T κ〉2 for the average strain tensors by introducing
(5.1) in the right side of (4.5) and averaging over (V ) of the so obtained relations. Then we get

〈T γ〉2 = T∞
γ +

〈
Γ̃11

〉
: δL : T∞

γ +
(〈

Γ̃11 : δL : Γ̃11

〉
+

〈
Γ̃12 : δM : Γ̃21

〉)
: δL : 〈T γ〉2 ,

〈T κ〉2 = T∞
κ +

〈
Γ̃22

〉
: δM : T∞

κ +
(〈

Γ̃21 : δL : Γ̃12

〉
+

〈
Γ̃22 : δM : Γ̃22

〉)
: δM : 〈T κ〉2 ,

(5.4)
the central symmetry of the inhomogeneity (V ) is taken into account once again. The third
approximation can be similarly found, and so on.

Let us estimate the “distance” between the first and the second approximations. After
simple calculations, we obtain from (5.3) and (5.4) that

F γ :
(
〈T γ〉2 − 〈T γ〉1

)
= Cγ + Bγ : 〈T γ〉1 ,

F κ : (〈T κ〉2 − 〈T κ〉1) = Cκ + Bκ : 〈T γ〉1 ,
(5.5)

where
Bγ =

〈
Γ̃11 : δL : Γ̃11

〉
−

〈
Γ̃11

〉
: δL :

〈
Γ̃11

〉
,

Bκ =
〈
Γ̃22 : δL : Γ̃22

〉
−

〈
Γ̃22

〉
: δM :

〈
Γ̃22

〉
,
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F γ = J −
〈
Γ̃11 : δL : Γ̃11

〉
: δL , F κ = J −

〈
Γ̃22 : δM : Γ̃22

〉
: δM , (5.6)

Cγ =
〈
Γ̃12 : δM : Γ̃21

〉
: δL : 〈T γ〉2 ,

Cκ =
〈
Γ̃21 : δM : Γ̃12

〉
: δM : 〈T κ〉2 .

According to (5.6), only the contractions δL : δL, δL : δM , δM : δM enter into the right
side of (5.5). That is why, if the differences between micropolar properties of the matrix and
the inhomogeneity vanish, i. e. δL, δM → 0, then we have

〈T γ〉 = 〈T γ〉1 + o(δL, δM ) ,

〈T κ〉 = 〈T κ〉1 + o(δL, δM ) .
(5.7)

Thus, for the case of centrosymmetric inhomogeneity, the approximation (5.3) gives us the
correct linear parts of the power series expansions of the average fields 〈T γ〉 and 〈T κ〉 with
respect to δL and δM .

In conclusion, returning to the case of spherical inhomogeneity, we note that, according to
(1.4), (2.1), (4.6) and (5.1), the solution (3.4) coincides with (5.3). In this way, the average
strain fields (3.4), found by Eshelby’s method, present the first step of the iterative process
proposed. Therefore, they possess correct linear terms with respect to the small parameters
δL, δM → 0.
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