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ABSTRACT—The behaviour of a hollow damaging tube under pressure is discussed

in the paper. A model, proposed by one of the authors of anisotropic brittle damage

coupled with elastic deformation, is employed. The model represents a natural devel-

opment of Eringen and Şuhubi’s micromorphic theory [1] provided the microdistortion

tensor of the latter is identified with that resulting from microcracking. A closed form

solution of the problem is obtained using Laplace transform with respect to time.

1. INTRODUCTION

The aim of this paper is a further investigation of a microstructural model of damage.

The model was introduced in a very brief form in [2]; in more details it was discussed and

compared to some of the existing damage theories in the recent paper [3], but in the par-

ticular case of scalar damage only. In general, the model is a natural extension of Eringen

and Şuhubi’s theory microstructural theory [1], called by these authors micromorphic. The

basic assumption of the latter is that the solid consists of “points” each of which represents

a microvolume undergoing a microdistortion described by a second-rank tensor α. The

tensor α is kinematically independent of the macro-distortion A = ∇u, generated by the

macrodisplacement field u(x), obtained through an appropriate macroscopical averaging
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of the microdeformation. The premises of the theory and its mathematical development

are given in a very clear and thorough form in the already mentioned well-known paper

of Eringen and Şuhubi’s [1]. As a matter of fact, an equivalent model was independently

developed about the same time by Mindlin [4], using a bit more intuitive arguments.

A number of particular cases of the micromorphic theory are of special interest. First,

this is the case when the tensor α is skew-symmetric, so that the “points” of the body can

rotate freely while their mass-centers move under straining. This assumption corresponds

to the well-known micropolar theory of elasticity. Even a simpler model corresponds to

the assumption that α is spherical, α = θI, which means that the body “points” undergo

a free dilatation independent on the displacement of their mass-centers; as usual I stands

hereafter for the unit 2nd rank tensor. The micromorphic theory and its generalizations

were discussed in this particular case independently by Markov [5,6,7] (under the name

dilatation theory of elasticity) and by Nunziato and Cowin [8] and Cowin et al. (under the

name theory of materials with voids), see [9,10] and references therein, in the context of

elastic materials with voids. Problems of Lamé’s type, concerned with stress concentration

and the influence of the microstructure over the latter were investigated in detail in [11]

for the dilatation theory and in [12] for the more general micropolar-dilatation theory (in

which the microdistortion is a sum of a skew-symmetric and spherical tensors).

In general, damage in solids, especially in the brittle case, appears in the form of

microcracks that locally follow the main stress axes. A convenient characteristics of such

an anisotropic damage is the so-called Vakulenko-Kachanov tensor α [13,14]. Recall that

the tensor α is defined as

α =
1
V

N∑
k=1

∫
Sk

nk(x)bk(x) dSk, (1.1)

where Sk is the surface of the kth crack Sk in the microvolume V ; nk(x) is the unit normal

to Sk at the point x ∈ Sk, bk(x) is the crack opening at the same point x; nkbk = nk⊗bk

is the dyadic (tensor) product, N is the total number of cracks in the volume V . Let us

point out immediately that normal opening is of central interest for us, which means that

the vectors nk and bk are collinear and thus the tensor α is symmetric—something to be

assumed hereafter.

As argued in [2], the tensor α can be identified with the microdistortion in the mi-

cromorphic theory of Eringen and Şuhubi (which explains why the same notation α was

used for both quantities). This is quite natural, since macrocracking generates a certain
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additional microdistortion which is obviously kinematically independent of the local defor-

mation. Thus the basic kinematical premises of the micromorphic theory apply directly

to microcracked solids.1 Moreover, the foregoing remark concerning symmetricity of the

Vakulenko-Kachanov tensor explains why the microdistortion will be assumed hereafter

symmetric.

The laws of the damage evolution are very sensitive however to the type of fracture

behaviour in the sense of whether the solid fails in a brittle or plastic manner. In the latter

case it is reasonable to couple the micromorphic kinematics with the thermodynamic time

of Vakulenko [16] thus building up models of “endochronic” type in Valanis’ meaning, see

again [2] for a bit more details and arguments. In the former case—brittle failure, that

is—there is no irreversible macrodeformation (at a fixed damage level α), so that only the

small strain tensor ε = 1
2 (∇u + u∇) should be taken into account. The damage evolution

is described then through introducing the rate of damage tensor α̇ into the constitutive

equations. Details of the thermodynamical analysis of the appropriate such equations are

given in [2,3]. (Note that the analysis is a straightforward generalization of Nunziato and

Cowin’s arguments [8] for including the rate of the volume change θ̇ in their theory of

materials with voids.)

2. BASIC EQUATIONS

Recall first the basic balance equations of the micromorphic theory in the static case

(under the assumption of small strain), at the absence of body sources:

∇ · σ = 0, ∇ ·Λ + s− σ = 0. (2.1)

Here s is the microstress (a 2nd rank symmetric tensor field), σ is the Cauchy macrostress

(a 2nd rank tensor field, nonsymmetric in general) and Λ is the hyperstress (a third-rank

tensor field).

The general constitutive equations of the micromorphic model of anisotropic damage

read

σ = ρ
∂W

∂ε
, s− σ = ρ

∂W

∂α
+ F (α̇), Λ = ρ

∂W

∂∇α
, (2.2)

ρ is the density of the solid. Neglecting the thermal effects, the potential function has the

form W = W (ε,α,∇α) and it should be nonnegative. Also

F (α̇) : α̇ ≥ 0, (2.3)

1 This possibility was clear, in principle, to Eringen and Şuhubi [15]; one could only

regret that they have not pursue it in their subsequent work.
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which is the dissipation inequality of the model; the colon denotes contraction with respect

to two pairs of indices.

In the linearized version of the model W is a quadratic function of its arguments. The

most general such a version contains 20 material parameters [2]. However, the fact that

the microdistortion α is symmetric reduces this number to 11. Without trying to write

down the most general equations in this case, let us assume

ρW =
1
2
λtr 2ε + µtr (ε · ε)− ξ1tr (ε ·α) +

1
2
ξ2tr (α ·α) + Λ.∇α, (2.4)

the dot in the product Λ.∇α standing for full contraction (Λkmlαlm,k) with respect to the

three pairs of indices;

F (α̇) = fα̇ (2.5)

and, finally,

Λkml = η1αlm,k + η2(αkl,m + αkm,l) (2.6)

with respect to a Cartesian coordinate system. Without analyzing in more detail the

consequences of the positive definiteness of Λ.∇α, we shall simply assume η1, η2 > 0.

Besides, the conditions

µ > 0, k = λ+
2
3
µ > 0, ξ2 > 0, kξ22 − ξ21 > 0 (2.7)

are necessary in order to assure positive definiteness ofW . Also f > 0 due to the dissipation

inequality (2.3).

As it follows from the definition (1.1) of the tensor α, its trace represents the volume

change (porosity) due to damage. That is why the density ρ of the solid has now the form

ρ = ρ0(1− trα), (2.8)

where ρ0 is the density of the undamaged material.

The dependence of ρ upon damage makes the constitutive equations of the model

nonlinear. This important fact was pointed out in [2] in the scalar case. The situation

here, when anisotropic damage in the form of microcracking is taken into account, is even

more complicated. The reason is that the elastic moduli λ, µ and, more generally, the

material parameters, depend on damage. In the isotropic case, when only microvoids ap-

pear and develop under loading, the solid remains macroscopically isotropic and there exist

comparatively simple and accurate formulae for calculating λ and µ for a solid with voids,
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see, e.g., the book [17]. When damage is anisotropic, the body becomes macroscopically

anisotropic as well, with symmetry properties defined locally by the tensor α. To a certain

extent this fact is reflected in the form (2.4) of the potential W , through the joint invariant

tr (ε ·α) of the strain and damage tensors. However, the dependence of the elastic moduli

upon microcracking should be accounted for here; the appropriate formulae are discussed

in the survey [14]. Thus an attempt to build up a more rigorous micromorphic theory of

brittle damage is necessarily quite complicated. Here, however, we shall neglect the depen-

dence of the density and material properties upon damage (assuming, in particular, trα

small enough). In this way we are able, hopefully, to concentrate on the essential effects of

damage anisotropy on the behaviour of a brittle microcracked solid during loading, within

the frame of the above model.

The constitutive equations (2.2) and (2.4)–(2.6) yield

σ = λItr ε + 2µε− ξ1α,

s− σ = −ξ1ε + ξ2α + fα̇
(2.9)

which, when inserted into the balance laws (2.1) gives now the system

µ∆u + (λ+ µ)∇∇ · u− ξ1∇α = 0,

η1∆α + η2

[
∇(∇ ·α) + (∇ ·α)∇

]
− ξ2α + ξ1ε− fα̇ = 0

(2.10)

for the unknown displacement, u(x, t), and damage tensor, α(x, t), fields. Provided η2 = 0,

the system (2.10) reduces to that of the dilatation theory [2,7] if the tensor α is spherical

and the dependence of the density ρ upon damage is neglected.

The classical initial and boundary conditions in stress and/or displacement are then

imposed. As far as the initial conditions in damage are concerned, we require

α(x, 0) = 0 (2.11)

—no damage in the initial state (t = 0) of the body. The only specific thing is the boundary

condition in hyperstresses; a natural choice is the requirement of no normal hyperstresses

on S:

n ·Λ
∣∣∣
S
= 0, (2.12)

where n is the outward unit normal vector to the boundary S of the solid.

Note that a rigorous proof of the existence and uniqueness theorem for such an initial-

boundary-value problem for the system (2.10) (and for the more general micromorphic
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model of [2]) would be of interest. Such a theorem has been recently proved in [18] for the

particular case of the system (2.10), corresponding to the scalar case, when α is spherical

and α̇ is neglected.

3. THE LAMÉ PROBLEM

Consider a hollow circular tube, unbounded along its axis, which occupies the region

R1 ≤ r ≤ R2; hereafter polar coordinates r, ϕ in the cross-section of the tube are used.

The tube is subject to the boundary conditions

σr

∣∣∣
r=Ri

= Pi, i = 1, 2 , (3.1)

i.e., known pressure on the internal and external tube’s surfaces. Due to the axial symme-

try, the problem is plane and the solution should depend on the radial coordinate r solely.

In particular, the displacement field is

u = u(x, t) = u(r, t)er, r = |x| , (3.2)

where u = ur is the radial displacement; er = r/r is the unit radial vector, the prime

denotes differentiation with respect to the radial coordinate r. Hence the strain tensor is

ε = ∇u =
(
u′ − u

r

)
erer +

u

r
I, ∇ · u = u′ +

u

r
. (3.3)

Also,

α = α(r, t) = a(r, t)erer + b(r, t)I , (3.4)

where I is the unit second rank tensor in R2, so that tr I = 2. Therefore

∇ ·α = χ(r, t), χ(r, t) = a′(r, t) + b′(r, t) +
a(r, t)
r

,

∆α =
(
a′′ +

a′

r
− 4a
r2

)
erer +

(
b′′ +

b′

r
+

2a
r2

)
I .

(3.5)

Introducing (3.2) and (3.4) into (2.9) and taking into account (3.3) and (3.5) yields

after some algebra

(λ+ 2µ)
(
u′ +

u

r

)′
− ξ1χ = 0, (3.6a)

η1

(
a′′ +

a′

r
− 4a
r2

)
+ η2

(
χ′ − χ

r

)
+ ξ1

(
u′ − u

r

)
− ξ2a− fȧ = 0, (3.6b)

6



η1

(
b′′ +

b′

r
+

2a
r2

)
+ 2η2

χ

r
+ ξ1

u

r
− ξ2b− f ḃ = 0, (3.6c)

which is the basic system for the unknown functions u = u(r, t), a = a(r, t) and b = b(r, t);

the function χ = χ(r, t) is defined in (3.5).

The boundary conditions in stress (3.1), with (2.9), (3.3) and (3.4) taken into account,

read

(λ+ 2µ)u′(r, t) + λ
u(r, t)
r

− ξ1[a(r, t) + b(r, t)] = Pi at r = Ri, i = 1, 2. (3.7)

In turn, keeping in mind (2.6) and the form (3.4) of the tensor α, one gets

er ·Λ =
[
η1a

′ + 2η2
(
a′ + b′ − a

r

)]
erer +

(
η1b

′ + 2η2
a

r

)
I .

The condition (2.12) in hyperstresses then implies the following boundary conditions for

the unknown functions a(r, t) and b(r, t):

a′(r, t) + b′(r, t) = 0,

η1b
′(r, t) + 2η2

a(r, t)
r

= 0 at r = R1, R2.
(3.8)

The initial conditions are

u(r, 0) = 0, a(r, 0) = 0, b(r, 0) = 0. (3.9)

Hence the Lamé problem under study consists mathematically in solving the initial-

boundary-value problem (3.6), (3.7)–(3.9).

The “key” moment of the solution of this problem is the following remark. Note that

ϕ′ − ϕ

r
= r

(ϕ
r

)′
, for any ϕ, and rewrite (3.6b) in the form

η1

(
a′′ +

a′

r
− 4a
r2

)
+ 2η2r

(χ
r

)′
+ ξ1r

(u
r

)′
− ξ2a− fȧ = 0 . (3.10)

Differentiate (3.6c) with respect to r and multiply the result by r

η1r

(
b′′ +

b′

r
+

2a
r2

)′

+ 2η2r
(χ
r

)′
+ ξ1r

(u
r

)′
− ξ2rb− frḃ = 0;

extract the latter from (3.10)

η1r

[(
a′′ +

a′

r
− 4a
r2

)
− r

(
b′′ +

b′

r
+

2a
r2

)′
]
− ξ2r(a− rb′)− f(ȧ− rḃ′) = 0. (3.11)

7



The very structure of the left side of (3.11) suggests to introduce the new function

F = F (r, t) = a(r, t)− rb(r, t) (3.12)

with respect to which (3.11) considerably simplifies

η1

(
F ′′ − 1

r
F ′

)
− ξ2F − fḞ = 0. (3.13)

To solve (3.13), let us apply the Laplace transform ϕ(t) → ϕ(s) with respect to the

time variable t. Note that the idea of utilizing the Laplace transform is fully natural

here, due to the very structure of the system (3.6). Moreover, this transform was already

successfully applied to similar problems in the theory of materials with voids [11] and in

the micropolar-dilatation model [12].

Since

Ḟ = sF − F0

and, due to the initial conditions (3.9), F0 = F (r, 0) = a(r, 0)− rb(r, 0) = 0, (3.13) yields

F
′′ − 1

r
F

′ − κ2
1F = 0, κ2

1 =
ξ2 + fs

η1
> 0 . (3.14)

The solution of (3.14) is obvious

F (r, s) = r[C1I1(κ1r) + C2K1(κ1r)] (3.15)

where I1 andK1 stand for the respective modified Bessel functions and C1, C2 are functions

of s only whose determination will be discussed later on.

Let us now multiply (3.6c) by 2 and add the result to (3.6b). In this way we get an

equation, containing u′ +
u

r
, i.e., the same expression that enters (3.6a); this fact will allow

us to exclude the latter and get an equation for another combination of the functions a

and b. The procedure is equivalent to taking the trace of the second equation (2.10):

η1∆ψ + 2η2∇ ·α · ∇+ ξ1

(
u′ +

u

r

)
− ξ2ψ − fψ̇ = 0, (3.16)

since tr ε = ∇ · u = u′ +
u

r
, and ψ = ψ(r, t) = a(r, t) + 2b(r, t). But ∇ ·α · ∇ = χ′ +

χ

r
as

it follows from (3.4) and the definition of χ, see (3.5). Thus (3.16) becomes

η1

(
ψ′′ +

ψ′

r

)
+ 2η2

(
χ′ +

χ

r

)
+ ξ1

(
u′ +

u

r

)
− ξ2ψ − fψ̇ = 0. (3.17)
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Note that

χ = ψ′ +
1
r
F (3.18)

which allows to recast (3.17) as

(η1 + 2η2)
(
ψ′′ +

ψ′

r

)
+ ξ1

(
u′ +

u

r

)
− ξ2ψ − fψ̇ + 2η2

1
r
F ′ = 0. (3.19)

Differentiating (3.19) with respect to r allows to exclude u′ +
u

r
from (3.6a) and thus yields

an equation for the function

Ψ = Ψ(r, t) = ψ′(r, t) = a′(r, t) + 2b′(r, t), (3.20)

namely,

(η1 + 2η2)
(

Ψ′ +
Ψ
r

)′

−
(
ξ2 −

ξ21
λ+ 2µ

)
Ψ− fΨ̇ +

ξ21
λ+ 2µ

1
r
F + 2η2

(
1
r
F ′

)′

= 0 .

Apply again the Laplace transform to the last equation and take into account the

equation (3.14) for the function F :(
Ψ

′
+

Ψ
r

)′

− κ2
2Ψ + κ2

3

1
r
F = 0 , (3.21)

with the constants

κ2
2 =

(ξ2 + fs)(λ+ 2µ)− ξ21
(η1 + 2η2)(λ+ 2µ)

> 0, κ2
3 =

ξ21 + 2η2(λ+ 2µ)κ2
1

(η1 + 2η2)(λ+ 2µ)
> 0,

κ1 is defined in (3.14). The general solution of the homogeneous equation (3.21) is

Ψ(r, t) = D3I1(κ2r) +D4K1(κ2r) . (3.22)

Since
1
r
F is a linear combination of the functions I1(κ1r) and K1(κ1r), see (3.15),

both of which solve the equation(
G′ +

G

r

)′

= κ2G, κ = κ1, (3.23)

it is easily seen that a particular solution of (3.21) is

κ2
3

κ2
2 − κ2

1

K1(κ1r) or
κ2

3

κ2
2 − κ2

1

I1(κ1r). (3.24)
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Choosing, say, the first one and using the well-known properties of the modified Bessel

functions, we get

a(r, s) + 2b(r, s) =
∫ r

R1

Ψ(τ, s) dτ

= C3I0(κ2r) + C4K0(κ2r)−
κ2

3

κ1(κ2
2 − κ2

1)
K0(κ1r) + C5,

(3.25)

see (3.20), where C3 = D3/κ2, C4 = −D4/κ2 and C5 are functions of s.

To complete the solution, the displacement field u remains to be found. To this end

we apply again the Laplace transform to (3.6a), using (3.18) and (3.20)(
u′ +

u

r

)′

=
ξ1

λ+ 2µ

(
Ψ +

1
r
F

)
. (3.26)

The general solution of the homogeneous equation (3.26) is

U(r, s) = C6r +
C7

r
· (3.27)

As far as a particular solution of the inhomogeneous equation (3.26) is concerned we

can repeat the arguments that yielded (3.24)—the particular solution of (3.21). Indeed,

the right side of (3.26) is a linear combination of the functions I1(κ2r), K1(κ2r) and, say,

K1(κ1r), as it follows from (3.15), (3.22) and (3.24):(
u′ +

u

r

)′

=
ξ1

λ+ 2µ

[
(C1 + C3κ2)I1(κ2r) + (C2 − C4κ2)K1(κ2r) +

κ2
3

κ2
2 − κ2

1

K1(κ1r)
]
.

These functions satisfy the equation (3.23) at κ = κ1 or κ = κ2; hence it is easy to see

that
V (r, s) =

ξ1
λ+ 2µ

[C1 + C3κ2

κ2
2

I1(κ2r) +
C2 − C4κ2

κ2
2

K1(κ2r)

+
κ2

3

κ2
1(κ

2
2 − κ2

1)
K1(κ1r)

] (3.28)

is a needed particular solution of (3.26). Thus the general form of the Laplace transform

of the displacement field is

u(r, s) = U(r, s) + V (r, s), (3.29)

where U and V are given in (3.27) and (3.28) respectively.

From (3.15) and (3.25) we can easily find a(r, s) and b(r, s). Thus the Laplace trans-

forms (with respect to time) of the unknown functions—u(r, t), a(r, t) and b(r, t)—in the
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Lamé problem (3.6) are found in a closed form, containing the seven functions Ci(s),

i = 1, . . . , 7. To determine the latter, the Laplace transforms of the six boundary condi-

tions (3.7) and (3.8) of the problem are invoked. The additional interconnection between

Ci(s) is supplied by the Laplace transform of (3.19). (Recall that we have differentiated it

in order to exclude u′ +
u

r
.)

6. CONCLUDING REMARKS

We have shown that the Lamé problem in the micromorphic theory of brittle anisot-

ropic damage admits a closed form analytical solution, provided Laplace transform with

respect to time is utilized. The numerical implementation of the obtained solution is

not straightforward however and should be addressed separately in a further study. The

numerical results would allow to investigate the microcracks orientation which obviously is

nonhomogeneous spatially and possess a strong anisotropy. Moreover, it is expected that

a well pronounced damage localization should be observed near the tube’s surfaces.
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