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STRESS CONCENTRATION AROUND A HOLE
IN A MICROPOLAR SOLID WITH VOIDS

VALENTINA MEHANDJIEVA, KONSTANTIN MARKOV

V a l e n t i n a M e h a n d � i e v a, K o n s t a n t i n M a r k o v. KONCENTRACI�
NAPR��ENI� OKOLO OTVERSTI� V MIKROPOL�RNOM TELE S PO-
RAMI

Predlo�eno obwee rexenie plosko� zadaqi mikropol�rno-dilatacionno� teo-
rii uprugosti. �ta teori� opisyvaet povedenie tela, v kotorom pol� peremeweni�,
ob�emnogo rasxireni� (dilatacii) i vraweni� toqek sredy kinematiqeski neza-
visimy. Poluqennoe rexenie primen�ec� k klassiqesko� zadaqe o koncentracii
napr��eni� okolo krugovogo otversti� v neograniqennom mikropol�rnom tele s po-
rami. Poluqeno �vnoe vyra�enie dl� ko�fficienta koncentracii napr��eni�, ko-
toroe obobwaet izvestnye rezul	taty Pal	mova (dl� mikropol�rnogo tela) i Kauena
(dl� dilatacionno–uprugogo tela).

V a l e n t i n a M e h a n d j i e v a, K o n s t a n t i n M a r k o v. STRESS CONCENTRATI-
ON AROUND A HOLE IN A MICROPOLAR SOLID WITH VOIDS

The general solution of the plane problem in the micropolar–dilatation theory of elasticity
is proposed. Such a theory describes a solid in which the fields of displacement, change of the
volume (dilatation) and rotation are kinematically independent. The obtained solution is applied
to the classical problem of stress concentration around a circular hole in an unbounded micropolar
solid with continuously distributed set of voids which is modelled as micropolar–dilatation. An
explicit formula for the stress concentration factor is derived which generalizes the earlier results
of V. A. Palmov (in the micropolar case) and of S. Cowin (in the dilatation case).

1. INTRODUCTION

In the classical continuum mechanics there is a fundamental assumption that
the basic characteristic of the motion is the field u of the body points displacement.
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This field is basic in the sense that all the rest deformation characteristics can be
found provided the field u is known. For example, under the supposition of small
strain the simple relations hold

(1.1) ϕ =
1
2
∇× u, θ = ∇ · u

which describe the rotation ϕ and dilatation θ for a small volume of the body. If,
however, the microstructure of the body is to be taken into account, we should
reject the relations (1.1) and consider the fields ϕ and θ as certain kinematically
independent characteristics of deformation.

The assumption that the rotation field ϕ does not depend on the displacement
field u has been first proposed by Voigt in 1887. Such an assumption leads to the
well–known now micropolar theory of elasticity which has been widely investigated
during the last two decades, cf., e. g. [1, 2].

Theories of solids in which displacement and dilatation are kinematically inde-
pendent have drawn considerably less interest than the micropolar elasticity. Such
theories have been proposed independently by S. Cowin et al. [3, 4, 5] and the
author [6, 7, 8]. It is natural to call theories of this type dilatation–elastic; we shall
recall their premises and basic equations in §2. The theories of S. Cowin and the
author are compared in [8], the basic difference being that the former introduces not
only the dilatation θ, but its time–derivative θ̇ as well in the respective constitutive
equations. As a result certain relaxation effects, known from experiments in granu-
lar media, are adequately described theoretically. The influence of the time–effects
upon the strain and stress fields in a dilatation–elastic solid are investigated in
detail in [9] in the context of the classical problem of uni– and bi–axial tension of
an unbounded plane containing a circular hole; the stress concentration factor K
was calculated, in particular, and in uniaxial tension it appeared to be higher that
the classical one (which equals 3, cf., e.g., [10]). This is opposite to the effect of
the micropolar stresses taken into account for which K becomes smaller than 3, as
it was shown by V. Palmov [11].

The present work is devoted to a detailed study of the above mentioned problem
of uniaxial tension of a solid with a circular hole taking however into account both
dilatation and micropolar effects. In other words, the said problem is solved here
within the frame of the so–called micropolar–dilatation elasticity, introduced in
[6, 7], which is characterized by the independence of dilatation and rotation from
displacement. Besides, the rate of dilatation is accounted for similarly to the theory
of S. Cowin et al. [4, 9]. The aim of this work is thus the investigation of the
combined effect of micropolar and dilatation stress upon the stress concentration
factor K in the simplest stress concentrator — the circular one. It is to be expected
that K could attain already values both smaller and bigger than 3. It is curious to
see, in particular, whether K could approach values close to zero or it will have a

certain lower bound as it is the case of the micropolar solid for which
5
3

< K < 3,

cf. [11].
The present paper has however a certain aim that is broader than the inves-

tigation of the stress concentration in microstructural theories of elasticity. To
elucidate this aim let us recall that one of the interpretations of the dilatation
elasticity is connected with the behaviour of microdamaged solids [7, 8]. The kine-
matical independence of the dilatation θ is then a result of the presence of defects
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like microvoids. The presence of the rate of dilatation change θ̇ among the state
variables reflects the process of accumulation and growth of these microvoids, i. e.
the developing microfracture process in the solid. In reality, however, defects in
solids have much more complicated nature representing a certain assemblage of mi-
crocracks and dislocations. Geometrically the defects in a “point” of the damaged
solid, i. e. in a representative volume, can be described by means of the so–called
damage tensor T α introduced by A. Vakulenko and M. Kachanov [12]. This is a
second–order tensor which for spherical defects (microvoids) is spherical as well and
whose trace, tr T α, in the latter case equals the volume fraction of the voids. In
general, the introduction of the time–derivative Ṫ α of the damage tensor into the
energy of deformation — W = W (T e, T α, Ṫ α) — together with the principle of
virtual work leads to a theory which is able to model, at least qualitatively, the
inhomogeneous distribution and evolution of defects like microcracks during the s-
training of a damaged brittle solid. (As usual, the tensor T e among the arguments
of W denotes the small strain tensor.) This theory from a formal point of view
represents a certain generalization of the micromorphic theory of Eringen [2] in
which T α is an independent kinematical characteristics — the so–called microdis-
tortion tensor. The premises of such a theory have been recently discussed by one
of the authors [13], where it has been noticed that the tensor T α, i. e. the damage
field, should be more conspicuous in the vicinity of stress concentrators like notch-
es, macrocracks, holes, etc. Thus the present work may be also considered as a
certain preliminary attempt to employ microstructural theories of elasticity when
analyzing damage process in solids and, especially, the concentration of damage
around stress concentrators — an effect well–known from experiments but rather
difficult to be put into a theoretical framework, see [13] for brief details and refer-
ences. The particular case herein considered refers to a damage tensor which is a
linear combination of a skew–symmetric and spherical tensors and, moreover, only
the spherical part is assumed to change in time. It goes without saying that such
an assumption looks artificial and hardly can be realized in practice. The problem
considered in what follows should be viewed first of all as a model one, in the course
of solution of which it is possible to introduce and check the performance of certain
methods that could appear useful in a further more realistic analysis of damage
processes in solids.

The outline of the paper is as follows. In §2 we recall very briefly the basic
equations of the micropolar, dilatation and micropolar–dilatation theories. In §3
the plane problem for a micropolar–dilatation solid is considered; the basic poten-
tial functions are introduced and the respective governing equations for them are
derived. In §4 we employ, after S. Cowin [9], the Laplace transformation technique.
In §5, which is central for the paper, the plane strain problem of uniaxial tension
of a micropolar–dilatation solid, containing a circular cylindrical hole is solved. In
order to inverse the obtained Laplace transformants a simple approximate method
is proposed in §6. In §7, making use of the results of §5, the stress concentration
factor is found explicitly. The formula for K generalizes the respective formula of
V. Palmov [11] for micropolar solids and that of S. Cowin [9] for dilatation ones.
A detailed numerical and asymptotical analysis of our formula for K is performed
as well for various ratios of the micropolar and dilatation constants.
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2. BASIC EQUATIONS FOR A MICROPOLAR SOLID WITH VOIDS

2.1. Basic equations of the micropolar elasticity. We shall first recall
the basic assumptions and equations of the micropolar elasticity, cf., e. g. [1, 2].

As already mentioned, the basic assumption in this theory is the kinematical
independence of the displacement and rotation fields. As a consequence the Cauchy
stress tensor T σ becomes nonsymmetric in general and the tensor of moment stress-
es T µ appears, the latter being defined similarly to T σ, namely, µn = n · T µ is
the moment density which acts on a surface element with unit normal n. The
equilibrium equations in the static case are

(2.1) ∇ · T σ + F = 0, ∇ · T µ − E : T σ + M = 0,

where E = ‖εijk‖ is the alternating tensor, the colon denotes contraction with
respect to two pair of indices, F and M are the densities of the body forces and
moments respectively.

The constitutive equations of the micropolar theory can be derived by means,
e. g., of the principle of virtual work. In the case of small deformation and rotation
they have the form

(2.2)
T σ = λI trT γ + 2µT s

γ + 2αT a
γ ,

T µ = βI trT κ + 2γT s
κ + 2εT a

κ ,

where I is the unit second–order tensor and

(2.3) T γ = ∇u − E · ϕ, T κ = ∇ϕ

are the strain characteristics of the micropolar body. The superscripts “s” and “a”
denote, respectively, the symmetric and skew–symmetric parts of the tensors, e. g.

T s
γ =

1
2

(
T γ + T ∗

γ

)
, T a

γ =
1
2

(
T γ − T ∗

γ

)
,

etc.; here T ∗ is the tensor conjugate to T .
2.2. Basic equations of the dilatation elasticity. Another very sim-

ple microstructural theory is based upon the assumption that the volume change
(dilatation) θ is kinematically independent of the displacement field u. Theories of
this type can be called, as suggested in [8], dilatation–elastic; they were introduced
and considered at some length by S. Cowin et al. [3, 4, 5] and the author [6, 7, 8].

The basic consequence of the dilatation independence is the appearance of the
so–called hydrostatic stress, characterized by the vector field h which is defined as
follows: the integral

−
∫
S

h · dS

taken over an arbitrary closed surface S in the body equals the full hydrostatic
stress which acts on the part of the body inside S as a result of its interaction with
the part outside S. Also, the so–called free dilatation θc = θ −∇ · u is introduced
[8], where ∇ · u is the well–known volume change due to elastic deformation.

The equilibrium equations of the dilatation–elastic solid read

(2.4) ∇ · T σ + F = 0, ∇ · h + g = 0.
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The first equation here is the classical one; moreover, the stress tensor T σ remains
symmetric. The second equation (2.4) reflects the balance of hydrostatic stress so
that

(2.5) g = s − p;

here s is the full hydrostatic stress at a point and p =
1
3
σii =

1
3

trT σ is the

hydrostatic stress due to elastic deformation only.
The easiest way to derive the constitutive equations for a dilatation solid is

through the principle of virtual work [6, 7]. We assume the existence of the energy
of deformation W = W (u, θc). Simple arguments, employing the above definitions
of the stress characteristics T σ, g and h, yield

(2.6) W = W (T e, θc, ∇θc)

as well as the constitutive equations

(2.7) T σ =
∂W

∂T e
, g =

∂W

∂θc
, −h =

∂W

∂∇θc

(for the case of small deformation which is only considered hereafter). For an
isotropic solid the linear version of (2.7) is

(2.8) T σ = λeI + 2µT e − σθcI, g = ξθc − σe, h = −δ∇θc,

where T e =
1
2
(∇u + u∇) is the small strain tensor and e = tr T e = ∇ · u. The

equations (2.8) represent the dilatation–elastic version of the Hooke law.
It is to be noted that S. Cowin et al. [3, 4, 5, 9] employ, instead of θc, the so–

called change–of–volume field Φ which is introduced through the change of density
of the solid due to porosity. Simple analysis shows that

(2.9) θc = −Φ.

Hereafter, we shall employ the field Φ instead of θc, in order to be closer to Cowin’s
notations [9] but keeping in mind (2.9).

The authors of [3, 4, 5, 9] introduced also Φ̇, i. e. θ̇c, as a state parameter in
order to account for certain experimentally observed relaxation effects in granular
and porous media. The thermodynamical analysis performed in [3, 9] yields the
following modification of the Hooke law for the case when Φ̇ is included into the
analysis

(2.10) T σ = λeI + 2µT e + σΦI, g = −ξΦ − ξ1Φ̇ − σe, h = δ∇Φ.

Note that S. Cowin [9] employs different notations for some of the material
constants. The correspondence with our constants is given in Table 1.

T a b l e 1

Cowin [9] β ω α

our notations σ ξ1 δ

Cowin’s notations are changed to a certain degree in order to keep the classical
notations (α, β, γ, ε) for the micropolar constants, cf. (2.2).
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The basic equations (2.4) to (2.9) can be also considered as pertaining to a
model of an elastic solid containing voids, cf. [3, 4, 7, 8]. In turn, voids in many
cases are a result of a damaging process in the solid under load. That is why
the model represented by the equations (2.4) to (2.9) can be also considered as a
dilatation–elastic model of a brittle damaged solid in which damage is isotropic, i. e.
appears in the form of spherical microvoids, see [13] for more details and comments.

Certain boundary–value problems for the equations (2.4) to (2.9) are solved
by S. Cowin et al. [4, 9]. For instance, in [9] the classical plane problem of uniaxial
tension for a solid with a circular hole is treated and time– and dilatation effects
upon the stress concentration factor K are investigated in detail. The same problem
will be considered below within the frame of a more general model.

2.3. Basic equations of the micropolar–dilatation elasticity. A natural
and straightforward generalization of both micropolar and dilatation–elastic models
is based upon the assumption that rotation and dilatation fields are both kinema-
tically independent characteristics of the body motion [7]. Such a model, which is
called micropolar–dilatation, could serve also as a model of a micropolar solid with
voids due to reasons briefly explained in the foregoing §2.2.

Thus, having taken the stress characteristics for both micropolar and dilatation
theories (see §2.1 and §2.2), we introduce the three stress fields in the so–called
micropolar–dilatation elastic model (for brevity, MDE–model): the classical Cauchy
stress tensor T σ, the micropolar–stress tensor T µ and the vector h of hydrostatic
stress. The balance equations are also three
(2.11) ∇ · T σ + F = 0, ∇ · T µ − E : T σ + M = 0, ∇ · h + g = 0.

The application of the principle of virtual work [7], yields for the potential
energy of deformation
(2.12) W = W (T γ , T κ, Φ, ∇Φ),
where T γ and T κ are the strain characteristics (2.3) of a micropolar solid. In the
case of small strain we get from the same principle the constitutive equations

(2.13)
T σ =

∂W

∂Tγ
,

g =
∂W

∂Φ
,

T µ =
∂W

∂T κ
,

h =
∂W

∂∇Φ
.

For an isotropic solid, assuming W to be quadratic in its arguments, we get
from (2.13)

(2.14)

T σ = λI tr T γ + 2µT s
γ + 2αT a

γ + σΦI,

T µ = βI tr T κ + 2γT s
κ + 2εT a

κ,

h = δ∇Φ, g = −ξ1Φ̇ − ξΦ − σ tr T γ ,

where, similarly to S. Cowin et al. [4, 9], we have taken into account the time–
derivative Φ̇ as well.

Inserting (2.14) into the equilibrium equations (2.11) we obtain the equations
of Lamé type for the MDE–model

(2.15)

(µ + α)∆u + (λ + µ − α)∇∇ · u + 2α∇× ϕ + σ∇Φ = 0,

(γ + ε)∆ϕ + (β + γ − ε)∇∇ · ϕ − 4αϕ + 2α∇× u = 0,

δ∆Φ − ξ1Φ̇ − ξΦ − σ∇ · u = 0
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(no body sources). On the free boundary S of the solid, the following standard
boundary conditions for the system (2.15) are required

(2.16) σn

∣∣
S
= 0, µn

∣∣
S
= 0,

∂Φ
∂n

∣∣
S
= 0,

where σn = n · T σ and µn = n · T µ are the stress and moment vectors on S, n is
the unit outward normal to S. Note that the last boundary condition (2.16) is not
so obvious; it is discussed in more detail, e. g. in [3].

3. PLANE–STRAIN PROBLEM FOR THE MDE–MODEL

Suppose a solid, governed by the equations (2.11), (2.14), (2.16) of the MDE–
model, is subject to plane strain so that

u = u1 (x1, x2, t) i1 + u2 (x1, x2, t) i2,(3.1)
ϕ = ϕ (x1, x2, t) i3, Φ = Φ (x1, x2, t) ;

here ik are the unit base vectors of the Cartesian system xk, k = 1, 2, 3, in the
frame of which we shall operate hereafter.

The definition (2.3) of the strain tensors T γ and T κ, when written in the said
Cartesian system xk, yields

(3.2) γ21,1 − γ11,2 = κ13, γ22,1 − γ12,2 = κ23, κ23,1 = κ13,2,

or

(3.3)
γ22,11 + γ11,22 = (γ12 + γ21),12 ,

γ12,22 − γ21,11 = (γ22 − γ11),12 − (κ13,1 + κ23,2) ;

here, e. g. γ11,2 =
∂γ11

∂x2
, etc. The relations (3.3) express the conditions of geome-

trical compatibility for plane strain in our model.
The stress and micropolar–stress tensors, T σ and T µ, have the following ma-

trices in the coordinates xk

T σ =

∥∥∥∥∥
σ11 σ12 0
σ21 σ22 0
0 0 σ33

∥∥∥∥∥ , T µ =

∥∥∥∥∥
0 0 µ13

0 0 µ23

µ31 µ32 0

∥∥∥∥∥ ,

so that the Hooke law, when written in components with respect to the system xk,
becomes

(3.4)

σ11 = λγkk + 2µγ11 + σΦ, σ12 = (µ + α)γ12 + (µ − α)γ21,

σ22 = λγkk + 2µγ22 + σΦ, σ21 = (µ + α)γ21 + (µ − α)γ12,

σ33 = λγkk + σΦ; µ13 = (γ + ε)κ13, µ23 = (γ + ε)κ23,

µ31 = (γ − ε)κ13, µ23 = (γ − ε)κ23, γkk = γ11 + γ22.
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Solving the equations (3.4) with respect to the strain components γij we get

(3.5)

γ11 =
1
2µ

[
σ11 −

λ

2(λ + µ)
(σ11 + σ22) −

σµ

λ + µ
Φ

]
,

γ22 =
1
2µ

[
σ22 −

λ

2(λ + µ)
(σ11 + σ22) −

σµ

λ + µ
Φ

]
,

γ12 =
1
4µ

(σ12 + σ21) +
1
4α

(σ12 − σ21),

γ21 =
1
4µ

(σ12 + σ21) −
1
4α

(σ12 − σ21).

In plane strain the equilibrium equations (2.11) have the following form in
components

(3.6)
σ11,1 + σ12,2 = 0,

µ13,1 + µ23,2 + σ12 − σ21 = 0,

σ12,1 + σ22,2 = 0,

hk,k + g = 0.

Note that the first three equilibrium equations (3.6) coincide with those for a
micropolar solid in plane strain. We can therefore employ Palmov’s considerations
and introduce after him [11] the stress functions (or potentials) F (x1, x2, t) and
Ψ(x1, x2, t) as follows

(3.7)

σ11 = F,22 − Ψ,12, σ22 = F,11 + Ψ,12,

σ12 = −F,12 − Ψ,22, σ21 = −F,12 + Ψ,11,

µ13 = Ψ,1, µ23 = Ψ,2.

A direct check demonstrates that if (3.7) is adopted, the first three equilibrium
equations (3.6) are identically satisfied.

In order to derive the differential equations for the potentials F and Ψ, we
express the strain components γij by means of F and Ψ, i. e. we insert (3.7) into
(3.5), and then employ the compatibility conditions (3.3). This procedure yields
the needed equations for F and Ψ, namely,

(3.8) ∆∆F − 2µσ

λ + 2µ
∆Φ = 0, ∆

(
l2∆ − 1

)
Ψ = 0,

where

(3.9) l =
[
(α + µ)(γ + ε)

4αµ

]1/2

is the well–known combination of the micropolar constants with dimension of
length.

It is important to point out that the potentials F and Ψ are not independent
because they are interrelated through the equation (3.2). Indeed, upon expressing
the components γij by means of σij , cf. (3.5), and σij by the potentials F and Ψ
according to (3.7), we find as a consequence of (3.2)

(3.10)

(
Ψ − l2∆Ψ

)
,1

= −
(
c2∆F − dΦ

)
,2

,(
Ψ − l2∆Ψ

)
,2

=
(
c2∆F − dΦ

)
,1

,
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where

(3.11) c =
[
(λ + 2µ)(γ + ε)

4µ(λ + µ)

]1/2

, d =
σ(γ + ε)
2(λ + µ)

·

If we introduce the last two equations (2.14), i. e. these for h and g, into the last of
the equilibrium equations (3.6) and make use of the formula for trT γ = γ11 + γ22

which follows from (3.5), we get eventually

(3.12) δ∆Φ − ξ1Φ̇ − δ

h2
Φ =

σ

2(λ + µ)

[
∆F − 2µσ

λ + 2µ
Φ

]
;

here h is the characteristic “dilatation” length, introduced by S. Cowin [9]

(3.13)
δ

h2
= ξ − σ2

λ + 2µ
·

The equations (3.8) and (3.12) are the basic ones for the plane problem in the
MDE–model of the solid. If the rate Φ̇ of the change–of–volume field is ignored,
i. e. if ξ1 = 0, these equations simplify

(3.14)

∆∆F∞ − 2µσ

λ + 2µ
∆Φ∞ = 0,

δ∆Φ∞ − δΦ∞
h2

=
σ

2(λ + µ)

(
∆F∞ − 2µσ

λ + 2µ
Φ∞

)
,

∆(l2∆ − 1)Ψ∞ = 0.

The subscript “∞” is used here, similarly to S. Cowin [9, p. 447], because it will be
seen in §4 that the solutions F∞, Ψ∞, Φ∞ of (3.14) represent the limiting values
of the functions F , Ψ, Φ, respectively, at t → ∞.

4. APPLICATION OF THE LAPLACE TRANSFORMATION

Here we shall employ the Laplace transformation

(4.1) f(s) =

∞∫
0

e−stf(t) dt

in order to simplify the basic system (3.8) and (3.12) of the plane problem for the
micropolar–dilatation solid under sduty.

Suppose that the boundary conditions, to which the solid is subject, have been
held steady in the unbounded time–interval (−∞, 0), so that all rate processes
have ceased. Then Φ̇ = 0 at t < 0 which is equivalent to the assumption ξ1 = 0.
Consequently, the functions F , Ψ and Φ satisfy the system (3.14) at t < 0 and we
denote them by F 0

∞, Ψ0
∞ and Φ0

∞ respectively.
In order to find the functions F , Ψ and Φ at t � 0, we employ the Laplace

transformation (4.1) to the equations (3.8) and (3.12)

(4.2)
∆∆F − 2µσ

λ + 2µ
∆Φ = 0, l2∆∆Ψ − ∆Ψ = 0,

δ∆Φ − δ

h2
Φ + ξ1Φ0 =

σ

2(λ + µ)

(
∆F − 2µσ

λ + 2µ
Φ

)
,
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where h is defined as

(4.3)
δ

h2
=

δ

h2
+ ξ1s.

In derivation of (4.2) we have used the well–known property of the Laplace trans-
formation [14, p. 42]

(4.4) Φ̇ = sΦ − Φ0, Φ0 = Φ0(x1, x2) = Φ(x1, x2, 0).
We shall employ now the final– and initial–value theorems for the Laplace

transformation (4.1) which state, respectively,

(4.5) lim
s→0

sf(s) = lim
t→∞

f(t),

(4.6) lim
s→∞

sf(s) = lim
t→0

f(t),

see, e. g. [14, p. 183].
Let us multiply (4.2) by s and employ (4.5) for the functions sΦ(s), sΨ(s),

sF (s); as a result we get the system (3.14). This means that at t → ∞ the solution
of the system (3.8) and (3.12) becomes stationary and thus, as already mentioned,
it satisfies the system (3.14), corresponding to the stationary case ξ1 = 0 or Φ̇ = 0.

Let us multiply (4.2) by s but employ now (4.6) for the same functions sΦ(s),
sΨ(s) and sF (s). Then

(4.7) ∆∆F0 −
2µσ

λ + 2µ
∆Φ0 = 0, l2∆∆Ψ0 − ∆Ψ0 = 0,

and the third equation (4.2) is satisfied identically. The subscript “zero” in (4.7)
means that the respective functions are taken at t = 0, e. g. F0(x1, x2)
= F (x1, x2, 0). This result shows that if the initial change–in–volume field Φ0 = 0,
i. e. the free dilatation θc = 0, then the stress function F0 is biharmonic just as
it is in the micropolar elasticity. Consequently, the solution of the plane problem
for a micropolar solid with voids (i. e. in the MDE–model) at t = 0 coincides with
the solution of the same micropolar problem, provided Φ0(x1, x2) = 0. This fact
generalizes the respective conclusion of S. Cowin [9, p. 449] who dealt with elastic
materials with voids.

In the problems considered below we shall assume that F 0
∞, Ψ0

∞ and Φ0
∞ all

vanish, i. e. in the time–interval (−∞, 0) there are no strain and stress in the solid.
We shall also note that the basic system (4.2) can be recast in the form

(4.8) h 2∆∆Φ = ∆Φ, ∆∆Σ = 0, l2∆∆Ψ = ∆Ψ,

where the new potential Σ is defined as

(4.9) Σ = F − 2µσ

λ + 2µ
h 2 Φ.

The form (4.8) of the system (4.2) is very convenient when solving concrete boun-
dary-value problems, as it will be seen in §5. Besides, since both Φ and Φ∞ satisfy
the boundary condition (2.16)3, we should have

(4.10) n · ∇Φ = 0
on the boundary of the solid.

94



5. UNIAXIAL TENSION OF A SOLID CONTAINING A CIRCULAR
CYLINDRICAL HOLE

To illustrate the usefulness of the results of §4, we shall consider here the
classical plane problem concerning uniaxial tension of a solid with a cylindrical hole
within the frame, however, of the MDE–model, introduced in §2.3. The solution
of this problem will allow, in particular, to investigate in §7 the influence of micro-
structural effects — both dilatation and micropolar in our case — upon the stress
concentration factor.

We assume that the boundary of the cylinder is free of stresses, i. e.
(5.1) σrr = 0, σrθ = 0, µrz = 0
at r = a; here and in what follows we shall employ polar coordinates r, θ in the
cross–section perpendicular to the axis x3 = z of the cylinder.

By supposition, uniaxial tension takes place at infinity
(5.2) σ11 = p∞, σ22 = σ12 = σ21 = 0, µ13 = µ23 = 0
at r → ∞. These conditions, when written in the polar coordinates, become

(5.3)
σrr =

1
2
p∞(1 + cos 2θ), σθθ =

1
2
p∞(1 − cos 2θ),

σrθ = σθr = −1
2
p∞ sin 2θ, µrz = µθz = 0.

Besides, we should also have, due to (4.10),

(5.4)
∂Φ
∂r

∣∣∣
r=a

= 0.

We seek the functions Φ and Σ in the form f(r) + g(r) cos 2θ, suggested by the so-
lution of the respective elastic problem and we take Ψ in the form f(r)+g(r) sin 2θ.
Inserting these forms in (4.8) we get the biharmonic equation for f ’s and Bessel’s
for g’s. Thus

Σ = C1r
2 ln r + C2r

2 + C3 ln r + C4 +
(
A1r

−2 + A2r
2 + B1r

4 + B2

)
cos 2θ,

Ψ = E1K0(r/l) + E2I0(r/l) + D1 ln r + D2

+
[
G1K2(r/l) + G2I2(r/l) + F1r

2 + F2r
−2

]
sin 2θ,(5.5)

Φ = M1K0(r/h) + M2I0(r/h) + N1 ln r + N2

+
[
P1K2(r/h) + P2I2(r/h) + Q1r

2 + Q2r
−2

]
cos 2θ,

where I0, K0, I2, K2 are the modified Bessel functions of the respective order, and
C1, . . . , Q2 are functions of the transform variable s only.

From the boundary condition (5.3) it follows that

(5.6)
F1 = C1 = B1 = E2 = G2 = M2 = P2 = D2 = 0,

C2 =
1
4
p∞, LQ1 + A2 = −1

4
p∞,

where

(5.7) L =
2µσh2

λ + 2µ
·
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Inserting the functions F and Ψ from (5.5) into the last equation (4.2) we also
get

(5.8)
N1 = 0, N2 =

ξp∞

(2 − m)σξ − mσξ1s
,

Q1 = 0, Q2 = − 4ξB2

(2 − m)σξ − mσξ1s
,

where

(5.9) m =
2(λ + µ)ξ

σ2
·

Note that m > 2, see §7.
In turn, the boundary condition (5.4) yields

(5.10) M1 = 0, P1 = − 8B2hξ

a3K ′
2(a/h) [(2 − m)σξ − mσξ1s]

·

The equation (3.10) allows to obtain two more relations between the introduced
parameters, namely,

(5.11) D1 = 0, F2 = 4B2W ; W = c2 − dξ

(2 − m)σξ − mσξ1s
·

Taking into account all obtained relations (5.6) to (5.11), we get for the needed
functions

Σ =
1
4
p∞r2 + C3 ln r +

[
A1r

−2 + B2 −
1
4
p∞r2

]
cos 2θ,

Ψ = E1K0(r/l) +
[
G1K2(r/l) + 4B2Wr−2

]
sin 2θ,(5.12)

Φ =
p∞ξ

(2 − m)σξ − mσξ1s
− (λ + 2µ)B2

µh2σ

[
R(r) − 1

]
cos 2θ,

where

(5.13)
R(r) = 1 − 4µξh2

8µNξ + (λ + 2µ)mξ1s

[
1
r2

+
2h

a3

K2(r/h)
K ′

2(a/h)

]
,

N =
λ + 2µ

8µ
(m − 2).

The function R(r), introduced in (5.13), is very important in the solution of
the problem under consideration. At the absence of micropolar effects, let us note,
it coincides with Cowin’s function F (r), see [9, p. 454]. Similarly to the latter
function, the overbar indicates that R(r) depends on the transform parameter s

directly and through h. The notation R(r) corresponds to the function R(r) at
s = 0, i. e. when h is replaced by h. The primes on R(r) mean derivatives with
respect to r. It is easily seen from (5.4) and (5.12) that

(5.14) R′(a) = 0.
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In this way only the parameters C3, A1, B2, E1 and G1 remain to be specified,
cf. (5.12). It is done by means of the boundary condition (5.1). The final result is

(5.15) E1 = 0, G1 =
8lB2

a3K ′
2(a/l)

W, C3 = −1
2
p∞a2,

A1 =
2 p∞a4G(a)W

3 − 2R(a) + 4WG(a)
− 1

4
p∞a4, B2 =

p∞a2

2[3 − 2R(a) + 4WG(a)]
,

where

(5.16) G(r) =
1
r2

+
2l

a3

K2(r/l)
K ′

2(a/l)
,

so that
(5.17) G′(a) = 0.

Upon introducing (5.15) into (5.12) we find eventually

(5.18)

Σ =
1
4
p∞r2 − 1

2
p∞a2 ln r

+ p∞
[
2Wa4G(a)

Xr2
− a4

4r2
+

a2

2X
− r2

4

]
cos 2θ,

Ψ =
2Wa2

X
G(r)p∞ sin 2θ,

Φ =
ξp∞

(2 − m)σξ − mσξ1s
− (λ + 2µ)a2

2Xµh2σ
[R(r) − 1]p∞ cos 2θ,

where
(5.19) X = 3 − 2R(a) + 4WG(a).

The formulae (5.18) and (5.19) terminate the solution of the problem under
study. The tansformed stresses σrr, σθθ, σrθ, σθr, µrz, µθz are to be obtained by
inserting (5.18) into the equations (3.7) written with respect to the polar coordi-
nates r, θ. The final result is

σrr =
1
2
p∞

{
1 − a2

r2
+

(
1 + 3

a4

r4

)
cos 2θ(5.20)

− 2a2

Xr2

[
6 + rR′(r) − 4R(r) + 4WV (r)

]
cos 2θ

}
,

σθθ =
1
2
p∞

{
1 +

a2

r2
−

(
1 + 3

a4

r4

)
cos 2θ

− 2a2

Xr2

[
r2R′′(r) − 4WV (r)

]
cos 2θ

}
,

σrθ = −1
2
p∞

{
1 − 3

a4

r4
+

2a2

Xr2

[
U(r)

+ 2W

(
6
a2

r2
G(a) + rG′(r) − 4G(r)

)]}
sin 2θ,
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σθr = −1
2
p∞

{
1 − 3

a4

r4
+

2a2

Xr2

[
U(r)

+ 2W

(
6
a2

r2
G(a) − r2G′′(r)

)]}
sin 2θ,

µrz =
2Wa2

X
G′(r)p∞ sin 2θ, µθz =

4Wa2

Xr
G(r)p∞ cos 2θ;

here we have introduced, for the sake of brevity, the functions

(5.21)
U(r) = 3 − 2R(r) + 2rR′(r),

V (r) = 3
a2

r2
G(a) + rG′(r) − G(r).

The initial– and final–value theorems allow to obtain the stresses σrr, σθθ, etc.
at t = 0 and t = ∞ in explicit form. Indeed, making use of the fact that the tension
at infinity is constant, p∞ = const, we have p∞ = p∞/s so that, upon multiplying
(5.20) by s and employing (4.6) we get the said stresses at t = 0 to be

(5.22)

σrr =
1
2
p∞

{
1 − a2

r2
+

(
1 + 3

a4

r4

)
cos 2θ

− 4
a2

Tr2

(
1 + 2c2V (r)

)
cos 2θ

}
,

σθθ =
1
2
p∞

{
1 +

a2

r2
−

[
1 + 3

a4

r4
− 8

c2

T

a2

r2
V (r)

]
cos 2θ

}
,

σrθ = −1
2
p∞

{
1 − 3

a4

r4

+ 2
a2

Tr2

[
1 + 2c2

(
6
a2

r2
G(a) + rG′(r) − 4G(r)

)]}
sin 2θ,

σθr = −1
2
p∞

{
1 − 3

a4

r4
+ 2

a2

Tr2

[
1 + 2c2

(
6
a2

r2
G(a) − r2G′′(r)

)]}
sin 2θ,

µrz =
2c2a2

T
G′(r)p∞ sin 2θ,

µθz =
4c2a2

Tr
G(r)p∞ cos 2θ; T = 1 + 4c2G(a).

Similarly, we employ (4.5) to sσrr, etc. where the stresses σrr, . . . , are taken
from (5.20). As a result we get the limiting values of these stresses at t → ∞ to be

σrr =
1
2
p∞

{
1 − a2

r2
+

(
1 + 3

a4

r4

)
cos 2θ(5.23)

− 2a2

Xr2
[6 + rR′(r) − 4R(r) + 4WV (r)] cos 2θ

}
,

. . .
The dots mean that the needed stresses σrr, etc. at t = ∞, have the same form
as σrr, etc. in (5.20) provided all overbars in the right–hand sides of (5.20) are
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omitted; cf. for illustration the expression of σrr in (5.20) and that of σrr at t → ∞
in (5.23). The constants X and W in (5.23) correspond to the values of X and W
respectively at s = 0

(5.24)
X = X(0) = 3 − 2R(a) + 4WG(a),

W = W (0) = c2 − d

2 − m
= q2 (λ + 2µ)ξ − σ2

(λ + µ)ξ − σ2
; q2 =

γ + ε

4µ
·

6. AN APPROXIMATE METHOD FOR CALCULATION OF THE STRESSES
IN THE WHOLE TIME–INTERVAL (0, ∞)

The exact evaluation of the stress fields σrr(x, t), etc. for all t ∈ (0, ∞) needs
an inversion of (5.20) which seems very difficult and which is not attempted here
even numerically. Instead, a simple approximate method for such an inversion is
proposed. With this aim in view we notice that there exists a monotonic transition
between the stress states at t = 0 and t = ∞ so that, it may be assumed that the
transition follows a simple exponential law
(6.1) σrr = (X1 − Y1) e−a1t + Y1;
it suffices to consider in detail the stress σrr only. Obviously

(6.2) σrr

∣∣∣
t=0

= X1, σrr

∣∣∣
t=∞

= Y1

so that X1 and Y1 are known functions of r, due to (5.22) and (5.23).
We next calculate the Laplace transformation of (6.1)

(6.3) σrr =
X1s + Y1a1

s(s + a1)

and compare it to the exact expression (5.20) for σrr written as

σrr =
p∞

2s

[
A(r, θ) − 2a2

r2
B(r) cos 2θ

]
,

where

(6.4)
A(r, θ) = 1 − a2

r2
+

(
1 + 3

a4

r4

)
cos 2θ,

B(r) =
1
X

(
6 + rR′(r) − 4R(r) + 4WV (r)

)
.

Then we should have

(6.5)
X1s + Y1a1

s + a1
=

1
2
p∞

[
A(r, θ) − 2a2

r2
B(r) cos 2θ

]
,

which is satisfied at s = 0 and s = ∞ due to (6.2). We may want one thing more,
namely, both sides of (6.5) to have the same derivative with respect to s at s = 0.
This requirement yields

(6.6)
1
a1

(X1 − Y1) = −p∞
a2

r2
cos 2θ

d

ds
B(s)

∣∣∣
s=0
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which allows to specify a1 = a1(r) explicitly, making use of (6.2), (6.4), (5.11),
(5.13), (5.19), (5.21), etc.

Thus we can calculate σrr, at least approximately, for all t ∈ (0, ∞). The
evaluation of the respective approximations for the rest of the stresses σθθ, etc. is
fully similar and therefore it is omitted here.

The foregoing relations (6.1) to (6.4) give a qualitative picture of the stress
history in the solid at t ∈ (0, ∞). We cannot say, however, how accurate is this
picture without an exact or numerical inversion of (5.20).

7. THE STRESS CONCENTRATION FACTOR AROUND THE HOLE

Let K be the classical stress concentration factor at t → ∞ around the
hole, i. e.

(7.1) K =
1

p∞
max σθθ.

From (5.23) it follows that

(7.2) max σθθ = σθθ

∣∣∣
r=a, θ=±π/2

and thus

(7.3) K = 3 +
a2R′′(a) − 8WG(a)

3 − 2R(a) + 4WG(a)
·

In virtue of (5.24), (5.13) and (5.16) the relations (7.3) can be recast to the following
nondimensional form

(7.4) K = 3 −
(
4 + H2

)
F (L) − F (L)F (H) + 8Q2(1 − ν)(4N + 1)F (H)

2F (L) + 2NF (L)F (H) + 4Q2(1 − ν)(4N + 1)F (H)
,

where

(7.5)
H =

a

h
, L =

a

l
, Q =

q

l
,

F (z) = 4 + z2 + 2z
K0(z)
K1(z)

, ν =
λ

2(λ + µ)
,

so that ν is the classical Poisson ratio. The well–known formulae for the modified
Bessel functions

K2(z) =
2
z
K1(z) + K0(z),

K ′
2(z) = −2

z
K0(z) −

(
1 +

4
z2

)
K1(z),(7.6)

K ′′
2 (z) =

(
1 +

6
z2

)
K0(z) +

3
z

(
1 +

4
z2

)
K1(z)
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have been used when deriving (7.4).
Note that the coefficient N in (7.5) first appeared in (5.13). It corresponds to

a coefficient, introduced and denoted also by N by S. Cowin [9, p. 455], when the
usual transition from plane strain, considered herein, to plane stress, considered in
[9], is made. That is why N > 0 as it was shown in [9], so that m > 2 — a fact
already mentioned in §5.

The nondimensional parameters, introduced in (7.5), can be interpreted as fol-
lows: H = a/h is a certain measure of, so to say, “degree of dilatationity” of the
solid in the sense that if h → ∞, i. e. H → 0, the dilatation effects can be neglected.
Similarly, L = a/l together with the ratio q/l characterize how “micropolar” is the
solid again in the sense that at a/l → ∞, q/l → 0 the micropolar effects disappear.
Note that the parameter Q = q/l is introduced here after V. Palmov [11].

It is easily seen that

(7.7) lim
H→0

K =
3 + P

1 + P
,

where

(7.8) P = 8(1 − ν)Q2

[
4 + L2 + 2L

K0(L)
K1(L)

]−1

,

which means that at H → 0 we get as a particular case of (7.4) the result of
V. Palmov [11, p. 406] for the stress concentration factor around a circular hole in
a micropolar solid. This is fully natural because at H → 0 the dilatation effects,
as already mentioned, disappear and the solid becomes micropolar. From (7.7) it
follows that the maximum of K is obtained when P is minimum; but minP = 0
and it is reached at l → ∞, i. e. at α = 0. In the latter case we get the value K = 3
which is well–known from the classical theory of elasticity. In turn, the minimum of
K is attained when P attains its maximum value; the latter corresponds, in virtue

of (7.8), to L → 0, ν = 0, l = q, so that maxP = 2 and thus
5
3

is the minimum

value of the stress concentration factor around a circular hole in a micropolar solid.

Therefore
5
3

< K < 3 in such a solid. Note that all these results belong to V.

Palmov [11, p. 407].
Consider the other limiting case H → ∞, i. e. h → 0 which corresponds to

very strong dilatation effects in the solid. The general formula for K, cf. (7.4), then
reads

(7.9) lim
H→∞

K = 1 +
8N

4N + P (4N + 1)
,

where P is defined in (7.8). Keeping in mind the foregoing result of V. Palmov
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Fig. 1. The dependence of the stress con-
centration factor K on the dimensionless
“degree of dilatationity” H = a/h at vari-
ous degrees of micropolarity L = a/l;
L = 1, 2, 3, 4, 5; Q = q/l = 1, N = 0.0025;
Poisson ratio ν = 0

(P ∈ (0, 2), K ∈
(

5
3
, 3

)
) and the fact that

N > 0, we conclude that in the micropolar–
dilatation model under consideration

(7.10) K > 1,

so that K cannot be less than one. More-
over, the dilatation effects, when taken into
account together with the micropolar ones,
can decrease the factor K making it less

than
5
3
. The minimum value K = 1 is ob-

tained at N → 0, i. e. at m → 2. This is
illustrated in Fig. 1.

Let us suppose now that L=a/l→∞,
i. e. l → 0, and q/l → 0. This corresponds
to neglecting of micropolar effects. In this
limiting case the general formula (7.4) be-
comes

(7.11) lim
a/l→∞
q/l→0

K = 3 +
[
2N +

(
1 + N(4 + H2)

) K1(H)
HK0(H)

]−1

,

which coincides with the respective formula of S. Cowin [9, p. 456] for the stress
concentration factor around a circular hole in a dilatation–elastic solid, provided
the usual transition from plane strain to plane stress is performed. Note that the
same limiting value (7.11) of K is obtained in the other limiting case a/l → ∞,
a/q → ∞. A detailed and well–illustrated numerical analysis of the formula (7.11)
is performed in [9].

The dependence of the stress concentration factor K upon some of the para-
meters (7.5), according to the formula (7.4), is demonstrated in Fig. 2 and 3.

8. CONCLUDING REMARKS

In this paper we have employed a certain microstructural model, which gene-
ralizes both micropolar and dilatation theories of elasticity, in order to investigate
the stress concentration effects around a circular hole. The obtained results (7.4)
and (7.10) show that the stress concentration factor K in this case could closely
approach 1, cf. Fig. 1. This means first of all that microstructural effects could,
in principle, strongly influence the stress fields around stress concentrators. If
we recall also the interpretation of microstructural theories as certain models of
damaged solids (see §1), we can conclude that inhomogeneous damage fields that
appear in vicinity of such concentrators could strongly affect the stress field and in
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Fig. 2. The same as in Fig. 1, i. e. K = K(H), but at L = 6, Q = 0.1, v = 0.25 and N
between 0.1875 and 2.5

Fig. 3. The dependence of the stress concentration factor K on the dimensionless degree
of micropolarity L = a/l at various N between 0.1875 and 2.5; Q = q/l = 0.1, ν = 0.25 and
H = a/h = 6

some cases the stress concentration could be drastically reduced due to the presence
of defects like microcracks and microvoids.

Second, the fact that K can approach 1 means that the hole does not concen-
trate stresses at all in certain cases. This seems strange intuitively, but a plausible
explanation can be proposed immediately in order to elucidate the situation. Note
that we have used the classical definition (7.1) of the stress concentration factor K
in a nonclassical theory of elasticity. If we introduce a similar factor, say Krz, as
the ratio of the maximum micropolar stress µrz in the solid to the value of µrz at
infinity, we shall have Krz = ∞ since µrz → ∞ at r → ∞, cf. (5.1). Moreover,
the coefficient Krz looks, in the framework of the micropolar theory at least, as
reasonable to be introduced as the classical stress concentration factor K is. Thus,
in the authors’ view, the classical stress concentration factor K, given in (7.1), los-
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es its privilege position if microstructural extensions of the classical elasticity are
employed. It is hardly probable that K can be replaced by a certain generalized
coefficient one and the same in all situations. The generalization of K should de-
pend on the concrete situation and context of the microstructural theory which is
applied. For example, it may be useful, instead of K, to introduce in our context,
the stress concentration factor in the form

(8.1) K̃ =
1

p∞
max

[
(T σ : T σ)1/2 + (T µ : T µ)1/2 + (h · h)1/2

]
,

i. e. to compare the uniaxial tension at infinity with the maximum value of the sum
of the second invariants of the tensors T σ and T µ and the length of the hydrostatic
stress field h.
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