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A general method of placing variational bounds on the effective scalar conductivity of

random heterogeneous solids is proposed. The method utilizes the Hashin-Shtrikman vari-

ational principle and trial fields which are obtained upon truncating the functional series

expansion for the polarization field in the medium. It is shown how the earlier variational

procedures due to Hashin and Shtrikman, Milton and Phan-Thien and Willis find natural

places in the proposed general scheme. The new results reported include, for example, the

fact of nonexistence of certain Gaussian-like random media and, for dispersions of spheres

with volume fraction c, an exact O(c2) relation for the effective conductivity which contains

absolutely convergent integrals only.

1 Introduction

In this paper we address the problem of variational bounding for the effective mechanical

properties of random solids on the base of limited statistical information concerning their

internal constitution. This problem has attracted considerable interest in the recent decades

and one of the reasons is the fact that very little is usually known about the internal structure

of a random medium of practical interest. The proposed variational techniques could be
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roughly divided into two groups depending on whether the classical or Hashin-Shtrikman

variational principles are used (cf. the survey of Willis (1981)). In each group the variational

estimates are obtained by extremization of the respective functionals on certain subspaces

of admissible trial fields and the success of the procedures depends heavily on their skillful

choice.

In Markov (1987) a general class of trial fields has been proposed for the classical varia-

tional principle in the heat conductivity context. The fields are formed as truncated func-

tional (Volterra-Wiener) series. These series appear in a natural way when representing the

solution of the respective basic random problem as an infinite functional series, cf. Christov

and Markov (1985) and Markov (1991), and we briefly recall the reasoning in Section 2.

Let us note that such a choice of trial fields has led to the possibility to unify, simplify

and generalize the earlier proposed variational techniques, based on the classical variational

principles, due to Prager (1963), Beran (1965), Kröner (1977) et al., cf. Markov (1987) for

details.

The aim of this paper is to trace and to identify, in a similar systematic manner, the

various applications of truncated functional series as classes of trial polarization fields in the

Hashin-Shtrikman variational principle. The outline of the paper is as follows. We first recall

the principle in Section 2 and discuss the respective representations of polarization. The

simplest class, for particulate media, is the choice of polarization as an arbitrary nonrandom

function within the inclusions, but one and the same for all of them. For a dispersion of

spheres, however, the best choice of the function is constant which leads to the classical

Hashin-Shtrikman bounds (Section 3). The next approximation includes already a one-tuple

term and, with a special choice of the integrand, it is a counterpart to the class admitted

by Beran (1965). In the latter case the respective bounds were introduced and studied by

Milton and Phan-Thien (1982) and Phan-Thien and Milton (1982) under the assumption of

periodicity of the microstructure. We rederive these bounds for a general random medium

and then specialize them to a medium of Gaussian type, for which the three-point moment

vanishes and the four-point moment has an expression of Gaussian type through the two-

point one. It turns out that such an assumption is unrealistic since the lower bound is

greater than the upper (Section 5). For media of practical interest, say, for dispersions

of spheres, the evaluation of the Phan-Thien–Milton bounds is extremely difficult, even to

O(c2), where c is the volume fraction of the spheres. That is why we generalize first the class

of trial polarizations, admitted by the Phan-Thien–Milton procedure and get in passing an

exact expression to O(c2) for the effective conductivity of the dispersion which contains only

absolutely convergent integrals (Section 6). We then modify the general class of polarizations

and reach in a natural way the procedure of Willis (1978), see Section 7, where the correct

final form of the Willis bound is given.
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Let us point out finally that many details and a number of results will be deliberately

skipped here in order to be able to concentrate on the basic ideas of the proposed variational

procedures. A detailed exposition, containing in particular a discussion of the respective

Hashin-Shtrikman type bounds on the elastic moduli for dispersions of spheres, will be given

in the survey of the authors (Markov and Zvyatkov, 1994).

2 The Hashin-Shtrikman principle and the trial polarizations

We first recall the basic random problem in the theory of heterogeneous composite media,

cf. Beran (1968). For simplicity we shall deal hereafter with the scalar conductivity case only:

∇ · q(x) = 0, q(x) = κ(x)∇θ(x), 〈∇θ(x)〉 = G, (2.1)

where κ(x) is the given random conductivity field, θ(x)—the temperature field, q(x)—the

heat flux vector, G is the prescribed temperature gradient. The brackets 〈·〉 denote statistical

averaging. Hereafter the media are assumed statistically homogeneous and isotropic. The

solution of (2.1) is understood in a statistical sense, so that one is to get all multipoint

moments (correlation functions) of θ(x) and the joint moments of κ(x) and θ(x). Among

the latter is the one-point moment

〈κ(x)∇θ(x)〉 = κ∗G, (2.2)

where κ∗ is the effective conductivity of the medium.

As noted by Christov and Markov (1985), the problem (2.1) defines implicitly a nonlinear

operator F that transforms the known field κ(x) (the “input”) into the temperature field θ(x)

(the “output”). Following the general idea of the system theory, cf. e.g., Schetzen (1980), it

is natural to expand the operator F as a functional (Volterra-Wiener) series, generated by

the input κ(x)

θ(x) = G · x +
∫
T1(x− y)κ′(y) d3y

+
∫ ∫

T2(x− y1,x− y2)[κ
′(y1)κ

′y2)−Mκ
2 (y1 − y2)] d

3y1d
3y2 + · · · , (2.3)

with certain nonrandom kernels Ti, i = 0, 1, . . . , and to truncate this series afterwards. In

(2.3) κ′(x) = κ(x) − 〈κ〉, Mκ
2 (x − y) = 〈κ′(x)κ′(y)〉. (We assume the medium unbounded

so that the integrals hereafter are taken over the whole R3 if the integration domain is not

explicitly indicated.) Two types of applications for such truncated series could be envisaged.

The first is to use them as approximate, in a certain sense, solutions of the problem (2.1).

This possibility was discussed in more detail and worked out in the case of random dispersions

of spheres in Markov (1989, 1991), see also Markov and Christov (1992). The second is to
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employ them as classes of trial fields, say, for the classical variational principle, corresponding

to (2.1), namely

W [θ(·)] =
〈
κ(x)|∇θ(x)|2

〉
→ min, 〈∇θ(x)〉 = G, (2.4)

and Wmin = κ∗G2. This idea was developed by Markov (1987), where it was shown how the

earlier proposed variational techniques could be put into this frame. For example, the Beran

method (1965) is a Ritz type procedure in which one truncates (2.3) after the one-tuple term

and chooses the kernel T1 in a special (Beran’s) form:

KB =
{
θ(x) | θ(x) = G · x + λG ·

∫
∇ 1

4π|x− y|
κ′(y) d3y, λ ∈ R

}
. (2.5)

Let us recall now the Hashin-Shtrikman variational principle. To this end we introduce

a homogeneous “comparison” medium, with conductivity κ0, and define the so-called polar-

ization field as

p(x) = κ̃(x)∇θ(x), κ̃(x) = κ(x)− κ0. (2.6)

The Hashin-Shtrikman principle governs, in a variational form, the field p(x); it states that

the functional

U [p(·)] = κ0G
2 +

〈
2p(x) ·G + p(x) · ∇θ′(x)− p(x) · p(x)/κ̃(x)

〉
(2.7)

has a stationary value for the actual polarization field in the medium, i.e., for the field

p(x) = κ̃(x)∇θ(x), where θ(x) is the actual temperature field—the solution of the problem

(2.1). Moreover,

Uext = κ∗G2 (2.8)

and this is the maximum or minimum value of U whenever κ(x) ≥ κ0 or κ(x) ≤ κ0 re-

spectively. In (2.7) θ′(x) is the solution of the equation κ0∆θ
′(x) +∇ · p(x) = 0, for which

〈∇θ′(x)〉 = 0; the prime denotes fluctuating parts.

The general form of the polarization field in the medium could be easily obtained if we

insert the series (2.3) into (2.6)

p(x) = κ̃(x)
{
G +

∫
K1(x− y)κ′(y) d3y

+
∫ ∫

K2(x− y1,x− y2)[κ
′(y1)κ

′(y2)−Mκ
2 (y1 − y2)] d

3y1 d
3y2 + · · ·

}
. (2.9)

The first few kernels Ki could be specified, e.g., from the perturbation solution of the re-

spective integral equation for the polarization field in the case of a weakly inhomogeneous

medium. It appears, in particular, that

K1(x) =
1

〈κ〉
G · ∇

(
∇ 1

4π|x|

)
, (2.10)
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which is proportional to the integrand gradient in the Beran class (2.5). However, instead

of looking for the exact form of the kernels in (2.9), we could truncate this series and use

the results, similarly to the classical principle (2.4), as classes of trial polarization fields in

the Hashin-Shtrikman principle (2.7), introducing adjustable multipliers, varying the kernels

and employing Ritz type procedures. All bounds obtained in this way will be called in what

follows bounds of Hashin-Shtrikman type.

Let us illustrate the above in the simplest cases.

First, we could truncate the series (2.9) after the constant G. Since no restrictions are

imposed on the polarization field, we could multiply the result by an adjustable scalar λ ∈ R.

We are thus led to the class of trial fields

P(1) = {p(x) | p(x) = λκ̃(x)G }, (2.11)

to be considered in more detail in Section 3.

The truncation of the series (2.9) after the one-tuple term leads to the more general class

of trial fields

P(2) =
{
p(x) | p(x) = κ̃(x)

(
λG +

∫
K(x− y)κ′(y) d3y

) }
, (2.12)

where now both λ and K(x) are adjustable. This class will be discussed in Section 4.

Hereafter we drop the subscript ‘1’ in the notation K1 for the kernel in the one-tuple term,

since only the latter will be used and discussed.

3 The two-point bounds

Consider first the restriction of the functional U over the class of polarization fields (2.11).

This restriction is obviously a quadratic function of λ. Its extremization yields, after some

algebra,

κ
(2)
HS = κ0 +

〈κ̃〉2

〈κ̃〉+
1

3κ0

〈κ′2〉
, (3.1)

having used the assumption of statistical isotropy of the medium. On inserting here κ0 = k1

and κ0 = k2 we get a lower or upper bound on the effective conductivity κ∗, provided k1 and

k2 are lower or upper bounds on the field κ(x), respectively.

Since κ
(2)
HS is a monotonically increasing function of κ0, the best bounds are obtained if

one chooses k1 = inf κ(x) and k2 = supκ(x). The superscript ‘2’ in the notation of the

bounds (3.1) indicates that the two-point correlations for the field κ(x) are only needed in

their evaluation.
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Let the medium be two-phase with conductivity of the constituents κf and κm whose

volume fractions are respectively c and 1 − c. On taking κ0 = κm and κ0 = κf , we get the

familiar Hashin-Shtrikman bounds

κ
(2)
HS

κm
= 1 +

3βmc

1− βmc
, βm =

[κ]

κf + 2κm
, (3.2)

at κ0 = κm; the respective expression at κ0 = κf is obtained upon interchanging the indices

‘m’ and ‘f ’ and replacing c by 1− c. As usual [κ] = κf − κm.

It is important to point out that the bounds (3.1) do not coincide and are less restrictive

than the Hashin-Shtrikman ones for an N -phase medium at N > 2. The reason is that in the

latter case one introduces constant polarizations λiG in each phase, i = 1, . . . , N , so that the

number of adjustable scalars is bigger than in the class (2.11). To get the Hashin-Shtrikman

bounds for the N -phase medium, (2.11) should be replaced by the class of trial polarizations

p(x) =
N−1∑
i=1

λiκ̃
i(x)G.

The restriction of the functional (2.7) on this class still involves only two-point correlation

functions for the medium and yields, after extremization with respect to the λ’s, the respec-

tive Hashin-Shtrikman bounds. Since two-phase media and, above all, random dispersions

will be treated in what follows, we shall not give any more details here.

Let the medium be a random dispersion of equi-sized nonoverlapping spheres of conduc-

tivity κf and radii a, embedded into a matrix of conductivity κm. The polarization fields

from the class P(1) are obviously constant within the spheres and matrix. Moreover, if we

take κ0 = κm, then p(x) vanishes in the matrix so that the field p(x) ∈ P(1) could be

conveniently written as

p(x) = λG
∫
h(x− y)ψ(y) d3y, (3.3)

where

ψ(x) =
∑
j

δ(x− xj) (3.4)

is the random density function for the random set xj of sphere centers (Stratonovich, 1967),

h(x) denoting the characteristic function of a single sphere of radius a located at the origin

and δ(x) standing for the Dirac delta function.

The representation (3.3) hints at the idea to consider the more general situation when

p(x) =
∫
h(x− y)F(x− y)ψ(y) d3y, (3.5)

where F(x) is an adjustable function. This means that we allow now the polarization to

vary, but in one and the same manner within each sphere. It could be shown, however, that

6



the best choice of F(x) is the constant, so that the Hashin-Shtrikman bounds (3.2) cannot

be improved, if the polarization is admitted to vary in the class (3.5).

4 The four-point bounds

Consider now the larger class of trial polarization fields P(2), cf. (2.12), that emerges in

a natural way after truncation of the series (2.9) after the one-tuple term. The restriction of

the Hashin-Shtrikman functional (2.7) over P(2) is a functional of the adjustable quantities λ

and K(x) for which the respective Euler-Lagrange equations could be written. They would

include an integro-differential equation from which the “best” kernel K(x) could be sought

for a given random constitution. If found, this kernel would allow to obtain the best, i.e.,

the most restrictive, bounds on the effective properties which utilize the Hashin-Shtrikman

variational principle and statistical information given by the first `-point correlation functions

of the random conductivity field κ(x) of the medium up to ` = 4. In this sense the bounds

so obtained would be four-points which will be reflected in their notations κ
(4)
HS. In a similar

way the best three-point bounds were expressed in Markov (1987) by means of the solution

of the respective Euler-Lagrange equation for the energy functional (2.4), restricted over the

class of trial fields that represent the truncation of the series (2.3) after the one-tuple term.

It is noteworthy that while in the latter case we could get the best three-point bounds, the

bounds κ
(4)
HS will not be here the best four-point ones in general. The reason can be well

seen from the derivation of Hill (1963) of the Hashin-Shtrikman variational principle from

the classical one, in which certain terms are omitted in the latter.

The equation for the “best” kernel K(x) would be however a complicated integro-

differential equation. Its counterpart, derived and studied in Markov (1987) in the sim-

pler case when the classical principle is employed, was solved only in some particular cases,

namely, for cell materials and for dispersions of spheres to O(c2). That is why, without

deriving explicitly the respective equation, we immediately resort to the Ritz type procedure

in which K(x) is the gradient of the first perturbation kernel (2.10). Thus we introduce the

class of trial polarization fields

p(x) = κ̃(x)
{
λ1G + λ2G ·

∫
∇
(
∇ 1

4π|x− y|

)
κ′(y) d3y

}
, (4.1)

where now λ1, λ2 ∈ R are two adjustable scalar parameters. As a matter of fact the class

(4.1), in the scalar conductivity and elastic cases, was introduced by Phan-Thien and Mil-

ton (1982) and Milton and Phan-Thien (1982), who however used the Fourier transforms

of the respective fields, having assumed the medium two-phase and with periodic internal

constitution. But though the assumption of internal periodicity does not lead to any loss
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of generality as far as the effective properties are concerned, it seems more logical to start

with polarization fields of the form (4.1) if only because this fits naturally within the general

framework of truncated functional series as a natural source of trial fields.

Let us point out immediately that the above choice of the kernel K(x) is not the best

in general. Briefly, the explanation follows from the recent results of the authors (Markov

and Zvyatkov, 1991a,b): As is clear from (2.6), a trial polarization field would be close to

the true one when the associated temperature field is close to the true one. This means that

the class (4.1) may lead to the best possible bounds, obtainable in the wider class (2.12), if

the Beran kernel provides the best bounds obtainable from the classical variational principle

over the class of trial temperature fields

θ(x) = G · x +
∫
T (x− y)κ′(y) d3y,

in which the kernel T is varied. The latter holds indeed at least in two cases, namely, (i)

for cell materials (Markov, 1987) and (ii) for dispersions of nonoverlapping spheres, but to

O(c2) only, and not for higher orders of c (Markov and Zvyatkov, 1991a,b). Thus we can

suspect that in these two cases (i) and (ii), the Phan-Thien–Milton bounds are the best,

i.e., they cannot be improved if we try to optimize the Hashin-Shtrikman functional over the

wider class (2.12). But even for random dispersions at higher than degree c2 the said bounds

are not optimal and may be improved at the price of a skillful choice of the kernel K(x)

in (2.12). (This kernel should somehow “feel” the statistics of the dispersion and its form

therefore should be variable, in contrast with the fixed Beran kernel simply multiplied by a

scalar.) It may be shown, however, that the Phan-Thien–Milton bounds are not optimal for

random dispersions even to O(c2), but the rigorous proof will be exposed elsewhere. The

explanation of this fact could be again found in Hill’s derivation of the Hashin-Shtrikman

principle—the disregard of certain terms in the classical principle in this derivation indicates

that a simple one-to-one correspondence between the optimal kernels in these two principles

cannot be expected.

The restriction of the functional U , cf. (2.7), over the class (4.1) is the quadratic function

U(λ1, λ2) =
(
a0 + 2a1λ1 + 2a2λ2 + a11λ

2
1 + 2a12λ1λ2 + a22λ

2
2

)
G2, (4.2a)

where

a0 = κ0, a1 = 〈κ̃〉, a2 = −1

3
〈κ′2〉, a11 = −1

3

〈κ′2〉
κ0

− 〈κ̃〉,

a12 =
1

3

{
1

κ0

[
〈κ′3〉I(3)

κ + 〈κ̃〉〈κ′2〉
]
+ 〈κ′2〉

}
, (4.2b)

a22 =
1

3

{
1

κ0

[
〈κ′4〉I(4)

κ − 2〈κ̃〉〈κ′3〉I(3)
κ − 〈κ̃〉2〈κ′2〉+

1

9
〈κ′2〉2

]
−
[
〈κ′3〉I(3)

κ + 〈κ̃〉〈κ′2〉
]}

;
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here

I(3)
κ =

1

〈κ′3〉

∫ ∫ ( 1

4π|z|

)
,ij

(
1

4π|w|

)
,ij

Mκ
3 (z,w) d3z d3 w, (4.3)

Mκ
3 = 〈κ′(0)κ′(z)κ′(w)〉, is the dimensionless statistical parameter that appears in Beran’s

bounds (Beran, 1965), and

I(4)
κ =

1

〈κ′4〉

∫ ∫ ∫ ( 1

4π|z|

)
,ij

(
1

4π|w|

)
,jk

(
1

4π|z− v|

)
,ki

Mκ
4 (z,v,w) d3z d3v d3w (4.4)

is a new dimensionless statistical parameter, depending already on the four-point correlations

in the medium; Mκ
4 (z,v,w) = 〈κ′(0)κ′(z)κ′(v)κ′(w)〉,

The extremization of the function U(λ1, λ2) yields

extrU(λ1, λ2) = κ
(4)
HSG

2,

where

κ
(4)
HS = a0 +

2a1a2a12 − a2
1a22 − a2

2a11

a11a22 − a2
12

. (4.5)

Due to the Hashin-Shtrikman variational principle the quantity κ
(4)
HS so obtained is a

lower or upper bound on the effective conductivity κ∗ whenever κ(x) ≥ κ0 or κ(x) ≤ κ0

respectively. Obviously these bounds are the exact counterparts of the Beran bounds since

they both utilize, as a matter of fact, one and the same class of trial fields but differ in the

variational principle used in their derivation. In the case of a two-phase medium the bounds

κ
(4)
HS reduce to those obtained by Phan-Thien and Milton (1982). That is why we shall refer

to them as Phan-Thien–Milton’s in what follows.

The practical application of the bounds κ
(4)
HS for a random constitution at hand obviously

depends on the possibility to evaluate the parameters I(3)
κ and I(4)

κ . However, even the

evaluation of the simpler parameter I(3)
κ for media of practical and theoretical interests poses

great problems only recently overcome for dispersions of spheres (both nonoverlapping and

overlapping), see Felderhof (1982), Torquato and Stell (1985), Beasley and Torquato (1986),

et al. As a matter of fact, no attempts to calculate the parameter I(4)
κ have been undertaken

in the literature. That is why we shall start with the discussion of a mathematically simple,

but unrealistic as it will appear, random medium for which the latter parameter can be

explicitly calculated.
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5 The four-point bounds for a Gaussian-type medium

Let us assume that the conductivity fluctuation, κ′(x), of the medium obeys the normality

assumption up to four-point moments. This means that

Mκ
3 (x,y) = 0, (5.1)

Mκ
4 (x,y, z) = Mκ

2 (x− y)Mκ
2 (z) +Mκ

2 (y − z)Mκ
2 (x) +Mκ

2 (z− x)Mκ
2 (y). (5.2)

These assumptions somewhat resemble Finkel’berg’s “approximation of random phases”,

though the latter dealt with the field

τ(x) =
κ(x)− κ0

κ(x) + 2κ0

(5.3)

and required it to be Gaussian in order to be able to evaluate the first few cluster integrals

in the respective expansion of the effective conductivity, cf. Finkel’berg (1964).

Due to (4.3) and (5.1), the Beran parameter I(3)
κ vanishes. In turn, it can be shown that

under the assumption (5.2) the second statistical parameter I(4)
κ is

I(4)
κ =

4

3

(〈κ′2〉2
〈κ′4〉

+
3

〈κ′4〉

∫ ∞

0
χ2(r) dM

κ
2 (r)

)
, (5.4a)

where

χ2(r) = − 1

r3

∫ r

0
s2Mκ

2 (s) ds = −1

3

∫ 1

0
Mκ

2 (r 3
√
p) dp. (5.4b)

As usual, we represent the two-point correlation function Mκ
2 (r) as

Mκ
2 (r) = 〈κ′2〉ϕ(r), ϕ(0) = 1, (5.5)

and assume that ϕ(r) is strongly monotonically decreasing, tending to zero when r → ∞.

In this case the parameter I(4)
κ becomes

I(4)
κ = γ

〈κ′2〉2

〈κ′4〉
, γ =

4

3

{
1 +

∫ 1

0

∫ 1

0
ϕ( 3
√
pϕ−1(t)) dt dp

}
. (5.6)

Since ϕ(r) is monotonically decreasing, (5.6) immediately yields the estimate

4

3

〈κ′2〉2

〈κ′4〉
≤ I(4)

κ ≤ 8

3

〈κ′2〉2

〈κ′4〉
, (5.7)

whatever be the two-point correlation function Mκ
2 (r).

Consider now the perturbation expansion of the bounds (4.5) in the case of a weakly

inhomogeneous medium for which

ω =
〈κ′2〉
〈κ〉2

� 1.
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In this case (4.5) yields, after some algebra,

κ
(4)
HS

〈κ〉
= 1− 1

3
ω + A2(ki)ω

2 + o(ω2), (5.8)

where

A2(ki) =
1 + 9γ

27Mi

, Mi =
ki
〈κ〉

, (5.9)

having taken into account (5.6). We recall that (5.8) provides, respectively, a lower or upper

bound on the effective conductivity if k1 ≤ κ(x) or κ(x) ≤ k2.

The first consequence of (5.9) is that both bounds coincide to the order ω giving the

exact value of the effective conductivity to the same order

κ∗

〈κ〉
= 1− 1

3
ω + o(ω). (5.10)

This is however a well-known result, valid for an arbitrary weakly inhomogeneous and sta-

tistically isotropic medium, cf. Brown (1955).

Moving now to the ω2-coefficient in (5.9), we notice that we should have A2(k1) ≤ A2(k2),

if we choose k1 = inf κ(x) and k2 = supκ(x). But the latter inequality is obviously violated

since both k1 and k2 should be non-negative for a real medium. Thus we can conclude that

there exist no random media for which the assumptions (5.1) and (5.2) hold and κ(x) ≥ 0.

This result warrants several remarks and comments.

First, to demonstrate the nonexistence of such media the four-point bounds (4.5) are

necessary. The reason is that the three-point upper bound of Beran (1965) in this case

yields solely
κ∗

〈κ〉
≤ 1− 1

3
ω,

since I(3)
κ = 0 here. Nothing could be said, however, for the lower Beran bound because the

compliance field 1/κ(x) is not obliged in general to obey the requirements (5.1) and (5.2).

(The medium under study is not necessarily two-phase.)

Second, Gaussianity of κ(x) for a two-phase medium is equivalent to Gaussianity of the

field τ(x), cf. (5.3), assumed by Finkel’berg (1964). The latter assumption has led him to

some unusual values of the second cluster integral for a dispersion so that he concluded

that caution is needed when applying it to real dispersions. Our result of nonexistence of

Gaussian-type random media sheds light upon this conclusion of Finkel’berg and justifies

his warning.

Third, the failure of the Gaussian assumption is not at all unexpected for particulate

media. The only explanation, though somewhat weak and not entirely satisfactory, that

the authors are able to offer at the moment for such media, is the following. As argued
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by Christov and Markov (1985), the Gaussian assumption in this case implies a very dense

population of point-like inclusions and thus it is unable to take allowance for their finite

size. But the dimensionless effective conductivity κ∗/〈κ〉 cannot be expressed by the number

density solely for the usually treated unbounded medium (since the characteristic length—

the mean size of the inclusions—is now missing). More curious is perhaps the fact that even if

we reject the requirement that the medium is two-phase and relax the Gaussian assumption

to the three- and four-point moments only, cf. (5.1) and (5.2), we find again no such media

for which κ(x) ≥ 0.

Note finally that the above reasoning also yields nonexistence of media for which κ(x)

obeys (5.1) and (5.2) and is bounded from below: κ(x) ≥ K, K > −∞. Indeed, we could

immediately replace κ(x) by the field κ(x) − K which is nonnegative and also obeys the

conditions (5.1) and (5.2) (because they include the fluctuation of the field κ(x) only). That

is why the result of this section may be formulated in the following way: A stationary

and isotropic random field κ(x) that obeys the conditions (5.1) and (5.2) is necessarily not

bounded from below.

6 The four-point bounds for dispersions of spheres

Consider now the four-point bounds for a more realistic medium—the dispersion of

nonoverlapping spheres, briefly discussed in Section 3. We first note that the random conduc-

tivity field of the dispersion, κ(x), has a simple integral representation through the random

density field (3.4), namely,

κ(x) = κm + [κ]
∫
h(x− y)ψ(y) d3y, [κ] = κf − κm. (6.1)

The last formula allows the calculation of all needed correlation functions of the field κ(x)

to be calculated by means of the k-point probability densities fk of the random set xj of

the sphere centers (see, e.g., Stratonovich, 1967). Afterwards one could to try to evaluate

the needed statistical parameters (4.3) and (4.4) for the dispersion through the multi-point

densities fk up to k = 4. The calculation can be easily performed for the three-point

parameter I(3)
κ to O(c2) (Markov, 1987), where c is the volume fraction of the spheres.

However, a similar evaluation of the four-point parameter I(4)
κ is much more involved even

to the same order c2. That is why we shall try to analyze the structure of the trial fields

(2.12) and to modify them accordingly in order to derive certain explicit bounds of Hashin–

Shtrikman type for the dispersion, valid to O(c2).

Let us make the transition in (2.12) from the field κ(x) to the field ψ(x), i.e., let us

12



introduce (6.1) into (2.12). The trial fields (2.12) then become

p(x) = κ̃(x)
(
W + [κ]

∫
Φ(x− z)ψ(z) d3z

)
, (6.2)

where

W = λG− n[κ]
∫

Φ(x) d3x, Φ(x) = (K ∗ h)(x) =
∫

K(x− y)h(y) d3y. (6.3)

Hereafter we choose κ0 = κm, i.e., the comparison medium is the matrix. Then

κ̃(x) = κ(x)− κ0 = [κ]
∫
h(x− y)ψ(y) d3y = [κ]

∑
j

h(x− xj). (6.4)

Upon inserting (6.4) into (6.2) and taking the definition (3.4) of ψ(x) into account, we recast

the trial fields (6.2) as

p(x) = [κ]
{∑

i

h(x− xi)[W + Φ(x− xi)] +
∑
i,j
i6=j

h(x− xi)Φ(x− xj)
}
. (6.5)

It is now obvious that the polarization fields (6.5) in the dispersion, corresponding to the

class (2.12), have the following structure. They vanish inside the matrix (due to the choice

κ0 = κm) and in the spheres they are sums of two components: The first is a function, one

and the same for all inclusions; the second depends on the position of the point x within the

inclusion and on the location of the rest of them.

Let us recall that the special choice (2.10) of Beran (1965) of the kernel K(x) is of

particular interest in our study (see Section 4). In this case the kernel, according to (6.3), is

Φ(x) = λ2G · ∇∇ϕ(x), (6.6)

where ϕ(x) = h(x)∗ 1

4π|x|
is the Newtonian potential for a single sphere located at the origin.

The field (6.6), let us recall, is proportional to the disturbance, T (1)(x), to the temperature

field G · x in an unbounded matrix of conductivity κm, introduced by a single spherical

inhomogeneity of conductivity κf . Hence for dispersions of spheres the class (6.5), with the

special choice (6.6) of the kernel Φ(x), coincides with the class introduced by Phan-Thien

and Milton (1982).

Note that a transition from the field κ(x) to the random density field ψ(x), similar to that

made above, was applied in Markov and Zvyatkov (1988, 1991a) for the classical variational

principle. In this way it has been directly shown that the Beran bounds for dispersions of

nonoverlapping spheres coincide with the so-called first-order cluster bounds of Torquato

(1986).
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The polarizations (6.5) can be represented in a more convenient “factorial” form if we

introduce, after Christov (1985) and Markov (1991), the so-called factorial fields, generated

by the random point set xj, namely:

∆
(0)
ψ = 1, ∆

(1)
ψ (y1) = ψ(y1),

∆
(2)
ψ (y1,y2) = ψ(y1)[ψ(y2)− δ(y2,1)], etc.. (6.7)

The multipoint moments of the factorials that are needed in what follows can easily be

expressed by means of the k-point probability densities fk for the set xj of sphere centers,

see, Stratonovich (1967) or Markov and Christov (1992). For instance,〈
∆

(2)
ψ (y1,y2)∆

(1)
ψ (y3)

〉
= n2g0(y1,2)[δ(y1,3) + δ(y2,3)] + o(n2),

〈
∆

(2)
ψ (y1,y2)∆

(2)
ψ (y3,y4)

〉
= n2g0(y1,2)[δ(y1,3)δ(y2,4) + δ(y1,4)δ(y2,3)] + o(n2), (6.8)

etc., where yi,j = yi − yj, n stands for the number density of the spheres, and g0(y1,2) =

f2(y1,2)/n
2 + o(n2) is the zero-density limit of their radial distribution function.

The fields (6.5) can now be recast as

p(x) = [κ]
{∫

h(x− y)F(x− y)ψ(y) d3y

+
∫ ∫

h(x− y1)Φ(x− y2)∆
(2)
ψ (y1,y2) d

3y1 d
3y2

}
, (6.9)

where

F(x) = W + Φ(x). (6.10)

Thus the original trial fields (2.12), after making this transition, become truncated fac-

torial series. Such series were introduced by Markov (1991): they represent functional series

of the form (2.3), generated by the random density field ψ(x) whose terms are rearranged so

that the products ψ(y1) . . . ψ(yk) are replaced by the factorial fields (6.7). In the same paper

of Markov it was argued that such series should be of primary importance in the theory of

random particulate media since their truncations generate asymptotically correct stochastic

solutions with any desired degree of accuracy. The representation (6.9) once more indicates

the importance of the factorial series in the theory of particulate random media and random

dispersions in particular.

In all cases to be treated below it suffices to replace the one-tuple term in (6.9) by the

simpler one λκ̃(x)G, with an adjustable λ. (As already mentioned in Section 3, the latter

is the best choice in the two-point bounds of Hashin-Shtrikman type, so that a decisive

improvement in the case of the four-point bounds should be expected from the two-tuple

term in (6.9).)
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Before modifying the class of trial polarizations (6.5) in order to extract calculable

bounds, at least to O(c2), we should first generalize this class. Such a generalization, which

is natural enough, is the class

p(x) = λκ̃(x)G +
∑
i,j
i6=j

h(x− xi)Φ(x ; xi,xj), (6.11a)

where now Φ(x ; xi,xj) is an arbitrary function such that

Φ(x;xi,xj) = Φ(x− xi ;xi − xj), (6.11b)

due to the homogeneity of the dispersion. This means that we allow the polarization to vary

in arbitrary manner within the reference inclusion ‘i’ (different in each inclusion); this is

described by the dependence of Φ on its first argument x− xi, while the influence of the rest

of the inclusions, labeled ‘j’, j 6= i, also varies arbitrarily, being described by the dependence

of Φ on its second argument xi − xj.

By means of the factorials (6.7) we rewrite the fields (6.11) as

p(x) = λκ̃(x)G + [κ]
∫ ∫

h(x− y1)Φ(x− y1;y1 − y2)∆
(2)
ψ (y1,y2) d

3y1 d
3y2, (6.12)

where now both λ and Φ are adjustable.

The restriction of the Hashin-Shtrikman functional (2.7) over the class of trial polarization

fields (6.12) is a functional, U [λ,Φ(· ; ·)], of λ and Φ. The Euler-Lagrange equation for the

latter can be explicitly solved to O(c2), yielding

extrU [λ,Φ(· ; ·)] = κ̃
(4)
HSG

2,

κ̃
(4)
HSG

2 = 1 + 3β + 3β2(1 + S)c2 + o(c2), (6.13)

where S = S[g0(·)] is a certain statistical parameter for the dispersion, defined as

3β2S[g0(·)]G2 = a′2G
2

=
[κ]

κm

1

V 2
a

∫
h(x) d3x

∫
g0(y)∇T (1)(x− y) ·

[
∇T (2)(x;y)−∇T (1)(x)

]
d3y. (6.14)

It can be directly shown that a′2 + 3β2 coincides with the exact value of the c2-coefficient a2

in the virial expansion of the effective conductivity κ∗ of the dispersion, as given by Jeffrey

(1973). This means that the formula (6.14) for a′2 can be recast as

3β2S[g0(·)]G2 = a′2G
2

=
[κ]

κm

1

V 2
a

G ·
∫
h(x) d3x

∫
g0(y)

[
∇T (2)(x;y)−∇T (1)(x)

]
d3y, (6.15)
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where T (2)(x; z) denotes the disturbance to the temperature field G ·x in an unbounded ma-

trix of conductivity κm, introduced by a pair of nonoverlapping spherical inhomogeneities of

conductivity κf , centered at the origin and at the point z respectively. The underlying rea-

son for this coincidence is that the class (6.12) is rich enough to include the real polarization

field to O(c2). Thus

κ∗ = κ̃
(4)
HS + o(c2). (6.16)

The representation (6.14) of a′2 seems to be novel and deserves some comments.

Let us recall that the integral in Jeffrey’s formula (6.15) for a′2 is conditionally convergent

with respect to y. The reason is that the function U(x;y) = ∇T (2)(x;y)−∇T (1)(x) has the

order |y|−3 at |y| � 1. A formal and rigorous justification of the mode of integration that

leads to convergence in (6.15) was given in Markov (1987b, 1989). Jeffrey himself performed a

“renormalization”, subtracting from U(x;y) the term β∇T (1)(x) which contributes nothing

to the value of the integral, but makes the resulting function absolutely integrable. The

important point here is that the function U(x;y) appears multiplied by ∇T (1)(x− y) in our

expression (6.14) for a′2 which makes the integral absolutely convergent, with the integrand

having asymptotic order |y|−6 at |y| � 1 (the same as in Jeffrey’s renormalized formula).

Thus, curiously and a bit unexpectedly, the Hashin-Shtrikman variational principle has led us

to an exact formula for the c2-coefficient a2 of the dispersion conductivity which contains only

absolutely convergent integrals. This fact confirms once again our view that the conditionally

convergent integrals are not inherent in the theory of random dispersions. Though they

admit an interesting and appealing physical interpretation (Jeffrey, 1978), such integrals

could play an auxiliary role there, allowing in some cases only a convenient representation

of the needed kernels in the functional series for the random fields of interest. Moreover,

the mode of integration in the latter cases is unambiguously defined as a part of the full

statistical solution of the problem, see Markov (1987b, 1989), Markov and Christov (1992).

In virtue of (6.16), there is no need to evaluate the bound κ̃
(4)
HS, because the well-known

results of Jeffrey (1973) and Felderhof et al. (1982), concerning the c2-term of the effective

conductivity, can be directly used to identify the said value. (The calculation required in their

works is nontrivial, however.) That is why the class (6.12) should somehow be narrowed.

7 The bounds of Willis

Let us try now to narrow the class (6.12) of trial polarization fields in order to get certain

useful bounds on the effective conductivity of the dispersion. The first thing to notice along

this line is that the class (6.9) corresponds to the special choice of the functions Φ(u;v) in
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(6.12) for which

Φ(u;v) = Φ(u + v). (7.1)

As already mentioned, the kernel Φ(u), given in (6.6), is of special interest. It corresponds

to the Beran or (which is the same in our context), to the Phan-Thien–Milton) choice. In

this case the trial fields (6.12) become simply

p(x) = λ1κ̃(x)G + λ2G ·
∫ ∫

h(x− y1)∇∇ϕ(x− y2)∆
(2)
ψ (y1,y2) d

3y1 d
3y2, (7.2)

where λ1, λ2 ∈ R are adjustable constants. Thus the polarization is now a sum of an ad-

justable constant vector and a term that depends, in a fixed way, on the position x of the

point within the reference inclusion and on the locations of the rest of them, multiplied by an-

other adjustable scalar. However, it is exactly the dependence of the function ∇∇ϕ(x− y2)

on x that makes the evaluation of the respective Hashin-Shtrikman type bounds for the dis-

persion extremely difficult even to O(c2), as already pointed out. That is why we could try

to modify the class (7.2), noticing that x− y1 ≈ y1 − y2 at |y1 − y2| � a and |x− y1| < a,

so that

h(x− y1)Φ(x− y2) ≈ h(x− y1)Φ(y1 − y2). (7.3)

Accordingly, we could replace the trial fields (6.9) with the fields

p(x) = λκ̃(x)G +
∫ ∫

h(x− y1)Φ(y1 − y2)∆
(2)
ψ (y1,y2) d

3y1 d
3y2. (7.4)

Hence the polarization within each inclusion is constant, similarly to the Hashin-Shtrikman

choice, but this constant depends now on the presence of the remainder of the inclusions.

These are, however, just the trial polarization fields, introduced by Willis (1978), which

allowed him to obtain certain bounds on the effective conductivity, and also on the effective

elastic moduli later (Willis, 1980). Thus we arrive here to this idea in a natural way, having

analyzed the structure of the truncated polarization fields in the dispersion and trying to

modify them in order to make the respective (Phan-Thien–Milton) bounds calculable. Note

that Willis’ assumption corresponds, in our notations, to the requirement

Φ(u;v) = Φ(v) (7.5)

for the kernel Φ in the class (6.9).

We shall start first with some remarks, concerning the nature and the sense of the as-

sumption (7.3).

First, it is clear that the farther apart the spheres are, the more exact the assumption

(7.3) becomes. Thus the latter should be expected to reflect correctly the influence of

the remote spheres on the reference one. Conversely, the closer the spheres are, the more

conspicuous becomes the inhomogeneity of the polarization within the reference sphere.
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But the neighbouring spheres should have the predominant effect on the latter field which

indicates that the assumption (7.3) is rather severe and makes us suspect that the relative

simplicity in calculating Willis’ bounds is to be paid for in the sense that the respective

bounds would bring little improvement, if any, when compared to the known ones. A real

improvement could be expected only when the polarization variation within the inclusions

is not strongly pronounced; this should be the case when the spheres are “rigid”, i.e., the

ratio α = κf/κm � 1. Indeed, we shall see below that the bounds of Willis, though they

are four-point, are worse than the three-point bounds of Beran for a weakly inhomogeneous

dispersion. The improvement on the latter shows up only when the ratio α of constituent

conductivities is big enough.

Let us start now with the calculations. The Hashin-Shtrikman functional (2.7), when

restricted over the class (7.4), becomes

U [λ,Φ(·)] = κmG
2 + [κ]E(λ)cG2

+2G ·
[
D(1)

Φ + λ
[κ]

κm

(
K(1)

Φ − 1

3β
D(1)

Φ

)]
c2 (7.6)

+
1

κm

[
K

(2)
Φ − 1

3β
D

(2)
Φ

]
c2 + o(c2),

where

E(λ) = 2λ+

(
[κ]

3κm
(c− 1)− 1

)
λ2, D(1)

Φ =
1

Va

∫
Φ(y)g0(y) d3y,

D
(2)
Φ =

1

Va

∫
|Φ(y)|2g0(y) d3y,

K(1)
Φ =

1

Va

∫
ω(y) ·Φ(y)g0(y) d3y, (7.7)

K
(2)
Φ =

1

Va

∫
Φ(y) · ω(y) ·Φ(−y)g0(y) d3y,

ω(y) =
1

Va

∫
h(y − z)∇∇ϕ(z) d3z.

Consider first the simplified situation in which the kernel Φ(y) in (7.4) has the form

(6.6). This means that we introduce the trial polarizations of the form

p(x) = λ1κ̃(x)G + λ2G ·
∫ ∫

h(x− y1)∇∇ϕ(y1 − y2)∆
(2)
ψ (y1,y2) d

3y1 d
3y2, (7.8)

where λ1, λ2 ∈ R are adjustable constants. The class (7.8) obviously corresponds to the Phan-

Thien–Milton choice of the kernel Φ in which the simplifying assumption of Willis—constant

polarization within the inclusions—is made. The restriction of the functional U = U(λ1, λ2)

over the class (7.8) is a quadratic function of λ1 and λ2 of the form (4.2a), with the coefficients

a0 = κm, a1 = [κ], a2 = 0,
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a11 = c

(
[κ]

3κm
(c− 1)− 1

)
, a12 =

2

3
a3 [κ]

κm

∫ ∞

2a

g0(r)

r4
dr, (7.9)

a22 =
2a3

9κm

{
a3
∫ ∞

2a

g0(r)

r7
dr − 1

β

∫ ∞

2a

g0(r)

r4
dr

}
.

These coefficients are found by means of (7.7), in which the kernel Φ from (6.6) is inserted.

Due to the presence of g0(y), only the values of the tensor function ω(y) at |y| > 2a

are needed in the calculations, since g0(y) vanishes otherwise (the spheres are forbidden to

overlap). It is then easy to show that

ω(y) = ρ3
(
erer −

1

3
I
)
, ρ =

a

r
, (7.10)

er = y/r, r = |y|, because the convolution h ∗ ϕ = (h ∗ h) ∗ 1

4πr
is harmonic in the region

|y| > 2a and depends on r only. Thus it has the form C/r there, with C = Va/3.

The extremization of the quadratic function U(λ1, λ2) with the coefficients (7.9) yields

extrU = κ̃wG
2, where

κ̃w
κm

= 1 + 3βc+ 3β2(1 + S̃w)c2 + o(c2),

and

S̃w =

6β

(∫ 1
2

0
ρ2g0(a/ρ) dρ

)2

∫ 1
2

0
ρ2g0(a/ρ) dρ− β

∫ 1
2

0
ρ5g0(a/ρ) dρ

. (7.11)

Thus the value

ãw = 3β2(1 + S̃w) (7.12)

is an upper or lower bound on the c2-coefficient a2 for the dispersion, whenever κf < κm or

κf > κm respectively. The bound (7.12) was announced by Zvyatkov (1992).

In the simplest well-stirred case g0(r) = 1 and the bound (7.12) becomes:

ãw = 3β2

(
1 +

4β

16− β

)
. (7.13)

Let us now try to improve on the bound (7.12) by allowing the kernel Φ(y) in (7.4) to

vary, which is exactly the procedure of Willis (1978). The only difference, purely formal,

is that Willis worked with double sums while here we employ the truncated factorial series

(6.12), something that makes the calculations easier; in our notations his choice of trial fields

corresponds to the requirement (7.5). The solution of the Euler-Lagrange equations

dU

dλ
= 0, δΦU = 0 (7.14)
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for the functional (7.6) is sought in the virial form

λext = λ0 + λ1c+ · · · , Φext(x) = Φ0(x) + Φ1(x)c+ · · · .

The needed extremum value U ext to O(c2) is defined by the zero-density terms λ0 and

Φ0(x). Moreover, λ0 = 3βκm/[κ]. The equation for Φ0(x) that follows from (7.14), reads

3βG · ω(y)g0(y) +
1

κm

{
Φ0(−y) · ω(y)− 1

3β
Φ0(y)

}
g0(y) = 0. (7.15)

We shall suppose that the kernel Φ(y) is even, so that Φ0(−y) = Φ0(y) in particular.

This reflects the natural assumption that the influence of the sphere ‘i’ on the polarization

within the spheres ‘j’ is the same of that of the sphere ‘j’ on that within ‘i’. (It is interesting

that the unnatural assumption that Φ(y) is odd is immediately “punished”—the best choice

then is Φ0(y) = 0 which yields the Hashin-Shtrikman bounds (3.2) to O(c2).) The solution

of (7.15) is now obvious

Φ0(y) = 3βκmG · ω(y) ·T−1(y), (7.16a)

where

T(y) =
1

3β
I− ω(y). (7.16b)

Having introduced the value of λ0 already found, together with (7.16), into the functional

(7.6), we obtain the extremum value of the latter: extrU [λ, Φ(·)] = κwG
2, where

κw
κm

= 1 + 3βc+ 3β2(1 + Sw)c2 + o(c2). (7.17)

Here Sw = Sw[g0(·)] is a statistical parameter for the dispersion, defined as

Sw[g0(·)]G2 = 3G · 1

Va

∫
g0(y)ω(y) ·T−1(y) · ω(y) d3y ·G. (7.18)

As a consequence of (7.10), we have immediately

T(y) =
1

3β
(1 + βρ3)I− ρ3erer, (7.19)

so that T−1(y) has the same structure, namely

T−1(y) = ξ(ρ)I + η(ρ)erer,

ξ(ρ) =
3β

1 + βρ3
, η(ρ) =

3βρ3

1− 2βρ3
ξ(ρ). (7.20)

After simple algebra, based on (7.10) and (7.20), we get eventually the parameter Sw in

the closed form

Sw = 6β
∫ 1/2

0
g0(a/ρ)

ρ2 dρ

(1 + βρ3)(1− 2βρ3)
. (7.21a)
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Hence, the value

aw2 = 3β2(1 + Sw), (7.21b)

with Sw given in (7.18), is an upper or lower bound on the c2-coefficient a2 for the dispersion,

whenever κf < κm or κf > κm respectively. We shall call (7.21) the bound of Willis.

The first thing to be pointed out about this bound is that our final result (7.21) differs

from that of Willis (1978) (see his equation (51) in which, by the way, the multiplier 24π is

misprinted as 8π). At the same time our expression (7.16) for the function Φ0 agrees with

the general formula of Willis, eqn (47), in the scalar conductivity case. Similarly, the general

expression for the bound of Willis, eqn (48), agrees with our result (7.18). The difference in

the final forms seems to be due to the fact that Willis has taken the tensor T(y), see (7.19),

in the incorrect form
1

3β
(1 + βρ3)I + ρ3erer, which leads immediately to his eqn (51). By

chance the latter equation predicts reasonable values, deviating but slightly from the correct

expression (7.21), which may explain why the above said remained unnoticed by the author.

The correct form (7.21) of Willis’ bound has been first reported by Markov and Zvyatkov

(1990).

In the simplest well-stirred case g0(r) = 1 and the integration in (7.21a) is elementary:

aw2 = 3β2

(
1 +

2

3
ln

8 + β

2(4− β)

)
. (7.22)

Simple inspection demonstrates, as expected, that the bound of Willis (7.21) improves

on the respective Beran bound (as calculated to O(c2) in Markov (1987)) only if the ratio

α = κm/κf is big enough, α ≥ α0. (In the well-stirred case α0 ≈ 2.5.) For α < α0 and, in

particular, for a weakly inhomogeneous dispersion, the bounds of Willis, though four-point,

are worse than the three-point bounds of Beran due to reasons already discussed at the

beginning of this section. Interestingly enough, the simplified bound (7.13) predicts values

which are extremely close to the bound (7.21) in the well-stirred case.

Conclusions

A new aspect of application of truncated functional series in the theory of transport

phenomena in heterogeneous media of random constitution was proposed and discussed

in this paper. Namely, such series were systematically employed here as classes of trial

polarizations fields for the Hashin–Shtrikman variational principle. In this way it turned out

possible to unify and explore in more detail the existing variational procedures due to Hashin

and Shtrikman, Phan-Thien and Milton, and Willis. In the resulting bounds a new four-point

statistical parameter appeared (cf. (4.4)), whose evaluation for realistic and general enough
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random constitutions is an open and difficult problem. In particular, certain analytical

O(c2)-formulae for random dispersions of spheres were proposed, as well as an exact O(c2)

expression for their effective conductivity that contains convergent integrals only. In general,

the obtained results indicate once again that the functional series, especially in their factorial

form, represent a well-adapted and powerful tool in the mathematical theory of transport

phenomena in random heterogeneous media.
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