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Abstract. The aim of the paper is to extend the well known reasoning and conclu-
sions of the continuum damage mechanics from metals to polymer materials, when
Norton’s creep law is replaced by a hereditary type constitutive equation. Treating
damage as volume fraction of microvoids appearing and evolving during straining,
some simple models of mechanics of composites are employed. A system of coupled
differential equation for the longitudinal strain and damage as functions of time is
derived as a result. The brittle, ductile and mixed brittle-ductile type of failure are
identified in a simplified model example.

1. Introduction

The aim of the paper is to extend the well known reasoning and conclusions of
the continuum damage mechanics from metals to polymer materials, when Norton’s
creep law is replaced by a hereditary type constitutive equation. In the former case
the assumption of incompressibility essentially simplifies the analysis. For polymer
creep this assumption is inapplicable, moreover, though the constitutive relations are
linear, their integral structure makes the damage analysis much more complicated in
general.

Here we shall outline an approach which despite its approximate nature al-
lows, hopefully, an adequate study of the damage processes in polymer material in
interconnection with straining history. The approach follows the traditions of the
continuum damage mechanics, initiated by Kachanov [1,2], invoking in particular a
kinetic equation for damage evolution of the same type as in Kachanov’s theory. A
difference lies in a bit more “physical” interpretation of damage as volume fraction
of microvoids that appear and evolve during deformation. This allows us to employ
some of the simple models of mechanics of composites, treating the damaged solid as
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porous. In the classical problem for a deteriorating rod under a fixed tensile force,
a system of coupled differential equation for the longitudinal strain and damage as
functions of time is derived as a result. The brittle, ductile and mixed brittle-ductile
type of failure are identified in a simplified model example.

2. Basic Equations of the Model

Consider a linear viscoelastic material governed by usual hereditary type con-
stitutive equations:

ε(t) =
1

E
σ(t) +

∫ t

0
Γ(t − s) σ(s) ds ; (2.1)

only 1D case will be treated hereafter, in the context of a uniaxial tension of circular
cylindrical rod, whose current length is l and its radius is r; the initial values (at
t = 0) of these quantities will be denoted by l0 and r0 respectively. In Eq. (2.1)
ε = dl/l is the longitudinal strain, σ = F/A, A = πr2, is the stress, Γ is the creep
kernel and E—the Young modulus.

Imagine that due to loading damage appears and evolves in the rod, in the
form of spherical microvoids (porosity), homogeneously and isotropically distributed
throughout it. The volume concentration of the voids will be denoted by c = c(t).
Hence the rod becomes a microporous material whose effective macroscopic prop-
erties, say, the creep kernel, the Young modulus, etc., are strongly affected by the
magnitude of c. Moreover, though the loading force F remains constant, the tensile
stress σ increases since the radius r of the cross-section shrinks. To simplify the cal-
culations hereafter, keeping at the same time the basic features of the problem under
study, we shall replace Eq. (2.1) with the simplified relation

ε(t) = K(t, c) σ(t) , (2.2)

where, at fixed c, K(t, c) is just the creep curve of the material with porosity c,
corresponding to unit stress. The functional dependence of K(t, c) upon c is supplied
by the theory of two-phase viscoelastic composite materials in the particular case when
one of the constituents represents voids. The appropriate results and approximate
analytical relations for the function K(t, c) are discussed in Section 3 below, so that
we shall treat this function as known for the moment.

In the case under study

σ(t) =
F

πr2
=

σ0

ρ2
, ρ =

r

r0

, (2.3)

where σ0 = F/(πr2) is the initial value of the stress and ρ = ρ(t) ≤ 1 is the dimen-
sionless radius of the cross-section.

Differentiating (2.2) with respect to time, we get

ε̇(t) =
dl/dt

l
=

λ̇

λ
=

d

dt

[
K(t, c)

σ0

ρ2

]
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=
σ0

ρ3

[
ρ
∂K(t, c)

∂t
+ ρċ

∂K(t, c)

∂c
− 2K(t, c)ρ̇

]
, λ =

l

l0
, (2.4)

so that λ = λ(t) ≥ 1 is the dimensionless length of the rod.
In turn, the increments of λ and ρ are interconnected through the Poisson

ratio ν = ν(c):

dλ

λ
= −ν(c)

dρ

ρ
, i.e.

λ̇

λ
= −ν(c)

ρ̇

ρ
, (2.5)

since dλ/λ is the longitudinal and dρ/ρ is the transverse strains. We again underline
the fact that ν = ν(c) depends on the void ratio c; the dependence ν(c) will also be
discussed in Section 3 below.

Finally, an evolution law for the “damage” variable c = c(t) is required. In
the best tradition of the continuum damage mechanics we postulate that its rate ċ is
determined by the magnitude of the current stress:

ċ = Bσn, (2.6)

i.e., the same as in Kachanov’s damage model [1,2], with B and n denoting material
parameters. The difference is only in the fact that while in the latter σ = σ0/(1−ω),
where ω is Kachanov’s damage, here σ = σ0/ρ

2 and ρ is a much more complicated
function of c that depends implicitly on the creep curve K(t, c), see (2.4) and (2.6).

Note that Eq. (2.6) is tantamount to the equation of the kinetic theory of
fracture as developed in detail in [4]. In the latter, one considers the number N
of broken bonds in a polymer, assuming that their rupture results from thermal
fluctuations induced by the actual applied stress σ which is increased due to the very
appearance of the broken bonds. An analysis of the frequency and magnitude of
such fluctuations yields that the rate dN/dt is proportional to exp(σ). But broken
bonds generate obviously microvoids so that their number is closely connected with
the microporosity, i.e., damage in our interpretation, in the polymer. Hence formally
we can replace (2.6) by the law

ċ = A1e
A2σ, (2.7)

with material parameters A1, A2. From the formal point of view, adopted in the
continuum damage mechanics, (2.7) is as good as (2.6), since in both these equations
the parameters should be specified by an appropriate fit to the experimental data,
concerning time-to-rupture for various initial stress values. A more detailed account
of the physical situation and fluctuation reasons leading to bonds ruptures allows
however to get an interpretation of the parameters A1 and A2 in (2.7) (especially,
for their temperature dependence [4]) — something which is outside the scope of the
more formal continuum damage mechanics in the sense of Kachanov [1,2].

The equations (2.4)–(2.6) form the basic system of differential equations for the
unknown functions λ(t), ρ(t), c(t) of the proposed model of a deteriorating polymer
material. The system should be solved under the obvious initial conditions

λ(0) = 1, ρ(0) = 1, c(0) = 0. (2.8)

617



The analytical solution of the aforementioned system is impossible even for simplest
plausible creep functions K(t, c). However, a qualitative picture of the behaviour of
the rod can be easily drawn.

Indeed, this behaviour will be decisively determined by the initial stress value
σ0. If σ0 is very small, the creep phenomenon will be not pronounced strongly and
only the “damage” c will evolve achieving a certain critical magnitude, say c ≈ 0.66,
leading to rod’s rupture. This situation corresponds obviously to brittle fracture
in this case. The peculiar rheological model—metal or hereditary creep type—is
clearly not of special importance as it should be since rupture is governed by damage
accumulation that follows Kachanov’s type law (2.6). As a consequence, it should be
then expected that one of the basic facts of Kachanov’s damage mechanics, namely
the good approximation of dependence of the time-to-rupture versus stress by a linear
fit in the log − log coordinates will hold true in the viscoelastic model under study.
This will be indeed confirmed in Section 4 for a special and realistic form of the creep
function K(t, c) that corresponds to the linear standard body. The peculiarity of the
rheology shows up only at higher values of σ0 when considerable creep deformation
evolves and, as a result, the cross-section shrinks down tending to zero; the actual
stress increases as a consequence and the rod ruptures due to purely geometrical
reasons and fast enough so that there is no time for the damage to attain considerable
magnitudes. This situation corresponds obviously to the case of ductile failure. For
intermediate values of σ both mechanisms—creep deformation decreasing the cross-
section and damage accumulation coexist and interplay and hence a mixed brittle-
ductile failure of the rod takes place.

3. Some Facts from Mechanics of Porous Solids

To take into account the influence of the porosity c, treated here as damage
parameter, on the effective properties of the rod, we shall invoke some of the simplest
relations of mechanics of composite materials. Such relations follow, e.g., from the
model of “concentric” spheres as discussed in [5]. This model, as a matter of fact,
corresponds to the effective field approach in mechanics of composites [5,6], which
in the scalar conductivity case coincides with the well-known Maxwell (or Clausius-
Mossoti) relation. The predictions of the model are extremely simple if we assume
additionally that the Poisson ratio, ν0, of the undamaged rod is 0.2. In this case it
turns out that ν(c) ≡ ν0 = 0.2, independently of c. Hence, from (2.5),

dλ

λ
= −0.2

dρ

ρ

which means that
ρλ5 = 1. (3.1)

A somewhat similar relation between ρ and λ exists in the incompressible
case, namely, ρ2λ = 1. Recall that the latter is essentially used in the Hoff’s model
of ductile rupture of metals in creep [1–3].
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Note that (2.3) and (3.1), when employed in (2.6), yield

ċ = B1ε
n
0λ

ν , B1 = BEn
0 , ν = 10n, (3.2)

thus excluding the function ρ(t). In (3.2) ε0 = σ0/E0 is the initial strain of the rod
(at t = 0).

In the same concentric shell model at ν0 = 0.2, the instantaneous Young
modulus of the rod is a very simple function of c:

E = E(c) = E0
1 − c

1 + c
(3.3)

and similarly for the long-time modulus E∞. That is why we can assume the creep
curves of the undamaged and damaged rod to be proportional

K(t, c) =
1 + c

1 − c
K(t, 0) , (3.4)

with a factor, reciprocal to that in (3.3). (The reason is that K(0, c) = 1/E,
K(∞, c) = 1/E∞, where E = E(c) and E∞ = E∞(c) are respectively the instan-
taneous and long-time elastic moduli of the damaged rod.) The formula (3.4) holds
true at t = 0 and t → ∞. The detailed analysis of (3.4), performed in [8,9], demon-
strates that it provides a very good approximation to the creep curves of a two-phase
linear viscoelastic composite and hence it is fully appropriate for the present study
which already contains a number of simplifying assumptions.

With (3.3) and (3.4) taken into account, (2.4) becomes

ε̇(t) =
λ̇

λ
= ε0

d

dt

[
λ10 1 + c

1 − c
f(t)

]
, (3.5)

where f(t) = K(t, 0) E0 is the dimensionless creep curve, f(0) = 1, and ε0 = σ0/E0

is the initial strain, defined in (3.2).
A simple differentiation of the right-side of (3.5) yields, taking into account

(3.2),

λ̇ =
ε0λ

11[2B1ε
n
0λ

νf(t) + (1 − c2)ḟ(t)]

(1 − c)[1 − c − 10ε0λ10(1 + c)f(t)]
. (3.6)

Together with (3.2) we thus get a system of differential equations for λ(t)
and c(t) that governs the tensile behaviour of the deteriorating viscoelastic rod. The
system takes into account the creep characteristics of the latter through the function
f(t) and the damage accumulation features through the material parameters B1 and
n. A bit more detailed analysis of this system will be performed in the next Section
for a simple and plausible form of the function f(t).

Note that (3.6) makes sense only at ε0 < 0.1 since at ε0 = 0.1 the denominator
in the right-side of (3.6) vanishes at t = 0 which means that at σ0 = E0/10 the rod
ruptures instantaneously.
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4. Example and Discussion

For the sake of simplicity, assume that the solid part of the rod follows the
well-known standard-linear model, so that its creep curve is

K0(t) = K(t, 0) = f(t)/E0, f(t) = 1 + p(1 − e−mt), (4.1)

where p and m are positive material parameters; moreover m = 1/t∗ and t∗ is the
retardation time of the model [10]. Introducing the dimensionless time τ = t/t∗, the
basic system (3.2), (3.6) becomes

dλ

dτ
=

ε0λ
11[2B̃1ε

n
0λ

νf(t) + (1 − c2)pe−τ ]

(1 − c)[1 − c − 10ε0λ10(1 + c)f(τ)]
,

dc

dτ
= B̃1ε

n
0λ

ν , (4.2)

where f(τ) = 1 + p(1 − e−τ ) and B̃1 = B1 t∗ = BEn
0 t∗ is a dimensionless material

parameter.
It is important to point out that to have a reasonable picture of the rod’s

behaviour we should take n < 1. Then at ε0 � 1, the right side of (4.2)1 will be very
small also which means that λ = l/l0 will remain close to 1. At the same time εn

0 > ε0,

and the damage will increase linearly in time: c ≈ B̃1ε
n
0 t, as it follows from (4.2)2.

The failure occurs when c attains a critical value, say, c ≈ 2/3, while λ remains close
to 1, that is the longitudinal strain is very small. The time-to-rupture, tR, will be
specified then by the relation

Bσn
0 tR = 2/3,

which shows that log σ0 is a linear function of log tR. If the kinetic equation of damage
(2.7) is adopted, then log tR and σ0 will be interconnected by a linear function, which
is often observed in experiments [4].

The aforesaid is demonstrated in Figs. 1 to 3, which correspond to somewhat
arbitrarily chosen (for the illustrative purposes) material constants B̃1 = 0.1, n = 0.1
and p = 2 (the latter means that the creep is well pronounced, i.e. E0/E∞ = 3),
varying the initial strain ε0. In Fig. 1 the functions λ(τ) and c(τ) are shown for
ε0 = 0.0001. The time-to-rupture is tR ≈ 11t∗, corresponding to the moment when
the damage c attains the critical value of 2/3. Up to this moment λ = l/l0 remains
very close to 1 which means that the rod indeed fails due to damage accumulation
without showing considerable macroscopic deformation. At ε0 = 0.01 the situation is
entirely different, as is well seen from Fig. 2, where the same functions λ(τ) and c(τ)
are plotted. In this case the function λ(τ) has a vertical asymptote, not shown there,
at τ ≈ 2.6; at this moment the volume concentration of damage remains low—around
0.2 and hence a typical ductile failure takes place. The intermediate case is shown
in Fig. 3, where the initial strain is ε0 = 0.001 in between those of Figs. 1 and 2. In this
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Fig. 1. Longitudinal extension λ = l/l0 and damage c as functions of dimensionless
time τ = t/t∗; initial strain ε0 = 0.0001 corresponding to “brittle” rupture.

Fig. 2. The same as in Fig. 1 for initial strain ε0 = 0.01 corresponding to “ductile” rupture.

Fig. 3. The same as in Fig. 1 for initial strain ε0 = 0.005 corresponding to mixed
“brittle-ductile” rupture.



case again the function λ(τ) has a vertical asymptotics (not shown) at τ ≈ 7, but
the volume concentration of damage accumulated up to this moment is already very
considerable—about 0.4. This is obviously a mixed brittle-ductile type of failure of
the rod.
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