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The problem of heat conduction through a random dispersion of nonoverlapping spheres
is considered. The full stochastic description of the random temperature field, θ(x), in the
dispersion is obtained in the form of a factorial functional series. Such series, recently introduced
in [1], have the important property that their truncations after the p-tuple term give results
for all needed multipoint correlation functions which are correct to the order cp ; here c is the
volume fraction of the spheres, p = 1, 2, . . . . The procedure of identification of the kernels in
the series is considered in detail for the case p = 2 so that the full stochastic description of θ(x),
correct to the order c2, is obtained in a closed form. In particular, the effective conductivity of
the dispersion is found to the same order and shown to coincide with the known formula of D.

Jeffrey [2].

1. Introduction

Let us consider an infinite heterogeneous medium of random constitution. For definiteness,
we shall deal with the problem of heat conduction through the medium as a simple representative
of a wide class of similar transport phenomena, conveniently tabulated and discussed in [3].

Let κ(x) be the random field of thermal conductivity of the medium which we assume to
be statistically homogeneous and isotropic. The temperature field, θ(x), in the medium, at the
absence of body sources, is governed by the equations

(1.1a) ∇θ(x) = 0, θ(x) = κ(x)∇θ(x),

where θ(x) is the opposite heat flux vector. We prescribe also the mean value of the temperature
gradient to be constant

(1.1b) 〈∇θ(x)〉 = G,

which plays the role of a boundary condition for the random equation (1.1a). The brackets 〈·〉
denote ensemble averaging.

The random problem (1.1) is the typical one for the theory of heterogeneous composite ma-
terials of random constitution. This is obviously a nonlinear problem, because the known field
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κ(x) multiplies the unknown θ(x), and this strong nonlinearity is the source of all difficulties
in the theory of such materials. The uniqueness and existence theorem for the random problem
(1.1) was proved in [4] under the natural condition 0 < K1 ≤ κ(x) ≤ K2 <∞.

Let us recall now [5] that to solve the random problem (1.1) means to determine all r-
point moments (or equivalently the correlation functions) of the temperature field θ(x), i.e. the
averages

(1.2a) 〈θ(x1) . . . θ(xr)〉 ,
and the joint moments of θ(x) and κ(x), i.e. the averages

(1.2b) 〈θ(x1) . . . θ(xs)κ(xs+1) . . . κ(xs+l)〉 ,
r, s, l = 1, 2, . . . , by means of the known moments

(1.3) 〈κ(x1) . . . κ(xp)〉 ,
p = 1, 2, . . . , of the given conductivity field. In particular, among the joint moments (1.2b) one
has to evaluate the one-point moment

(1.4) 〈κ(x)∇θ(x)〉 = κ∗ 〈∇θ(x)〉 = κ∗G,

where κ∗ is the effective conductivity of the medium.
The parameter κ∗ and its elastic counterparts are, as a matter of fact, the only characteristics

of random media which has been extensively studied in the literature, see, e.g., [6] or the survey
[7]. The reasons for the attention paid to κ∗ are twofold: first, κ∗ is the simplest nontrivial
scalar characteristics of the random solution θ(x) of the problem (1.1); second, and perhaps
more important, κ∗ prescribes the effective macroscopical response of the random medium.
However, it is well acknowledged now, due to the pioneering work of W. Brown [8], that to
calculate κ∗ rigorously one needs the full statistical description of the random medium, i.e., all
multipoint moments (1.3) of the conductivity field κ(x). Thus both problems — the particular
one of calculating κ∗ and the much more general one of solving (1.1) in statistical sense, i.e., of
finding the random temperature field θ(x), — require one and the same amount of statistical
information. In the author’s view this fact implies that, except for some simplest cases, the said
two problems are of one and the same level of difficulty. Moreover, any attempt to calculate
κ∗ rigorously can be successful only if it is somehow incorporated within the solution of the
more general problem (1.1). Or, to put it differently, the calculation of κ∗ cannot, in general,
be torn away from the full stochastic solution of the problem (1.1). This means, in particular,
that everyone of statistical characteristics (1.2) of the field θ(x), and not only κ∗, should be
of importance when studying macroscopic response of a random medium. May be somewhat
similar arguments stimulated M. Beran to consider evaluation and bounding, in certain simple
cases, of some other statistical characteristics in random media, e.g., the variances (in our
context the quantities

〈|∇θ′(0)|2〉 and
〈|q′(0)|2〉, see [9] and the references therein; hereafter

the prime will denote the fluctuating part of the respective random variable.
We shall illustrate here this point of view on the classical example of a stationary random

dispersion of equisized nonoverlapping spheres. Such a random medium has been considered by
many authors starting perhaps with J. Maxwell [10] who gave the famous heuristic formula
for its effective conductivity

(1.5)
κ∗

κm
= 1 +

3βc
1 − βc

= 1 + 3βc+ 3βc2 + . . . ;
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here β = [κ]/(kf + 2km), [κ] = kf − km, kf and km are the conductivities of the spheres and of
the matrix respectively and c is the volume fraction of the spheres.

A number of approaches and models borrowed from physics were also proposed to evaluate
κ∗ among them the ideas of self-consistency, effective field, coherent potential approximation,
etc., see again [6, 7] et al. As is well known, these models look very reasonable; the problem
with them is that they are not extracted from a rigorous statistical analysis and therefore, as
a rule, it is rarely clear what kind of random constitution, if any, lies behind the respective
formulae for the effective properties to which the models lead. Moreover, some negative results
were recently obtained by the author [11], e.g., it appeared that the Maxwell formula (1.5) is
not realizable for a dispersion of nonoverlapping spheres even to the order c2.

The difficulties in calculating κ∗ have made many authors consider a simpler problem which
consists in the following. Let

(1.6)
κ∗

κm
= 1 + a1c+ a2c

2 + · · ·

be the so-called virial expansion of the effective conductivity of the dispersion, i.e. the expansion
in powers of the volume fraction c of the spheres. As noted by D. Jeffrey [2], the coefficient
a1 is, as a matter of fact, the only thing rigorously calculated by J. Maxwell: a1 = 3β, see
(1.5); it does not depend on the statistics of the dispersion. The c2-coefficient a2 is however
strongly influenced by sphere’s distribution and therefore its evaluation should be much more
complicated.

The problem of evaluating a2 for a given statistics of the dispersion has been extensively
treated in the literature after the famous work of A. Einstein, [12] who obtained the c-term in
the effective viscosity of a fluid dispersion containing rigid spheres. Many attempts to extend
the Einstein formula to the order c2 have been made, see, e.g., [13] for a detailed survey of the
work done prior to 1956 along this line. The basic idea underlying the up-to-date calculation
of the coefficient a2 is the so-called cluster (or group) expansion. This idea, introduced by
Finkel’berg [14], and later on employed and/or elaborated in many papers, to mention only
[2, 15, 16], consists, loosely speaking, in representing κ∗ as a sum of consecutive terms that
result from interactions within successively larger groups of spherical inhomogeneities. With-
out entering a more lengthy discussion, we shall only mention the following. (i) The cluster
expansions concern the effective properties only and not the full statistical description of the
random fields under study. (ii) They are usually introduced on the base of a certain heuristic
reasoning unconvincing, in the author’s view, in general. (Moreover, some arguments of D.

Jeffrey and J. McCoy [17, p.21], clearly indicate that there exist hidden difficulties in jus-
tification of the cluster expansion ideology even on heuristic level.) (iii) The formula for a2,
derived by means of the cluster expansion, contains nonabsolutely convergent integrals which
should somehow be unambiguously defined. To this end G. Batchelor [18] and D. Jeffrey

[2] devised the so-called “renormalization procedure” in order to render the respective integrals
absolutely convergent. A detailed and very careful analysis of this procedure was performed by
D. Jeffrey [19] who assigned a specific physical meaning of the various terms that appear,
e.g., the renormalizing quantities were interpreted as a result of the long-rang interactions in
the dispersions.

Another approach was introduced by J. Willis and J. Acton [20] (in the elastic context)
who started with an integral equation for the so-called polarization field. In this equation, how-
ever, the polarization was replaced by its fluctuation, in order to make the integrals absolutely
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convergent; such a replacement also represents a kind of “renormalization procedure” adopted
in [20] without any comment. The approach of E. Hinch [21] consists in deriving an infinite
hierarchy of equations for the averaged field quantities like multipoint moments and to decou-
ple it asymptotically for dilute concentrations; making use again of a certain “renormalization”
he reached the c2-formula of G. Batchelor and J. Green [22] for the viscosity of a fluid
suspension.

The foregoing remarks suffice to explain why one should look for a different and more rigor-
ous, than cluster expansions with renormalization, approach when evaluating a2, in particular,
and in the statistical theory of random dispersions, in general.

As it will be seen below, for a wide class of dispersions the evaluation of a2 and the evaluation
of the random temperature field θ(x) to the order c2 both require one and the same amount of
statistical information, namely, the zero-density limit, g0(x), of the radial distribution function
g0(x) for the set of sphere’s centers. Similarly to the above said, concerning the evaluation of
κ∗ and the solution of the problem (1.1), this fact implies in the author’s view that the problem
of evaluation of the c2-coefficient a2 cannot be satisfactorily and rigorously solved unless it is
incorporated into the solution of the more general problem of full statistical solution of (1.1),
correct to the order c2, i.e., of evaluation of all multipoint moments (1.2) to this order of
accuracy.

Following this line of arguments, we shall explicitly construct in this paper the full statistical
solution of the problem (1.1) for dispersions of nonoverlapping spheres in the form of factorial
functional series. The definition and basic features of such series are recalled in §2. The
procedure of identification of the kernels in the factorial series for the temperature field θ(x) is
detailed in the case p = 2 (§3), and the needed kernels of the truncated factorial series in this
case are explicitly found in §4. In this way we can obtain in a closed form, correct to the order
c2, all multipoint moments (1.2) for the random dispersion of spheres (§5). In the simplest
particular case, when calculating κ∗ to the order c2, we shall derive the renormalized formula
of G. Batchelor and D. Jeffrey in a rigorous way.

2. Factorial functional series

To accomplish our aim of solving the problem (1.1) for random dispersions we shall utilize
the functional series approach. This approach seems to be novel in mechanics of random
heterogeneous solids; it was recently introduced in [23, 24]. The basic idea that underlies the
approach consists in the following. The random problem (1.1) defines implicitly a nonlinear
operator which transforms the random conductivity field κ(x) — the “input” — into the random
temperature field θ(x) — the “output”:

θ(·) = L[κ(·)].
Following a general idea of system theory, see, e.g., [25], we shall expand the operator L as

a functional series generated by the input κ(x), i.e.

θ(x) = K0(x) +
∫
K1(x − y)κ(y) dy

(2.1) +
∫ ∫

K2(x − y1,x − y2)κ(y1)κ(y2) dy1dy2 + · · · ,

with certain nonrandom kernels K0, K1, . . . . Hereafter, if the integration domain is not explic-
itly indicated, the integrals are taken over the whole R3.
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Having represented the field θ(x) as the functional series (2.1), it is natural to truncate the
latter after the p-th tuple term in order to obtain certain approximations, θ(p)(x), for θ(x).
Such a truncation immediately brings forth two basic questions, common for all problems in
which functional series are employed,

(i) How to rearrange the terms of the series so as the said truncations “converge” to the
field θ(x)

(2.2) θ(p)(x) → θ(x), p→ ∞

(ii) In what sense the convergence in (2.2) is to be understood.
For a wide class of random dispersions the answer to these two questions was given in [1]

so that we should first recall briefly some of the basic results of this paper.
Let xj be the random point set comprising all sphere’s centers. The statistics of the disper-

sions is conveniently described by means of the probability density functions fk = fk(y1, . . . ,yk)
which give the probability dP to find simultaneously a point from the set xj per each of the
infinitesimal volumes yi < y < yi + dyi, i = 1, . . . , k, to be

dP = fk(y1, . . . ,yk) dy1 . . .dyk, k = 1, 2, . . . ,

see [26]. The assumption of nonoverlapping yields

(2.3) fk(y1, . . . ,yk) = 0, if |yi − yj | < 2a, for a pair i �= j.

Hereafter we assume all random sets and fields statistically homogeneous and isotropic; then,
in particular, we have f1(y) = n, where n is the number density of the set xj , i.e., the mean
number of spheres per unit volume. Obviously, n = c/Va, where Va = 4

3πa is the volume of a
single sphere. Also fk(y1, . . . ,yk) = fk(yk1, . . . ,ykk−1, where yij = yi − yj , k > 1.

Let us imagine that by means of a certain manufacturing process one produces dispersions
with different number densities n. The statistics of the dispersions will then depend on n as a
parameter, i.e. fk = fk(Y k;n), Y k = (y1, . . . ,yk). If the manufacturing process is “smooth”
enough, we may write

(2.4) fk(Y k;n) =
∞∑
l=1

fkl(Y k)nl, k ≥ 1.

After [11] we adopt now the following basic assumption concerning the constitution of the
dispersions which are produced

The distance between the nearest spheres tends to infinity
(2.5) as n→ 0, i.e. for dilute sphere fraction.

This means that the process does not put spheres in rigid complexes, say, in dumb-bells. The
assumption (2.5) is thus fully natural when we speak of dispersions of spheres; otherwise we
should have spoken of dispersions of dumb-bells or other more complicated sphere complexes.

A simple analysis carried out by the author [12, p.II] shows that the assumption (2.2) yields
fkl = 0 at l < k, and therefore

(2.6) fk(Y k;n) = nkfkk(Y k) + o(nk),
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i.e. fk ∼ nk, k = 1, 2, . . . , which is the usual assumption for the probability densities fk. We,
however, prefer to start with the assumption (2.6) because it seems mote clear intuitively.

A very convenient characteristics of the random dispersion is the so-called random density
field

(2.7) ψ(x) =
∑
j

δ(x − xj),

generated by the set xj of sphere’s centers [26]. Since the field ψ(x)is uniquely defined by the
set xj , its moments can be expressed by means of the densities functions fk which describe the
set xj statistically. The respective formulae are given by R. Stratonovich [26]; they read:

〈ψ(y)〉 = f1(y) = n,

〈ψ(y1)ψ(y2)〉 = f1(y1)δ(y1 − y2) + f2(y1,y2),

〈ψ(y1)ψ(y2)ψ(y3)〉 = f1(y1)δ(y1 − y2)δ(y1 − y3)

(2.8) +3{δ(y1 − y2)f2(y1,y3)}s + f3(y1,y2,y3),

etc., where 〈·〉s means symmetrization with respect to all different combinations of indices in
the brackets. Relations (2.8) show that, vice versa, the multipoint moments of ψ(x) define
uniquely the multipoint distribution densities fk. Thus the random density field ψ(x) provides
an alternative form of characterization of the random set xj and, in turn, of the random
dispersion of spheres.

The usefulness of the field ψ(x) in the study of particulate media was demonstrated in
[22,23]; it stems from the fact that the random conductivity field κ(x) for the dispersions under
study has a simple integral representation by means j(x), namely,

(2.9) κ(x) = km + [κ]
∫
h(x − y)ψ(y) dy,

where h(x) is the characteristic function for a single sphere located at the origin, i.e., h(x) = 1,
if |x| < a and vanishes otherwise.

Let us introduce now the set of random fields, generated by the random density field ψ(x):

∆(0)
ψ = 1, ∆(1)

ψ (y) = ψ(y), . . . ,

(2.11) ∆(k)
ψ (y1, · · · ,yk) = ψ(y1)[ψ(y1)δ(y2 − y1)]

· · · [ψ(yk) − δ(yk − y1) − · · · − δ(yk − yk−1)],

k = 2, 3, · · · , which we call the factorial fields or, briefly, the factorials for the set xj . To the
best of our knowledge, the fields (2.10) in this form were first introduced by C. Christov [27]
whose aim was to obtain a simple general formula for the multivariate Charlier polynomials.
The name factorials stems from the formula

(2.11) ∆(k)
ψ (y1, · · · ,yk) =

{
fk(y1, · · · ,yk)ψ(y1) · · ·ψ(yk), if yi �= yj ,
0, if yi = yj for a pair i �= j.
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whose proof is given in [1].
Since the field ψ(x) provides an exhaustive statistical description of the random dispersion,

we can use it as an input in a functional expansion similar to (2.1). In turn, we can replace in
this expansion the products ψ(y1) . . . ψ(yk) by the factorial fields (2.11):

θ(x) = T0(x) +
∫
T1(x − y)∆(1)

ψ (y) dy

(2.12) +
∫ ∫

T2(x − y1,x − y2)∆
(2)
ψ (y1,y2) dy1dy2 + · · · .

The kernels Tp in (2.12) can be easily expressed by means of the kernels of the series (2.1);
no new notations are used for them. Series of the type (2.12) are called in [1] factorial. The
basic result of [1] states that for the class of dispersions that comply with the assumption (2.5)
and thus with (2.6), the series (2.12) is virial. This means that the convergence in (2.2) is
virial in the sense that the truncations θ(p)(x) of the series (2.12) give results for all multipoint
moments (1.2) of the solution θ(x) to the random problem (1.1) which are correct to the order
cp, provided the kernels Ti are properly identified. The performance of the factorial series was
illustrated in [1] on the steady-state diffusion problem in a random lossy dispersion and the
first three kernels T0, T1, T2 were asymptotically found yielding a c2-solution to the respective
random problem. Here we shall turn to the application of the factorial series (2.12) for solving
the random problem (1.1) for the dispersions that satisfy the condition (2.5).

3. Equations for the kernels of the factorial series

The identification of the kernels Ti in the factorial series (2.12) can be performed by means
of the procedure, successfully employed in [23, 24, 28] et al. in some particular situations.
The procedure consists in the following [1]. Suppose we want to determine the field θ(x)
to the order np, i.e., cp, only, p = 1, 2, . . . . Then the truncation q(x) is solely needed and
thus the kernels T0, T1, . . . , Tp are to be specified. Consider the equation (1.1a) that governs
θ(x), insert there θ(p)(x) instead of θ(x), and κ(x) according to (2.1), multiply by multiply
by 1, ∆(1)

ψ (0), . . . ,∆(p)
ψ (0, z1, . . . ,zp−1) and average the results, keeping in mind (1.1b) as well.

Making use of the formulae for the average values of the respective products of the factorials
(they are straightforward consequences of (2.8) and (2.10), see, e.g., (3.4) below), and truncating
them to the same order np, we get a system of p+ 1 equations for the needed kernels T0 to Tp.

In what follows we shall consider in detail the case p = 2 only, making use of some ideas
and results, sketched briefly in the author’s lecture [29]. The reasons for such a choice of p are
threefold: First, this suffices to demonstrate well the technique to be used for an arbitrary p.
Second, the length of calculations is kept within reasonable limits and some tangible results are
achieved. Third, the obtained solution is valid to the order c2 — a case, as already mentioned
in §1, considered by many authors when calculating the effective conductivity which provides
a number of known results for comparison and discussion.

The n2-analysis below is facilitated if an n2-orthogonal system of basic fields is employed
instead of the factorials. The n2-orthogonality means that the average values of any pair of
different basic fields is of order higher than n2 and thus it could be neglected within the frame
of the n2-approximation under study. Let us point out that this is a particular case of the
notion of virial orthogonality, introduced by the author in [29, 1], for functionals generated
by sets of random points. This notion is weaker than the Wiener notion of orthogonality in
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stochastic sense [30], but unlike the latter, virial orthogonality can be accomplished for any
random system xj that complies with the assumption (2.5), see [1, 23, 29] for comments and
details.

The n2-orthogonal system comprises the fields [29]:

D
(0)
ψ = 1, D

(1)
ψ (y) = ∆(1)

ψ (y) − n = ψ′(y),

D
(2)
ψ (y1,y2) = ∆(2)

ψ (y1,y2) − ng0(y12)
[
D

(1)
ψ (y1) +D

(1)
ψ (y2)

]
− n2g0(y12),

(3.1) D
(p)
ψ (y1, . . . ,yp) = ∆(p)

ψ (y1, . . . ,yp), p = 3, 4, . . . .

Here ψ′(y) is the fluctuating part of ψ(y) and

(3.2) g0(y) = f22(y) = g(y) +O(n),

so that g0(y) is the leading term, i.e., the zero-density limit, in the virial expansion of the usual
radial distribution function g(y) = f2(y)/n2 for the random set xj of sphere’s centers. The
representation (3.2) follows from (2.6) at k = 2.

As a consequence of (3.1), (2.8) and (2.10) it can be readily verified that
〈
D

(1)
ψ (y)

〉
= 0,

〈
D

(2)
ψ (y1,y2)

〉
= o(n2),

(3.3)
〈
D

(1)
ψ (y1)D

(2)
ψ (y2,y3)

〉
= o(n2).

Since the series (2.12) is virial, (3.3) suffices to claim that the fields (3.1) do form an n2-
orthogonal system.

In what follows we shall also need the following formulae:
〈
D

(1)
ψ (y1)D

(1)
ψ (y2)

〉
= nδ(y12) − n2R0(y21)

〈
D

(1)
ψ (y1)D

(1)
ψ (y2)D

(1)
ψ (y3)

〉
= nδ(y21)δ(y31) − n23{δ(y21)R0(y21)}s,

〈
D

(2)
ψ (y1,y2)D

(1)
ψ (y3)D

(1)
ψ (y4)

〉
=
〈
D

(2)
ψ (y1,y2)D

(2)
ψ (y3,y4)

〉

(3.4) = n2g0(y21) [δ(y31)δ(y42) + δ(y32)δ(y41)] ,

〈
D

(2)
ψ (y1,y2)D

(2)
ψ (y3,y4)D

(1)
ψ (y5

〉
= n2g0(y12)[δ(y51) + δ(y52)][δ(y31)δ(y42) + δ(y41)δ(y32)],

yij = yi−yj , R0(y) = 1−g0(y); they are correct to the order n2 and represent straightforward
consequences of (2.8), (2.10), (3.1) and (3.3).

Let us truncate the series (2.12) after the two-tuple term. Due to the virial property of this
series we can obtain in this way the c2-solution of the random problem (1.1) for the dispersion
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provided the kernels are properly identified. In the truncated series we rearrange the terms and
introduce the n2-orthogonal fields D(1)

ψ and D(2)
ψ , given in (3.1), instead of ∆(1)

ψ , ∆(2)
ψ :

θ(x) = G · x +
∫
T1(x − y)D(1)

ψ (y) dy

(3.5) +
∫ ∫

T2(x − y1,x − y2)D
(2)
ψ (y1,y2) dy1dy2 + · · · .

The new kernels T1 and T2 here (no new notations are used for them) are linear combinations of
the kernels T0,T1 and T2 of the series (2.12). The kernels T1 and T2 depend also on the number
density n of the spheres. The kernel T2 is a symmetric function of its arguments; moreover, it
can be shown that the condition of nonoverlapping yields

(3.6) T2(z1, z2) = 0, if |z1 − z2| < 2a.

The zeroth-order term in (3.5) is indeed G · x since D(1)
ψ and D

(2)
ψ are centered, cf. (3.3), and

since θ(x) should satisfy (1.1b).
We thus conclude that the c2-solution of the basic random problem (1.1) for the dispersion

requires that the nonrandom kernels T1 and T2 of the truncated series (3.5) be identified. To
this end we employ the above mentioned scheme: We insert (2.9) and (3.5) into (1.1a), multiply
by D(1)

ψ (0) and D(2)
ψ (0, z) and average the results. In virtue of (3.3) and (3.4) we get eventually

km∆S(x) + [κ]∇ ·
{
h(x)[G + ∇S(x)] − nF0(x)G

+n[Va − F0(x)]∇S(x) − n

∫
∇S(x − y)h(x − y)R0(y) dy

(3.7a) +2ng0(y)h(x − y)∇T2(x − y,x) dy
}
= 0,

[1 −R0(z)]∇·
{
2[κm + [κ](h(x) + h(x − z)]∇T2(x,x − z)

(3.7b) +[κ][h(x)∇T1(x − z) + h(x − z)∇T1(x)]
}

= 0,

where

(3.8) S(x) = T1(x) − n

∫
T1(x − y)R0(y) dy,

(3.9) F0(x) =
∫
h(x − y)R0(y) dy.

Everywhere in (3.7) the differentiation is with respect to x, ∇ = ∇x, z plays the role of a
parameter.

4. Virial solution of the system (3.7)

We shall look for the solution of the system (3.7) in the truncated virial form

T1(x) = T1(x;n) = T10(x) + nT11(x),
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(4.1) T2(y1,y2) = T2(y1,y2;n) = T20(y1,y2);

we underline that the kernels T1 and T2 depend on the number density n as well. This form is
justified in our c2-analysis because in all formulae for averaged statistical quantities T1 appears
multiplied by n and T2 — by n2. The virial coefficients T10, T11 and T22 do not already depend
on the number density n; they comply with the system

(4.2a) κm∆S(x) + [κ]∇ ·
{
h(x)[G + ∇S0(x)

}
= 0,

κm∆S(x) + [κ]∇ ·
{
h(x)∇S1(x) + [Va − F0(x)]∇S0(x)

(4.2b) −
∫
∇S0(x − y)h(x − y)R0(y) dy + 2I20x)

}
= 0,

[1 −R0(z)]∇ ·
{
2[κm + [κ](h(x) + h(x − z))]∇T20(x,x − z)

(4.2c) +[κ] [h(x)∇T10(x − z) + h(x − z)∇T10(x)]
}

= 0,

which follows straightforwardly if one inserts (4.1) into (3.7). Here

(4.3) I20(x) =
∫
g0(y)h(x − y)∇T20(x − y,x) dy

and S(x) = S0(x)+nS1(x), so that S0 and S1 are the first two virial coefficients of the function
S(x), defined in (3.8); obviously

(4.4) S0(x) = T11(x),

(4.5) (4.5)S1(x) = T11(x) −
∫
T10(x − y)R0(y) dy.

Unlike the basic system (3.7), the system (4.2) for the needed virial coefficients T10, T11,
T22 is already decoupled3 and can be analytically solved. Indeed, Eqn. (4.2a) is nothing but
the equation for the disturbance T (1)(x) to the temperature field in an unbounded matrix
introduced by a single spherical inhomogeneity, when the temperature gradient at infinity is G.
Its solution is thus well known to be

(4.6) T10(x) = S0(x) =

{−βG · x, if r < a,

−βa3G · x/r3, if r > a,

where r = |x| and β = [κ]/(zkm + 2κf ); therefore T10(x) does not depend on the statistics of
the dispersion.

3Let us note that E. Hinch [21] has used a similar idea of asymptotical decoupling, at c → 0, of his hierarchy
of equations for the averaged field quantities in a suspension. This seems to be, however, the only point of
resemblance between our approach and that of Hinch’s.
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Due to (4.6), Eqn. (4.2b) can be recast as

κm∆S1(x) + [κ]∇ ·
{
h(x)∇S1(x) + [Va − F0(x)]∇T1(x)

(4.7) +(β − 1)F0(x)G + 2I20(x)
}

= 0,

which allows us to specify S1 provided we know the function T20 and thus the integral I20,
defined in (4.3).

Consider the equation (4.2c) for T20. Similarly to (4.2a) it does not depend on the statistics
of the medium and therefore it coincides with that derived in [23] for the particular case of
a well-stirred dispersion (for which g(y) = g0(y) = 1 at |y| > 2a). As is shown in [23], the
solution of (4.2c) has the form

(4.8) 2T20(x − z,x) = T (2)(x; z) − T10(x) − T10(x − z),

where T (2)(x; z) is the disturbance to the temperature field in an unbounded matrix, introduced
by a pair of identical spherical inhomogeneities with centers at the origin and at the point z,
|z| ≥ 2a, when the temperature gradient at infinity equals G. Each one of these inclusions,
if it were alone, would disturb the temperature field in the homogeneous matrix by T10(x)
and T10(x − z), respectively. Thus the field T20(x − z,x) is proportional to the field which
should be added to the single-inclusion disturbances T10(x) and T10(x − z) in order to obtain
the double-inclusion disturbance T (2)(x; z). Note that the foregoing interpretation of the virial
coefficients T10 and T20 is fully similar to that of the respective coefficients in the steady-state
diffusion problem [1].

It is important to point out that a simple asymptotical analysis of Eqn. (4.2c) yields

(4.9) 2T20(x − z,x) = βa3∇T10(x − z) · ∇ 1
x

+ o(|z|−3), |z| 
 1.

The field T (2)(x; z) can be analytically found, e.g., by means of the method of twin expan-
sions [14, 2, 15], and therefore we shall think it known. Hence we know, at least in principle,
the functions T10 and T20, both independent of the statistics of the dispersion and therefore
only Eqn. (4.7) for the function S1, and thus for T11, remains to be solved. This needs first of
all an evaluation of the integral I20 in (4.3) which seems a very difficult tusk if we try to do
it directly. We shall encompass this difficulty by replacing I20 with another integral which is
much easier to be calculated. We shall argue as follows.

Let us rewrite Eqn. (4.2c) in the form

[1 −R0(z)]∇ ·
{
2[κ]h(x − z)∇T20(x − z,x)

}

(4.10) = −[1 −R0(z)]∇ ·
{
2[κm + [κ]h(x)]∇T20(x − z,x)

−[κ][h(x)∇T10(x − z) + h(x − z)∇T10(x)]
}
.

Due to the presence of h(x − z), the left-hand side of (4.10) is absolutely integrable with
respect to z in the region Z2a = {|z| | |z| > 2a} and thus the same holds for the right-hand side.
(Let us remind that the differentiation everywhere is with respect to x so that it commutes
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with the integration with respect to z.) That is why we can choose the mode of integration as
we wish. We choose, the reason to become clear a bit later, the following mode of integration

(4.11)
∫
·dz = lim

R→∞

∫
Z2a,R

·dz;
∫
Z2a,R

·dz =
∫ R

2a
r2 dr

∫
Ω
·dΩ,

where Z2a,R = {|z| | 2a < |z| ≤ R}. This means that in the integrals over Z2a,R we first
integrate with respect to the angular coordinates, i.e., on the unit sphere Ω = {|z| | |z| = 1},
and then with respect to the radial coordinate r = |z|.

Let us introduce now the functions

(4.12) L10(x) =
∫
Z2a

g0(z)∇T10(x − z) dz,

(4.13) L20(x) =
∫
Z2a

g0(z)T20(x − z,x) dz.

Due to (4.6) and (4.9), both integrals in (4.12) and (4.13) are not absolutely convergent.
However, they exist in the sense (4.11) since when integrating first with respect to the angular
coordinates the contribution of the “bad” leading term 1/|z|3 vanishes; the latter is well seen
from (4.6) and from the asymptotics (4.9) for the function T20. The remaining terms are already
of the order 1/|z|m, m ≥ 4, as |z| → ∞, so that they are absolutely integrable. Let us point
out that the existence of the integrals (4.12) and (4.13) in the sense (4.11) is just the reason
why this mode of integration is chosen.

Let us integrate now (4.10) with respect to z over the region Z2a taking the integrals in the
sense (4.11) when needed

2κm∆L20(x) + [κ]∇·
{
2h(x)L20(x) + 2I20(x)

+h(x)L10(x) + ∇T10(x)
∫
g0(z)h(x − z) dz

}
= 0.

Thus, having introduced the conditionally convergent integrals (4.12) and (4.13), we have
combined them in (4.14) in such a manner which cancels out the contributions of the non
convergent parts of the two integrals, in order to obtain an expression, (4.14), containing the
absolutely convergent integral I20(x). As noted by D. Jeffrey [2], a similar combination
of conditionally convergent integrals appeared in the classical Einstein work [12] on effective
viscosity of suspensions.

In virtue of (3.9) we have

(4.15)
∫
Z2a

g0(z)h(x − z) dz = Va − F0(x).

Also, it may be easily shown that

(4.16) h(x)L10(x) = 0, i.e. L10(x) = 0 at x < a.

Keeping in mind (4.15) and (4.16), we recast Eqn. (4.14) as

κm∆L20(x) + [κ]∇ ·
{
2h(x)∇L20(x) + I20(x)

(4.17) +[Va − F0(x)]∇T10(x)(x)
}

= 0.
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We next subtract (4.17) from (4.7) and write down the result in the form

(4.18) κm∆H(x) + [κ]∇ ·
{
h(x)∇H(x) + (β − 1)F0(x)G

}
= 0,

where

(4.19) H(x) = S1(x) − 2L20(x)

is the new unknown function instead of S1(x). Thus we have eliminated the integral I20(x)
from our analysis, replacing it by the integral L20(x) which, though conditionally convergent
(in the sense (4.11)) is much easier to be evaluated. And what is more important, Eqn. (4.18)
can be readily solved in a closed form.

Eqn. (4.18) first appeared in [23] in fully different context (in the frame of the so-called
singular approximation in the theory of effective conductivity) in the particular case of a well-
stirred dispersion. In this case the solution of (4.19) was obtained in [23] only within the sphere
|x| < a. For an arbitrary function g0(y) the solution of (4.19) is

(4.20) H(x) =



β(1 − β)VaG · x, if r < a,(
−β2a3Va + 3β

∫ r

0
ρ2F0(ρ) dρ

)
G · x/r3, if r > a,

which can be easily found if one considers separately Eqn. (4.19) in the regions |x| < a and
|x| > a and then use the respective conditions of continuity for H(x) and its normal flux of
κ(x)∇H(x) on the surface |x| = a.

The formula (4.20) terminates the solution, correct to the order c2, of the basic random
problem (1.1) for the dispersions under study. Indeed, Eqns. (4.19) and (4.20) define S1(x)
and T11(x) can be then calculated by means of (4.5). The functions T10(x) and T20(x − z,x)
are already determined through the solutions of the one- and two-sphere problems respectively,
see (4.6) and (4.8). Upon introducing T10, T11 and T22 into (4.1), we shall explicitly obtain
the kernels T1(x) and T2(y1,y2) of the truncated functional series (3.5) which gives the full
stochastic solution of the problem (1.1) to the order c2, as already explained. In this way all
statistical characteristics (1.2) of the random temperature field can be evaluated to the order
c2 in a closed analytical form using the zero-density limit, g0(y), of the radial distribution
function for the set xj of sphere’s centers and the solutions T (1)(x) and T (2)(x; z) for the one-
and two-sphere problems respectively.

Eqns (4.18) and (4.19) reveal aslo one of the reasons why non-absolutely convergent integrals
kept appearing in the c2-theory of effective properties of dispersions, staring with the classical
work of Lord Rayleigh [31]: namely, because the solution of the basic stochastic problem (1.1)
in this case can be represented in a natural and convenient way by means of such integrals.

5. Calculation of the statistical characteristics in the dispersion to the order c2

To illustrate the performance of the above obtained c2-solution of the random problem (1.1),
let us evaluate, e.g., the two-point correlation function for the temperature field θ(x). Keeping
in mind (3.3) to (3.5), we have

(5.1) M θ
2 (x) =

〈
θ′(0)θ′(x)

〉
= cM θ

21(x) + c2M θ
21(x) + o(c2),
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where θ′(x) is the fluctuating part of the temperature and

(5.2) M θ
21(x) =

1
Va

∫
T10(x − y)T10(y) dy,

M θ
22(x) =

1
V 2
a

{∫
T10(x − y)T11(y) dy

(5.3) −
∫ ∫

T10(x − y1)T10(y2)R0(y1 − y2) dy1 dy2

+2
∫ ∫

T20(x − y1,x − y2)T20(y1,y2) dy1 dy2

}
.

With the same ease the rest of the multipoint correlation functions (1.2) can be obtained in
a similar form. Of course, the explicit evaluation of these functions needs an explicit expression
for the function L20(x), defined in (4.13), and evaluation of integrals of the type of those that
appeared in (5.2) and (5.3). This is not an easy task; however, the difficulties to be encountered
concern already deterministic problems and have purely analytical nature.

Consider now the simpler case of one-point statistical characteristics of the type (1.4), i.e.,
the effective conductivity κ∗ of the dispersion. In virtue of (2.9) and (3.3) to (3.5) we have, to
the order c2,

(5.4) κ∗G = 〈κ(x)∇θ(x)〉 = 〈κ〉G + n[κ]
∫
h(x)∇S(x) dx,

where S(x) is given in (3.8). Thus only the values of ∇S(x) within the sphere Va = {x | |x| < a}
are needed when calculating κ∗. In turn, making use of (4.4) to (4.6), (4.8), (4.13), (4.19) and
(4.20), we find the c- and c2-coefficients in the virial expansion (1.6) of the effective conductivity
κ∗ to be

(5.5)
κ∗

κm
= 1 + 3βc+ (3β2 + a′2)c

2 + o(c2),

a′2G =
[κ]
κm

2
V 2
a

∫
h(x)L20(x) dx

(5.6) =
[κ]
κm

2
V 2
a

∫
h(x) dx

∫
g0(z)∇T20(x − z,x) dz.

(Note that a′2 is just the c2-deviation of the effective conductivity of the dispersion from the
Maxwell formula (1.5).)

Due to (4.8) and (4.16), we get the eventual formula for a′2

(5.7) a′2G =
[κ]
κm

2
V 2
a

∫
h(x) dx

∫
Z2a

g0(z)
[
∇T (2)(x; z) −∇T (1)(x)

]
dz.

The integral with respect to z in the right-hand side of (5.7) is not absolutely convergent;
however, it should be understood in the sense (4.11) so that it exists and gives finite and
unambiguous results for a′2, see §4.

Due to the statistical isotropy of the dispersion, Eqns. (5.6) and (5.7) can be recast as
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(5.8) a′2 = 3β2 +
∫ ∞

2
Φ(λ;β)g0(λa) dλ,

where

(5.9) (5.9)Φ(λ;β) =
[κ]
κm

8π
V 2
a

λ2a2
∫
h(x)∇T20(x − z,x) dx,

λ = |z|/a; we underline here that the kernel Φ depends on the parameter β = [κ]/(κf + 2κm)
as well.

It is noteworthy that the integrand in (5.5) can be made absolutely integrable if the above
mentioned (§1) “renormalization” is performed. The latter consists in adding to the “bad”
integrands quantities which make them absolutely integrable but, at the same time, contribute
nothing to the values of the integrals. Afterward certain justification of the procedure is looked
for see [2, 3, 18, 19, 22] et al. For Eqn. (5.7), such a quantity, as suggested by D. Jeffrey

[2], can be devised using the asymptotical behaviour of the integrand. Indeed, due to (4.9) and
(4.16), it can be chosen as β∇T (1)(x − z) which, when added to the integrand does not alter
the value of the integral in (5.7):

(5.10) a′2G =
[κ]
κm

1
V 2
a

∫
h(x)

∫ [
∇T (2)(x, z) −∇T (1)(x) −∇T (1)(x − z)

]
dz.

On the other hand, the integrand in (5.10) is already absolutely integrable, having the
asymptotics o(|z|−3) at |z| 
 1. (A more detailed analysis, performed in [2], shows that the
asymptotics of this integrand is O(|z|−6). This fact follows also from the estimates (5.13)
below.) Eqn. (5.10) is just the renormalized formula of D. Jeffrey [2]. The same expression
in an equivalent form was derived as well by B. Felderhof et al. [15].

It is clear, however, that the above renormalization is by no means necessary in our analysis,
because (4.11) defines unambiguously the mode of integration in (5.7) and makes the value of
the integral there finite. The renormalization, within the frame of our approach, can be viewed
only as a computational device which may help evaluate numerically the respective integrals.

For a well-stirred dispersion, the integral in (5.7) or, equivalently, in (5.10), was first eval-
uated by D. Jeffrey and later on by B. Felderhof et al. [15]. Thus the values of κ∗ as a
function of the ratio α = κf/κm or, which is the same, β = (α− 1)/(α+ 2), are now available
for the well-stirred case. In particular, it appears that

a2 → 4.506 at κf/κm → ∞,

(5.11) a2 → 0.588 at κf/κm → 0.

To the best of our knowledge no such results exist for an arbitrary function g0(y). Only
recently the author [11, p.II] obtained the following bounds for the c2-coefficient a2 = 3β2 + a′2
in Eqn. (5.5)

(5.12a) 3β2

(
1 +

[κ]
κf

m2

)
≤ a2 ≤ 3β2

(
1 +

[κ]
κf

m2

)
,
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where

(5.12b) m2 = 2
∫ ∞

2

λ2

(λ2 − 1)3
g0(λa) dλ

is a certain statistical parameter for the dispersion.
The bounds (5.11) imply the following estimates for the kernel Φ(λ;β) in (5.8):

Φl(λ;β) ≤ Φ(λ;β) ≤ Φu(λ;β),

(5.13) Φl(λ;β) = 18
β3

1 + 2β
λ2

(λ2 − 1)3
,

Φu(λ;β) = 18
β3

1 − β

λ2

(λ2 − 1)3
.

The bounds (5.12) are close only if the conductivities of the spheres and of the matrix do not
differ much, i.e., if β � 1. In the two limiting cases κf/κm → ∞, i.e. β → 1, and κf/κm → 0,
i.e. β → −0.5, one of the bounds (5.12) degenerates.

We can use, however, the nondegenerating bound together with the numerically found values
(5.11) in these two cases in order to propose the following approximation for the integrand
Φ(λ;β) in (5.8):

(5.14a) Φ(λ;β) = 18β3 λ2

(λ2 − 1)3




b′′

1 + 2β
, if κf/κm > 1,

b′′

1 − β
, if κf/κm < 1.

where

(5.14b) b′ = 3.57423, b′′ = 3.07583.

The approximate kernel in (5.14) is proportional to the bound (5.13) which does not degen-
erate in the respective limiting case, being multiplied by the constants b′ or b′′. These constants
are as chosen as to secure both numerical values (5.11) in these limiting cases for the well-stirred
case (for which m2 = 0.14045).

For a well-stirred dispersion the formulae (5.5) and (5.7) for the coefficient a2 coincide with
the formula, proposed by J. Peterson and J. Hermans [32]. These authors employed certain
heuristic arguments, tantamount to cluster expansion ideology of Finkel’berg [14] et al. and
tacitly adopted the mode of integration (4.11) without giving any reason. They proposed also
a useful computational technique for the evaluation of the respective conditionally convergent
integrals in (5.7) in the two-dimensional counterpart of the dispersion under study, i.e. for an
array of equisized parallel cylinders of radius a subject to mean temperature gradient orthogonal
to their axes. In this case κ∗ is just the transverse effective conductivity of such a fiber-reinforced
medium. The technique of the said authors [32] allows us to obtain the following formula for
the transverse conductivity κ∗

(5.15)
κ∗

κm
= 1 + 2βc+ 2β2c2(1 + 2βM(β) + o(c2),
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where c = nSa is the volume fraction of the fibers, Sa = πa2, β = [κ]/(κf + κm) in the
two-dimensional case here, and

(5.16) M(β) = 16
∞∑
l=1

l

∫ ∞

0
g0(2cosh τ)

cosh τ sinh 3τ

1 − β2e−4lτ
dτ =

∞∑
p=0

Mpβ
2p,

so that

(5.17a) Mp = 16
∞∑
l=1

l

∫ ∞

0
g0(2cosh τ)cosh τ sinh 3τ e2l(3+2p) dτ,

or, equivalently,

(5.17b) Mp =
∫ ∞

2
λg0(λa)

{ p∑
k=0

(−1)kCk2+2p−kλ
2(p−k+1)

}−2

dλ.

The derivation of (5.15) to (5.17) will be considered in detail elsewhere4, together with the
problem of accuracy for approximations if the type (5.14).

6. Concluding remarks

In this paper we have presented a systematic statistical theory of simple transport phenom-
ena in a wide class of random dispersions of spheres making use, for the sake of definiteness,
of the context of heat propagation. Obviously, the theory can serve as a pattern in the studies
of similar or more complicated linear or nonlinear stochastic problems concerning elasticity,
permeability, etc., for such dispersions or for more general particulate media of random consti-
tution. The success of the theory could be attributed to two things. The first is that we have
not narrowed the scope of the analysis looking for the effective conductivity κ∗ only. Instead,
our goal was much broader — the full stochastic solution of the basic random problem (1.1),
whose very particular case is the calculation of κ∗. In this way we appeared able to obtain
rigorous and unambiguous results for the multipoint correlation functions of interest and, in
particular, for the effective conductivity. The second thing is the appropriate application of
functional series which thus once again proved to be highly advantageous for random heteroge-
neous media and which offer unique possibilities when relating micro- and macro-properties of
the media. The decisive point in their application here is the notion of virial convergence and
its implementation through the factorial fields of the random sets of sphere’ centers.
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