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PREFACE
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of Bankya near the town of Sofia from December 15 to December
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On the self-dual [42,21,8] codes

Stefka Bouyuklieva!
Veliko Tarnovo University

Masaaki Harada
Yamagata University, Japan

Akihiro Munemasa
Tohoku University, Japan

If C is an optimal binary self-dual code of length 42, then its minimum
weight is 8 and it has an weight enumerator

Wi = 1+(84+80)y" + (1449 -248)y™ + (10640 - 168)y'? +... , 0 < 4 < 60

or Wa(y) = 14164y8 +697y'0 4 ... 4 492 (see [1]). A code with the second
weight enumerator is known. Using different techniques, many authors have
constructed SD codes with weight enumerator W,. But for all these codes
B=0,1,...,22 24, 26, 28, 32, or 42.

Using the shadow of a self-dual code, and bounds for the cardinality of
equidistant codes, we prove the following result:

Theorem 1 If C is a binary self-dual (42,21, 8] code with weight enumer-
ator W then 3 = 42,32, 28, 26,24, or B < 22.
References

(1] J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal
distance of self-dual codes, JEEE Trans. Inform. Theory 36 (1990),
1319-1333.
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Bounds on the covering radius of
spherical designs

Peter Boyvalenkov
IMI-BAS, 8 G.Bonchev str., 1113 Sofia, BULGARIA
Maya Stoyanova
FMI, Sofia University, 5 James Baucher blvd, Sofia, BULGARIA

We apply polynomial methods to obtain bounds on the covering radius
of spherical designs [1] as function of their strength and cardinality. Earlier,
Fazekas and Levenshtein [2, Theorem 2] proved that if C is a (2k —¢)-design
with covering radius ¢, then t, Sipr = zﬂ"“, where tg'l"' is the largest
zero of the Jacobi polynomial P(e#)(t) 3 = 23 o = 253 4 1-e We
obtain upper bounds on t, by using suitable polynomials in the following
theorem.

Theorem 1. Let f(t), deg(f) < 7, be real polynomial which is nonneg-
ative in [~1,1]. Then for every -design C © $"~! we have te < my, where
my 18 the largest root of the equation nf(t) = fo|C| 2nf(t) = fo|C| for
antipodal designs).

The best polynomials still must be found. We prove that they have
many double zeros.

Theorem 2. The best polynomials for use in Theorem 1 are f(t) =
(t+1)°A%(t), where r =2k —¢, ¢ € {0,1}, deg(A) = k — ¢ and A(t) has
k —e zeros in [-1,tpy).
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