
FOIIVILHHI/[K HA CO<I>I/IYICKI/[H YHI/IBEPCI/ITET ,,CB. KJII/IMEHT OXPI/IIICKI/I"

<I>AI{YJlTET HO MATEMATI/IKA I/I I/IH<I>OPMATI/IRA
Tom 97

ANNUAIRE DE L’UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI“

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 97

BALANCED VERTEX SETS IN GRAPHS

NIKOLAY KHADZHIIVANOV, NEDYALKO NENOV

Let v1, . . . ,v,- be a H-sequence (Definition 1.2) in an n-vertex graph G and v,-+1, . . . ,vn
be the other vertices of G. In this paper we prove that if '01, . . . ,vr is balansed, that is

%(d(v1) + . . . + d(v,-) = %(d(v1) + . . . +d(vn),
and if the number of edges of G is big enough, then G is regular.
Keywords: saturated sequence, balanced sequence, generalized r-partite graph, gen-
eralized Turan’s graph
2000 MSC: 05C35

1. INTRODUCTION

e(G) = |E(G)| — the number of edges of G;
G[M] — the subgraph of G, induced by M, where M C V(G);
FG(M) —the set of all vertices of G adjacent to any vertex of M;
d@('u) = |Fg(v)| — the degree of a vertex v in G;
Kn and F“ - the complete and discrete n-vertex graphs, respectively.
Let 1" be an integer. A graph G is called r-partite with partition classes V,,z' =

1, . . . ,1‘ if V(G) = V1LJ. . .UV,-, V,-UV, = E for i yéj and the sets V, are independent
sets in G. If every two vertices from different partition classes are adjacent, then
G is called complete r-partite graph. Let G be an n-vertex r-partite graph with
partition classes V, and p,- = = 1,...,r. Obviously, d(;(?J) § n — p,-, for
any v € V,-,i = 1,...,r and dG(v) = n — pi if and only if G is a complete r-
partite graph. The symbol K(p1,...,p,.) denotes the complete r-partite graph
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with partition classes V1,...,V,~ such that = p,-,i = 1,...,r. If p1,...,p, are
as equal as possible (in the sense that |p,- — p,-I 3 1 for all pairs {i, j}), then if
P1 + . . . +P1~ = n, K(p1, . . . , p,) is denoted by T,(n) and is called r-partite n-vertex
Turan’s graph. Clearly

6(K(P1,---11%)) = Z{P.~m I 1 S i < 2' S 1'}-
Thus, if p,- — p_,- Z 2, then

e(K(pl _ lap? + lap-3w -- apT‘)) _ e(K(p11p2a' ' '1p1‘)) =p1 —p2 _ 1 > 0

This observation implies the following elementary proposition, we make shall
use of later:

Lemma 1.1. Let n and r be positive integers. Then the inequality

@(K(P1,---11%)) S e(T1-(11))
holds for each r-tuple (p1, . . . , pr) of nonnegative integers p,- such that p1 +. . .+p,, =
n. The equality occurs only when K(p1, . . . , p,.) = T,_(n).

Let V1,. . . , V,-_1 be partition classes of T,._1(n), 2 § r § n. Then T,._1(n) is r-
partite graph with partition classes V1,... , V,._1, {E Since 2 5 r 3 n, T,._1(n) 79
T,-(n). Thus, from Lemma 1.1 it follows that

@(Tr-1(")) < @(T»-(n)) (1-1)
Let V(G) = {v1, . . . ,v,,}. We call the graph G regular, if

dG(v1) = dg(v2) = = dg(v,,).

A simple calculation shows that

e<T.<~>> ‘"2 ' '1) + <1-2)
wheren=kr+1/,0§z/gr-1.[]

Definition 1.1 Let G be a graph and '01, . . . ,v,~ € V(G) be a vertex sequence
such that

‘U1 Q1-‘G(’U1,...,’Ui_1), 2

Define V1 = V(G)\FG('u1), V2 = PG(’U1)\Fg(’U2), V3 = PG(’U1,’Ug)\1-‘(;('U3),. . .,
V1'—1 = I-‘G<v1a' ' ' 1v1‘—2)‘PG'('U1'—1)a V1‘ = FG(v1v ' ' ' av1'—1)'

Definition 1.2 The sequence of vertices 211,. . . ,'u,- in a graph G is called H-
sequence, if the following conditions are satisfied: v1 is a vertex of maximal degree
in G, and for i Z 2, 21,- € PG(v1, . . .,'v,-_1) and

dg('v,-) = max {dg('u)|'u G I‘(;(u1,...,v,-_1)}.
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Definition 1.3 Let G be an n-vertex graph and v1, . . . , v,- € V(G). Then the
sequence v1, . . . , v, is called saturated, if

1 2 G
—(d(;'('U1)-l-.. . + Clg('U,-)) >r n

This sequence is called balanced, if

-:f(dG(v1) + . . . + dG(v,.)) =
Obviously, if G is regular, then any vertex sequence in G is balanced. Let

V(G) = {v1, . . .,v,,}. Then

4(1)) Z $1 _ %(dG(v1) + . . . +dG(v,,))
2e(G)for any vertex of maximal degree in G. Thus, if d(v) = T for some vertex of

maximal degree in G, then G is regular.
Let r and n be positive integers,2 3 r 3 n. Define

2 -1n(gr ) ; ifnE0(modr);
f(nvr) = n2(r—1) un ,— f E od ,1< < -1.2r 2r(r_1) 1 n 1/(m r) _u_r

It straightforward to show that

f(n,r) >  , r22

2
Since %-%)% > f(n,r — 1), we have

f(n,r—1)<f(n,r),23r3n (1.3)

Our main result is the following theorem:

Theorem 1.1 (The Main Theorem). Let G be an n-vertex graph and r be a
positive integer, 2 3 r 3 n, such that e(G) > f(n,r). Let for some s, 1 3 s 3 r,
there exists a balanced E-sequence v1, . . . ,v, G V(G). Then G is regular.

Example 1.1. Consider the graph G shown in Fig.1. The B-sequence {v1,v3}
is balanced, because

1 2 G’ 5
§(do('v1)+ dc('v2)) = "%"l = 5-

Obviously, G is not regular.
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2. GENERALIZED r-PARTITE GRAPHS

Definition 2.1. An n-vertex graph G is called generalized r-partite with
partition classes V,-, i = 1,...,r, if V(G) = V1 LJ...UV,-, V,-fiVj = E, i 76 j and
dg(v) 3 n -—p,- for any v € V,-, i = 1,...,r, where p,- = If d(;(v) = n—p,-
for any v E Vi, i = 1, . . . , r, then G is called generalized complete r-partite graph
with partition classes V1, . . . , V}. We call G generalized Turan’s r-partite graph if
G is a generalized complete r-partite graph with partition classes V1, . . . , V, and
|p,- — pa-| 3 1 for all pairs {i,j}.

Proposition 2.1. Let r and n be natural numbers, 1 3 r 3 n. Let G be an
n-vertex graph, such that

d(v) g Vv e v(o).
Then G is generalized r-partite graph.

Proof. Let
V(G)=V1u...uV., V,nV,-=2, igéj

and Lg’-_J 5 |v;| 5 [§],1;= 1,...,r.
_1 1 1

From d(v) 3 (T T )1! - n Z it follows that d(v) 3 n — Vv € V(G).
Thus d(v) 3 n — IV,-|, Vv E V1, i = 1, . . . ,r, and G is generalized r-partite graph
with partition classes V1, . . . , V,.. I]

- 1
Observe that, if n E 0(modr) and d(v) = 9-72, \7’v E V(G), then G is

generalized r-partite Turan’s graph.
We shall make use of the following result:

Theorem 2.1. Let G be a generalized r-partite graph with partition
classes V1,...,V,_, where =p,-, i= 1,...,r. Then

6(9) S @(K(P1. - - - 11%))-
The equality holds if and only if G is generalized complete r-partite graph with
partition classes V1,...,V,..
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Theorem 2.2. Let G be a generalized r-partite graph and |V(G)| = n.
Then

6(3) 3 @(T1~("))
and equality occurs if and only if G is generalized r-partite Turan’s graph.

Example 2.1. Consider the graph K3 + G5 = K8 — G5. Obviously, e(K3 +
G5) = 23 < e(T4(8)) = 24. This graph is not generalized 4-partite graph. Assume
the opposite, i.e. that K3 + G5 is generalized 4-partite graph with partition classes
V1, V2, V3, V4. Let V(K3)) = {v1,v2,v3}. If v, G V}, then from d(v,-) = 7 3 8 —
it follows that = 1, i.e. = {vi}. Thus, we may assume that V, = {v,-},i =
1, 2,3. Hence, V4 = V(G5). Let v € V(G5). Then d(v) = 5 > 8 — |V4| = 3, which is
a contradiction.

3. B-SEQUENCES AND GENERALIZED r-PARTITE GRAPHS

We shall use the following:

Theorem 3.1. ([2]) Let v1, . . .,v,- be a B-sequence in an n-vertex graph G,
which is not contained in an (r + 1)-clique. If V, is the i-th stratum of the stratifi-
cation induced by this sequence and p,- = (see Definition 1.1), then

(a) G is generalized r-partite graph with partition classes V1, . . . , VT;
(b) e(G) 3 e(K(P1,...,p,.)), and the equality occurs if and only if G is a

generalized complete r-partite graph with partition classes V1, . . . , VT;
(c) e(G) 3 e(T,.(n)) and we have e(G) = e(T,-(n)) only when G is a generalized

r-partite Turan’s graph.

The proof of the theorem 3.1, given in [2], actually establishes the following
stronger statement:

Theorem 3.2. ( Let v1, . . . ,v,. be a H-sequence in an n-vertex graph G such
that

d(;(vr) 3 n —- |I"(;(v1, . . . ,v,_1)|

Then the statements (a), (b) and (c) of the Theorem 3.1 hold.

Denote by w(G) the smallest integer r for which there exist a fil-sequence
v1, . . . ,v,., r Z 2, in n-vertex graph G, such that

dG(vr) 3 n — |F(;(v1, . . . ,v,._1)|.

Theorem 3.3. Let G be an n-vertex graph and e(G) Z e(T,-(n)). Then w(G) Z
r and ¢(G) = r only when G is a generalized r-partite Turan’s graph.

Proof. Let 1,b(G) = s. By Theorem 3.-2, e(G) 3 e(Ts(n)). Thus e(T,.(n)) 3
e(T8(n)). From (1.1) it follows that s Z r. If s = r, then e(G) = e(T,.(n)).
According Theorem 3.2, G is a generalized r-partite Turan’s graph. [1

The following lemma generalizes the Proposition 2.1.
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Lemma 3.1. Let G be a graph and v1, . , v,- be a L3-sequence in G such
that

d(v1) + . . . + d(v).) 3  , for some 1 3 k 3 r. (3.1)

Then G is a generalized r-partite graph. If inequality (3.1) is strict, then G is not
generalized r-partite Turan’s graph.

Denote the smallest integer r for which there exists a a 6-sequence v1, . . . ,v,
in n-vertex graph G, such that

d<;(v1) + . . . + dG(v,) 3 (r — 1)n (3.2)

by 5(9)-
Theorem 3.4. Let G be an n-vertex graph and e(G) Z e(T,.(n)). Then 5(G) Z

r and 5(G) = r only when G is generalized r-partite Turan’s graph.

Proof. Let §(G) = s and let v1, . . . , v, be a fl-sequence in G, such that

d<;~(v1) + . . . + d(;(v,) 3 (s - 1)n

By Lemma 3.1 (r = k = s), the graph G is generalized r-partite. According
to Theorem 2.2 e(G) 3 e(T,(n)). Thus, the inequality e(G) Z e(T,-(n)) implies
e(T,(n)) Z e(T,.(n)). By (1.1) we have s 2 r.

Let s = r. Then e(G) = e(T,-(n)) and from the Theorem 2.2 it follows that G
is a generalized r-partite 'I‘uran’s graph. E]

4. SATURATED AND BALANCED E-SEQUENCES

The following results were proved by us:

Theorem 4.1. Let G be an n-vertex graph and v1, .1. . ,v,- be a fl-sequence
in G, which is not balanced and not saturated. Then G is generalized r-partite graph,
which is not a generalized r-partite Turan’s graph. Thus e(G) < e(T,-(n)).

Theorem 4.2. Let G be an n-vertex graph and let v1,...,v,. be a fi-
sequence in G, r Z 2, which is not balanced and not saturated. Then

d(v1) + . . . + d(v,-_1) <

In this section we improve Theorem 4.2.

Theorem 4.3. Let G be an n-vertex graph and v1, . . . ,v,. r Z 2 be a B-sequence
in G, which is not saturated but v1, . . . ,v,._1 is saturated. Then

_ 2
d(v1) + . . . + d(v,._1) 3 (4.1)
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If there is equality in (4.1), then:
(a) v1, . . . ,v,. is balanced;
(b) n E 0(mod r) and G is a generalized (noncomplete) r-partite graph with

I I I npartition classes V1, . . .,V,.,, such that = ;, i = 1, . . . ,r and

r_ 1 r—1

d(v) = —7_—n, Vv € U V,-'
i=1

1 _ 2d(v) 2e(nG)r (r T1) n,Vv€Vr,;

(r — 1)2n2 r — 1 (r — 1)n2 n
(C) r2 + 2r n S e(G) S 2r 2r’

_ 1 2
Proof. Since (r — 2)n < (L12, in case d(v1) + . . . + d(v,-_1) 3 (r — 2)n the

inequality (4.1) holds. Therefore, we shall assume that

d(v1) + . . . + d(v,_1) > (r — 2)n. (4.2)

Let V; be the i-stratum of the stratification, induced by sequence v1, . . .,v,..
Obviously, v,- € V,-, i = 1, . . . ,r and

V(G)=V1LJ...UV,-,V¢fiV,-=@,i7$_7'. (4.3)

Since V; C V(G)\I‘(v,-), i = 1, . . . ,r — 1, we have

|V1|3n—d(v,-),i=1,...,r—1. (4.4)

It follows from (4.3), (4.4) and (4.2) that

r—1 'r—l

|v,.| =1.-2|)/,-| 3 24(1),) - (T‘—2)T). > 0.
i=1 i=1

Thus V, 75 Q. Let be a subset of V, such that

r—l

|v,.') = 2 ¢(1),~) - (T - ‘2)n. (4.5)
i=1

Define W = By (4.5) we have

r—l

|W| = Z01 - d(~.~>>- (4-6)
z 1

Since V; C W, i = 1, . . . ,r — 1, from (4.3), (4.4) and (4.6) it follows that there
exist disjoint sets V,-’, i = 1, . . . ,r — 1, such that V, Q V,-' C W and = n—d(v,-).
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Since V1 Q V,-', we have v,- G V,-', i = 1,...,r -— 1. From (4.6) it follows that
-1

W = TU V,-’. Hence,
1'=1

V(G)=V,’u...uV,’, V,-'01/J-'=@,i;£j. (4.7)
Observe that

C Vr = I-‘('U1,. . . ,'U7-_1) C F('U1, . . . ,‘U,;_1)

and V1 C F(v1,...,v,-_1). Thus V,-' C I‘(v1,...,v,-_1), i = 1,...,r — 1 and d(v) 3
d(v)), Vv G Vi’, i = 1,...,r — 1. From the inclusion V,’ C V, it follows that
d(v) 3 d(v,), Vv G So, we have

11(1)) 3 d(v)), v1) e V,’, 1; = 1, . . .,1~. (4.8)
By (4.7), we have

21(0) = Z 11(1)) = Z 11(1))+...+ Z 11(1)).
vGV(G) vGV1' vGV,f

Let d(v)) = d,-, i = 1,...,r. From = n—d,-, i = 1,...,r - 1, (4.8) and
(4.5) it follows that

Z7
s.-1 "Ma

9..@-

r—1 —

21(o) 5 Z 11,-(11 - 11.-) + - (1 - 2)1))11,.. (4.9)
i=1 =

The equality in (4.9) occurs if and only if

d(v) =d,;, Vv G V,-', i= 1,...,r.

d 2 G
Let o = d1 + + d,._1. We have %—r 3 —€£-(TL,—) because the sequence

v1, . . . , v,- is not saturated. Thus,

2 G11,. 3 -L;E—l - 1). (4.10)

By the Caushy-Schwarz inequality (1)1111),-)2 3 Zyf, applied to xi =
d,-, y,- = 1, we have

1‘—1 2

Z11? 3 (4.11)
i=1

and the equality holds if and only if d1 = = d,._1. We obtain by (4.10) and
(4.11) 2

2e(G) 3no— fi+(o—(r—2)n)( -0).
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This inequality is equivalent to

-2—(%—G)- ((r — 1)2n — ro) 3 7%-I ((r — 1)2n — ro) . (4.12)

The equality in (4.12) occurs simultaneously with the equalities in (4.9), (4.10)
and (4.11), i.e. when

d(v)=di=d1,\7’vGlQ',i=1,...,r—1and (4.13)

2 G11(1)) =11,.= 13%-)-4,v1)e v,'.
Since v1, . . . , v,_1 is saturated, we have

o > 2e(G)
r—1 n

. - 1 2Thus, (4.12) is equivalent to the inequality o 3 The inequality (4.1)
is proved.
' It remains to examine the case of the equality in (4.1). Assume, that

1) = ---(T_1_1)2”. (4.14)

Then n E 0(mod r) and the equality holds in (4.12), i.e. (4.13) is realized.
From (4.14) and (4.13) it follows that

11(1))=111=...=1z,_1_@,v1)e14’,1:=1,...,1~-1 (4.15)

and _ 2
11(1)) = 11, — 2reTEG-) (T T1) 11, v1) e V,f. (4.16)

By (4.15) and (4.16) it follows that

d1+...+d,- 2€(G)

r n ’

i.e. v1, . . . ,v,_ is balansed. Since v1, . . . ,v,-_1 is saturated, we have

d1+...+d,._1 > 2e(G) d1+...+d,.
r—1 n _ r ’

1Hence d, < d1 = LT——n..Thus

r — 1 ,
d(v) = d,. < Tn, v G (4.17)
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r—1
Since =n—d,-,i= 1,...,r—1 and = __E1d,-—(r—2)n, we obtain by

(4.15)
771 .

— ;, 'l)=1,...,T'

Thus, from (4.15) and (4.17) it follows that G generalized (noncomplete) r-
partite graph with equal partite classes V1’, . . . ,

1
So, (a) and (b) are proved. It remains to prove The number grim is

integer, because n E 0(mod r) and consequently from (4.17) it follows that

d,_5i_1_
7‘

Since v1, . . . ,v,- is balanced, by this inequality and (4.15) we have

(r—1)2n+(r—1)n_1
2e(G) d1+...+d,. 7. 7. (r—1)n—1_ s _

Tl T 7' T‘

1Thus, e(G) 3 (TZT )n2
Since vr G I};-(v1, . . . ,vr_1), d(v,.) Z r — 1. From this inequality and (4.16) we

conclude that
e(G) Z 2T2 n + 2r n.

The proof of (c) is over and Theorem 4.3 is proved. lj

Corollary 4.1. Let G be an n-vertex graph and r be integer, 1 3 r 3 n. Let
e(G) Z e(T,(n)) and for some s, 1 3 s 3 r there exists a balanced ,6-sequence
v1, . . . ,v, G V(G). Then G is regular.

Proof. We prove this corollary by induction on s. The base s = 1 is clear, since
2d(v1) = —e—f-zci) implies that G is regular.

Let s 2 2. Since d(v1) + + d(vs) 2626'), from d(v1) Z d(v2) Z Z
d(v,) it follows that

d(v1) + . . . + d(v_.,_1) > 2e(G)
s — 1 ” n ’

i.e. v1, . . . , v,_1 is balanced or saturated. We prove that v1, . . . ,vs_1 is balanced.
Assume the opposite.

Since v1, . . . ,v, is not saturated, by Theorem 4.3

11(1)1)+...+ 11(1).,_1) g (4.15)
By Lemma 3.1, G is a generalized s-partite graph. From Theorem 2.2 it follows

e(G) 3 e(T_.,(n)).
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Thus, we have e(T,.(n)) 3 e(G) 3 e(Ts(n)). Since s 3 r, (1.1) implies that
s = r and e(G) = e(Ts(n)). According to Lemma 3.1, there is equality in (4.18).

_ _ (s — 1)n2 n ,Thus, Theorem 4.3 implies that n E 0(mod s) and e(G) 3 . This
- 2s 2s

_ _ (s — 1)n2contradicts the equality e(G) = e(T,(n)) =
So, v1, . . . ,v,_1 is balanced. By inductive hypothesis, G is regular and the

proof of Corollary 4.1 is over. [j

5. PROOF OF THE MAIN THEOREM

We prove that G is regular by induction on s. The base s = 1 is clear, since
d(v1) = 22%;) implies that G is regular.

Let s Z 2. From d(v1) Z Z d(v,) it follows that

d(v1) +'. . . + 11(1), 1) 2e(G)_ 2 _
s—1 n

Hence, v1, . . . ,v,_1 is balanced or saturated. We prove that v1,...,v,_1 is
balanced. Assume the opposite. Then

d(v1) +d('l{4-1) > 2e(lG). (5.1)

By Theorem 4.3, the inequality (4.18) holds. If there is equality in (4.18), then
, (s - 1)n2 naccording to Theorem 4.3, n E 0(mod s) and e(G) 3 28 28 - f(n, s).

But f(n, s) 3 f(n, r), because s 3 r (see (1.3)). Therefore, e(G) 3 f(n,r) which is
a contradiction. Assume that (4.18) is strict.

Case 1. n E 0(mod s). Since (4.18) is strict, it follows that

1 2
d(v1) + . . . + d(v,_1) 3 -(—€—;)l — 1. (5.2)

Prom (5.1) and (5.2) it follows that

e(G) < (S 2l)n2 2(s7i 1) < f(n’S)'
By s 3 r and (1.3), f(n, s) 3 f(n,r). Hence e(G) < f(n,r), which is a

contradiction.
Case 2. n E I/(TfL0d s), 1 3 1/ 3 s — 1. Since (4.18) is strict, we have

4<1)1>+.-.+d<1)._1)s L“ _,1)2"J— ("“ ' U2 +1/<4 - 2). <5-3)
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From (5.1) and (5.3) it follows

e(G) S f("») 8) S f(") 1')»
which is a contradiction.

The Main Theorem is proved.
3 _

Remark. If n -E 0(mod r), then f(n,r) < e(T,-(n)) = Therefore,
in this case the Corollary 4.1 follows from Main Theorem. Let n E i/(mod r),
1 3 i/ 3 r — 1. From (1.2) it follows that

1<r.<n>> "2"; 1) ”",j”’~ <54)
The equality (5.4) implies, that if

1/(r — 1/) < i/n
‘ 2r 2r(r — 1)’

i.e. n > (n — — 1), then f(n,r) < e(T,(n)). Hence, if n > (r — i/)(r — 1),
Corollary 4.1 follows from the Main Theorem.

6. o1-SEQUENCES IN GRAPHS

Let G be a graph and v1, . . . ,v, G V(G). Define F11 = V(G) and 1", =
FG(v1, . . . ,v,-), i = 1, . . . ,r—1. In our articles [4] and [5] we introduced the following
concept:

Definition 6.1. The sequence v1, . . . ,v,- G V(G) is called o1-sequences if vi G
I‘,-_1 and vi has maximal degree in the graph G [I“,-_1], i = 1, . . . ,r.

a-sequences appears later in [7-10] under the name "degree-greedy algorithm”
and iii [11] under the name ”s-stable algorithm”.

The following result was proved by us:

Theorem 6.1. Let v1, . . . ,v,. be a a-sequence in an n-vertex graph G,
which is not contained in an (r + 1)-qlique. If V) is the i-th stratum of the strat-
ification induced by this sequence and p,- = |V,-], i = 1, . . . ,r (see Definition 1.1),
then

(a) G is generalized r-partite graph with "partition classes V1, . . . , V, and

1(0) 5 1(K(1),, . . . ,1),.)); (5.1)
(b) There is equality in (6.1) only when G = K(p1, . . . ,p,.).

The proof of Theorem 6.1, given in [2], actually establishes the following state-
ment:
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Theorem 6.2. Let v1, . . .,v,- be an o1-sequence in an n-vertex graph G such
that

d(v) S_ Tl — [P-,-_1], VT) E F,-_1.

If V, is the i-th stratum of the stratification induced by this sequence and pi =
[V1-|,i= 1,...,r, then

(a) G is generalized r-partite graph with partition classes V1,...,V, and in-
equality (6.1) holds;

(b) There is equality in (6.1) only when G is generalized complete r-partite
graph with partition classes V1, . . . , V,..

Denote by <p(G) the smallest integer r for which there exists an o1-sequence
v1, . . . ,v,- G V(G), such that (6.2) holds.

Theorem 6.3. Let G be an n-vertex graph, such that e(G) Z e(T,.(n)), 1 3
r 3 n. Then cp(G) Z r and <,o(G) = r only when G is generalized r-partite Turan’s
graph.

Proof. Let <p(G) = s and v1, . . . ,v, be C!-SBQUGHCG in G, such that d(v) 3
n — ]F,_1|, Vv G F,_1. By Theorem 6.2 and Theorem 2.2, we have e(T,-(n)) 3
e(T,(n)). From (1.1) it follows s Z r. If s = r, then e(G) = e(T,_(n)). According
to Theorem 2.2(c), G is generalized r-partite Turan’s graph. This completes the
proof of Theorem 6.3. [j

Let v1,...,v,. be o1-sequence in graph G, and G,-_1 = G[I“,--1], i = 1,...,r,
where-I‘,-, i = 1, . . . ,r — 1 are defined above. Define

Cl; = Cl(;'('U1), = (lg, ('02), . . . ,d;. = dGr_,('U-,~).

Theorem 6.4. Let G be an n-vertex graph and v1, . . . ,v,. be o1-sequence in G,
such that for some s, 1 3 s 3 r,

11g+...+11;g§((;)-(";8)). (5.3)

Then G is generalized r-partite graph.

Proof. We prove Theorem 6.4 by induction on s. The induction base is s = 1.

From (6.3) it follows that d'1 3 Since d1 = dG(v1) and v1 has maximal

degree in G, we have d(v) 3 Q2, Vv G V(G). By Proposition 1.1, G is
generalized r-partite graph.

Let s Z 2 and suppose, that assertion is true for s — 1.
I

Case 1. d§+...+dQ3;5d;1—1((T;1)—(T;S)).

Obviously v2, . . . ,v,. be a-sequence in G1 = G[I‘G(v1)]. By inductive hypo-
thesis, we may assume that G1 is generalized (r — 1)-partite graph with partition
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classes (W2, . . . , W, .1 Thus, G is generalized r-partite graph with partition classes
W1 = v(o)\rG(1)1),w2,...,w,. _

, d’ r—1 ' r—sCase2. 11g+...+d,>7_l1-(< 2 )-( 2
From (6.3) it follows that

1)1#.é—.<(T;1>»(';:>)<%((;)-('?))1
Hence

r r — s1 (1) r( 1 )d'1 3 ;A, where A - 1 T 1 T 8 . (6.4)

1+-1-1((1)~(1))
Note that A = r — 1. Thus, by (6.4), we have d'1 3 g(r — 1). Hence d(v) 3

- 1
Fir-r—-Z, Vv G V(G). By Proposition 2.1, G is generalized r-partite graph. El

Theorem 6.5. Let _G be an n-vertex graph and v1, . . . ,vk be a-sequence in G,
such that ke(G)d'1+...+d;,5—T-'1-.

Then G is generalized k-partite graph.
I

Proof. If lc = 1, then d§ 3 5%;-2. Since e(G) 3 1:52, it follows that d§ = 0.
Thus, E(G) = Q and G is 1-partite graph.

LetkZ2. Then
d§+...+d§,$Lc-67]?)-d',.

I _

From this inequality and e(G) 3 €l,_it follows that

(11-211' 11' 11-1dg+...+d],5 2)1—k_11 2 .

Since U2, . . . ,v;,, is an o1-sequence in G1 = G[I‘(;(v1)], by this inequality and
Theorem 6.4 (with r = s = k: — 1), it follows that the graph G1 is generalized
(k — 1)-partite graph. Let W2,...,Wk be partition classes of G1. Then G is
generalized r-partite graph with partition classes W1 = V(G)\Fg(v1), W2, . . . , Wk.
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