ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 96

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 96

[12]

LOWER BOUNDS FOR SOME RAMSEY NUMBERS

NEDYALKO DIMOV NENOV

For the Ramsey number $R(p_1, \ldots, p_r)$, $r \geq 2$, we prove that

$$R(p_1,\ldots,p_r) > (R(p_1,\ldots,p_s)-1)(R(p_{s+1},\ldots,p_r)-1),$$

 $s \in \{1, \dots, r-1\}$. This inequality generalizes a result obtained by Robertson (Theorem 1) and improves the lower bounds for some Ramsey numbers.

Keywords: Ramsey numbers

2000 MSC: 05D10

Let $p_i \geq 2$, i = 1, ..., r, be integers. An r-edge coloring $\chi = \{1, ..., r\}$ of the complete graph of n vertices K_n , which does not contain a monochromatic K_{p_i} , in color i for all $i \in \{1, ..., r\}$, is called a $(p_1, ..., p_r)$ -free r-coloring. The Ramsey number $R(p_1, ..., p_r)$ is the smallest integer n such that any r-edge coloring of K_n is not $(p_1, ..., p_r)$ -free.

Robertson has proved in [4] the following theorem:

Theorem 1. Let $r \geq 3$. For any $p_i \geq 3$, i = 1, ..., r, we have

$$R(p_1,\ldots,p_r) > ((p_1-1)R(p_2,\ldots,p_r)-1).$$

In the present note we shall prove the following stronger result:

Theorem 2. Let $p_i \geq 2$, i = 1, ..., r, be integers and $r \geq 2$. Then for any $s \in \{1, ..., r-1\}$ we have

$$R(p_1,\ldots,p_r) > (R(p_1,\ldots,p_s)-1)(R(p_{s+1},\ldots,p_r)-1).$$

Proof. Put $t = R(p_1, \ldots, p_s) - 1$, $l = R(p_{s+1}, \ldots, p_r) - 1$ and m = tl. Let $V(K_m)$ be the set of vertices of K_m and let $V(K_m) = \bigcup_{i=1}^l V_i$, where $|V_i| = t$. Consider a (p_1, \ldots, p_s) -free edge coloring $\chi_1 = \{1, \ldots, s\}$ of K_t and a (p_{s+1}, \ldots, p_r) -free edge coloring $\chi_2 = \{s+1, \ldots, r\}$ of K_l . Let $V(K_l) = \{z_1, \ldots, z_l\}$. Define the r-edge coloring $\chi = \{1, \ldots, r\}$ of K_m as follows:

- 1. $\chi(u, v) = \chi_1(u, v)$, if $u, v \in V_i$ for some $i \in \{1, ..., l\}$;
- 2. $\chi(u, v) = \chi_2(z_i, z_j)$, if $u \in V_i, v \in V_j, i \neq j$.

We need to show that $\chi = \{1, \ldots, r\}$ is (p_1, \ldots, p_r) -free. Let $K_{p_i} \leq K_m$. Two cases must be considered:

Case 1. $i \in \{1, ..., s\}$. If $V(K_{p_i}) \subseteq V_j$ for some $j \in \{1, ..., l\}$, then K_{p_i} is not monochromatic of color i by the definition of χ_1 . Otherwise, there exist $v', v'' \in V(K_{p_i})$ such that $v' \in V_j$, $v'' \in V_k$, $j \neq k$. Then $\chi(v', v'') \geq s + 1$ and hence K_{p_i} is not monochromatic of color i.

Case 2. $i \in \{s+1,\ldots,r\}$. If there exist $v',v'' \in V(K_{p_i})$ such that $v',v'' \in V_j$ for some $j \in \{1,\ldots,l\}$, then $\chi(v',v'') \leq s$. Hence K_{p_i} is not monochromatic of color i. Otherwise, $|V(K_{p_i}) \cap V_j| \leq 1$, $j \in \{1,\ldots,l\}$. We may assume that $|V(K_{p_i}) \cap V_j| = 1$ for all $j \in \{1,\ldots,p_i\}$. Let $V(K_{p_i}) \cap V_j = v_j$, $j \in \{1,\ldots,p_i\}$. Then $V(K_{p_i}) = \{v_1,\ldots,v_{p_i}\}$. By the definition of χ_2 , there exist $z_k,z_q \in \{z_1,\ldots,z_{p_i}\}$ such that $\chi_2(z_k,z_q) \neq i$. Then $\chi(v_k,v_q) = \chi_2(z_k,z_q) \neq i$. Thus K_{p_i} is not monochromatic of color i. This proves Theorem 2.

Some examples. The lower bounds for some Ramsey numbers given in [2] have been improved by Robertson in [4]. In particular, Robertson has proved that $R(4,4,4,4,4) \geq 1372, \ R(5,5,5,5,5) \geq 7329, \ R(6,6,6,6) \geq 5346, \ R(7,7,7,7) \geq 19261.$

Theorem 2 (s=2) implies the following more precise bounds: $R(4,4,4,4,4) \ge 2160$, $R(5,5,5,5,5) \ge 16129$, $R(6,6,6,6) \ge 10202$, $R(7,7,7,7) \ge 41617$.

Remark 1. This note has been submitted for publication in *Electronic Journal* of *Combinatorics*. The editor-in-chief informed us that it is impossible for such a paper to be published, since the main result (Theorem 2) is announced in [1]. According to [3], this announce is in Chinese and has no proof. Since [4] contains a detailed proof of the special case s=1, we find it appropriate to present a proof of the general case.

Remark 2. Still better bounds for the Ramsey numbers than the ones given above are announced in [3].

- 1. Song En Min. Study of Some Ramsey Numbers (in Chinese), a note (announcement of results without proofs). *Mathematika Applicata*, 4(2), 1991, 6.
- 2. Radziszowski, S. Small Ramsey Numbers. *Electronic Journal of Cobinatorics*, DS1 (version #8), 2001, 38.
- 3. Radziszowski, S. Small Ramsey Numbers. *Electronic Journal of Cobinatorics*, DS1 (version #9), 2002, 42.
- 4. Robertson, A. New Lower Bound Formulas for Multicolored Ramsey Numbers. *Electronic Journal of Combinatorics*, 9, #R13, 2002.

Received on August 3, 2002

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA E-mail: nenov@fmi.uni-sofia.bg