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THE VARIATIONS OF HODGE STRUCTURE OF MAXIMAL
DIMENSION WITH ASSOCIATED HODGE NUMBERS A2 ° > 2

AND hx ■ ' = 2a + I DO NOT ARISE FROM GEOMETRY

AZNIV rasparían

Abstract. The specified variations are proved to be covered by a bounded con-
tractible domain Q. After classifying the analytic boundary components of fl

with respect to a fixed realization, the group of the biholomorphic automor-

phisms Aut fi and the Aut i2-orbit structure of £2 are found explicitly. Then

n is shown to admit no quasiprojective arithmetic quotients, whereas the lack

of geometrically arising variations, covered by fl .

The weight 1 period domain Sp(n,R)/Un arises from geometry, in as much
as it classifies the first cohomologies of the «-dimensional abelian varieties with
fixed polarization.

The geometric locus on the weight 2 period domain is shown to satisfy the
Griffiths' horizontality (cf. [9])

p\ 1x2,0

The nonintegrability of the horizontal distribution raises the problem of de-
scribing the locally liftable holomorphic integral manifolds, called variations of
Hodge structure. In particular, one can ask about the maximal dimension of a
variation of Hodge structure and try to uniformize the universal covers of the
variations of that dimension.

In the case of A2,0 = p > 2 and even A1,1 = 2a, Carlson has proved in
[3] that the corresponding variations of Hodge structure have maximal dimen-
sion pq. The ones attaining that dimension are shown to be covered by the
generalized ball

Bp,q = {Z£ Mat„,?(C) | 'ZZ < /,} = SU(p, q)/S(Up x Uq),

equivariantly embedded in the period domain D = SO(2p, 2q)/S(Up x Ch.q).
More precisely, if Q denotes the polarization form and A stands for its as-
sociated Hermitian form, then the choice of a maximal Q-isotropic subspace
H2'0 c V c Hc determines the embedding of the Q-orthogonal and A-unitary
groups

U(p,q)= Aut(F, A) = Aut(F, Q, A) -> Aut(Äfc,Q,h) = 0(2p, 2q).
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Descending to the quotient spaces, that situates the generalized ball

Bp,g(V) = {A£ Grassy, K)|A|A > 0}

in the period domain

D = {A € Grass(p, Hc)\Q(x, v) = 0 Vx, y £ A, A|A > 0}.

Carlson and Simpson have constructed in [6] a family of special abelian vari-
eties, parametrized by Bp, q . It exhibits the considered variations of maximal
dimension as arising from geometry.

For A2,0 = p > 2 and odd A1 ' ' = 2q + 1, the joint article [5] with Carlson
and Toledo obtains the maximal dimension pq+l of an associated variation

of Hodge structure. An example of a connected simply connected variation,
attaining that dimension, is constructed as a pencil Q := \Jl€B Bp,q(t) of

generalized balls

Bpq,(t) = {x£Matp-X,q(C),Y£M3itx,q(C)\ (_J_) e£,,,

over the unit disk Bxt i . The same article establishes that the bounded do-
main Q is not an equivariantly embedded Hermitian symmetric subspace of
the period domain D = SO(2p, 2q + l)/S(Up x Ch.q+\) •

The present note shows that all the variations of maximal dimension with
associated A2-0 = p > 2 and A1 • ' = 2q + 1 are covered by fí. The proof goes

along the lines of Carlson's argument from [3].
Tracing out the relation between the geometry and the group Aut Q of the

biholomorphic automorphisms of Q, the work classifies the analytic boundary

components of Q, up to the action of an a priori guessed subgroup G c Aut Q,
extendable over the boundary. Though pertaining only to the specific realiza-
tion, the analytic boundary structure enables us to calculate for p > 2 the ef-

fectively acting group Auto Q of the biholomorphic automorphisms, fixing the

origin ö (t = 0, X — 0, Y = 0). Then the analyticity and the Hermitian sym-
metry of the orbit AutQ(o) (cf. [2]), together with the presence of subgroups
Autô ÍÍcGcAutfi, allow to determine that Aut Q = S( U( 1, 1 ) x U(p -1, q ))
in the case of p > 2. Moreover, Aut Q acts linearly on the directions, transver-

sal to the orbit Aut£2(o). Therefore, an arbitrary discrete quotient T\Q can be

embedded in a rank q vector bundle over T\ Auti2(ö). If T\Q is a quasipro-
jective arithmetic quotient of the domain Q, then its projective closure fibers
over the Baily-Borel compactification of T\ Aut Q(<5) and the fiber over the ref-

erence point appears to be a finite quotient of a ^-dimensional compact complex
analytic subvariety of C c CP? . The contradiction with Chow's theorem re-
veals the nonexistence of quasiprojective arithmetic quotients T\Q for p > 2,
and justifies that the variations of Hodge structure of maximal dimension with
associated A2-0 = p > 2 and A1 • ' = 2q + 1 do not arise from geometry.

The uniformization result and the nonexistence of compact variations of

maximal dimension with A20 > 2 and A11 = 2q + 1 can be found in the

author's Ph.D. thesis [15] with graduate advisor Professor James Carlson. For
the discussions on the problem and related topics, the author is extremely grate-

ful to James Carlson, Domingo Toledo, Rolf-Peter Holzapfel, Vasil Kanev and
Vasil Tsanov.
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1. The holomorphic tangent bundle to the lifting

of a variation of maximal dimension

Let /: 5 —► T\D be a variation of maximal dimension with A20 = p >
2, A11 = 2q + 1, monodromy representation nx(S) -» Y in the freely and

properly discontinuously acting group T c A.\xl(Hz, Q), and a lifting /: S —►
D. The present section aims a fibrewise coincidence of the holomorphic tangent

bundle to f(S) with the holomorphic tangent spaces to a field of domains Q

over f(S).
The argument starts with a conjugacy result for the tangent spaces si :=

T1 '°/(5)ô at the reference point ö £ D. Making use of [9], let us identify the

holomorphic tangent space T['°DÔ of the period domain D with the subspace

£. := {<p £ LieSOc(2p, 2q + I) \ <p(H2~k'k) c Hx~kA+k + H~k'2+k VÂ:}

of the complexified infinitesimal isometries & := LieSOc(2p, 2q+l). Then the
variations of Hodge structure are tangent to the so-called horizontal subspace

3t-*-x :={f €# | <p(H2~k<k) c #!-*>»+* VÂ:}.

According to [3], [7] and other articles, si is an abelian Lie algebra, contained
in J7-1-1. In order to describe the S(UP x C^+O-conjugacy classes of the

abelian subspaces si c &~x - ', one needs to study the adjoint action of C700 :=
S(GLc(p) x Oc(2q + 1)). Observe that LieG00 can be identified with the
complex infinitesimal isometries

3?°'° = {<p £ & | <p(H2-k-k) c H2~k-k VA:}.

Therefore, the horizontal subspace .f-1-1 is ad.f °'°-invariant and the set of
the abelian subspaces si cS?~1'1 splits into a disjoint union of G° • °-conjugacy
classes. The abelian subspaces of maximal dimension will be proved to consti-
tute a single G° • °-conjugacy class, so that the holomorphic tangent spaces to
variations of maximal dimension will appear to be Ad G° • °-equivalent.

Let us fix an adapted Hodge frame of the reference structure, i.e., a basis

ct>x,...,4>P£H2^,

y/\,...,Wq,W\,---,¥q,  ¥2q+\  = Vlq+l  G Hl '    ,

<t>i,...,cj>p£H°'2,

with respect to which the polarization form Q has a matrix

Q =

( h\
0q    -Iq     0
-Iq       0q 0

0       0-1
\lp )

Then denote by superscripts the corresponding dual vectors and consider the

Cartan subalgebra ff c &0'0 generated by

£/ := (j>i ® </>'' - Wi <8> <t>1:,        I < i < V,

%a := y/a<^¥a -¥^®¥^,       P + l<a<p + q.



4988 AZNIV KASPARIAN

Observe that ff is diagonally represented with respect to the adapted Hodge
frame and constitutes a Cartan subalgebra of &, as well. The subspaces ^_1 • '
and ^°'° are invariant under the adjoint action z&ff and split in a sum of
1-dimensional root spaces. If et stand for the duals of f¿, then the horizontal
space ^_1 ' ' = X^gA-i.i ^p is associated with the root system

A"1 • ' = {-t?, + ea, -e¿ - ea, -e¡ \ I < i < p, p + I < a < p + q}.

Let us fix the corresponding root vectors

X-e¡+e<< = \pa ® <j)' +f¡ ®1¡F, l<i<P,p+l<a<p + q,

X-ei-en =~fä®4>'+<j)i®y/a,        l<i<P,P+l<a<p + q,

X-ei = V2(i//2q+\ ® 4>¡ + fi ® V2q+{ ),        l<i<P-

The Lie algebra ^00 = ff+J2peAo .0 &p consists of the above described Cartan

subalgebra and the span of the root vectors

xe¡-e¡ = 4>j && -<t>j®<t>',      i<i¿j<p,

Xe„-eß = y/n®y/ß -Wß~® r7,       P+l <a¿ ß <p + q,

Xeit+eß = y/„®yß -y/ß^yr, P+l<a<ß<p + q,

X-e,-ep =Wß®¥" ~W®Wß ,        P+l <a< ß <p + q,

Xe„ = y/2(y/n® y/2q+l - y/2q+x ®V*),        P+l<*<p + q,

X-e„ = y/2(i//2q+i ® Wn ~W® ¥lq+{),        P + l<ot<p + q.

The study of the abelian subspaces si c 3?~ ' • ' of maximal dimension, con-
sisting entirely of nilpotent elements, is initiated by means of Malcev's method
of the leading root vectors (cf. [18]) and its Hodge theory application from [5].

To introduce an ordering of the roots p e ff*, let us pick a generic f =

Yf¿i afêi with real coefficients ax > • • • > ap+q , and set

p > 0 if and only if p{fg) > 0.

This ordering extends accordingly to the root vectors.
Any basis of si can be transformed by Gauss-Jordan reduction to the form

Ui=   xni+ £    AßXß,

U2= Xm+ Y,     A2Xß>

UN = XaN+ Y       ANXß
ß>as,ß&t,

with ai < a? < • • • < a# . Due to the compatibility of the ordering with the Lie
bracket of the root vectors, the commutations of U¡ imply the commutations

of their leading root vectors X„t. In such a way, to any abelian subspace si c

^-l • ' there corresponds a root system C = {oj,..., a#} with the property

Va,, OLj eC => a, + OLj is not a root.

Such root systems are called commutative (cf. [5]).



VARIATIONS OF HODGE STRUCTURE 4989

As far as the Weyl group of G°-° can be considered as the normalizer of ff

in W°-° = LieG00 (cf. [14]), the Ad(c7°'°)-orbits of abelian subspaces si c
&~x-x turn out to be associated with the Weyl(Cr00)-orbits of commutative

root systems CcA"1,1.

Lemma 1. For any commutative root system CcA-1,1 of maximal cardinality
pq+l, there exists a £ Weyl(C70'0), such that

oC = {-e¡ + ea, -ep \ l<i<p,p+l<a<p + q}.

Proof. Let Ca := {-e¡ + ea or -e¡-en £ C}, Co := {—e¡ c C} and decompose

into a disjoint union C = L£=p+. Cau Cq . No sum of roots from different

subsets is a root, so that C is commutative, provided Cp+X,... , Cp+q, Co are
such.

Obviously, Co consists of a single element -e¡, which can be transformed
by Weyl(G°'°) to -ep.

If -e{ ± en belong simultaneously to Ca , then they are the only roots there

and cardC« = 2. Otherwise Ca equals either {-e¡ + ea | 1 < i < p} or

C„ = {—e¡ - en | 1 < i < p}, which are Weyl(G00)-symmetric with respect

to the hyperplane of Yfktgx ̂-ek orthogonal to ea. The assumption p > 2
determines the choice of Ca = {-e¡+ea \ I < i <p} for any p + l <a<p + q,

q.e.d. Lemma 1.

The precise description of si is obtained along the lines of Carlson's conju-
gacy result for an even A1 • ' = 2q (cf. [3]).

Proposition 1. The abelian subspaces si c 9~1, ' of maximal dimension pq +
1, associated with A20 = p > 2 and hx-x = 2q + 1, constitute the Ad(t70-0)-
orbit of the Cartan invariant one

si0 := Sp&ii{X-ei+en, X-ep \l<i<p,p+l<a<p + q}.

Proof. According to Lemma 1, any abelian Lie algebra si c &~x • ' of dimen-
sion pq+l is G00-conjugate to the span of

p+q p-\

üo = *-*,+£  E AJßX-ei-eß+Y,BkX-ek,
J=l ß=p+\ k=l

P     P+q P-1

Ujn — X-ei+e„ + / t    / f   Cja X-ej-e¡¡ + 7    DiaX-ek
j=X ß=p+l k=l

for I < i <p and p+l <a<p + q .
To avoid the presence of Bk ,  1 < k < p, one applies

(p^i   , \

to the above generators and then eliminates X-ek+e,t from gx(Upn).
Without any confusion, let us keep the same notations for the new generators.

For the further annihilation of A"", p + 1 <a<p + q, one acts by

(,     P+q

V-  J] ApßX.

and eliminates X-ep from g2(Upit).
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Then the vanishing of [U¡a, i/o] and [U¡a, U^y], under the assumption p >

2, implies the existence of a basis

P+q

Uq — X—e¡¡,      U¡a — X—e.+eit +   y     ka X-ei—ef ,

ß=P+\

with skew-symmetric ki = —kg , for the current G° • °-conjugate of si

Finally,

Kß

gi = Adexp (¿Jky X-e.-e7 I

ß<y )

transforms the above Uq , U¡a into the generators of s/q . Thus, any abelian
subspace si c &~x • ' of maximal dimension can be modified in its Ad(G00)-

orbit to the standard model sic,. As far as the adjoint representation of G°'°
acts by Lie algebra automorphisms, the entire Ad(<7°°)-orbit of sÍq consists of
abelian subspaces si c J/-1 ■ ' of àixasi = pq + 1, q.e.d. Proposition 1.

The C7°'°-conjugacy of the abelian subspaces si c &~XA of dim si =
pq + l implies their S(UP x 02î+i)-conjugacy, according to the coincidence of

the AdG00- and AdS(Up + O^+O-orbits of si0 ■ Indeed, the stabilizer of si0
with respect to the adjoint action of S(UP x Chq+i) is S(UP-X x Uq), so that the

Ad S( Up x Ö2q+1 )-orbit is of real dimension 2p-l+q2 + q. The Ad G° • °-orbit
is of the same dimension, as far as the corresponding stabilizer is the parabolic
subgroup of G0,0, intersecting its opposite in S(GLc(p — 1) x GLc(q)). Bearing
in mind that the AdS(Up x c^+O-orbit is contained in the AdC7°'0-orbit of
sio, one concludes their coincidence.

In order to identify the holomorphic tangent space Tx • °f(S)¿ with the holo-
morphic tangent space to a domain Q, one needs a global description of Q as
an open subset of a Q-isotropic Schubert cell. Recall that the generalized ball

Bm,n = {Z£ Matm,„(C) | 'ZZ < /„} = {Ze Matm,„(C) | ZZ < Im}

can be regarded as the set of the w-planes A = (Im Z) in Cm+n, positive

definite A^'I > 0 with respect to the indefinite Hermitian form x = (;'" _/ ) •
Similarly, the points of

Q= ji €£,,,,*€ Matp-t.^C), re Mat,,9(C) | (JL)*^.r}

can be viewed as p-planes in Cp+q+2 , generated by the row-vectors of

//„_,   0X0      ON

\  0     1    Y   V2t   t2) '

and positive definite with respect to the Hermitian form

(h-\ \
h = -la

1/
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Indeed, (t, X, 7)eQ exactly when AA'A > 0, i.e.,

('-' .-w)MX)(* *)]('-p-\i - |ip>o.

According to the explicit construction of Q from [5], the polarization form Q
restricts to the degenerate bilinear form

0     0     0\
0 0 1

0 0 0 0 0
0 0 0-10

\0   1   0    0    0/

/0   0
' 0   0

on the ambient space V ~ Cp+q+2. In other words, V contains H2-0 , intersects
Hx • ' _in a sum K + L of a maximal _Q-isotropic subspace K and a line L =
(K + K)x n #' • ', while F n H0-2 = N is a line in /i0-2 .

By definition, the ¿»-planes A e Q are Q-isotropic, i.e., Q(x, v) = 0 Vx, y £

A. If E = Ñ-1 r\H2-° is the ß-orthogonal to the Ñ hyperplane of H20, then
the ß-orthogonal V1- — E+K, and any A e Q has a (p -1 )-dimensional inter-
section with V1-. Conversely, any ß-isotropic and A-positive A £ Grass(p, V)
with dim(A nV±)=p-l belongs to Í2, if it is in the connected component

of the reference point A = H2'0 . Thus,

Q = Çl(V) = {A € GrassG(p, V)\ dim(A n Vx) = p - 1, A|A > 0}ô,

where GrassQ(p, V) := {A 6 Grass(p, V) \ Q(x,y) = 0 Vx, y £ A} denotes
the ß-isotropic Grassmannian.

Theorem 1. Ler /: S -* D be a lifting of a variation of maximal dimension
with associated Hodge numbers h2 • ° = p > 2 and A ' • ' = 2q + 1. As an abelian

Lie algebra, the tangent space T6 := Tx'°f(S)ö at the reference point ö £ D is
associated with an abelian complex Lie group exp(Tô) and determines

V m exp(Tô)H2'0 := Span j (id+i + y J ¿ t £ T6, <f> £ H20X .

Then the vector space V bears construction of a domain Cl( V), which is tangent
to the variation at the reference point, i.e.,

Tö = Tx'°Cl(V)ö.

Proof. The remark after Proposition 1 has established that the tangent space
T6 is of the form

g~x Span{^Q<&</>'+<^®'^ä, ^q+x®^+¥p®¥2q+x I 1 < '' <P,P+l < a <P+Q}g

for some g £ S(UP x 02q+x). Therefore, one can express

F = exp(ró)Jr72'0

= i72'°-i-g_1Span{^1, ..., ^} + g_1Span{^2?+i} + ^_1Span{^}.

Observe that V contains H2'0, intersects Hl,i in a sum of a maximal Q-

isotropic subspace K := g~x Span{y/x,..., y/q} and a line

L:=g-1Span{^29+1} = (/: + Z)±n//1'1,
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and overlaps with H°-2 in a line

Ñ:=VnH°'2 = g-xSpan($-p}.

Thus, V admits construction of a domain £i(V).

Moreover V, and therefore T0, determine invariantly not only N c H°<2

and its ß-orthogonal E := N2- n H2-0, but K = rô(£") and L = rô(JV), as
well.

In terms of the above introduced subspaces of Hc , the restriction of Tô on
H2 • ° produces an isomorphism

Td ~ Hom(E, K) + Hom(N ,K + L).

On the other hand, Cl(V) c Grass(p, V) induces an inclusion Tx-°£l(V)0 c

Tx ° Grass(p, F)ô = Hom(#20, F/#2-0). By means of an_A-orthogonal lift-

ing, let us identify Tx ° GrassQ?, V)0 = Hom(H20, K+L+N). The extraction
of the 0(1)-term from the defining equation of the ß-isotropic Grassmannian

yields

Tx '°GrassQ(p, V)0 = Homc(//20, K + L + Ñ)

:={T£Hom(H2-°,K + L + N)\Q(T(x),y) + Q(x,T(y)) = 0

Vx,ye//2"0}.

Because of the total isotropy of V1- = E + K, the entire Grassmannian

Grass(/? - 1, V-1) is ß-isotropic and

Bp-i ,q(V±) = {A£ Grass(/> - 1, V^h], > 0}

embeds in £l(V) as a zero section t = 0, 7 = 0. Consequently, its holomorphic
tangent space Tx-QBp.^q(Vx)0 = Hom(E, K) <-> Tx-°£i(V)0. However, the

correspondence AhAíI^1 defines a surjective map £l(V) —* Bp-i^(V-1) ,

so that Hom^,^) splits Tx-°Cl(V)0 into a direct sum

Tx ■°Q(V)0 = Hom(E, K) + (TX-°C1(V)0 n Homö(iV, K + L + Ñ)).

For a line N, it is straightforward to show that Home(Ar, K + L + N)

= Hom(^V, K + L). Moreover, the entire Hom(N, K + L) is contained in
Tx ■QÇï(V)0 , as far as any A-positive line in N + K + L extends to a ß-isotropic

and A-positive line in N + K + L + N, which together with the reference point

E £ JSp_i q(V±) generates some A £ Q(V) . Therefore,

r1 • °Q( V)0 = Hom(£, K) + Uom(N ,K + L) = T0,

q.e.d. Theorem 1.

The above description will be extended to the entire tangent bundle T :=

Tx-°f(S). For an arbitrary 5 £ f(S) c D, let us choose a representative

g £ SO(2p ,2q+l) of the left coset class

s = gö£D = SO(2p, 2q + l)/S(Up x CV,).

Then the left translation g_1 : f(S) -* g~xf(S) induces a linear isomorphism

g~x: Tx-°f(S)s -* Tx-°g-xf(S)0. According to the Theorem 1, the vector

space Vg := exp(Tx-0g~xf(S)o)H2-0 bears construction of a domain Q with
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Tx-°Q.(Vg)0 = Tx-°g-xf(S)0. It is straightforward that the left translate gQ(Vg)
of such a domain coincides with the domain Q.(gVg), constructed on the left
translate g Vg of the ambient space. Thus

g~xTs = Tx-°g-xgQ(Vg)0 = g-xTx'0Q(gVg)5,

whereas Ts = Tx '°Q(gF?)s for any s £ f(S). As far as the exponential map

commutes with the conjugation by g £ SO(2p, 2q + 1), and the action of Ts

on H2 '    is invariant under the left translation by g~ ', one can identify

^F^^expir^V/W^-'U^'^-exp^r'-V/Wa?-1)^2-0

= exv(gg-xTx'°f(S)s)H2-0 = exv(Tx-°f(S)s)H]~0.

Consequently, Ts = Tx '0fí(exp(ri)jF720)J and we have established

Corollary 1. If f: S -* D is a lifting of a variation of maximal dimension with
associated A20 = p > 2 and hXA = 2q + I, then the holomorphic tangent

bundle T :— Tx-°f(S) determines a vector bundle 'V := exp(r)H2,0, bearing

construction of field of domains Q.CV) —> f(S), such that

Ts = Tx-°Çl(%)s   Vs£f(S).

■
2. The domain Q uniformizes the liftings

OF THE VARIATIONS OF MAXIMAL DIMENSION

The goal of the present section is to integrate the description of the holomor-
phic tangent bundle to a description of the lifting itself.

Theorem 2. An arbitrary variation of Hodge structure f:S—> T\D, f(0) = ö

of maximal dimension with associated A2-0 = p > 2 and hx • ' = 2q + 1 factors

through a quotient T'\Q of the domain

fí = {A £ Gthssq(p , V) | dim(A n Vx) = p - 1, A|A > 0}ó

with V = exp(Tx-°f(S)ô)H2-0. Namely,

3f: 5 - r\fl - T\D
is a composition of a locally liftable holomorphic map g: S —» T'\Q and an

immersion T'\fí —> T\D, where P is the normalizer of Q. in T.

If the vector bundle ^ from Corollary 1 is constant, then the tangent bundle

to the lifting of the variation is contained in the tangent bundle to the domain

fí, constructed on 2^. In fact, it suffices for the bundle W to be constant on
a neighborhood of the reference point in f(S). Then the coincidence % = 'V0

follows after connecting 5 e f(S) with ó by a chain of regular neighborhoods

for the covering f(S) -+ f(S), pushing "V down to f(S) and applying several
times the local statement.

Thus, if the pull-back /-'(exp(r10/(S))H20) is locally constant around

the origin 0 £ S (local rigidity), then the lifting f: S ^ HI c D of a variation
of maximal dimension factors through the domain fí.

Under the above mentioned circumstances, observe that the monodromy rep-

resentation p: 7ii(S) -* T maps into T' := fn AutQ. To this end, it suffices
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to check that yii ç Q. for any y £ p(ni(S)). The points f(s) and yf(s) =

f(p~x(y)s) from f(S) ç Q, are contained in Q together with their neighbor-

hoods %i, respectively ^2 • That is why the open subset ^ := 1¿x n y~x(%i)

of Q. is mapped biholomorphically onto fißi) C Q. Connecting œ £ Q with

/( j) by a chain of such consecutively overlapping neighborhoods, one concludes

that y(co) £ Q. Thus, the lifting /: S -* Q. and the monodromy represen-

tation />: ^i(S) -i F in AutQ produce a locally liftable holomorphic map
g : S -* T'\Q. Obviously, the free and properly discontinuous action of T on
D restricts to a free and properly discontinuous action of F on fl, so that
the inclusion Q c D induces an immersion of the manifold T'\Q into the

manifold T\D.
The proof of Theorem 2 will be completed by deriving the local rigidity from

the properties of the Gauss-Manin connection, corresponding to a variation of
maximal dimension.

To this end, let us start with some general relations among the second fun-
damental forms of chains of subbundles.

Lemma 2. Let V : A°(E) —> A1 (E) be aflat metric connection on the Hermitian

vector bundle E. Given subbundles Ei c E2 C E with second fundamental

forms
ax:A°(Ex)->Ax(E2/Ex),    o2: A°(E2) -> AX(E/E2),

let us decompose £2 = Ex + (EXLC\E2) by the means of the Hermitian orthogonal

complement Ej- and represent accordingly 02 = o'2 + a'{, where

<j'2 : A°(EX ) - A1 (E/E2),    a'{ : A°(EXX nE2)^Ax (E/E2).

Then for an arbitrary sheaf of differential ideals /ÇA*, there hold:

(i)Ifa'2£^, then o''Nox eJ*".
(ii) // o'{ £ S, then o2,A!ox~£^f.

Proof. A metric compatible connection V can be given by a skew-Hermitian
matrix of 1-forms (6j)" , ,, specifying the covariant derivatives Ve, = e,öj of

a unitary frame ex, ..., e„ for E. With respect to a union of unitary frames
for Ex, Ej- n E2 and E2 , the holomorphic metric connection of E has a
matrix _

(ex  ->a-x  ->o£\

e=\ox    xe   -lo'{\,
\°'2   o'{    2e J

where 6X, id and 2Ö stand for the holomorphic metric connections of Ei,
Ef n E2 and E1-, respectively. The vanishing of the entry from the third row

and the first column of the flatness equation V2 = dd + 0Ad = O yields the
assertion (i). The annihilation of the entry (3, 2) of the matrix V2 implies
the statement (ii), q.e.d. Lemma 2.

Recall from [11], [12] that the variations of Hodge structure /: S -» T\D,
/(0) = ö, are in one-to-one correspondence with the so-called Gauss-Manin
connections

V: A°(H)-»A1(H)

on the Hodge bundle H := f~x(Hz ® C). These are flat V2 = 0, horizontal

V: A^H^^A'tH^ + H-1-1),
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and compatible with the Hermitian form A and the conjugation of H.

Moreover, appropriate restrictions of the infinitesimal variation (/»)o £

Hom(Tx-°S0,&~ul) w a}s'°(&-lA)o coincide with the second fundamental
forms of W ■q with respect to V.

For a variation of maximal dimension /: S ~» Y\D, f(0) = ö with associ-
ated A20 = p > 2 and A1 • ' =2q+l, Theorem 1 has established the existence
of an adapted Hodge frame, i.e., S(UP x 02?+i)-conjugation of He , such that

{y/rt®<t>' +fi®W, ¥iq+\ ®<t>" +Jp~® ¥lq+{ \l<i<P,P+l<a<P + <l}

span the tangent space Tx '°f(S)0 at the reference point. Suppose that s°, s'n

with 1 < i < p, p + 1 < a < p + q form (eventually a part of) a lo-

cal coordinate system on S around 0 e S. Let us denote, as before, E
:= Span{0,, ... ,j/>p_i}, N j* Span{<pp}, K := Span{^,, ... , y/q}, L :=

Span{^2?+i} and N := Span{4>p} . Then the infinitesimal variation x := (/,)o £

Qls-°(&~x • ')o decomposes into a sum r = to + t, + t2 , where

T0 := ds\y/2q+\ ® <y + Tp ® W2q+l) e A1 (Hom(AT, L) + Hom(L, Ñ)),

p-l   p+q

Tt := ̂  J2   dsi"(^ ® V + 4>i®W*) e Ax(Hom(E,K) + Hom(^, E)),
|'a |   d=p+l

p+q ■_

t2:=  J2   äsp'i(yfn®4>l' + <l>p®W)eAx(Hom(N,K) + Hom(K,N)).
,,=p+\

Comparing the coefficients of the endomorphism-valued differential forms, one

checks straightforward

Lemma 3. For the infinitesimal variation x £ Çlxs'0(Tx-0f(S)o), derived from

a variation of maximal dimension with associated A20 = p > 2 and A11 =

2q + 1, there hold the following implications:
(a) // p A T, = 0 for p £ Cils°(Hom(K, K)), then p = 0.
(b) If To A p £ I for the differential ideal

I := (ds'" Hom(Hc, Hc) \ 1 < i < p, p + 1 < a < p + q)

given by its generators and p £ Q^' ' (Hom(K, L)), then p = 0.

(c) If p/\r0 = 0 for p£ Çlxs'°(Hom(N, Ê~)), and /„ := (ds° Hom(i/c, Hc))
is the differential ideal generated by ds°, then p £ Iq.

(d) If pAx2£li for the differential ideal

Ii := (dsin Hom(#c ,Hc)\l<i<p-l,p+l<a<p + q)

and p £ Q^°(Hom(ÏV, Ë)), then pelx.

The proof of (a) and (d) relies strongly on the assumption p > 2.

Now we are ready to justify the local rigidity.

Proposition 2. Let H —► S be the Hodge bundle, corresponding to the variation

of maximal dimension f: S —> T\D with h2-0 = p > 2 and hx ■ ' = 2q + 1.
The pull-back T := f~xTx-°f(S) constitutes afield of abelian Lie algebras,

associated with the field of Lie groups exp(T) —> S. Then the vector bundle

*V := exp(r)H2-0, generated by the exp(T)-images oftí2-0, is locally constant
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around 0 £ S. In other words, ?*" is a locally flat, locally geodesic subbundle of

H with respect to the Gauss-Manin connection.

Proof. One needs to establish the vanishing of the second fundamental form

^/H:A°(^)-A'(H/^)

at 0 £ S. Similarly to Carlson and Hernandez's treatment from [4], let us de-

compose the Gauss-Manin connection V = V+t into a sum of the infinitesimal

variation t and an isotropy connection

V:AQ(W<q)^Ax(W-q).

According to Theorem I, % = H2>0+K+L+Ñ is invariant x(%) c % under
the infinitesimal variation. Therefore ot/h can De calculated with respect to

V.
The first aim is to specify V in terms of the second fundamental forms of

some invariantly defined subbundles of W-q , p + q = 2. Let us identify the
bundles with their associated sheaves of sections, and consider

Ker(r2) ntf-0 := {<f> £ H2-0 | t2t,(0) = 0 Vt, , t2 £ T}.

Applying twice the infinitesimal ß-isotropy of T, observe that

Ker(r2) DH2'0 = (Imf^nH2'0.

If Ñ := y n H0-2 and E_:= Nx n H2-0, then the explicit knowledge of T2 =
Hom(N,H2-° + H1-1 + N/H2>° + H1'1) reveals that (ImT2)x n H2'0 = E.

Due to the holomorphy of T c Hom(H2 ■ °, H2 • ° + H1 • ' /H2 • °) and H2 • ° , the
subbundle E c H20 is holomorphic as well as the subbundles 7\E) c r(H20)

of H2'° + HXA/H2-0 and r2(H2-0) of H/H2>° + H1'1.

By means of A-orthogonal complements, the restriction of T(E) c r(H20) c
H2 • ° + H1 • ' /H2 • ° at 0 e S can be identifiedwith the filtration KcK + Lc

Hxx . Then the skew-Hermitian matrix of V|0: A0^1-1) - AX(HXA) takes

the form

where px £ Q}s'°{Hom(K,K)), p0 £ Q¿'°(Hom(L, K)).

With respect to the filtration r2(H2-0)|0 = N c H0*2, the isotropy connec-

tion V|0: A°(H0-2) -+ AX(HQ<2) is represented by

(*    -!Ti\

\P2 *     )

for p2££lls°(Hom(N,E)).
Thus, in terms of A-orthogonal liftings, the second fundamental form

p^/hIo: A°(H2-° + K + L + Ñ) - A1 (K + Ë)

splits into a sum o>-/h|o = Po' ox+ p2.
In order to show the vanish      of px, let us apply Lemma 2(i) to the Gauss-

Manin connection on H and tt e chain of subbundles

H2'°cH2'° + r(H2'°)cH.
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As far as er2|o = 0,oï|0 = t|#2.o , Oj'lo = to|l + Po + Pi, it follows

er" A ci|//2.o = 0 and, in particular, a" Aox\e = px Atx = 0. Then Lemma
3(a) reveals that px = 0.

For the vanishing of po consider the second fundamental forms of

H2,0 + r(H2,0)cH2,0 + Hl,.cH

with respect to the Gauss-Manin connection. Lemma 2(ii) with o~i\o = Po, o2\o

= Tok, O2I0 " (*l + t2)lr € / forces o'2 A 'öT|o = t0 A % € 7, whereas po = 0,
according to Lemma 3(b).

In order to examine P2, let us make use of Lemma 2(i) for the chain of
subbundles

H2'° + r(H2'°)c^ + H1-! cH.

As far as Oi\o = xo\l, o'2\o = 0 and <r"\o = i\\j + P2, it follows o'{ Nax\o =
p2 ATolz. = 0. Lemma 3(c) asserts that it is sufficient for the conclusion p2 £ h •

For the complete annihilation of P2, one applies Lemma 2(i) to the subbun-
dles

H2,0 + Hl,,c^ + HMcH_

More precisely, from ax \o = tq\l + T2|jç, o2\o ™ Tj|y 61\, cr^'lo ■ Pi » it follows
that o'{ A ox |o = P2 A 12\k e ^1 • Then Lemma 3(d) specifies that p2 £ Ix, i.e.,
P2 £ Io n /1, which for the 1-form P2 is equivalent to P2 = 0. That concludes
the proof of the local rigidity oy/h|o = 0, q.e.d. Proposition 2.

3. The automorphism group of fi

In order to guess a subgroup G of the effectively acting biholomorphic auto-
morphisms Autfí of Q, let us represent

Í2 = {t £ Bx,,, X £ Bp-i ,9 , Y £ Mat, ,,(C) | 'YY < (I - \t\2)2(Iq - 'XX)},

where the generalized balls are regarded in Cartan's realization

Bm,n = {Z£ Matm,„(C) I lZZ < /„}.

Under the presence of a fibering

í:O^Í,,,xVi,„     tp(t,X,Y) = (t,X),

one looks for an extension of the automorphism group of Bi, 1 x Bp-X i? to the

entire Q. Recall XbaXg = (cd) e U(m,n) acts by fractional-linear trans-

formations g(Z) = (AZ + B)(CZ + D)~x on Bmn , and the matrix-valued

function /„ - lZZ behaves "automorphically", i.e.,

/„ - 'glZ)g(Z) = '(CZ + D)-x(In - lZZ)(CZ + D)-X.

Then for any {t, X, Y) € Q and

(*i,ft)=((*   J)-»'(c   Jjj^il.lîx^-l.î),

introduce an action

(gi,g2)(t,X,Y)

:= ((at + b)(ct + d)~x, (AX + B)(CX + D)~x, Y(CX + D)~x(ct + d)~2).
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Observe that the ineffective kernel {(e,6I2, e~2i6Ip-X+q) £ 1/(1,1) x

U(p-1, q)} is isomorphic to Ux and denote by G := S(U(l, 1) x U(p-1, q))
the automorphisms of Bxx x Bp-\^q which act effectively on Q. It will be es-

tablished that the entire Aut Q is depleted by G.
Following Pyatetskii-Shapiro's ideas for studying the bounded symmetric do-

mains (cf. [20]), let us classify the analytic boundary components of Q up to the

action of G. Certainly, the notions of an analytic closure Q and a boundary

dQ = Q\Cl depend on the particular realization of Q. By virtue of Theo-

rem 1, one can interpret t £ Hom(7V, L), X 6 Hom(E, K), Y £ Hom(JV, K),
so that the aforementioned realization of Q takes the form of a bounded cir-
cular domain in its tangent space r10Qó at the reference point, i.e., Í2 =
{A = (t, X, Y) £ r10Qö|A|A > 0}ö. The resemblance with the Harish-
Chandra realization of a bounded symmetric domain justifies the efforts for

describing the analytic structure of

d£l = {t,X, Y\\t\< l,'XX<Iq,'YY <(l-\t\2)2(Iq-'XX)

with at least one of the equalities |i| = 1, det(',Of - Iq) = 0 or

det['YT - (1 - \t\2)2(Iq - -XX)] = 0}.

Recall from [20] that an analytic subset &~ c d£l is said to be a bound-
ary component if it is piecewise analytically connected and any analytic curve

C(s), \s\ < e, contained in dQ and intersecting ^ stays entirely in &.
Let us consider the distinguished section 3§ := Cl n {Y = 0} , isomorphic to

the base of the fibering Q —> Bx x x Bp-X q . According to Pyatetskii-Shapiro

(cf. [20]),

Br := it = 1, (!¿   %,\e Matp_, .,(C), Y - 01 'TX' < Iq-\ ~ ^-,_r>i-r

for 0 < r < min(p - 1, q) constitute analytic components of d3§ =
9{B\,\ x Bp-i_q x 0). Suppose that Br extends to a boundary component

& of fí. Then the projection of & in the closure

âS m 5777 x BpZT~q x0={t£C,X £ Matp_i ,f (C)) \t\ < 1, 'XX < Iq}

coincides with Br, according to the analytic maximality of Br in ¿¡§ . Further-

more, the inequality 'YY < (1 - |i|2)2(/9 - 'XX) for (l,X,Y) £dQ forces
Y = 0. Consequently, S1' c diln{Y = 0} = d& and Br = 9" turns out to be
an analytic boundary component of the domain fí.

We claim that

Q':=^t£Bi.i^¿   ^£Matp-i,q(C),(0   Y') £ Mat,,,(C)|

•TA* < U-r^T'Y' < (1 - \t\2)2(Iq-r - 'TX')X

for 1 < r < min(p - 1, q), where in the case of p - 1 < q

Q"-l:={t£Bi.i,(Ip.x    0)€Matp_,.,(C),(0    Y') £ Mat,.,(C)|

tTY'<(l-\t\2)2Iq-p+i}

are also analytic components of dCi. Observe that Qr are analytically equiva-
lent to the domains ñ with sizes p-r, q-r. The analytic connectedness of a
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domain Q follows from the analytic connectedness of the generalized balls and
the presence of a projection <p:Q.-+3ê whose fibers <p~x(t, X ,0) are isomor-

phic to Bi,q . For the analytic maximality, assume that {(t(s), X(s), Y(s)) £
dQ\ \s\ < e} in an arc, intersecting ilr at s = 0. If t(0) £ Bi i, and

X(0) £ B'p_Uq := | (J¿   £ ) £ Matp_,,f(0 | 'TX' < 7?_r} ,

then according to the analytic maximality of the unit disk Bi t x and the canon-

ical component Brp_x    c dBp-X_q , the entire curves t(s) £ Bx, , and

*(i)=(o    X'(s))eBp-x-q

stay in these sets. Let us represent Y(s) = (Y"(s) Y'(s)) with Y"(s) £

Mati ,r(C), Y'(s) £ Mati ,q-r(C). Then the matrix-valued inequality '7(^)7(5)

< (l-\t(s)\2)2(Iq-' X(s)X(s)) implies the vanishing Y"(s) = 0 and the semidef-
initeness condition

'Y^)Y'(s) < (1 - \t(s)\2)2(Iq-r - 'XWX'is)).

The last inequality is strict for all s, |s| < e, if it is strict for 5 = 0. Assume

the opposite, i.e., deti'Y^ÏÔJY'(s0) - (1 - |i(s0)|2)2(/9-r - 'X^X'^o))] = 0
for some s0, |$ol < £• Choose g = (gx, g2) £ S(U(l, 1) x U(p - 1 - r, q - r))
such that gi(t(so)) = 0 £ BXA, g2(X'(so)) = 0 e 5p_i_r,?_r, and trans-
form the analytic arc T(s) = (t(s), X'(s), Y'(s)) into the analytic arc Tx(s) =

(tx(s),X[(s),Y((s)), where

i,0) = gi(t(s)) = (at(s) + b)(ct(s) + d)-x,

X[(s) = g2(X'(s)) = (AX'(s) + B)(CX'(s) + D)-x,

Y¡(s) m Y'(s)(CX'(s) + D)-x(ct(s) + d)-2.

As far as g leaves invariant the defining inequalities of the domain Q of sizes

p-r and q-r, there holds 'Y¡(s)Y{(s) < (1 - \tx(s)\2)2(Iq-r - <Xj(s)X[(s)),
whose strict satisfaction is simultaneous with the corresponding inequality for

T(s). Thus, det['y;(5o)7((5o) - Iq-A = 0, so that Y[(s0) £ dBx ,9_r is discon-
nected from any other point of the closed ball

BT^Z = {Z £ Mat, ,„_r(C)|'ZZ < Iq-r}.

However, the arc Y¡(s), contained in J?,i?_r, starts from Y{(0) £ 5,,?_r.

The contradiction reveals that any analytic arc from dQ, intersecting Qr, is
contained entirely in Qr.

Observe that the fractional-linear action of G on fl has poles in the exterior
of 9Q, so that extends biholomorphically over dQ,. All the analytic boundary
components of Q are claimed to be G-equivalent to some of the above listed

types, or to points.

Proposition 3. For any analytic boundary component 9 c d£l there is a biholo-
morphic automorphism g £ G = S(U(l, 1) x V(p - 1, q)) of the domain Cl,
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such that g&~ is among the following canonical boundary components:

Br   for0<r< min(p - 1, q),

fir   for 1 < r < min(p - 1, q), or

(°* (o    o) '(0'---'0' 1})    /orO<r<min(p-l,?).

Proo/. If y s 0 on the analytic component Fcôfl, then SF C ô^. Sup-
pose that W contains a point P,(i,, X,, 0) with |i,| < 1. According to [20],

there exists some g2 £ SU(p - 1, q) such that

ft(*)=(o   S)
for some 1 < r < min(p - 1, #). It is straightforward that g = (I, g2) £ G

transforms Pi to

*<*>-("•(* S) ..«H
Since each boundary point belongs to exactly one analytic component, it follows
g&~ = Cir. However, G acts linearly on Y, implying g& c d& which is an

absurd. Thus, y C dBi,, x Bp-X^q x 0 and Pyatetskii-Shapiro's description of

the analytic structure of dBx t x x Bp-X q implies that !F is G-equivalent to Br

for some 0 < r < min(/> - 1, q).
Let Px(tx ,Ii,y,)e/bea point with Yx ¿ 0. The inequalities^ dfí

require \tx\ < 1 and 'XxXi < Iq. Due to the transitivity of 6 on J1, there
exists g £ G transforming P, to a point

iW-(0,({   °),lo) eg^

for some integer 0 < r < mm(p - 1, q). According to [20] that implies the
inclusion

g^Q^(t, (g'   x>) ,YS)£dCl\t£BUi,X'£Bp-i-.r,q-ry

If Y = (Y"    Y') for Y" £ Mat, ,r(C), Y' £ Mat, ,„_r(C), then the inequality

T>-<<l-l<lV(S   ,,_,_%*<)

forces Y" = 0 ancLjespectively, <TV < (1 - |i|2)2(/9_r - 'X7*').

In the case of 'Y'0Y¿ < Iq-r, the boundary point g(Px) belongs to Qr for

some r > 0 (due to £2° = Cl). Bearing in mind the uniqueness of the analytic
boundary component g9~ through g(Px), one concludes that g&~ = £2r.

In the case of detCY'oYo' - Iq-r) = 0, the point g(Px) with Y¿ £ dBx,q-r
will be shown to constitute a 0-dimensional boundary component of Q. To this

end, it suffices to prove that the t- and X-coordinates are constant along gJF",
since then g& is an analytically connected subset of the closed ball Bx )<?_r,
intersecting the boundary dBx q_r. Assume that there exists an analytic arc

{(t(s), X(s), Y(s)) £ g&\ \s\ < e} through

(t(0) = o,x(0)=(I¿ °),y(0) = (o r0'))
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with nonconstant t(s) or

If t(s) ^ 0, then 5 = 0 is an isolated zero of t(s), and there exists some S > 0

such that 1 - \t(s)\2 < 1 for all s, 0 < \s\ < ô. If t(s) s 0 but X'(s) is not
identically 0, then Iq-r - 'X'(s)X'(s) < Iq-r over a punctured s-disk of radius

S. In either case there holds

>T(r)Y'(s) < (l - \t(s)\2)2(lq.r - T^JTis)) < Iq-r ,

which is equivalent to Y'(s)'Y'(s) < 1 = Y¿'YI for all 5, 0 < \s\ < S. That
contradicts the maximum principle for Y'(s) on the subarc {s £ C| \s\ < 3}
and implies that t(s) s 0, and X'(s) =0 on g9~. Consequently,

^ç{(o,(or   £),(0   Y')^\Y'£BTq~Z\

is a boundary component of Q through the point

^P')=(°'(o    o)'(0   yó})

with Y¿ £ dBx,q-r. According to the analytic disconnectedness of Y¿ from

the other points of BXtq-r, there follows g&~ = g(Px). Moreover, the unit

vector Y¿ can be transformed by some unitary transformation A £ SUq-r into

Y¿A = (0, ... , 0, 1 ) £ Mat,, ,_r(C). Putting

U = (l,l,l,A)£ S(U(l , 1) X Up-i xUrx U„-r) C G

one observes that

ugf=(o,(%   °),(0,...,0, 1)),

q.e.d. Proposition 3.

Towards the justification of Autil = G, the automorphisms Autô Q fixing

the origin of Q will be shown to coincide with

G n Autô ß - S(UX xUxx Up-i x Uq).

Theorem 3. For p > 2, the biholomorphic automorphisms AutóQ fixing the
origin of the domain Q constitute the compact Lie group

S(UX xUxx f/p_, x Uq).

Proof. Observe that the domain Çïc Bxx xBpq is bounded and circular, i.e.,

invariant under the Sx -action

(t,X,Y)^ (e'et, ewX,ewY)   for e'9 £ Sx.

A theorem of Cartan asserts that the automorphisms fixing the origin of a
bounded circular domain Q, act linearly on Q (cf. [19] or [17]). In partic-
ular, they extend over the boundary <9Q. Observe that, for p > 2, the only
boundary components of maximal dimension (p - l)q are gB° for g £ G.

Their C-span, characterized by the linear equation Y = 0, is mapped into it-
self by an arbitrary k £ Aut^ Q.   Consequently, A restricts to a nonsingular
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linear transformation of B onto itself. That produces a well-defined group

homomorphism

p: Aut0 fí -> Autô^ -U\x S(UP-X x Uq).

As far as the entire Axs\£§ extends to Aut£2,themap p is surjective and split,

so that Autó ̂  = Ker p x Ux x S(UP-X x Uq).
In order to complete the proof of the theorem, one has to establish that

Ker/> = £/,.
An arbitrary A £ Auto ß has the form

k(t,X,Y) = (Xoo(t)+Äoi(X) + lo2(Y),Aio(t)+Xxx(X)+XX2(Y),

ho(t) + hi(X)+X22(Y)),

for appropriate linear maps A,;. If A restricts to the identity of 3§, then

X(t,X,Y) = (t + X02(Y),X + ki2(Y),X22(Y)).

As far as the bounded domain £2 is a Kobayashi hyperbolic manifold, an
arbitrary X £ Aut0Q is a unitary transformation for the Kobayashi metric
of Í2 (cf. [16]). Therefore, X can be diagonalized. It is straightforward that
the Y-components of the eigenvectors of A € Ker p are eigenvectors for X22 .

Therefore, A22 can be diagonalized, as well. According to [16], the eigenval-

ues of dX\ó = X have absolute value 1. This property is inherited from A22.

Let A22(Yo) = ei6Y0 for Y0 £ Mat,, «(C) with Y0'Y0 < 1. Modifying X by

g = (1, e~'eIp-i+q) £ G n Kerp, one obtains p :— g o X £ Ker/?, subject to

p(0, 0, Y0) = (Ao2(Y0), A,2(Y0), Y0). By induction on n £ N, it follows that
the «th iterate p"(0, 0, Y0) = (nX02(Y0), nXn(Y0), Y0).

If Ao2(Yo) ̂ 0, then |wAo2(Y0)| > 1 for a sufficiently large n £ N, which
contradicts p"(0,0,Yo) £ Q. Similarly, A,2(Yo) ^ 0 implies the existence

of n £ N, such that nXx2(Y0) <£ Bp-X,q and p"(0, 0, Y0) i £l. Therefore,
Y0 belongs to KerA02 and Ker A, 2 ■ Bearing in mind that Mat,,9(C) admits
a basis, consisting of eigenvectors for X2i, one concludes that A02 = 0 and

XX2 = 0.

Consequently,

X(t,X, Y) = (t,X,X22(Y))

acts identically on the ¿-component and restricts to a linear map of the gener-
alized ball fin{/ = 0}~5p,5 into itself. The above-mentioned expression for
A makes clear the invertibility of the restriction A|,=o . Thus A|,=o £ Up xUq is
an automorphism, fixing the origin of Bp,q and

CJ>))-"(í)*
for some unitary matrices A £ Up and B £ Uq . Decomposing

' Au    Ai7\
I2.

A =
I..    AX2\

¡2.    A22)A-,•       *j--   '

into blocks An £ Matp_i,;,_i(C), ^412 € Matp_i.,(C), A2X £ Mati.^-iiC),
A 22 £ C, one obtains

AnXB + A[2YB = X   and   A2XXB + A22YB = X22(Y)
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for all (y) £ Bpq . Therefore, Ai2 = 0 and ^21 = 0. Bearing in mind that the
ineffective kernel of the Up-\ x t/?-action on J5P_,,? equals Ux, one concludes

that Axx = ei6Ip-i and B = e-'eIq . Finally, A £ Up reveals that A22 = eiT, so

that A £ Kerp acts according to X(t, X, Y) = (t, X, el{x'e)Y), q.e.d Theorem

3.
Last preparation for recognizing Aut Q is the description of the G-orbits of

Q.

Lemma 4. The domain Q decomposes into a disjoint union of orbits YLrei0 \)GPr

where G = S(U(l, 1) x U(p - l,q)),Pr(t = 0,X = 0, Y = (0,... ,Ö,r)).
yls homogeneous spaces.these orbits are of two different types: GPo = G /Go for
r = 0 Ao5 an isotropy group Go = S(UX x Ux x £/p_, x Uq), while GPr — G/Gr
for r £ (0, 1) are quotients by subgroups Gr = S(U x Ui x Up-i x Uq-i) of Go

and constitute fiberings <p: GPr -* GPo of (2q - l)-spheres over the distinguished
section 38.

Proof. Due to the homogenity of the generalized balls, for any P(to, Xq , Yo) £

Q there exists some g, e G such that gx(P) = (t = 0, X = 0, Y,) with

'Y1Y1 < Iq. An appropriate unitary transformation A £ Uq rotates Y, with

Y,'Y7 = r2 in the sphere of radius r to YXA = (0, ... , 0, r),and extends

to g2 £ 1 x 1 x 1 x Uq c Aut0fi c G, such that g2(t = 0, X = 0, Y,) =
(t = 0, X = 0,Y = (0, ... , 0, r)). In other words, g2gx(P) = Pr and the
point P is from the orbit GPr.

To establish the disjointness of the orbits GPr in the union Ur(=[o, i) &?' = ^ >

assume that g(Pn ) = Pr, for some rx^r2,

g£S(U(l,l)xU(p-l,q)).

As far as g preserves the origin (t = 0, X = 0) of 5,, x Bp-X,q , it should
be of the form g(t,X,Y) = (eirt, AXB, YBew) for some eh, e'e € £/,, A £

Up-1, B £ Uq . In particular, for Y(r) := (0,..., 0, r) there holds Y(rx )Beie =

Y(r2), whereas r\ = Y(r2)'Y(r2) ■ Y(r, )£'!?'Y(ñ) = r\. The contradiction
justifies that Q is a disjoint union of the orbits GPr, r £ [0, 1).

The stabilizer of the reference point 0 = Po w&s calculated to be Go. Ac-
cording to the transitiveness of G on ¿% = Q n {Y = 0} and the linearity of
the G-action with respect to the Y-component, the orbit GPo = «^ •

According to the disjointness argument, the automorphisms g £ G fixing
some Pr for 0 < r < 1 restrict on Y(r) to rotations Y(r)Be'e = Y(r). Let us
decompose

\B2i    B22 )       q

into blocks £,, £ Mat0_,i?_,(C), Bn £ Mat9_,,,(C), B2i eMat,,9_,(C),

522 e C. The equation (rB2ie'e, rB22ew) = (0, r) reveals that B2i = 0 and

2?22 = e~'e ■ For a unitary B that implies 5,2 = 0 and Bu £ Uq-X. Therefore,
the effectively acting automorphisms g £ G stabilizing Pr, 0 < r < 1, are

given by the formula

g(t,X,Y)=(e"t,Ax(B"    eíe),Y(*¿*    eie)eie) ,
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where e'r, e'e £ Ux, A e Up-,, and Bx, £ Uq-, . In other words, the stabilizers

Gr of Pr, r ,¿ 0, are isomorphic to the subgroup S(UX xUxx Up-X x Uq-\) of

Go.
To reveal the shape of GPr = G/Gr, 0 < r < 1, let us consider the projec-

tion q>: G/Gr —► G/Go onto the distinguished section ^ = G /Go. Its fibers

Go/Gr = Uq/Uq-i are diffeomorphic to (2o - l)-spheres on the Y-component,

q.e.d. Lemma 4.

The above described G-orbit structure of Q is, actually, the Aut£2-orbit
structure for p > 2, according to the following

Theorem 4. The effectively acting biholomorphic automorphisms of the domain
£2 with p > 2, q > 1 constitute the subgroup Aut Q = S(U( 1, 1) x £/(/? - 1, q))

of SO(2p, 2q + I).
Proof. Recall that G := 5(1/(1, 1) x £/(p - 1, q)) was defined as a subgroup of

Aut £2. The theorem requires the proof of the opposite inclusion Aut £2 ç G.

Assume that a £ Aut £2 maps the reference point Po into Qo(to, Xo, Y0).

According to Lemma 4, one can transform ßo in its G-orbit to Pr = g(Qo), g £
G. If r = 0, then ga(P0) = Po , i.e., ga £ Autô Cîc G, whereas a £G.

Assume that ga(Po) = Pr for some r ^ 0. The inclusion of the orbits

GPr ç Aut£2(P0) forces the inequality dimR AutQ(Po) > dimR GPr = 2pq + 1.
Braun, Kaup and Upmeier have shown in [2] that the Aut fi-orbit of the origin

of a bounded circular domain £2 is a Hermitian symmetric space, embedded
as a closed complex submanifold of £2. The fact that AutQ(Po) is of real
codimension < 1 in £2 requires AutQ(Po) = £2 to be a Hermitian symmetric
space. Since the center of the effectively acting

Aut0 ß = S(UX xUxx JJp.i X Uq)

is 3-dimensional, £2 should consist of 3 irreducible components (cf. [14]). How-

ever, £2 n {t = 0} ~ Bp -¡? reveals that £2 can have at most 2 irreducible com-

ponents.  The contradiction implies that ga(Po) = Po, whereas a £ G and

Aut £2 = G.
Recall that

£2 = £2(F) = {A€Grass(2(p, F)|dim(An Vs-) =p - 1, A|A > 0}ô

where Vs- = E+K is the ß-orthogonal to V, and put Vo for the A-orthogonal

complement of F1 to K, i.e., Vo = N + L + N. Obviously, the ß-orthogonal

and A-unitary group

Aut(F°, ß, A) x Aut(K\ ß, A) ~ 0(2, l)xU(p-l,q)

induces a subgroup of biholomorphic automorphisms of £2. Bearing in mind
the isomorphism of the Lie groups 0(2, 1) ~ U(l, 1) (cf. [14]), one observes
that the entire Aut £2 arises in that way. Consequently, Aut £2 turns out to be a

subgroup of the effectively acting Aut(Hc, ß, A), or Aut £2 c SO(2p, 2q + 1 )
extends to the period domain D, q.e.d. Theorem 4.

For a variation of Hodge structure

/: S -» T\SO(2p, 2q + l)/S(Up x 029+1 ),    T c S(h(2p ,2q+l),

of constant rankc / = pq + 1, P > 2, we have constructed a holomorphic
map g : S —» M of constant ranke g = pq + I into a discrete quotient M =
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T n Aut £2\£2 of the domain £2. One can enlarge T to an arithmetic sub-
group of SO(2p, 2q + 1). As far as Aut £2 c SO(2p, 20+1) implies that
Autz £2 = SOi(2p, 2q + 1) n Aut £2, the arithmetic Y corresponds to an arith-
metic r n Aut £2. Thus, a variation of maximal dimension with associated
A20 = p > 2 and A1 • ' = 2q + 1 gives rise to a holomorphic map g: S -» M of
constant rankc g - pq+l in an arithmetic quotient M of the domain £2. The

next theorem proves the nonexistence of a compact complex analytic closure S*

of 5 under the above-mentioned circumstances. However, a geometrically aris-
ing variation of Hodge structure is associated with a quasiprojective complex
analytic variety 5 (cf. [11]), which always admits a projective closure S*. That

justifies the nonexistence of geometrically arising variations of maximal dimen-
sion with A20 = p > 2 and A1 • ' = 2q + 1.

Theorem 5. If there exists a holomorphic map g: S -» M of constant rankc g =

dimc M from the complex analytic variety S in the arithmetic quotient M of
the domain £2 with p > 2, then the analytic structure of S does not extend to
a compact complex analytic variety S*, containing S as an everywhere dense

subset.

Proof. Recall that the holomorphic projection

q>: £2 -*âS = BXA x Bp_i,q,

<p(t,X,Y) = (t,X) '

exhibits the domain £2 as a fibering of o-balls

<p~x(t, X) = {Y £ 0 | 'YY < (1 - \t\2)2(Iq - 'XX)}

over the Hermitian symmetric space 3S . The biholomorphic automorphisms
of £2 arise from the biholomorphic automorphisms of 38 , so that nx (M) is an
(eventually noneffective) arithmetic subgroup of Aut«^" with a complex ana-
lytic quotient B = rc, (M)\38 . The projection (p descends to q> : M -* B, as far
as it commutes with the Aut £2-action. According to Baily-Borel (cf. [1]), B is
quasiprojective and if ¿%* stands for the union of 38 with its rational boundary

components, then B* = rc, (M)\38* is the projective closure of B. Observe that
7ii (M) c Aut £2 acts linearly on the fibers of <p and extends properly discontin-

uously to 38* x Cq , providing a complex analytic variety F* — 7i, (M)\3ÏÏ* x Cq
containing M. As far as the fibering (p : F* -* B* is locally trivial, one can re-

gard F* as a rank q vector bundle over B*. Let BT^ = {Y £ Cq \ 'YY < Iq}

be the closed o-ball and D* = ni(M)\\Jyen¡{M) y(38* x BUq) be the locally

trivial bundle of closed g-balls over B*. According to the compactness of the

base B* and the fiber BXq,D* is a compact subset of F*, containing M.
Suppose that the complex analytic structure of 5 extends to a compact com-

plex analytic variety S* d 5, in which S is everywhere dense. Then the holo-
morphic map g: S -* M admits a continuous extension g* : S* -* D* which is

totally bounded and, therefore, holomorphic. According to the compactness of
S*, the holomorphic map g* is proper, so that Remmert's mapping theorem

(cf. [8]) implies that g*(S*) is a compact complex analytic subvariety of F*.
In particular, the zero set Z, = {z £ g*(S*) \ <p(z) - nx(M)(0, 0)} of the holo-
morphic map <p: g*(S*) -+ B* is a o-dimensional compact complex analytic

subspaceof Z2 = {z e F* \ <p(z) = 7r,(M)(0, 0)} = {nx(M)(0, 0, Y) £ F*} . It
is straightforward that the subgroup of Aut £2 normalizing 0 x 0 x Cq coincides
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with the isotropy group Aut0£2. The intersection K\{M) n Aut0£2 is discrete
and compact, whereas, finite subgroup of Aut £2. Consequently, Z2 is a finite
quotient Cq , or there is a finite map v: Cq —► Z2 such that v~x(Z{) is a a-
dimensional compact complex analytic subvariety of Cq c CP9 . According to
Chow's theorem (cf. [13]), i/_1(Z,) ji CP* is defined by nontrivial polynomial

equations. That contradicts dimct,-1(Z,) = q and reveals the nonexistence of
a compact complex analytic closure S* of S, q.e.d. Theorem 5.

The lack of a variation of Hodge structure

/: S - T\50(2p, 2o + I)/5(C/p x 09+1)

of constant rankc / = pq + 1 with a quasiprojective S implies that the geo-
metrically arising variations of Hodge structure with associated A20 = p > 2

and A1 • ' = 2q + 1 are of rankc/<Pq = A2-°[^].
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