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Abstract.  An arbitrary section of the canonical projection of a group onto the
cosets modulo a subgroup is associated with a binary operation on the cosets. We
provide sufficient conditions for obtaining a left loop, a left gyrogroup or a gy--
rocommutative gyrogroup in such a way. The non-positively curved sections in
Lie groups allow a scalar multiplication, which turns them into quasi left Lie gy-
rovector spaces. The left invariant metrics on homogeneous spaces turn out to be
compatible with the gyro-structure. For instance, their geodesics are gyro-lines;
the associated distance to the origin is a gyro-homogeneous norm, satisfying gyro-
triangle inequality; etc. The work establishes infinitesimal criteria for a homoge-
neous space to bear a left Lie gyrovector space or a Lie gyrovector space structure.
It characterizes the Cartan gyrovector spaces and works out explicitly the example
of the upper half-plane.

1. Introduction

Based on Einstein’s velocity addition law and the relativistic Thomas precession,
the second named author has developed in a series of articles (e.g., [131, [14],
[15], [17], [5], [3], [4], etc.) and the monograph [16] the theory of gyrogroups
and gyrovector spaces. It introduces the so called Thomas gyration, which mea-
sures the deviation of the addition of the relativistically admissible velocities from
being associative. From mathematical point of view, one of the most important
results of this theory is the proof of the fact that the gyro-semidirect product of
a gyrogroup (£, ®) with a gyroautomorphism group H C Aut(L, ®) is a group
G (cf. Theorem 2.23 from [16]). Thus, the Thomas gyrations of a gyrogroup
(L, ®) appear to be a sort of “extension cocycles” of £ with values in Aut(L, ®).
Therefore, Thomas gyrations techniques can be applicable for transmitting the
classification of the finite simple groups H to finite groups G O H, in which H
are of comparatively small index [G : H]. On the other hand, ideas, similar to the
gyro-formalism have proved to be quite fruitful for studying affine connections on
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manifolds in the works of Sabinin [12], Nagy and Strambach [11], Kikkawa [9]
and others.

Based on the identification £ = G/H for any gyrogroup (£, @), the present arti-
cle studies the operations ®, : (G/H) x (G/H) — G/H, (1 H) &, (g2H) :=
o(g1H)o(goH)H on the left coset space G/H, induced from the group multipli-
cation in G via a section o : G/H — G with 6(H) = 1¢. Our idea to work -
with sections emerge prior to the appearance of Nagy and Strambach’s book [11].
Moreover, our Lemma 2 characterizes the sections o : G/H — G, associated
with left loops (G/H, @) , while the starting point of [11] are the loops and the
corresponding necessary and sufficient conditions on ¢ are quite different (cf. the
remark after Lemma 2). Combining the notions of a left loop and a gyrovector
space, studied in previous works of Ungar, Definition 6 introduces the term quasi
left gyrovector space (V, ®, ®). In the next Proposition 7 we establish that if G/H
is a homogeneous space for a Lie group GG and ¢ : G/H — G is a real analytic
section, whose exponential map Exp : TR o (G/H) — o (G/H) is a global
diffeomorphism, then ®, and ®,, induced from the multiplication by real num-
bers on the tangent space T&a (G/H) turn G/ H into a quasi left Lie gyrovector
space.

In Section 3 the invariant metrics on quasi left Lie gyrovector spaces are stud-
ied. It is proved that if the image of the section ¢ : G/H — G is closed under
the inversion of elements of G, then a Riemannian metric on G/H is left G-
invariant if and only if it is invariant under the adjoint action of H and under left
@ -translations (cf. Lemma 11). The central result of this section, Corollary 14
establishes that for quasi left Lie gyrovector spaces (G/H, ®,,®,) with com-
plete simply connected o (G/H) C G of non-positive sectional curvature with
respect to some G-invariant metric, the geodesics are exactly the gyro-lines and
all Thomas gyrations are isometries.

Section 4 is devoted to left gyrogroups and left gyrovector spaces. It provides a
" simple specific example of two different sections 7,0 on one and a same coset
space G,/ H,, such that (G,/H,, @) is a group and (G,/H,, ®,) is barely a left
gyrogroup. Lemma 19 gives sufficient conditions for a section o : G/H — G
to be associated with a left gyrogroup (G/H,®,). Along the lines of Ungar’s
Theorem 2.23 from [16], Proposition 21 shows that any left gyrogroup (L, ®)
is isomorphic to some (G/H,®,) . The concluding Corollary 26 delivers suf-
ficient condition for a non-positively curved analytic section o : G/H — G
of a homogeneous space G/H to be associated with a left Lie gyrovector space
(G/H,®q, Q) .

Section 5 deals with gyrogroups and gyrovector spaces. Lemma 29 specifies suf-
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ficient conditions for a section o : G/H — G to be associated with a gyro-
commutative gyrogroup. A similar result for the Lie gyrovector spaces is Corol-
lary 31. Corollary 32 verifies that the Cartan decomposition on the Lie algebra
of a noncompact semisimple Lie group GG provides a section, associated with a
Lie gyrovector space. The last Corollary 33 characterizes the Cartan gyrovec-
tor spaces, proving sufficient infinitesimal conditions for a Lie gyrovector space
(G/H,®s,®c) of anon-positively curved real analytic section o : G/H — G to
arise from the Cartan decomposition on Lie (G).

The concluding Section 6 illustrates the results from the previous sections on the
example of the upper half-plane H = SL(2,R)/SO(2). More precisely, Propo-
sition 35 gives explicit formulae for the operations @, and ®, of the Cartan gy-
rovector space (H, @y, ®,), while Corollary 36 specifies the gyro-norm.

2. Left Loops and Quasi Left Lie Gyrovector Spaces

For an arbitrary group G and its normal subgroup H C G, the coset space G/H
inherits the group structure of G. Conversely, arbitrary groups I" and H are normal
in their direct product G = I' x H and I is isomorphic to the quotient group
G/H. Before generalizing this well known situation, let us uncover the relevant
construction in terms of a section of the canonical projection of G onto the set
G/ H of left cosets.

A section o : G/H — Gof m : G — G/H is a map with 7o = Id ¢/ and
o(H) = 1g. In the case of a normal subgroup H C G, an arbitrary section allows
the group operation of G to be descended into a group operation in G/ H,

(G/H) x (G/H) — G/H
(1 H)(g2H) =7 (0(91H)o(92H)) = (g1 H)o (g2 H) H.

We claim that (g1 H)(g2H) = g192H. More precisely, if o; := o(g;H) then
oiH = no; = no(¢;H) = g;H, i.e., 0; = g;h; for some h; € H,1 =1, 2. Thus,

(91H)(92H) = 0102H = g1ga(g5 " haga)hoH = g1goH
since gy Lhigo € H, so that (gz_ Lhy gg) he € H. Consequently,

(9H)H = gH = H(gH)
(gH)(g~'H) = H = (¢" ' H)(gH)
(91 H)(g2H)(93H) = [(9192)93]H = 91(9293)|H = (91H)[(92H)(93H)]-
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In such a way, G/ H turns out to be endowed with a group structure, independent
of o, and 7 : G — G/ H appears to be a group homomorphism,

m(g9192) = 192 H = (91 H)(92H) = 7(g1)7(g2)-

More generally, even if H is not normal in G, an arbitrary section o : (G/H) —
G induces an operation

®,: (G/H) x (G/H) — G/H
(91H) ®c (g2H) := m(0(g1H)o(92H)) = o(g1 H)o (g2 H) H.
It is straightforward that
H®q (9H) = m(o(H)o(gH)) = w(lo(gH)) = no(gH) = gH
(9H) ®¢ H =m(o(gH)o(H)) = n(o(gH)1) = mo(gH) = gH

for VgH € G/H, so that H is a two-sided neutral element with respect to EB(;.
Furthermore, H € G/H is unique with this property. Indeed, according to

o(gH)H = mo(gH) = gH ey
one can represent o(gH) = gh by some h € H. Then
(91H) & (92H) = o(g1H)o(9e H)H = 0 (91 H)gaho H = (g1 )go H

for Vg1 H,goH € G/H. If (9H) @4 (g9oH) = gH for some g,H € G/H and all
gH € G/H, then
gH = o(gH)(90H) = ghgo H
for some h € H implies that H = hg,H, so that g, € H and g, H = H.
The equation (aH) @, (zH) = bH possesses a unique solution for arbitrary
aH,bH € G/H. Indeed,
(aH) @, {[o(aH)| '0H} = 0(aH)|o(aH)] 1bH = bH

so that [c(aH)]~1bH is a solution. Arbitrary solutions z1H, zoH satisfy the
equalities

o(aH)z1H = (aH) ®6 (x1H) =bH = (aH) &, (z2H) = o(aH )z H.

Following left multiplication by [c(aH)]™! € G, we have x1H = z5H. Thus,
for arbitrary aH,bH € G/H the equation (aH) @, (xH) = (bH) possesses a
unique solution [o(aH)]~1bH.
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Let us suppose, moreover, that [0(aH)]™! € o (G/H) and define
i Oo(aH) = [o(all)| H @

for the unique solution of (aH) ®, (tH) = H. Then the unique solution of
(aH) ®, (zH) = (bH) can be expressed as Oy(aH) &, (bH).

Definition 1. A groupoid (L,®) is a non-empty set L with a binary operation
®: Lx L — L Aleftloop (L,®) is a groupoid, possessing the following two
properties:

i) there is a unique neutral element 6 € L, such that
0@xrx=x®o=xa forVzelLl 3)

ii) for any a,b € L the equation a ® x = b has the unique solution z = (Sa) ® b,
where ©a is the unique solution of a ®1 = 6.

Summarizing the above considerations, we have the following

Lemma 2. Let G be a group, H be a subgroup of G and 0 : G/H — G be
a section of m : G — G/H, i.e, mo = ld gy and o(H) = 1g. If the image
S := 0 (G/H) of o is closed under inversion, g € S = g~! € S, then the binary
operation

®,: (G/H) x (G/H) — G/H
(aH) @ (bH) := 0(aH)o(bH)H = o(aH)bH 4)

introduces a structure of a left loop on G/H.

Aleft loop (£, ®), in which the equation @ a = b has a unique solution is called
a loop. In [11] Nagy and Strambach present necessary and sufficient conditions
on a section o : G/H — G of a set G/H of left cosets to be associated with a
loop (G/H, ®,) . We have just observed that an arbitrary section o : G/H — G,
whose image o (G/H) is closed under inversion, induces a left loop (G/H, ®,) .
Nagy and Strambach establish that (G/H,®, ) is a loop if and only if the image
o (G/H) of the section generates G and acts transitively with trivial stabilizers on
G/H.

Our Definition 1 of a left loop (£, ®) corresponds to Kreuzer and Wefelscheid’s
notion of a right loop with left inverse property, given in [10]. More precisely,
they define that (£, @) is a right loop if there is a unique two-sided neutral element
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0 € L for @ and the equation a®x = b has the unique solution z € L for arbitrary
a,b € L. The left inverse property asserts that for Va € L there exists ©a € L
with (©a) ® (a ®b) =bforVb € L.

On an arbitrary left loop (£, @), consider the left translations
Lo:L—L
Ly(z) :=a®z

by a € L. According to the property (ii) of Definition 1, all L, are invertible and
L71(b) = Lo, (b) for Vb € L. Consequently,

a

a® {(6a) @z} = LyLoa(r) = Lol (z) =z forVz € L.

Definition 3. For any pair of elements a,b of a left loop (L, ®), the Thomas gy-
ration gyr [a, bl is defined as the bijective map

gyr [a,0] = LoagpyLalp : L — L. 5)

Kiechle’s considerations in [7] imply that a left loop (L, @) is a group if and only
if its gyrations gyr [a, b] = Id ¢, are trivial for Va,b € L.

Lemmad. a) Let (L,®) be a left loop with Thomas gyrations gyr [a,b] =
Le(agp) LaLls for a, be L. Then

Da®d (bdc)=(adb) ®gyr|a,b]cforVa,b,c € L (left gyroassociative law);
it) gyr la, ©a] = 1d ¢ for Va € L (weak loop property);

iii) the unique right inverse ©a of a € L is the unique left inverse of a with respect
to @.

b) Let G be a group, H C G be a subgroup and o : G/H — G be a section of
the canonical projection T : G — G/H with [o(zH)|™! € 0 (G/H) forVzH €
G/ H. Then for arbitrary a = o(aH) and b = o(bH) the Thomas gyration

gyr [aHl,bH](zH) = (Ad h(ab) (:E)) H (6)
acts as a conjugation by
h(ab) := [o(abH)] "  ab € H.

Proof: a) i) The associativity of the composition law for the bijections £ — L
implies the left gyroassociative law

(a ®b) ® gyr [a,blc = LagpLoaap) LaLls(c) =a® (b & c)
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for arbitrary a,b,c € L.
ii) By Definition 3 of a Thomas gyration one has

gyr [a,0a] = Loug(ea) Laloa = LosLlalea = LoL;' =1d ¢.
iii) Let aj be the unique right inverse of ©a. Then by i) and ii) we have
a=a®{(0a) ®ar} = {a® (Sa)} @ gyr[a,Oalas = ar.

Consequently, (6a) ® a = 6 and Sa is a left inverse of a. Any other left inverse
ay € L of a satisfies az @ a = 6. According to the uniqueness of the solution
of ag @ x = ¢ there follows £ = ©az = a. One more application of the left
gyroassociative law and the weak loop property implies

az = a2 ® {a € (6a)} = (ag ®a) ® gyr [a2, a](0a) = gyr [az, Oaz)(Sa) = Sa

justifying the uniqueness az = Oa of the left inverse of an arbitrary a € L.
b) On the one hand,

{(G‘H) S (bH)} Do { [Ad h(ab) (:E)] H} = (a‘bH) g { [Ad h(ab) (:1:)] H}
= a(abH) [Ad h(ab) (lE)] H.

On the other hand,

(aH) @y {(bH) ®¢ (zH)} = (aH) &y (bzH) = a(bz)H
= (ab)zH = o(abH)h(ab)zH

abH)h(ab)z [h(ab)]* H

abH) [Ad h(ab) (.’E)] H

whereas

{(aH) @5 (bH)} &5 {[Ad paty(z)] H} = (aH) &0 {(bH) o (zH)}.
Combining with the left gyroassociative law

{(aH) &, (bH)} @, {gyr [oH,bH](zH)} = (aH) &0 {(bH) ®¢ (zH)}

and acting on the left by L(_alH) @0 (bE)» ON€ infers

[Ad p(ap) ()] H = gyr [aH,bH](zH) Q.ED.
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Definition 5. If G is a connected Lie group, H C G is a closed connected sub-
group of G and o : G/H — G is a real analytic section of  : G — G/H with
[0 (G/H)|™ = 0 (G/H) , then (G/H,®) is called a left Lie loop.

Let G be a connected Lie group, H C G be a closed connected subgroup and
o : G/H — G be a real analytic section of the canonical projection 7 : G —
G / H. Suppose that the exponential map Exp : Lie (G) — G restricts to a global
diffeomorphism

Exp : Tho (G/H) — o (G/H). 0
Since (do)s : TR(G/H) — TR .0 (G/H) is a linear isomorphism and 7 re-
stricts to a d1ffeomorphlsm Tio (G’ /H) — G/H, inverting o, the assumption is
equivalent to the fact that

rExp (do)s : TR (G/H) — G/H (8)
is a diffeomorphism. For any z € ¢ (G/H) it is straightforward that
! = Exp (—Exp !(2)) € 0 (G/H)
as far as the tangent space T%RGO' (G/H) is invariant under multiplication by —1 €
R. Therefore, (G/H, @) is a left Lie loop.
Let us define a scalar multiplication by real numbers
Rs R x (G/H) — G/H
t @y (Exp () H) := Exp (tu)H  forVt € R,Yu € Tigo (G/H). ()
It is immediate that
1® (BExp (u)H) = Exp(u)H forVu € T 0 (G/H)
(rs) ®c (Exp (u)H) = Exp (rsu)H =7 Q4 (Exp (su)H)
i =1 ®q [s ®c (Exp (u)H)]
} and
i (rs) ®c (Exp (u)H) = Exp (sru)H = 5 ®, (Exp (ru)H)
=5®, [r ®y (Exp (v)H))
forVr,s € Rand Vu € TR o (G/H). Taking 1nto account that Exp (v)Exp (w) =

Exp (v + w) for arbxtrary commuting v,w € 110 (G/H), [v,w] = 0, one ob-
1 serves that

Ir ® (Exp (u)H)] &6 [s ®5 (Exp (w)H)] = (Exp (ru)H) ®y (Exp (su)H)
—=Exp (ru)Exp (su)H = Exp (ru + su)H = Exp ((r + s)u)H
=(r + 5) ®; (Exp (u)H)
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for Vr,s € Rand Yu € Tlngo (G/H) . Further, from Lemma 4 (b) one has
gyr [Exp (u)H, Exp (v) H](Exp (w)H) = Ad p(Exp (u)Exp (v)) (Bxp (w)) H

where

B(Exp (u)Exp (v)) = [o(Exp ()Exp (v) )] Exp (u)Exp (v)
Yu,v,w € TE;J (G/H). In particular, for 7,s € R, u € Tlﬂga (G/H), the
commuting 7 and su satisfy

Bxp (ru)Exp (su) = Exp (7 + )u) € o (G/H)

whereas
o(Exp (ru)Exp (su)H) = Exp (ru)Exp (su) and h(Exp (ru)Exp (su)) = 1.
Consequently,

gyr [r o (Exp (u)H), s ® (Exp (u)H)] = gyr [Exp (ru)H, Exp (su)H]
= Ad h(Exp (ru)Exp (su)) = Ad 1l = Id G/H-

For arbitrary u, v, w € TIRGU (G/H) and t € R, one has also

gyr [Exp (u)H, Exp (v)H|{t ®c (Exp (w)H)}
= [Ad jExp (u)Bxp () (Bxp (tw))] H = Exp (tAd j(Exp (wyExp (v)) (@) H
=t ®o (Exp (Ad h(xp (wExp () (W) H)
=t @y {Ad p(Exp (u)Bxp (v)) (Exp (w)) H}
=t ®, {gyr (Exp (u)H, Exp (v) H](Exp (w)H)}.

In order to formulate the above considerations in a concise manner, we give the
following

Definition 6. A quasi left gyrovector space (V,®, ®) is a left loop (V, ®) with a
scalar multiplication

@ RxV -—V
subject to the properties:
DiI®uv=vforVveV
iNrs)@u=r®@(s®v)=s®(ru)forvr,scR,YveV
i) (r+s)Q@u=(rv)®(s®@v)forVr,s e R,Yv e V
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ivygyrr®v,s®vl =Idy forvr,s e R,Yv eV
v) gyt [a, b](r ® v) =1 ® (gyr {a, b]v) for Va,b,v € V.

If (V,®) is a left Lie loop and the scalar multiplication is a real analytic map,
then (V,®, ®) is called a quasi left Lie gyrovector space.

Proposition 7. Let G be a connected Lie group with exponential map Exp :
Lie (G) — G, H C G be a closed connected subgroup and o : G/H — G be a
real analytic section of m : G — G/ H, such that (8) is a global diffeomorphism.
Then

(Exp (u)H) @, (Exp (v)H) := Exp (u)Exp (v)H forVu,v € T{Réa (G/H)
(10)
and (9) defines a quasi left Lie gyrovector space (G/H, ®q,®) -

The construction of a quasi left gyrovector space on an analytic left loop (£, ®)
is similar to Sabinin’s left R-odules from [12]. In his terminology, a left R-odular
structure on a smooth loop (£, @) is a scalar multiplication

Q:RxL-—L

satisfying the properties i), i) and iii) from Definition 6.
Comparing Definition 6 with the definition of an ordinary real vector space, one
observes that our considerations omit the vector distributive law

r®(adb)=(r®a)®(r®b) forreRanda,beV.

The following Proposition 8 reveals that on a quasi left Lie gyrovector space, this
property is a specific feature of the integral curves of commuting vector fields.

Proposition 8. Let G be a connected Lie group with exponential map Exp :
Lie (G) — G and faithful representation p : G — GL(n,R), H C G be a
closed connected subgroup and o : G/H — G be a real analytic section of
7w : G — G/H. Suppose that (8) is a global diffeomorphism and consider the
operations (10), (9). Then

t ® [(Exp (u)H) ®¢ (Exp (v)H)] = [t ® (Exp (u)H)] & [t ® (Exp (v)H)]

(11)
forVt € Rifand only if u,v € T{RGU (G/H) commute, {u,v] = 0.

Proof: The injective group homomorphism p : G — GL(n,R) induces an
embedding of the Lie algebras (dp);, : Lie(G) — gl(n,R). Arbitrary u,v €
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TR,0(G/H) with [u,v] = 0 are transformed into commuting matrices U :=
(dp)igu, V := (dp)1,v € gl(n,R). Therefore

Exp (tu)Exp (tv) = p~* (Exp (tU)Exp (tV))

() 5

-1 = tk : k! i1 7k—i
- (E5 (Smtre)

k=0

:p—l (Z kl(U+V) )

k=0
=p~'Exp (dp)y, [t(u + v)] = Exp (t(u + v))
for all t € R. That allows to derive that
[t ® (Exp (u)H)] & [t @ (Exp (v)H)] = Exp (tu)Exp (tv)H
—Exp (t(u +v)H = t @, (Exp (u+ v)H)
=t ®o (Exp (w)Exp (v)H) = ¢ @, [(Exp (u)H) ®g (Exp (v)H)].

Conversely, suppose that (11). If w := Exp lo(Exp (u)Exp (v)H) then
Exp (w)H = Exp (u)Exp (v)H. Denoting U := (dp)15u, V := (dp)15v, W :=
(dp)14(w), one can express the assumption in the form

Exp (tW)A = p (Exp (tw)a) = p (Exp (tu)Exp (tv)) = Exp (tU)Exp (tV)

for V¢ € R and some fixed a € H, A := p(a) € GL(n,R). Since the exponential
map of gl(n,R) is given by the exponential series, one concludes that

ot et (=t
dogWh A= zZﬁU Zoﬁv forVt € R.

In particular, at ¢ = 0 there follows A = I,. Then, by comparing the derivatives
on both sides at t = 0, we have

Wt (55 - dt(zl.vl)uo(mot e

(Z Z.Ul> | odi < Vm) L =U+V.
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Consequently,
— m
k=0 =0 m=0

Equating the second derivatives at ¢ = 0, one concludes that

s v vV = UV o (S0 ¢
U+ UV+VU+VE=U+V) =35 > @+ ) s

d [t d [Nt
+24 (2 7U> |0 —V™ | im0
=0 m=
00 1 2 00
o d tm
+ ZTU> It:ogﬁ Z m! m) le=o
l=0 —
=U?+ 20V 4 V2
whereas
VU =UYV.
As a result,

(U, V) = [(dp)1g s (@0)1, 0] = (@)1 lure] =0.
Due to the injectiveness of (dp),, : Lie(G) — gl(n, R), there follows [u,v] = 0,
Q.E.D.

3. Left Invariant Metrics on Quasi Left Gyrovector Spaces

Definition 9. If f : M — N is a smooth map of manifolds and g is a Riemannian
metric on N then the metric f*g, given by

(f*9) (up,vp) == gf(pj ((df)pup, (df)pvp)  for Vup,vp € T;,RM andNp € M
is called the pull-back of g by f.

Definition 10. A Riemannian metric g on a manifold M is invariant under a dif-
feomorphism f : M — M if the pull-back f*g = g coincides with g.
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A Riemannian metric g is invariant with respect to a group G of diffeomorphisms
of M if g is invariant under any element of G.

A Riemannian metric g on a left Lie loop (G/H, ®, ) is said to be left ®,-invariant
if g is invariant under the left translations Lqpr : G/H — G/H, Lop(zH) =
(aH) ®y (zH) forVaH € G/H.

Let G be a connected Lie group, H C G be a closed connected subgroup, o :
G/H — G be an analytic section of m : G — G/H and g be a Riemannian
metric on G/H. If g is invariant under left G-multiplications on G/ H, then g is
left ®,-invariant and Ad (H)-invariant. Indeed,

Lop(zH) = o(aH)zH
acts as a left multiplication by o(aH) € G and
Ady(zH) := Adp(z)H = heh™'H = hzH

reduces to a left multiplication by h € H. Conversely, mo = Id g, implies that
o(zH)H = zH, whereas hy := [o(zH)] "' 2 € H for Vz € G. If a Riemannian
metric g on G/H is left @,-invariant and Ad (H)-invariant then g is invariant
under the left multiplication by o(zH) and h,. Consequently, g is invariant under
the left multiplication by an arbitrary z = o(zH )h, € G. Thus, we have proved
the following

Lemma 11, Let (G/H, ®;) be a left Lie loop, associated with an analytic section
o:G/H — Gofm: G — G/H with [0 (G/H)]™" = o(G/H) and g be
a Riemannian metric on G/H. Then ¢ is left G-invariant if and only if g is left
®g-invariant and Ad (H)-invariant.

Proposition 12. Let G be a connected Lie group with exponential map Exp :
Lie (G) — G and M C G be a complete, simply connected, real analytic sub-
manifold through 1¢.

Then the following are equivalent:
1) Exp : T{R; M — M is a global analytic diffeomorphism,

ii) M has non-positive sectional curvatures with respect to any left G-invariant
metric g on G

iii) M has non-positive sectional curvatures with respect to some left G-invariant
metric g on G.
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Proof: Towards the proof of i) = ii), let us suppose that Exp : T{RG]\/I — Misa

global diffeomorphism and for some left G-invariant metric g on G there exists a

point p € M and tangent vectors up, Wp € T},RM , such that the sectional curvature
_ Ip( R (up, wp)wp, up)

K (Spang(up, wp)) = Area(up V wp) >0

Here R stands for the curvature tensor B : V x V x V — V of the Levi-
Civita connection of ¢, acting on the analytic vector fields V on G, R, is the
restriction of R at p € M, and up, V w, denotes the parallelogram, spanned by
Uup, wp. Let Ayt = Ap1 : G — G be the left multiplication by p~1 € G and
(d)\; 1)p : TFG’ — T{RGG be its differential at p. Consider the totally geodesic
surface

% = B(up, wp) = {Exp [2(dX; )ty + y(dX pwp] 5 2,y ER}C M C G
Its tangent bundle is left G-invariant and
TR = (dAp)16TH T = (dAp)y, Spanr{(dX; " )pup, (A, 1 )pwp}
= SpanR{up, Wp}.

Let U,V be the left G-invariant analytic vector fields with Up = up, Wy = wp.
Then U, W are parallel vector fields, generating the tangent bundle ™y, - %
at all the points of ¥. The areas of the parallelograms Uy V Wy, t € X, as well
as the corresponding values Ry(Uy;, W) W; of the curvature tensor and the metric
gi(Ry (U, W)Wy, Uy) are constant. Consequently, 2 has constant sectional (i.e.,
Gaussian) curvature. As a diffeomorphic image of T&E ~ R?, the manifold ¥
is contractible. Thus, the surface X with constant positive sectional curvatures
is simply connected and, therefore, isometric to the sphere S2. In particular, S
turns out to be topologically trivial, which is an absurd (e.g., m2(S?) = Z).

Concerning iii) = i), let g be a left G-invariant metricon G and 1¢ € M C Gbea
complete, simply connected submanifold, whose sectional curvatures with respect
to g are non-positive. Then according to Cartan-Hadamard Theorem (cf. [1]), the
exponential maps exp, : TRM — M at all the points z € M are diffeomor-
phisms. In particular, exp;,, = Exp : T&.M — M is a global diffeomorphism,
Q.E.D.

Definition 13. Let G be a connected Lie group and H C G be a closed connected
subgroup. The analytic section o : G/H — G of m : G — G/H is said to be
non-positively curved if its image o (G/H) C G is a complete simply connected
manifold of non-positive sectional curvature with respect to some (and therefore
all) G-invariant metrics on G.
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According to Proposition 12, an analytic section o : G/H — G is non-positively
curved exactly when the exponential map Exp : Lie (G) — G of G restricts to a
global analytic diffeomorphism (7). In Section 1 we have already explained that
it is equivalent to (8) being a diffeomorphism. Thus, an arbitrary non-positively
curved analytic section o : G/H — G is associated with a quasi left Lie gyrovec-
tor space (G/H,®,, ®¢) (cf. Proposition 7).

Corollary 14. Let (G/H,®s,®,) be a quasi left Lie gyrovector space, associ-
ated with a non-positively curved real analytic section o : G/H — G and let g
be a left G-invariant metric on G/H. Then:
i) the g-geodesics ~ob(t) through v4,5(0) = a and v,(1) = b coincide with the
gyro-lines

Yab(t) = 0 D5 {t @5 (G50 D, b)}, tER (12)

ii) the Thomas gyrations gyr [a, b} are isometries of g for Va,b € G/H.

Proof: i) According to Theorem IV.3.3 (iii) from Helgason’s book [6], for an ar-
bitrary u € Lie (G) the g-geodesic from 6 = H € G//H, tangent to (dr)y,(u) €
TR (G/H) is Exp (tu)H, where t € R. In particular, for Va,b € G/H and
u:=Exp lo(6,a®, b) € T&a (G/H) the real analytic curves t ®, (S,a @4
b) =t ®, (Exp (u)H) = Exp (tu)H, Vt € R are g-geodesics. Further, Lemma
11 reveals that the metric g is left @,-invariant. Therefore, the left translations
L, : G/H — G/H, L,(z) = a @, z are isometries for g and transform the
geodesics t ®, (Osa B, b) into the geodesics (12) through v, 5(0) = a ®, 6 = a
and Y,5(1) = a ®o (©50 &y b) = b. '

Conversely, if v, : R — G/H is a g-geodesic through ~, 5(0) = a and Yap(l) =
b then pu(t) = Lg,a(Vep(t)) is a g-geodesic through p(0) = & and (1) =
©¢a By b. As far as the metric g on G//H is complete and non-positively curved,
the geodesic pu(t) through u(0) = 6 and p(1) = ©ya @y b is unique. Thus,
,U'(t) = Ol Q¢ 'Ya,b(t) = Exp (tEXp—IO'(@a-a Do b))H =1Qq (eda Do b))
whereas (12).

ii) Lemma 4 b) has established that for Va,b € G/H the Thomas gyrations
gyr [a, b] act as conjugations by hep = [0(a @y b)) 7" o(a)o(b) € H. On the
other hand, by Lemma 11, the left G-invariant metric g on G/H is Ad (H)-
invariant. Therefore, the H-conjugations and, in particular, the gyrations gyr [a, b]
are isometries for g, Q.E.D.

Corollary 15. Suppose that G/H is a homogeneous space with left G-invariant
metric g and (G/H,®q, ®.) is a quasi left Lie gyrovector space, associated with
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a non-positively curved analytic section o : G/H — G of m : G — G/H. Let

lz|| :== [g(,((d'zr)lGExp_la(a:), (dm)i.Exp “10(:6))]% forVz € G/H. (13)

Then:
i) the distance function d of g satisfies

d(z,y) = || ©s @ y|| forVz,y € G/H

ii) ||z|| > 0 with ||z|| = 0if and only if =

iii) ||t ®0 z|| = [t]l|z|| for Vt € R, Vz € G/H

iv) ||z @ yll < llell + llyll for Va,y € G/H

v) [|Exp (Exp ~‘o(z) + Exp "o (y)) H|| < llzll + llyll for Va,y € G/H.

Proof: i) According to Lemma 11, the left translations Lg,s : G/H — G /H,
Lo,s(y) = Os g y are isometries for the left G-invariant metric g. Therefore,

d(z,y) = d(6,0,z ®sy) forVaz,y € G/H
and it suffices to justify the equality
d(o,z) = ||z|| forVz € G/H.
To this end, let us recall from Corollary 14 i) that
v(t) =t ®; x = Exp (tExp “to(z))H

is the unique geodesic from y(0) = & to y(1) = z. The distance d(5, ) equals the
length of the geodesic segment (t) for € [0, 1]. By the definition of a geodesic,

d
the tangent vector field afy(t) is parallel along itself, so that the lengths

oo (S0 390) =55 (590l 570l co)
= g5 ((dm)1,Exp ~15(z), (dm) 1. Exp "o (z))

are constant for all ¢ € [0, 1]. Consequently,

16 = [ oo (50 %w(t))f at

= [gg, ((dw)lGExp —10’(1‘), (dm)1,Exp _10(117))]

N

1
|t =1all
0
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i) By the definition of a Riemannian metric g, its restriction g5 to the tangent
space at the origin is a positive definite symmetric bilinear form

g5 : TR (G/H) x TR (G/H) — R.
Therefore g5(¢,€&) > 0 for V¢ € TR (G/H) and g5(¢,€) = 0 only when ¢ = 0.
Putting ¢ := (dm)i;Exp ~lo(z) for an arbitrary z € G/H, one gets ||z|| >
0 with ||z}|| = 0 if and only if 2 = o™ 'Exp(do)s¢ = o 'Exp(do)s0 =
o~ 1Exp (0) = o~ (1g) = 6.
iii) For arbitrary ¢ € R and 2 € G/H one has t ®, z = Exp (tExp ~lo(z))H.
Since gs( , ) is bilinear, one concludes that

[

It @ z|} = [gé(t(dw)lcExp ~Lo(z), t(dm)1, Exp _la(x))]
= [t2g5((d7r)1GExp “lo(z), (dm)1.Exp —10(1;))]

1
2

= [¢[{]=]]-
iv) The triangle inequality for the distance provides
d(©sz,y) < d(Ss%,0) +d(0,y) forVz,y € G/H.

According to i) and O,z = (~1) ®, z, one can express d(S,z,y) = ||z D, yl|,
d(Ssz,0) = ||z||, d(6,y) = ||y||- Thus, the aforementioned triangle inequality
takes the form

|z ®a yll < [l + Iyl .

v) The triangle inequality in the Euclidean inner product vector space
(TR(G/H),g5) states that

[
[(SIld

[95(€ +m,€ + )7 < [96(€, )17 + lgs(n, )]

for arbitrary £,1 € TR(G/H).
If ¢ := (dm)1Exp ~lo(z) and  := (d7)1.Exp ~lo(y) then
[95 ((dm)14 (Exp ~to(z) ,
+Exp o (y)), (dn) 16 (Bxp o (z) + Exp o(y)))]? < llall + Iyl
Applying onExp (¢) = ono(Exp (()H) = o(Exp(()H) = Exp(¢) to the
tangent vector { = Exp ~lo(z) 4+ Exp ~lo(y), one expresses
(dm)1 (Bxp ~to(z) + Exp "o(y))
= (dm)1,Exp "'o [Exp (Exp "lo(z) + Exp "la(y))H]
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for arbitrary z,y € G/H, QE.D.

Let us conclude the section, observing that the straightforward application of
Corollary 1.13.2 from Helgason’s book [6] yields the following:

Corollary 16. Let o : G/H — G be a non-positively curved analytic section of
7 : G — G/H, associated with a quasi left Lie gyrovector space (G/H,®¢,®¢)
and g be a left G-invariant metric on G /H with distance function d (G/H) %
(G/H) — G/H. Define the norm of x € G/H by (13) and put

g5((dm) 15 Exp ~'o (@), (dm)1.Exp 1o (y))
[l 111}

for the angle between the geodesic rays from o through z € G/H andy € G/H.
Then for arbitrary a,b,c € G/ H there holds

<(z,y) := arccos

i) d*(a,b) > d*(a, ¢)+d2(b, c)—2d(a, c)d(b, ¢) cos < (©4¢ Do @, O5C Dy b)
i) < (640 B0 b, 050 @ ) + (O By ¢, O5b ®s a)
+ 4 (OpC By 0, 05CDs b) < .

4. Left Gyrogroups and Left Lie Gyrovector Spaces

Definition 17. A left loop (L, ®), subject to the gyro-automorphism property

gyr [a,b)(z ®y) = (gyr [a,0]z) @ (gyr [a,bly) forVa,byzyel (14
is called a left gyrogroup.

The left gyrogroups are introduced and studied by A. Ungar in a series of articles,
starting with [13], where they are initially called weakly associative groups.

The following example provides two different sections 7, o of the same space
G,o/H, of left cosets, such that (Go/Ho, ®-) is a group and (Go/Hy, @) is a
non-group left gyrogroup. More precisely, let Go = Sym (3) be the symmetric
group, acting on the set {1,2,3}. Denote by (41, ..., %) the cycle, transforming
iy in ig, 93 in i3, etC., tg—1 in 4 and g in 4. Then fix the cyclic subgroup H, :=
((1,2)) C Sym (3) of order 2. For

1= (1,2,3), = (1,3,2) = (1,2,3)?
o1 :=(2,3), o9 = (1,3)
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there are disjoint decompositions into unions of left cosets
Go,=H,UunH,UnH,=H,Uo1H,Uo9H,

with . H, = 0;H, for i = 1, 2. For convenience, introduce 15 = o := Id 1,23}
and define the sections
7:Go/Hy — G,
T(iHp) =1, 1=0,1,2

and

0:Gy/H, — G,
o(o;Hy) =03, 1=0,1,2.
Since the image 7 (Go/H,) = {7i; i = 0,1,2} of 7 is the alternative group As,
consisting of the even permutations of 1, 2, 3, the operation
®r 1 (Go/Ho) X (Go/Hy) ~— Go/H,
(1iHo) @1 (15 Ho) = 7T H, = Ti-HHo

turns G,/ H,, into a cyclic group of order 3.

The image o (Go/H,) = {Id (1231 (2,3),(1,3)} of o is closed under inversion,
as far as (i, 7) ™! = (4, 7) for any transposition (3, §). Therefore,

Dy : (GO/HO) X (Go/Ho) — Go/Ho
(O’iHO) Do (UjHo) = Uq;O'jHo

is a left loop operation on G,/ H,,. In order to examine the truth of (14), note the
equalities gyr [H,, 0;H,| = gyr [03Ho, Ho| = Id 4,53} and gyr [0y H,, 05Ho) =
Id (1 9,33 for all 0 < ¢ < 2. It suffices to study the action of gyr [0y H,, 09H,| =
Ad (5,0,) and gyt [02Hy, 01 H,| = Ad p(s,4,). Making use of o109 = 05(1,2),
o901 = 01(1, 2), one obtains that

h(010'2) = [0(0102Ho)]—1 g109 = 0"2—10'2(1,2) = (1, 2

hoz01) = [o(0201Hp)| "} o201 = 07 01(1,2) = (1,2).
According to Ad (3,200 = 0g, Ad (1,9)01 = 02, Ad (1,2)02 = 071, One can write
Ad (1,9)07 = o_; for the congruence classes 1, —i modulo 3. On the other hand,

observe that if o(o07H,) = o then o(o_zo_;H,) = 0_m. This is clear when
k=0o0rl=0,as well asin the case of k = I. For (k,1) = (T,2) or (k,1) = (2, 1)
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one has o(ogo7H,) = o7 and o(0_go_jH,) = o(ojo5H,) = o = 0_j. Asa
result, if o ((o5Ho) ®o (07Ho)) = omH, then
Ad (1,9) {(o5Ho) ®o (07Ho)} = Ad (1,9)(om)Ho = 0_mH,
= 0_zo_iHo = (0_zHo) ®c (0_;Ho)
{Ad (1,2 (05) Ho} @ {Ad (1,9)(07) Ho }

for Vk,1 € {0,T,2}. Verifying the gyro-automorphism property (14), we establish
that (Go/H,, @) is a left gyrogroup.

Definition 18. The bijections L — L of a set L form a group B = B(L) with
respect to the composition.

The automorphism group Aut(L,®) of a groupoid (L,®) consists of the bijec-
tions ¢ € B(L), preserving the operation &, i.e.,

pla®b) = p(a) ® p(b) forVa,be L.

Thus, a left gyrogroup is a left loop (£, ®), whose gyrations gyr [a,b] are &-
automorphisms for Va,b € L.

Lemma 19. Let G be a group, H C G be a subgroup and o : G/H — G be a
section of w : G — G/H. Suppose that S := o (G/H) is closed under inversion,
St=9 (15)

and the discrepancies
d"(z) = Ad s {[o(Ad p() )] " Ad ()} (16)

belong to Ngec (gHg—l) =Nyes (yHy_l) forVz e S,Yhe H. Then (G/H,®,)
is a left gyrogroup with respect to the induced operation (4).

Proof: According to Lemma 2, (G/H, ®,) is a left loop, provided (15).
For arbitrary a = o(aH), b = 0(bH), z = o(zH), and y € G, there holds
gyr [aH,bH|{(zH) ®; (yH)} = gyr [aH, bH|(zyH) = [Ad pay) (zy)} H
= Ad p(ap) (2)Ad p(ar) (Y) H
where h(ab) := [o(abH)] ™" ab € H. On the other hand,
{gyr [oH,bH)(zH)} &, {gyr [aH,bH](yH)}

= {[Adha) (2)] H} @ {[Ad (e (v)] H}
= 0 (Ad n(ar) (7)) Ad hap) (V) H.
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Therefore, the gyro-automorphism property (14) is satisfied if and only if
[a (Ad h(ab) () H )] ' Ad h(ab) (%) belongs to the stabilizer

Stab (Ad pap) W) H) == {9 € G ; gAd pay)(¥)H = Ad hary(y)H} .
Since
Stab (Ad ey (W) H) = Ad pary @) H [Ad ey ()] ™ = Ad pan) Ady H

the aforementioned condition is equivalent to d™%) (z) € Ad ,(H) for all y € G.
Thus, d*@)(z) Nyea (yHy“l) for Va,b, € G/H is necessary and sufficient
for (G/H, ®,) to be a left gyrogroup. Since an arbitrary y € G can be written in
the form y = o(yH)h,, for some hy € H and yHy ™' = o(yH)H [o(yH)] ™,
we also have Nye (yHy_l) = Nyes (yHy_l) , QED.

Here is an example of a left loop (G1/H1,®,), which is not a left gyrogroup.
Let G := A4 be the alternative group, consisting of the even permutations of
1,2,3,4 and Hy := {(1,2,3)) be its cyclic subgroup of order 3, generated by the
cycle (1,2, 3). One can represent as a disjoint union
G1=HU(2,3,4)H, U (2,4,3)H; U (1, 4)(2, 3)H;
and define the section
g Gl/H]_ — 0 (Gl/Hl) = {Id {1,2,3,4}s (2, 3, 4), (2,4, 3), (]_, 4)(2, 3)} .
Asfaras [(1,4)(2,3)] 7 = (1,4)(2,3), (2,3,4)7! = (2,4,3), the set o (G1/H1)
is closed under inversion and (G1/H1, ®.) is a left loop. Under a multiplication
from left to right, note that (2, 3,4)(1,4)(2,3) = (1,4, 3) and
h = o((1,4, 3)H1)]_1 (1,4,3) = [(1,4)(2,3)]71 (1,4,3) = (1,3,2)
so that the gyration

gyr(2,3,4)H1,(1,4)(2,3)H1] = Ad (13,9

acts as a conjugation by (1, 3,2) € H;. On the one hand,

gyr[(2,3,4)Hy, (1,4)(2,3)H1]{((2,3,4) H)) ®y ((2,3,4)H1)}
= Ad (13,%)((2,4,3))H1 = (1,3,4)H; = (2,3,4)H,.
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On the other hand,

{gyr((2,3,4)Hy, (1,4)(2,3)H1](2,3,4)H1}
o {gyr((2,3,4) Hy, (1,4)(2,3) H1}(2,3,4) H1}
= {Ad (1,3,2)((27 3,4))H1} Do {Ad (1,3,2)((2» 3’4))H1}
= ((1’4’ 3)H1) Do ((1’4’ 3)H1)
= ((1,4)(2,3)H1) &, ((1,4)(2,3)H1) = Hx.

Therefore, the gyro-automorphism law (14) is violated and (G /H;,®,) is not a
left gyrogroup.

In an interesting paper [2] on left gyrogroups, Feder studies the following ques-
tion: Suppose that T is a subset of a finite group G, 1 € T, and for Ya, az,ay €
T there exists z from the commutator of the group, generated by x, ¥, such that
£ Oqy = zyz € T. The problem is to obtain sufficient conditions for (a“lT ) ®a)
to be left gyrogroups for Va € T

Definition 20. The groupoids (L1,®1) and (Lo, ®2) are isomorphic if there is a
bijective map

(p:£1—>£2

with
oz ®1y) = p(z) ©20(y) forVa,y € Ly.

The following result is proved by Ungar in [15]. We provide here the argument
for the sake of completeness.

Proposition 21. For any left gyrogroup (L, ®) there exists a group G, a subgroup
H C Gandasectiono : G/H — G of m : G — G/H with

[0 (G/H) ™ =0 (G/H) and ho(G/H)h™'Co(G/H) forvhe H
such that (L, ®) is isomorphic to (G/H, ®,) .
Proof: Let (L, ®) be aleft loop and H, be any subgroup of the group Aut(L, ®)

of the @-automorphisms of £, that contains all the gyrations gyr [a,b], a,b € L.
On the set G := L x H, consider the operation

(z, @) 0 (,8) := (z @ a(y), gyr [z, a(y)]eB). 17
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One checks straightforwardly that 1 := (6,1d ) is a two-sided neutral element
for o, i.e.,

(z,0) 0 (8,1d ) = (z @ a(0), 8y1 [z, 2(0)]a) = (z ® 6, 8yr [z, 5]a) = (z, )
(6,Idc) o (z,a) = (6 © z,8yr [6,2]a) = (z, @)
bearing in mind that a(6) = 6 for Vo € H, = Aut(L,®) and gyr[z,5] =

gyr [0, z] = Id ;. Making use of gyr [z,6z] = Id for Vz € L, one verifies
that

(z,a)o0 (a_l(em), a_l) = (z @ (©z),8yr [z,0z}ld ) = (0,1d z)
(e Hoez),at) o (z,a)
= ((6a7}(z)) ® o~ (z), gyr [©a"Hz), o~ (z)]Id c) =(5,Id ).

In other words,
(z,0)7! = (a7} (O2),07}) (18)

is a two-sided inverse of (z,a) € G.

The associativity of o will be derived by constructing an injective homomorphism

P (G1O) - (B’)

in the group (B, .) of the bijections £ — L. Namely, for V(z,a) € G = £ x H,
let us define

o(z,a) 1 L— L
o(z,a)(y) ==z @ afy).
According to
v (a7 H(©z),a7") p(z,0)(y) = ¢ (a7 (2),07") (z @ a(y))
= oo Yz) @ {e (z)® Y=y
o(@,0)p (a7 (62),a™Y) (1) = p(z,0) (S0~ (z) ® 0~ (y))
=z®Czdyl =y

all ¢(z, ) are invertible and [p(z, )] "' =¢ (a7} (O3), a~Y). Therefore p(z, a)
€ B.

Towards the verification of the injectiveness of ¢, let us suppose that p(z, ) =
o(y, B) for some (z, o), (y,B) € G. Then

6 =1d £(8) = [p(z, )] " 0y, B)(6) = v (¢ (©x),a™") (y ® B(5))
=¢(aon),a ) (y) =a"Hez)®a (y) =a Oz @ y)
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implies 6z @ y = «(8) = 0, so that - = y. Further, for Vz € L the identities
z=1dz(2) = [p(z, )] (=, 8)(2) = ¢ (a7} (©2),07") (z ® B(2))
= o Y(o2)®a (2 ®B(2) = o oz ® (¢ ® B(2))] = o' (2)

reveal that a8 = Id ¢, i.e., @ = § and ¢ : G — B is injective.

Next, @ is claimed to be a homomorphism with respect to the binary operation o
of G and the group multiplication in B. Namely,

o ((z,0) 0 (y,8)) = p(z,a)p(y,B) forV¥(z,a),(y,f) € G =L x H.
For arbitrary z € L, let us observe that
o((z,a) o (¥, 8))(2) = w(z ® a(y), gyt [z, a(y)}af)(2)
= (z ® a(y)) ® (gyr [z, a(y)]aB(2)).

Then the left gyroassociative law implies

(z @ a(y)) @ (gyr [z, a(y)lef(2)) = = & [a(y) ® aB(2)].

Consequently,

o((z,a)o(y, B))(2) =z@a{y®B(2)} = p(z, a)(y®B(2)) = p(z, @)p(y, B)(2)-

Now, the associative law for the group multiplication in B provides

o((g1092)093) = {p(g1)p(g2) }(g3) = w(g1){p(g2)p(g3)} = w(g10(g2093))

for Vg1, 92,93 € G. Putting together with the injectiveness of ¢, one derives the
associative law

(gr092) 093 = g10(g2°93)
establishing that (G, o) is a group.
One can identify H, with H := {(6,a); & € H,} C G and observe that

(6,0)7 = (e }(©0),07}) = (@ @)a ) = (3,07, (5,0) 0 (3,6) =
(0 ® a(5), gyr [0, a(8)]aB) = (6, o). Therefore H is a subgroup of G. Taking
into account that

(z,0) 0 H = (:l:,a)o(é,a—l)on (m@a( ), eyt [z, o(8))aa 1) o H
= (z,gyr [z,0]) o H = (z,Id z) o H

for V(z, o) € G = L X H,, one represents

G/H ={(z,1dg)o H ; z€L}.
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Further, (z,1d ¢) o H = (y,1d ) is equivalent to
(z,1dz) 0 (6,0) = (
for some o € H,. Thus, (z,Id z) o H # (y,1d 2) o H for z # y. The injection

z,gyr [:c,é]a) = (:c,a) = (yaIdE)

o:G/H={(z,ldg)oH ; z€ L} — G=LxH,,
o((z,Idg) o H) = (z,1d z)

is a section of the canonical projection

n:G=LxH,— G/H
m(z,a) = (z,Idg) o H
as far as o(H) = 0((6,ldz) o H) = (0,Id ) = 1¢ and wo ((z,Id ) 0 H) =
m(z,1d ) = (z,1d ) o H for V(z,1d ) o H € G/H. Moreover, (z,Id)™" =

(oz,Id ¢) for Vo € L reveals that 0 (G/H) = {(z,Idz) ; z € L} is closed
under inversion, One checks straightforwardly that

(6,a) o (z,Id z) 0 (8,a)"! = (afz), gyr [5, a(z)|a) o (o, a'_l) = (a(z),Id z)

forVz € L,Va € H,. Therefore, 0 (Ad p(s)H) = Ad ,(s) and the discrepancies
d"(s) = Adp-1(lg) = 1g for Vh € H,Vs € o (G/H) . According to Lemma
19, the operation
®,: (G/H) x (G/H) — G/H
((a,Idg) o H) @, ((b)Id ) o H) = (a,Id z) o (b,Idz) 0 H
= (a®b,gyr|a,b]) o H
= (a@b,Idc) o H.

turns G/ H into a left gyrogroup.
The bijective map

v:L—G/H
U(a) = (a,Id )0 H

is an isomorphism of (£, ®) onto (G/H, &®,) , because

U(a®b)=(a®blds)oH
= ((a,1d z) 0 H) @5 ((b,1d ) 0 H) = U(a) &, ¥(b)

for Va,b € £, Q.E.D.
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Definition 22. If G is a connected Lie group, H C G is a closed connected sub-
group of G and o : G/H — G is a real analytic section of  : G — G/H, induc-
ing a left gyrogroup operation ®, : (G/H) x (G/H) — G/H, then (G/H,®,)
is called a left Lie gyrogroup.

Definition 23. A left gyrogroup (L, ®) is said to be analytic if its underlying set
L is a real analytic manifold and its operations

®:LxL— L, o0 L—L
(a,b) —» a ® b, a— Sa

are real analytic maps.

Corollary 24. i) Any left Lie gyrogroup (G/H, ®,) is an analytic left gyrogroup.
ii) Any analytic left gyrogroup (L, ®) is analytically isomorphic to a left Lie gy-
rogroup (G/H,®,) .

Proof: 1) The quotient G/H of a connected Lie group G by a closed connected
subgroup H C G is an analytic manifold. The operation (4) depends analytically
on aH,bH € G/H, as far as ¢ and the group multiplication in G are analytic.
The analyticity of the multiplication and inversion in the Lie group G, implies the
analyticity of (gH) — ©,(gH) = g~ H.

ii) The group Aut”(L, @) of the analytic automorphisms of (£, @) is a Lie group
as a closed subgroup of the group of the analytic diffeomorphisms £ — L. The
left translations L, : £ — L (a € L), are analytic diffeomorphisms, so that the
gyrations gyr [a,b] € Aut” (L, @) for Va,b € L. Repeating verbally the proof of
Proposition 21, one constructs the group G := £ X Hj for an arbitrary subgroup
Hp of Aut”(L, @), containing all the gyrations gyr [a,b] € Hy, Va,b € L. The
operation (17) and the inversion (18) are analytic in all arguments. Therefore G
is a Lie group and H := {(6,a); a € Hp} is a closed subgroup of G. Further,
0:G/H — G,o((z,a) o H) = (z,1d £) is an analytic sectionof 7 : G — G/H
and

U:L— G/H,
U(z):=(z,Idg)oH
turns to be an analytic isomorphism of (£,®) with the left Lie gyrogroup
(G/H,®s), QED.

Definition 25. If (V,®,®) is a quasi left gyrovector space and (V,®) is a left
gyrogroup then (V,®, ®) is called a left gyrovector space.
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Corollary 26. Let G be a connected Lie group, H C G be a closed connected
subgroup and o : G/H — G be a non-positively curved analytic section of

7 : G — G/H with
[Lie (H), TR o (G/H)] C TR o (G/H).

Then (G/H,®,®q) is a left Lie gyrovector space with respect to the operations
(10) and (9).

Proof: According to Proposition 7, (G/H, ®,, ®) is a quasi left Lie gyrovector
space.

Note that any h € H is of the form h = Exp (§) for some (not necessarily unique)
¢ € Lie (H). Since o is non-positively curved, for any z € S := o (G/H) there
exists a unique u := Exp ~1(z) € T{%S with z = Exp (u). By assumption, T{RéS
is ad ¢-invariant for V¢ € Lie (H). In particular, ad ’g(u) € T{%S for Vk € N and
Yu € T}}i S. Consequently,

Adp(z) = Ad h(Exp (u)) = Exp (Ad n(u)) = Exp (Ad Exp (€) (u))

©_ad®(u
= Exp (exp(ad ¢)(u)) = Exp <Z ]f;l( )> € Exp (T&S) =S.
k=0

In other words, 0(Ad ,(z)) = Ady(x), and the discrepancies d*(x), defined by
(16) equal 1 for Vh € H, Vx € S. Applying Lemma 19, one concludes that
(G/H,®,) is a left gyrogroup, so that (G/H, ®,,®,) is a left Lie gyrovector
space, Q.E.D.

5. Gyrocommutative Gyrogroups, Gyrovector Spaces, Cartan
Gyrovector Spaces

Definition 27. A gyrogroup (respectively, a Lie gyrogroup or an analytic gy-
rogroup) (L, ®) is a left gyrogroup (respectively, a left Lie gyrogroup or an ana-
Iytic left gyrogroup), which possesses the left loop property

gyrla,b =gyrla®b,b] forVa,be L. (19)

Let us observe that the left gyrogroup (G,/H, = Sym (3)/{((1,2)), ®s), dis-
cussed below Definition 17 is not a gyrogroup. On the one hand, for oy =
(2,3), o2 = (1,3), one has gyr[o1H,,09H,] = Ad b(g109) = Ad(39). On
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the other hand, (01 H,) @, (02H,) = 0109H, = 02H,, so that gyr {(01H, ®o
(09H,),00H,) = gyr [o9Ho,00H,| = 1d (193} Consequently,

gyr [0'1H0, UZHO] # gyr [(UlHO) ®o (02Ho), UZH]

and (G,/H,, ®¢) is not a gyrogroup.

Definition 28. A gyrogroup (respectively, a Lie gyrogroup or an analytic gy-
rogroup) (L, D) is said to be gyrocommutative if it satisfies the gyrocommutative
law

a®b=gyr[a,b)(b®da) forVa,be L. (20)

A (gyrocommutative) gyrogroup is a natural extension of the (commutative) group
notion. It first arose in the study of Einstein addition of relativistically admissible
velocities [14], where it was recognized that Einstein addition is a gyrocommu-
tative gyrogroup operation, in full analogy with the common vector addition of
Newtonian velocities, which is a commutative group operation.

For examples of finite and infinite non-gyrocommutative gyrogroups, we refer the
reader to Foguel and Ungar’s article [4].

Lemma 29. Let G be a group, H C G be a subgroup and o : G/H — G be
a section of ™ : G — G/H with image S = o (G/H) . Suppose the following
conditions hold:

i) § = S~ is closed under inversion

ii) the discrepancies (16) belong to Ngeg (9Hg ™)

iii) o(z~ Yy H) = [o(zyH)| ™" forVz,y € S

iv) zyz € S forVz,y € S (twisted group property — cf. [3]).
Then (G/H,®,) is a gyrocommutative gyrogroup.

Proof: According to Lemma 19, i) and ii) suffice for (G/H,®,) to be a left
gyrogroup. We claim that i) and iii) imply the automorphic inverse property

0o {(zH) ®; (yH)} = {6s(zH)} &+ {05 (yH)} @D
for arbitrary z = o(zH), y = o(yH). Indeed, if S is closed under inversion then
6y (0(gH)H) = [o(gH)) ' H forgH € G/H

and

0y {(zH) ®y (yH)} = 05 (ayH) = S,lo(zyH)H] = [o(zyH)| ' H
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equals
{©s(zH)} &6 {Os(yH)} = (x_IH) Do (y—lH) = 3’*19_1‘H
=0 (m—ly_lH) H

provided that [a(a:yH)]—l =o(z7ly L H).

In an arbitrary left gyrogroup (L£,®), the automorphic inverse property (21) is
known to force the gyrocommutative law (20) by Theorem 2.39 from Ungar’s
book [16]. For the sake of completeness we present the proof. Let G, := L x
Aut(L, @) be the gyro-semidirect product of £ with its gyro-automorphism group

Aut(L, ®). Recall from the proof of Proposition 21 the group operation (17) and
the inverse (18). Then the equality

(z,0) 0 (87" = (4,0 o (z,0)7"
implies
(©67 o eyr [, a(y))) ™ (z @ a(y)), 6~ e gyr [z, a(y))) )

= (087 (¥),87") o (€a(z),07")
= (08 'a Ha(y) ®3),8yr 687 (y),08 e H(z)]f o).

By comparison of the corresponding entries, one obtains
(gyrlz,2]) ' (z®@2)=2®2z and (22)
Ao eyrlz, )T =gyr[ef e (2), 0 e @))f T (23)
for z = a(y). Since for arbitrary a, b, c € L, v € Aut(L, ®), there holds
Y(gyr [a,b]e) = YLo(aop) Lali(c) = Lo(ya)any®) ¥ (LaLs(c))
= Loty(@yr(®) Ly(a) L) 1(c) = gy [v(a), ¥(0))v(c)
(23) implies the identity
(gyr [z, 2))"! = gyr[©2,02] forVz,z e L. (24)
Further, the automorphic inverse property and the left gyroassociative law provide

{e(a®b)} ®gyr[a,b)(6c) = {(a ®b) ® gyr[a,blc} = 6{a® (bDc)}
= (0a) @ {(0b) ® (60)} = {(Sa) @ (O)} ® gyr [©a, Ob)(S¢)
= {o(a®b)} ® gyr [Oa, Ob)(S¢)
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whereas
gyr la,b] = gyr [©a,00] forVa,b € L. (25)

Putting together (22), (24) and (25), one derives the gyrocommutative law
gyr[z,z](z®2) =2@®x forVz,z€ L

thus obtaining the result of Ungar’s Theorem 2.39 from [16].

We will derive the left loop property from the automorphic inverse property and
the assumption (iv). For arbitrary z,y € S recall that yz = o(yzH)h(yz) and
express

z(yz) = vo(yrH)h(yz) = o(zo(yzH)H)h(zo(yz H))h(yz) € S.

Therefore h(zo(yzH)) = [h(yz)] ™" . The presence of the automorphic inverse
property implies
(gyr yH,zH]) ™" = gyr [cH, yH]

by combining (24) with (25). Since gyr [a.H,bH] = Ad p(qp) for Va,b € S, there
follows

gyr [vH, (yH) &, (zH)|=gyr [z H, o (yzH)H]=Ad h(zo(yzry) = Ad ey
= [Adyye] ' = (eyrlyH,=H]) ™" = gyr[«H, yH],
whereas
eyt (VH) @, (zH),cH] = (gyr [oH, (yH) @ (H)]) "}
= (gyr [zH,yH]) ™" = gyt [yH, cH].
Thus, the assumptions (i)-(iv) imply that (G/H, ®,) is a gyrocommutative gyro-

group, Q.E.D.

Definition 30. If (V,®, ®) is a left gyrovector space and (V, ®) is a gyrocommu-
tative gyrogroup then (V,®, ®) is called a gyrovector space.

The theory of gyrogroups and gyrovector spaces is developed in Ungar’s book
[16].

Corollary 31. Let G be a connected Lie group, H C G be a closed connected
subgroup and o : G/H — G be a non-positively curved analytic section of
7 : G — G/H. Assume that S := o (G/H) is subject to the following properties:”

a) [Lie (H),TR,S] C TT.S

§
i
e
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b) [TR S, TR, S] C Lie (H)
¢) there is an anti-involution T : G — G, whose fixed point set Fiz(r) = S.
Then the operations (10) and (9) turn G/ H into a Lie gyrovector space.

Proof: By Corollary 26, a non-positively curved section o : G/H — G, subject
to a) determines a left Lie gyrovector space (G/H, ®,, Q).

It suffices to verify that the infinitesimal assumptions a)-c) imply the sufficient
conditions iii) and iv) from Lemma 29 for (G/H, ®,) to be a gyrocommutative
gyrogroup.
First, we infer iii) from a) and b). More precisely, for Vu,v € T{RGS there
exists a unique w € T{RGS, such that o(Exp (u)Exp (v)H) = Exp (w), ie.,
Exp (—w)Exp (u)Exp (v) € H. Recall that the Campbell-Hausdorff map

F : Lie (G) x Lie (G) — Lie (G)

defined by Exp (z)Exp (y) = Exp (F(z,y)) for z,y € Lie (Q), is given by the
series

f(l?,y) = Z

mlkiyli

(_1)m+k1+l1+...+km+lmad :lumad Imfm L adélad gl—l(x)
m(k1 +h+...+ky+ lm)lm!km! ol lky !

(26)

where the summation is over all the natural numbers m and all the non-negative
integers k;, I; with k; +1; > 0. Each of the terms ad élm adfm . ad 5} adB11(z) is
considered to be of total degree k1 +11+. . .+ K, + 1, with respect to z and y. Let
us denote by [F(—w, F(u,v))]o the sum of the terms of F(—w, F(u,v)), which
are of even total degree with respect to u, v, w. Similarly, put [F(—w, F(u,v))
for the sum of the terms of odd total degree. The conditions a), b) imply that
[F(—w, F(u,v))]o € Lie (H) and [F(—w, F(u,v))]; € T&S for arbitrary u, v,
w € TR S. Therefore, F(—w, F(u,v)) = [F(—w, F(u, v))]o-+[F(—w, Flu, vhHh
belongs to Lie (H) if and only if [F(—w, F(u,v))]; = 0. If so, then a simultane-
ous change of the signs of u, v and w yields

[f(w,]-"(—u, “’U))]O = [F(—w,F(u,v))]o,[]-'(w,]-"(—u, —'U))]l
= —[F(~w, F(u,v))h = 0.
Thus, 7 (~w, F(u,v)) € Lie (H) forces F(w, F(—u, —v)) € Lie (H). Equiva-
lently, Exp (—w)Exp (u)Exp (v) € H suffices for Exp (w)Exp (—u)Exp (—v)
€ H, provided (a) and (b). As a result,
[o(Exp (u)Bxp (v)H)] ™! = [Exp (w)] ™ = Exp (—w)
== o(Exp (—u)Exp (—v)H) = Exp (—w)
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for Vu,v € T{RéS.

Next, note that (c) suffices for (iv). More precisely, an anti-involution 7 : G — G
is a bijection with 72 = Id ¢ and 7(ab) = 7(b)7(a) forVa,b € G. If Fiz(r) = S
then arbitrary z,y € S satisfy the twisted group property 7(zyz) = 7(z)7(y)7(z)
=zyz € S, Q.ED.

Let (G/H,®, ®) be a quasi left Lie gyrovector space, subject to the automor-
phic inverse property ©,(0s2 ®s y) = = O, y for Vz,y € G/H and g be a left
G-invariant metric on G/H. Then combining (i) and (iii) from Corollary 15, one
concludes that

d(z,y) = ||z S0 yl|

for the distance function d, associated with ¢ and the norm (13).

Let G be a noncompact semisimple Lie group and K C G be a maximal compact
subgroup. By means of the faithful (i.e., injective) adjoint representation

ad : Lie (G) — End(Lie (G))
ad.(y) :=[z,y] forVz,y € Lie(QG)

one introduces a non-degenerate bilinear form

B : Lie (G) x Lie (G) — Lie (G)
B(z,y) := Tr (ad zad )

and considers the orthogonal complement
p={recLlie(G) ; Tr (adsadyex)) = 0}.
of Lie (K). There is a direct sum Cartan decomposition
Lie (G) = p + Lie (K)
associated with a Cartan involution

0 : Lie (G) = p + Lie (K) — p + Lie (K) = Lie (G)
O(u+a):=—u+a forVuep, Va€ Lie(K).

By Lemma V1.1.2. [6], the bilinear form

By : Lie (G) x Lie (G) — R |
By(z,y) := —B(z,0(y)) = —Tr (ad yad g(y)) for Vz,y € Lie (G)
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is symmetric and positive definite. The left G-invariant metric on G, whose re-
striction on Tlmé G = Lie(G) coincides with By, is called Killing form of G.
The homogeneous space G/K is a Riemmanian symmetric space of noncompact
type, associated with G. The Riemmanian structure on G/ K is given by the left
G-invariant metric g with 7*gs = By.

In [8] Krammer and Urbantke have constructed a gyrocommutative gyrogroup
structure on any Riemannian symmetric space G/K of noncompact type. This
result is extended by the following

Corollary 32. Let G be a noncompact semisimple Lie group with exponential
map Exp : Lie(G) — G and Cartan decomposition Lie (G) = p + Lie (K).
Then the Riemannian symmetric space G /K of noncompact type admits a non-
positively curved analytic section

0:G/K — G, o(Exp(u)K):=Exp(u)forVuep= Tﬁ;a (G/K),
whose associated operations (10) and (9) determine a Lie gyrovector space

(G/K,®,®5) -

We name these gyrovector spaces after Cartan, because their associated sections
o arise from the Cartan decompositions.

Proof of Corollary 32: According to Theorem VI.1.1 iii) [6], the composition
mExp : p — G/K

of the exponential map Exp : p — S := Exp (p) C G and the canonical projec-
tion
m:8— (SK)/K =G/K

is a global analytic diffeomorphism. Therefore \
G/K = {rExp (u) = Exp (W)X ; u € p}.
The restrictions Exp |, 7|g are analytic diffeomorphisms. Thus,
o :=Exp (nExp)™!

is a global analytic diffeomorphism of G/K onto o (G/K) = Exp (p) = S with
mo = (rExp) (Exp )" = Id ¢/ and o(K) = Exp (0) = 1¢. In other words,
o : G/K — G is an analytic section of 7 : G — G/K. Moreover, the exponential
map of G restricts to a global diffeomorphism -

Exp :p=T{R;S—>S=J(G/K)
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so that ¢ is non-positively curved (cf. Proposition 12 and Definition 13).

The proof will be completed by checking the assumptions a), b), ¢) from Corollary
31. The inclusions

[Lie (K),p] Cp, [p,p] C Lie(K)

are well known properties of the Cartan decomposition Lie (G) = p + Lie (K)
(cf. IV.5 [6]). Further, the Cartan involution (u + a) = —u + a for Vu € p,
VYa € Lie(K) is a Lie algebra homomorphism of Lie (G) and gives rise to a
group homomorphism

©:G=0(G/K)K=Exp(p)Kk — G
O(Exp (v)k) := kExp (—u) forVuep,Vke K

called Cartan involution of GG. Let us consider the diffeomorphism

7:G— G
(X)) =[0X) forVXeq.

By (x) = {07} = o{[erx)] T} - o0 - x

there follows 72 = Id . For arbitrary X,Y € G one checks straightforward by
that

T(XY) = [0(XY)]™ = [0(X)e(V)] ! = [0 [BX)) ™ = 7(¥)7(X)

and concludes that 7 is an anti-involution. For X = Exp (u)k € G with u € p,
k € K note that 7(X) = [©(X)]™! = X if and only if

kExp (—u) = O(X) = X! = ki 'Exp (—u)

which is equivalent to k = k™. Thus, S = {Exp (u); u € p} consists of fixed
points for 7 and Fiz(t) C {Exp (w)k;u € p,k € K,k* = 1g} = SK®,
where K(?) := {k € K ; k? = 1} is the normal subgroup of K, constituted by
its elements of order 2. Towards the proof of the discreteness of X(?) in K, let us
fix a faithful finite dimensional linear representation of K and Lie (K). Then note
that o € Lie (K) with [Exp (a))? = Exp (2a) = 1k requires the matrix of a to |

a.

be semisimple and with eigenvalues from 7iZ. That suffices for . 3

K% = Exp{a € Lie(K) ; Exp(a) € K?®}

to be discrete in K. Similar considerations justify that the elements of order 2
from G form a discrete normal subgroup G(® C G. Note that the Lie groups
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G/G® and K/K® have Lie algebras Lie (G/G®) = Lie (G), respectively,
Lie (K/K®) = Lie(K). Taking into account that G® N K = K®), one ob-
serves also that

(G/G<2>) / (K/K<2>) ~ Q/K.

Thus, without loss of generality, K can be assumed to have no elements of order
2. That implies Fiz(7) = S, Q.E.D.

The Cartan gyrovector space structure on a Hermitian symmetric space of non-
compact type is generalized in [5] by Friedman and Ungar to a gyrogroup struc-
ture on a bounded symmetric domain in an arbitrary complex Banach space.

We conclude the characterization of the Cartan gyrovector spaces by showing that
they are the only members of a certain class of Lie gyrovector spaces.

Corollary 33. Let (G/H,®,,Q,) be a Lie gyrovector space, associated with a
non-positively curved real analytic section o : G/H — G of m : G — G/H.
Suppose that

[Lie (H), TR o (G/H)] C 18 o (G/H)

and

Fu, F(v,u)) € T{Réa (G/H)  forVu,v e T1,o (G/H)

where F : Lie (G) xLie (G) — Lie (G) stands for the Campbell-Hausdorﬁ” series
(26).

Then (G/H,®y,®¢) is a Cartan gyrovector space. In particular, there is a non-
compact semisimple Lie group G, and a maximal compact subgroup K, C G,,
such that G/ H is isomorphic as an analytic manifold to the Riemannian symmet-
ric space G,/ K, of noncompact type.

Proof: By definition, one has to fix an analytic Riemannian metric gon G/H
and to prove that Vp € G/H is an isolated fixed point of an involutive isometry
Yp: M — M for g.

First of all, the sections 0 : G/H — G are in a bijective correspondence with the
decompositions G = o (G/H) H into products of disjoint subgroups H C G and
subsets o (G/H) C G. Namely, a section o : G/H — G of 7 : G — G/H gives
rise to correctly defined maps
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and

h:G—H
h(z) := [s(z)] ta

such that z = s(z)h(z) for Vo € G. If o(zH) = a € SN H then zH =
no(zH) = n(a) = H implies that o (zH) = o(H) = 1g,sothat SNH = {1g}.
Thus, the decomposition z = s(z)h(z) is unique for all z € G. Conversely, any
decomposition G = SH into a product of a subgroup H C G and asubset S C &
with S N H = {lg} determines maps s : G — S and h : G — H, such that
z = s(z)h(z) for Vz € G. In particular, for arbitrary a € H there holds

s(za)h(za) = za = s(z)h(z)a
so that s(za) = s(z) is constant on any coset xH. That allows to define a map

c:G/H—G
o(zH) = s(z).

After checking that 7o (zH) = s(z)H = s(z)h(z)H = zH for VaH € G/H
and o(H) = s(1g) = 1¢, one concludes that o is a section of 7 : G — G/H.

To any section ¢ : G/H — G of 7 : G — G/H we associate a groupoid
(G/H, ®,) , setting

(zH) &, (yH) =o(zH)yH forVz,y € G.

On the other hand, an arbitrary decomposition G SH, SN H = {1g} deter-
mines a groupoid (S, ®°) , where

r®°y=s(zy) forVz,yes

and s : G — S is the decomposition map. Whenever o : G/H — G is associated
with G = S H, the groupoids (G/h, ®.) and (S, ®°) are isomorphic, as far as

(z@°y) H = s(zy)H = o(zyH)H = zyH = (zH) &, (yH) forVz,y € S.

For an arbitrary decomposition G = SH with S N H = {lg} the subspace
TR,S C Lie(G) is transversal to Lie (H), T{%S NLie (H) = {0}. Let

gs : Lie (G) x Lie (G) — R
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be a positive definite symmetric bilinear form, with respect to which T{’ZS and
Lie (H) are orthogonal. Then the real analytic family g = {gor}smeq/m of
positive definite symmetric bilinear forms

9err + Toy (G/H) x Ty (G/H) — R
9z (U, v) = g5 ((dm_l)m u, (dw"l)z v)

is a left G-invariant metric on G/H.

We are looking for an involutive g-isometry ¢ : G/H — G/H with an isolated
fixed point 6 = H. To this end, let us recall that the section o : G/H — G is non-
positively curved exactly when the exponential map Exp : Lie (G) — G restricts
to a global diffeomorphism Exp : TR,$ — S onto its image S := o (G/H).
Therefore :
S = Exp (TfRGS> = Exp (—TfRGS> =81

is closed under inversion. According to Corollary 26, S is normalized by H, i.e.,
hSh~! C S for Yh € H, provided T{R;S is ad 1 (fr)-invariant. There holds also
the twisted group property

Exp (u)Exp (v)Exp (v) = Exp (v)Exp (F(v,u)) = Exp (F(u, F(v,u)) € §

for Vu,v € T&S. By assumption, (G/H,®,,®,) is a Lie gyrovector space, so
that (S, ®°) is a gyrocommutative gyrogroup. A result of Foguel and Ungar from
[3] establishes that whenever .S is a twisted group, closed under inversion and
normalized by H, the groupoid (S, ®°) is a gyrocommutative gyrogroup if and
only if there is an involutive group automorphism ¢ : G — G with ¢(z) = 7!
for Vz € S and 9(y) = y for Vy € H. Since Y(zy)H = 27 lyH = z71H =
Y(z)H for Vz € S, Vy € H, there is a correctly defined map

| ¥s: G/H — G/H
Vs (xH) :=(z)H forVz € G.
| Clearly, 9% = Id ¢ implies ¥2 = Id ¢ /H- The origin 6 = H is the only fixed point

of 15, because s(zH) = xH for z € S requires x € HN S = {15}, whereas
T = 1. Due to the G-invariance of g, it suffices to show that the differential

(des)s : TR (G/H) — TR (G/H)

is orthogonal with respect to gs, in order to conclude that 1); is a g-isometry. In-

deed, the diffeomorphism 7 : S — G/H induces a linear isomorphism (dr), 6!

1
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TR S — TR (G/H) and

9o ((dvs)s (a1 u, (%), (d), , v)
=95 (— (dm);, u, — (dm)y, v) =gs ((dw)la u, (dm); v) for Vu,v € TE;S.
For an arbitrary point p = zH € G/H, z € S note that
Pp = xipsz 1 G/H — G/H

is an involutive g-isometry, as far as 1) has the same property and the left multi-
plications by z, z~1 are isometries. Further, 1,(yH) = yH fory € S if and only
if 95 (z7'yH) = z~'yH. Consequently, p = zH is the only fixed point of 1,
Q.ED.

6. Example: The Cartan Gyrovector Space Structure on the Upper
Half-plane

The Mébius gyrovector space structure on the unit disc SU(1,1)/S(U; x Uy) has
been extensively studied by A. Ungar in [16], [17] and others. Here we illustrate
the considerations from the previous sections on the example of the upper half-
plane

H = SL(2,R)/SO(2).
The Lie algebra '

sl(2,R)={m=(i _ba> ; a,b,cER}.

Its compact real form

su(2) :={m € sl(2,R) ; m-i—tm:O}:{(i% —Cir>; TER,CE(C}

so that the maximal compact subalgebra

50(2) = sl(2,R) N su(2) = {go (_01 é) . & € ]R}.

The infinitesimal Cartan decomposition si(2, R) = p, + so(2) holds for

po = sl RIN W Tou@) = {6 (o %)+ (] o) s vt cr).
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Lemma 34. The exponential map

Exp : sl(2,R) = {(Z fa) ; a,b,cER}

i —>SL(2,R)={<21, IB;), A, B,C,DeR, AD—BC’=1}
restricts to a diffeomorphism

Chy — &1 ST
. EXp P = {m (£2> (52 _§1> H 51)&2 ER}

1 )
——-)Exp(po) = {M (2;) = (ZL‘z 1+$%) ; T1,T2 GR,:L‘l >0}

1
where
& cosh(p) + 3 sinh(p)
Exp m ( ) =M p @7)
€2 %2 sinh(p)

Jor (§1,&2) # (0,0), p :== /&2 + & € R, p > 0, cosh(p) := ¢f +2€_p,

— e P
Exp m (8) =M (é) (28)

eP
sinh(p) := 5
(zf—23-1) o
T N
Exp~'M ( ) —m 2z, sinh(p)

and its inverse

9 P
sinh(p)
) i —22 -1
= 2
sinh(p) m & 29
L2
i for ‘
} (1+ 22 +22) + /(1 + 23 4 22)2 — 422 '
‘\’ p:=In ! 2) \/2($1 ! 2) ! ’ (:131,.’1,‘2) # (1)0) (30)
|
|

{ Exp ‘M (é) =m (8) . (31)
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Proof: The formulae (28) and (31) are straightforward. From now on, let us
assume that (&1, £2) # (0,0). The characteristic polynomial

Si—A & _ —
det( & —&—A) =XN-&-6=0

has roots £p for p 1= /&4 + &3, p > 0. The columns of the orthogonal matrix

T, satisfying
§1> (P 0 ) t
=T T
(52 0 —p

are solutions of the homogeneous linear systems
(51 TP §2 > <y1> _ <0>
\ & —&Fp/\p 0/"
0)- ()
Y2 —&1Ep

work out. Their lengths are, respectively,

For instance,

V2 = \/52 (=1 % p)? 2p(p F &1)-

Thus, one can choose

&2 P
oo | V-8 V2l + &)
p—& —(p+&)
V2o(p— &) /2p(p+&1)
Consequently,
- m(§1>=i1m<gl>’“ﬂ ii(” 0)’“ -
P& =kl \& kN0 —p
&2 ) ;o
e 0 | V2l —&) V2lp+&) | (€
_T(O e"’)tT_ p—& —(p+&1) 0 P T

V20(p—&) 2p(p+ &)
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£oe? gae” " & p—b&
_ | V2o —€&) V2elo+&) | [ V20(p—&) V2p(p—&)
(p—&1)e?  —(p+&)e” €& —(p+ &)

V2(p—€1)  /2p(p+&1) V2plp+&)  /20(p+&1)
cosh(p) + %sinh(p)

%2 sinh(p)

=M

Here one can use the symmetry of the diagonal matrix in order to in-

_p >

&2

el

0

fer the symmetry of Exp m <€1> Further, det < 0 > = land det(T") det(*T) =
det(T*T) = det(l2) = 1 reveal that Expm ( ) € SL(2,R).

Conversely, for any M <z1> with z1,z9 € R, 7 > 0, there exist uniquely
2

determined &;1,&2 € R with Expm (?) =M <zl> More precisely, if p :=
2 2

VE+E#0,
£1 . _ 2 . _
cosh(p) + " sinh(p) = z, " sinh(p) = za,

then

f

2L smh (p)

a1 (cosh(p) ~ L sinhp) ) = conk®() -

&

2
=1+ (1 - i—) sinh?(p) = 1 + smh (p) =1+ 2.

Consequently,
1+ 22
I

+ z1 = 2cosh(p),

1 2 2
s Bk cosh(0) = 1,
T

(z1 — 1)2+ 22 =0, ie., (x1,22) = (1,0). That allows to determine

whereas (30). In particular, p = 0 if and only if

_ P p__(@-ai-1) o
b2 = sinh(p)’ é1= (@1 — cosh(p)) sinh(p) Qmi sinh(p)

for (z1,z2) # (1,0), Q.E.D.
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Proposition 35. The operations of the Cartan gyrovector space
(SL(2,R)/50(2),®,®)
on the upper half-plane

SL(2,R)/SO(2) = {M (2) SO(2) ; 1,22 € R, a1 > 0}

are given explicitly by

M (5”1) SO(2) & M (yl) S0(2) = M (zl("”y)> 820(2) for

9 Y2 <2 (xa y)

t1(z,y) = (T1y1 + z2y2)® + |T1ye + (1 + y%)%] (32)
1

ta(z,y) = (11 + T202) [552?/1 +(1+ m%)?]
1

1+23)Q +y§)}
1y

z
+ [$1y2 + (1 + y%)y—f] [:Ezyz + (33)

Vi [+ 15 - 1) +1 -] + 1]
[(1—=t1)2 + 3] /(1 + £1)? + £2
Viita
z(z,y) = —— (35)
V@ +t)2+ 3

z1(z,y) = (34)

and by

t@M (Zz) SO(2) = M (Z;gz;) S0(2) for

(1+a? +ad) + /(1 +a + af)® — 4a}

a; >0, (0.1,0,2) # (0)0)7 r=In

20,1
E40, s=t r /(a? — a% —1)? + 4a2a2
’ sinh(r) 2a1
) a2 —a2 -1
b1(t,a) = cosh(s) + L 2 ink
1(t,a) (s) N TS sinh(s) (36)
2&1(12
bo(t,a) = sinh(s 37
2(t,) V/(a? — a2 — 1)2 + 4024 (®) ©7
to M <(1)> SO@) = M (é) SO(2) (38)
ay 1
00 M <a2) S0(2) = M (o) S0(2) (39)
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Proof: It follows from Lemma 34 that the coset representatives M (”;1) €
2
Exp (po). According to Corollary 32

M (i;) SO(2) @ M (g;) SO©2) = M (i;) M (g;) S0(2).

We look for a positive definite symmetric matrix M (jl> € SL(2,R), such that
2

w (o) ()= ()

N(z,y) =/ P(z,y)' P(z,y)

be the positive definite square root of the positive definite symmetric matrix
P(z,y)tP(z,y). More precisely, if

P(z,y)'P(z,y) = S(z,y)A(z,y)'S(z, )

for an orthogonal matrix S(z,y) and a positive definite diagonal matrix Az, y),
then N(z,y) is defined as

N(z,y) == S(z,9)v Az, y) (*S(z,y)) .
In the case under consideration, det P(z,y) = 1, whereas det A(z,y) = 1 and

z, . IR é(z,y) 0
A(x’y):<5(0y) [5(:3,(;/)]—1)’ A(m’y):< ’ ( 5($,y)>—1>

0

for real positive §(z,y), /0(x, y). In particular, det \/A(z,y) = 1 specifies that
N(z,y) € SL(2,R). Moreover, N(z,y) is symmetric and positive definite, so
that N(z,y) € Exp (po). Due to N = N, one observes that

{NTI'P)Y(NTIP) ='P(N?)'P =tP(P'P)"'P = I.

Consequently, U := N~1P € O(2) and, moreover, U € SO(2), due to det(N) =
det(P) = 1. Thus, M(z)= N(z,y).
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For arbitrary (1, T2), (y1,y2) € R X R we obtain explicitly the corresponding
(21,29) € Rt x R with M(2) = N(z,y). It is immediate that

z] Z2 0N Yo
P(z,y) :== 14 22 2
’ +z 1+
Zo 2 Ys Y5
z] n
T1y1 + Tay2 T1Y2 + 2 ” 2(1+13)
1
B 14 23)(1 + 93
zoyn + (1 + 552) Y2 oy + ( 5)( Y3)
T 191
whereas
ZT1y1 + Tay2 T1Y2 + ” (1 +v3)
P(Iay)tp(may): 1+$ ]_+
zoy1 + (1 + 11:2) Y2 Toyo + ( 2)( v3)
T1Y1
T1Y1 + T2Y2 zoy1 + (1 + 5172) ( )
X T2 2 (1+23) (1+y2) _‘M<t (z y))
z1ys + — (1 +v3) T2y2 + 25 Y
n 1
t].(w) y)

for t1(z, v), te(z, y) with (32), (33). Note that det M ( > = 1 guarantees

ta(,y)
t1(z,y) > 0. Then the characteristic polynomial of M ( ) is
ta

t1— A to 2 142
1+ +1
det 1+t PN G il
9 — A 3]
(3]
} with roots
| (L+t2+2) £ /(1 + 5 + t2)% — 4¢1
| A1,2(t) = :
‘ _ 2t
The homogeneous linear systems
— /\1’2(75) to " 0
14143 -
ta :_1 2 _ /\1,2(15) Y2 0
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have solutions

</\1,2(i§ - tl)

(1-8+1)
t1

of length

v2(t) = \/t% + (A12(t) —t1)2 = \/

Therefore, the matrix

_f2_ t2_
_ | n@® va(t)
S(tlth) - (Al(tl) -1 /\2(1,'2) — tl)

vi(t) 2109)

is orthogonal and

M <Z) = S(t1,1t9) </\1(§t) >\2(Zt)> tS(ty, ta).

By construction,

(50 st (V30 i) stass

t2v/ M (t) t2v/Da(t) ta - M) =t
_ vi(t) vo(t) (Vl ) n®) )
M) =)V e(t) — t1)ve(b) tr () -t
vi(t) va(t) nat) ()
Consequently,
BVt | By
20="0w T

{ () = ta[M1 () — ]/ A (t) | ta[Aa(t) — 1]/ A2(?)
| 29 20 + J2(0) .
1 1 :
|

|

Ar2(t) + (t2 + 2 - 1).
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1+t +t3

Taking into account A1 (¢)A2(t) = 1 and A1 (¢) + Aa(t) = , one calcu-

lates

vivg =((M(t) — t)? + 83){(A2(t) — 02)* + 83] = (81 — M(2)*(t1 — Xa(t))?
+ 13 [A3() + A3(t) — 201 (Aa () + Aa(t)) + 263] + 3
(1+1¢] +135)°

=t§+t§[ ” —2—2(1+t§+t§)+2t%]+t§
1

:g[(l +t1)? +83][(1 — ta)? + 13).
1

Further,
at) = (t) (1/1 )/ A2(t) + 21V ))
_ugig [1 i+t2+t%+t2—1] (Vo1 +v%)

VO [+ - 1)+ 115 + 3]

[(1—¢1)2 + 2]/ (1 + 1) + 2
shows (34), due to \/A1(t)\/A2(t) = 1,¢; > 0and

V@ + V%@ = (VA® + Va0
T YAy

%)
Next, (35) follows by
aa®) =gty { [F a0 + (@ + 4 - 1] 0u(0) - ) VA

+ [0+ @+ 4 - )] 0u) - )V )

=V§i§ {[1_tjl+t2—tl(t1+t2—1)—(1—t%—|—t§)] (\/r(t)+\/W)

Viity

@+ -1 [a@): + e@)?]} = A+0)2+2
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after expressing

@1 + De@lf = (VA +v3®) (a(t) - VREVED + Xet))
(1+t1)2+t§ [1+t1+t§ _1]
vt t '

According to Corollary 32, the scalar multiplication of the Cartan gyrovector
space SL(2,R)/SO(2) is given by

t@ M (Z;) SO(2) = Exp (tExp 1 (Z;)).SO@)

forVt € R, VM (Zl> € Exp (po). Then by Lemma 34 there holds
2

r al-a2-1

al t
Exp | tExp "M =Expm sinh(r) , 201
a 14
2 sinh(r) 2
bl(t,a)
=M
bZ(t’a)

for

. 2 2 2 2 2_ D]
a1>0, (a1,a9)# (1,0),r=In (1+a1+a2)+\/(1+a1+a2) 4af

>0

2a1
V(af — af —1)% + 4afa]
= 0
t#0, p=1t Ismh( ) 2a; >
b1(t,0) = cosh(p) +sign ()28 =L ____ 0
,a) = cosh(p i
' V(ed = e = 1) + 4aja]

a1a9
V@ d- 17 i
Here sign (t) = 1 for ¢ > 0 or sign (¢) = —1 for t < 0. Let us introduce

r +/(a? —a —1)2 + 4242
sinh(r) 2a1

ba(t,a) = 2sign (¢) sinh(p).

s:=sign(t)p=t

and observe that sign (s) = sign (t). Making use of the identities cosh (sign (s)s)
= cosh(s), sinh (sign (s)s) = sign (s) sinh(s), one obtains (36) and (37). The
equalities (38) and (39) follow from (9), (31), (28), QE.D.
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Let us construct explicitly the norm

[oom (&) 00 = /= ((6) (&)

&2 22

for Vm <§;) = (g f§1> € po = p(SL(2,R)/S0O(2)), associated with the

restriction of the Killing form

&2 72

5o (m (&) (7)) = adm<g1) ade(m )

P 72

B (m @ s (Zl)) - adm(@) adm<m)

on p,. To this end, let us introduce the 2 X 2-matrix units E;;, 1 < 4,5 < 2, with
single nonzero entry 1 at the intersection of the i-th row with the j-th column.
Then p, is the real span of

€1:=Fy1 — Fy and &g9:= B9+ Eo.
More precisely,
m (2) = i€ + §a62.
The isotropy subalgebra so(2) C sl(2,R) is the real line, generated by
€y := E19 — E91.
For an arbitrary ¢ € sl(2,R) let us identify
ad¢ : sl(2,R) — si(2,R)
with its 3 x 3-matrix with respect to the basis &,, €1, €2. It is straightforward that
ad e, (g0) = [€1,60] = 262, ade (61) =0, ade (e2) = 2,
whereas

ade, =

N OO
[ B B a]
O O N
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Similarly,

ad g, (€0) = —261, adg,(e1) = 285, ade,(e2) =0

0 -2 0
ade,=(|—-2 0 0.
0 0 O

reveal that

Consequently,

00 2\°
Byler,e1) =Tr (ad,)*=Tr [{0 0 0] | =38
20 0
002\ /0 -20
By(e1,e9) =Tr (adgad,)=Tr | [0 O O -2 0 0}]| =0
200/ \0 0 0
0 -2 0\°
By(ez,e0) = Tr (ad,)*=Tr |[{—2 0 0] | =8.
0 0 0

Thus, we obtain the following

Corollary 36. Let (SL(2,R)/SO(2),®,®) be the Cartan gyrovector space on
the upper half-plane, described in Proposition 35,

[Exp m (2) S0@)|| = /¢ +8
d(w,y) = llwoyll forVa,y € SL2,R)/SO).

Then d is the distance function of the left SL(2,R)-invariant Killing metric g on
the upper half-plane SL(2,R)/SO(2). The left ®-translations and the gyrations
are isometries for g, d and the geodesics for the Killing metric on SL(2,R)/SO(2)
are the gyro-lines y(t) = x ® (t @ y), t € R for fixed x,y € SL(2,R)/SO(2).
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