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Abstract

Let B C C? be the unit ball and T be a lattice of SU(2,1). Bearing in mind
that all compact Riemann surfaces are discrete quotients of the unit disc A C C,
Holzapfel conjectures that the discrete ball quotients B/I" and their compactifica-
tions are widely spread among the smooth projective surfaces. There are known
ball quotients B/T" of general type, as well as rational, abelian, K3 and elliptic ones.
The present note constructs three non-compact ball quotients, which are birational,
respectively, to a hyper-elliptic, Enriques or a ruled surface with an elliptic base.
As a result, we establish that the ball quotient surfaces have representatives in any
of the eight Enriques classification classes of smooth projective surfaces.

1 Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a philosophy
that : " ... up to birational equivalence and compactifications, all complex algebraic
surfaces are ball quotients." By a complex algebraic surface is meant a smooth projective
surface over C. These have smooth minimal models, which are classified by Enriques in
eight types - rational, ruled of genus > 1, abelian, hyperelliptic, K3, Enriques, elliptic
and of general type. The compact torsion free ball quotients B/I" are smooth minimal
surfaces of general type. Ishida (cf.[10]), Keum (cf.[11], [12]) and Dzambic (cf.[1]) obtain
elliptic surfaces, which are minimal resolutions of the isolated cyclic quotient singularities
of compact ball quotients. Hirzebruch (cf.|2|) and then Holzapfel (cf.[3], [9], [7]) construct
torsion free ball quotient compactifications with abelian minimal models. In [9] Holzapfel
provides a ball quotient compactification, which is birational to the Kummer surface
of an abelian surface, i.e., to a smooth minimal K3 surface. Rational ball quotient
surfaces are explicitly recognized and studied in [6], [8]. The present work constructs
smooth ball quotients with a hyperelliptic or, respectively, a ruled model with an elliptic
base. It provides also a ball quotient with one double point, which is birational to
an Enriques surface. All of them are finite Galois quotients of a non-compact torsion
free B/ F(_Gis), constructed by Holzapfel in [9] and having abelian minimal model of the
toroidal compactification. As a result, we establish the following

Theorem 1. (Weak Form of Holzapfel’s Conjecture) Any of the eight Enriques classi-
fication classes of complex projective surfaces contains a ball quotient surface.



2 Ball Quotient Compactifications with Abelian
Minimal Models

Let us recall that the complex 2-ball
B = {(21,22) € C*; |z1|* + |2 < 1} = SU(2,1)/8(U(2) x U(1))

is an irreducible non-compact Hermitian symmetric space. The discrete biholomorphism
groups I' C SU(2, 1) of B, whose quotients B/T" have finite SU(2, 1)-invariant measure are
called ball lattices. The present section studies the image T of the toroidal compactifying
divisor 7" = (B/T")"\ (B/I') on the minimal model A of (B/T")’, whenever A is an abelian
surface. It establishes that for any subgroup H C Aut(A,T) there is a ball quotient
B/I'y, birational to A/H.

Lemma 2. If a ball quotient B/T" is birational to an abelian surface A then B/T is
smooth and non-compact.

Proof. Assume that B/T" is singular. For a compact B/T" set U = B/I". If B/T is non-
compact, let U = (B/T) be the toroidal compactification of B/I'. In either case U
is a compact surface with isolated cyclic quotient singularities. Consider the minimal

resolution ¢ : Y — U of p; € UM by Hirzebruch-Jung strings E; = iEf The
=1

irreducible components E! of E; are smooth rational curves of self-intersection (E!)? <
—2. The birational morphism Y > A transforms E! onto rational curves on A. Tt
suffices to observe that an abelian surface A does not support rational curves C, in order
to conclude that B/T" is smooth. The compact smooth ball quotients are known to be
of general type, so that B/I" is to be non-compact.

Assume that there is a rational curve C' C A. Its desingularization f : C — C can
be viewed as a holomorphic map F': C' — A. Homotopy lifting property applies to F
and provides a holomorphic immersion F : C — A = C? in the universal cover A of
A, due to simply connectedness of the smooth rational curve C. Its image F(C) is a
compact complex-analytic subvariety of C?, which maps to compact complex-analytic
subvarieties pr;(F(C)) C C by the canonical projections pr; : C* — C, 1 < i < 2. Thus,
pr;(F(C)) and, therefore, F(C) are finite. The contradiction justifies the non-existence
of rational curves on A.

]

The next lemma lists some immediate properties of the image T of the toroidal
compactifying divisor 7" of A’ = (B/T)’ on its abelian minimal model A.
Lemma 3. Let A’ = (B/T) be a smooth toroidal ball quotient compactification, & :

A" — A be the blow-down of the (—1)-curves L = Y L; on A’ to an abelian surface A
j=1



and T!, 1 < i < h be the disjoint smooth elliptic irreducible components of the toroidal
compactifying divisor T' = (B/T')' \ (B/T'). Then:
(1) T; = £(T)) are smooth irreducible elliptic curves on A;
(i) T5" = > TinT; =¢(L);
1<i<j<h
(iii) T; N'T5™8 £ () and the restrictions & : T — T; are bijective for all 1 <i < h.

Proof. (i) According to the birational invariance of the genus, the curves T; = £(7T}) have
smooth elliptic desingularizations. It suffices to show that any curve ' C A of genus
1 is smooth. If C' is singular then its desingularization C' is a smooth elliptic curve.
Therefore, the composition C' — C' < A of the desingularization map with the identical
inclusion of C' is a morphism of abelian varieties. In particular, it is unramified, which
is not the case for C' — C. Therefore any curve C' C A of genus 1 is smooth.

(ii) The inclusion 758 C Y~ T;NT; follows from (i). For the opposite inclusion,
1<i<j<h
note that {|anr = Idanzy + A"\ L — A\ {(L) guarantees T; = {(T}) # &(Tj) = T;
and different elliptic curves on an abelian surface intersect transversally at any of their
intersection points. Thus, 75" = > T;NTj. The disjointness of T/ yields > T;N
1<i<j<h 1<i<j<h
T; C &(L). Conversely, the Kobayashi hyperbolicity of B/I" requires card(L; N 7T") > 2
for all 1 < j <s. However, card(L; NT}) <1 by the smoothness of T; = £(T}), so that
there exist at least two 1] # T} with card(L; NT}) = card(L,; NT}) = 1. In other words,

the point {(L;) € T; NT},. That verifies the inclusion (L) C > T;N7T}, whereas the
1<i<j<h
coincidence (L) = > T,N1T;.
1<i<j<h
(iii) If T; N &(L) = 0 then the intersection numbers (7})* = T? coincide. By the

Adjunction Formula,
0=—e(T}) =T+ Ka.T, =T + O.T, = T7,

so that (77)? = 0. That contradicts the contractibility of T/ to the corresponding cusp
of B/T" and justifies T; N T8 £ () for V1 <i < h.

Note that {|png = Id|png @ TP\ L — Ti \ £(L) is bijective. In order to define
TN E(L) — T/ N L, let us recall that for any p € £(L) the smooth rational curve
& Y(p) has card({71(p) N TY) < 1. More precisely, card(¢~!(p) N T!) = 1 if and only if
p € T}, so that for any p € T; N &(L) there is a unique point {q(p)} = T/ N &1 (p). That
provides a regular morphism £71(p) = ¢(p) for all p € T, NE(L).

[

According to Lemma 3, the image T' = £(T") of the toroidal compactifying divisor
T' = (B/T)" \ (B/I') under the blow-down & : (B/T") — A of the (—1)-curves is a multi-

h
elliptic divisor, i.e., T = > T; has smooth elliptic irreducible components T;, which
i=1
intersect transversally. Note also that (A, T) determines uniquely (B/T')" as the blow-up
of A at T=ms,



Definition 4. A pair (A, T) of an abelian surface A and a divisor T C A is an abelian
ball quotient model if there exists a torsion free toroidal ball quotient compactification
(B/T)', such that the blow-down & : (B/T) — A of the (—1)-curves on (B/T) maps the
pair (B/T), T = (B/T)"\ (B/T)) onto (A,T).

The next lemma explains the construction of non-compact ball quotients, which are
finite Galois quotients of torsion free non-compact B/I", birational to abelian surfaces.

Lemma 5. Let A’ = (B/T") = (B/T)UT" be a torsion free ball quotient compactification
by a toroidal divisor T', £ : A" — A be the blow-down of the (—1)-curves on A’ to the
abelian minimal model A and T = &(T"). Then

(i) Aut(A,T) = Aut(A',T") is a finite group;

(i1) any subgroup H C Aut(A,T) lifts to a ball lattice Ty, such that I is a normal
subgroup of I'g with quotient group 'y /T = H and B/T'y is a non-compact ball quotient,
birational to X = A/H.

Moreover, if X = A/H is a smooth surface then B/T'y is a smooth ball quotient.

Proof. (i) If G = Aut(A,T), then Lemma 3(ii) implies the G-invariance of £(L). By the
means of an arbitrary automorphism of the smooth projective line P!, one extends the
G-action to L and, therefore, to

A= (A\L)UL = (A\ ¢(L)) UL

h
The G-invariance of 7" = ) T7 follows from Lemma 3(iii). That justifies the inclusion
i=1
G C Aut(A',T"). For the opposite inclusion, note that the union L of the (—1)-curves
is invariant under an arbitrary automorphism of A’. As a result, there arises a G-

action on {(L) and A = (A\ &(L)) UE(L) = (A"\ L) UE(L). The multi-elliptic divisor
h
T = > T, is G-invariant according to Lemma 3(iii). Consequently, Aut(A’,T") C G,
i=1
whereas G = Aut(A',T").
In order to show that G is finite, let us consider the natural representation

¢: G — Sym(Th,...,Ty) ~ Symy,

in the permutation group of the irreducible components T; of T". It suffices to prove that
the kernel kery is finite, in order to assert that G is finite. For any g = 7,9, € ker ¢ C
Aut(A) with linear part g, € Gly(C) and translation part 7,, p € A, we show that g, and
7, take finitely many values. Note that the identical inclusions T; C A are morphisms of
abelian varieties. Thus, for any choice of an origin 64 € T; there is a C-linear embedding
& : T; = C — C? = A of the corresponding universal covers. If &(1) = (a;, b;) then

T, = By, = {(ait, bit)(mod m (A)) ; t € C} C A.

If the origin 04 ¢ T}, then for any point (P;, Q;) € T; the elliptic curve T; = E, 5, +
(P, Q;). In either case, all v; = (a;, b;) are eigenvectors of the linear part g, of g = 7,9, €
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kerep. We claim that there are at least three pairwise non-proportional v;. Indeed, if
all v; were parallel, then 75" = (), which contradicts T; N T""& #£ () for 1 < i < h
by Lemma 3 (iii). Suppose that among vy, ..., v, there are two non-parallel and all
other v; are proportional to one of them. Then after an eventual permutation there is
1 <k < h—1, such that vy, v are linearly independent, v; = p;v; for p; € C, 2 <i <k
and v; = pvgyq for p; € C, k+ 2 <1 < h. Holzapfel has proved in [9] that any abelian

h
ball quotient model (A, T) is subject to > card(T; N T*"8) = 4card(7*"¢). In the case
=1

(2
under consideration

h
card(T; N T™"8) = Z card(7; NT;) for 1<i<k and

k
card(T; N T™"8) = anrd(Ti NT;) for k+1<j<h.

=1

h

Therefore > card(T; NT5"8) = 2card(T*"8) # 4card(T*™8) and there are at least three
pairwise nloé—proportional eigenvectors vy, v9,v3 of g,. Let \; be the corresponding
eigenvalues of v; and v3 = pjv; + povg for some py, py € C*. Then A\zvz = g,(v3) =
PIAIUL + paAovs implies that Ay = A3 = A9 and g, = A,I> is a scalar matrix. On
the other hand, ¢(7;) = ¢,(T;) + p = T; for V1 < i < h, so that g, permutes among
themselves the parallel elliptic curves among Ti,...,7T,. Since T; are finitely many,
there is a natural number m, such that ¢)* € kerg. Therefore, \J* € End(T;) and
A,™ € End(T;) for all 1 <4 < h, due to (¢7)~! = g,;™ € kerp. Recall that the units
group End*(T;) = Z* = {£1} for T; without a complex multiplication. If the elliptic
curve T; has complex multiplication by an imaginary quadratic number field Q(\/—_d),
d € N, then End(7}) is a subring of the integers ring O_y of Q(v/—d). The units groups
O, = (i), 0% 5 = (%), and O* ; = (—1) for Vd # 1,3 are finite cyclic groups. As a sub-
group of O* ;, the units group End*(7;) is a finite cyclic group. Therefore A" € End*(7;)
and g, = A\, I take finitely many values.

Concerning the translation part 7, of g € kerp, one can always move the origin 64
of A at one of the singular points of 7. Due to the G-invariance of T®"&, there follows
9(04) = 7595(04) = 7,(04) = p € T*". Therefore p takes finitely many values and ker ¢
is finite.

(ii) Since I' € SU(2, 1) is a torsion free lattice, any subgroup H of

G = Aut(A",T") C Aut(A'\ T") = Aut (B/T)

lifts to a subgroup I'y C Aut(B) = SU(2,1), which normalizes I" and has quotient
'y /T = H. We claim that 'y is discrete. Indeed, I'y = Uf:ﬂiF is a finite disjoint

5



union of cosets, relative to I'. Suppose that 'y is not discrete and there is a sequence
{vn}e, C I'y with a limit point v, € 7, I". Then pass to a subsequence {v,, }5°, C
v, I', converging to v,. As a result {%Zlumn}zozl C I' converges to %_OIVO € I' and
contradicts the discreteness of I'. Thus, I'y D I' is discrete and, therefore, a ball lattice.
Straightforwardly,

A'JH = [B/T) / (Ta/T)U(T"/H) = (B/Tr) U(T'/H) = (B/T'x)

is the compactification of the ball quotient B/I'y by the divisor 7"/H. The H-Galois
covers (i : A — A/H and (j; : A — (B/T'y) fit in a commutative diagram

3

A

Al

CH ¢

A/H <~ (B]Ty)

with the contraction £y of L/H to £(L)/H.

Note that X = A/H is smooth exactly when H has no isolated fixed points on A.
The blow-up £ : A" — A replaces an arbitrary p; = {(L;) with stabilizer Staby(p;) by
a smooth rational curve L; with Staby(q) = Staby(p;) for all ¢ € L;. Therefore the
blow-up £ does not create isolated H-fixed points on A" and A’/H = (B/T'y) is a smooth
compactification. Its open subset B/I"y is smooth.

]

3 Explicit Constructions

The present section applies Lemma 5 to a specific abelian ball quotient model over
the Gauss numbers Q(8), in order to provide ball quotient compactifications, which are
birational to a hyperelliptic, Enriques or a ruled surface with an elliptic base.

Theorem 6. (Holzapfel [9]) Let us consider the elliptic curve E_y = C/(Z + 8Z) with
complex multiplication by the Gauss numbers Q(8), its 2-torsion points

) 1 .
Qo = 0(mod Z +iZ), Q1= §(m0dZ +iZ), Q2=8Q1, Qs3=0Q1+ Qs
the abelian surface A_;1 = F_; x F_4, the points
Qij = (Qi, Qj) € Asyor C Ay

8
and the divisor T£61’8) = > T; with smooth elliptic irreducible components
i=1

Ty = Egoy for 1<k<4,



m+4 Qm X E,l, Tm+6 = E*l X Qm for 1<m < 2.

Then <A,1, T_l’ )> is an abelian model of an arithmetic ball quotient B/ F(_618), defined
over Q(B).

Corollary 7. (Holzapfel [9]) (i) In the notations from Theorem 6, the multiplications

I = ( g (1) ), J = ( (1) g ) by 8 € Z[B] = End(F_1) on the first, respectively, the

second elliptic factor £_; of A_; are automorphisms of (A_l, T£61’8)>.
(ii) If Fgf) | 1s the ball lattice, containing 1"(_6’8) as a normal subgroup with quotient
[?38) JTES = = 12J2) C Aut (A,l,TEGfS)) then the ball quotient ]BS/FK3 ' s
birational to the Kummer surface X3 of A_;.
(iii) If Fg’i) | is the ball lattice, containing F(G’s) as a normal subgroup with quotient
,Sa? 1/F ©5) —(1,J) C Aut <A_1, 76 > then the ball quotient B/FRat | is a rational

surface.

The next lemma obtains the entire automorphism group G(fis) = Aut (A,l, Tfﬁl’s)).

Lemma 8. In the notations from Theorem 6, the group G(ff) = Aut <A_1,T£61’8)) 18

8 0 10 » 01
generated by I = ( 01 ) J = 0 8 ), the transposition 6 = ( 10
elliptic factors E_1 of A_y and the translation 133 by QQ33. The aforementioned generators

are subject to the relations

of the

I*=1d, J*=1d, 6*=1d, 75 =1d,

1J=JI, 0I=J0, 0J=10,
ITgs = 1331, J733 = T33J, 0733 = T330.

and G(_6i8) 15 of order 64.

Proof. Any g € G %) Jeaves invariant

< 68)>mg Z Nty = ZZan-i-Qoo—i‘Q:aaz-

1<i<5<8 m=1 n=1

Thus, g(T;) = T; implies s; = card(T; N T"8) = card(T; N T""8) = s;, according

to the bijectiveness of g. In the case under consideration, s; = sy = s3 = 54 =
4 and s5 = sg = sy = Ssg = 2, so that G(_ﬁis) permutes separately Ti,...,7T,; and
Ts, ..., Tg. In particular, the intersection N}, T; = {Qoo, @33} is G(_618)—invariant and

any g = Tw,v)Jo € G transforms the origin 64, = Qqo into g(64_,) = (Uy,Us) €
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{Qo0, @33} Straightforwardly, 733(7;) = T; for 1 < i < 4 and 733(Thion) = T3-mion
for 1 < m < 2, 2 <n < 3 imply that 133 € G_l . Therefore G_Glg) is generated
by G% N GlL(End(E_1)) = G N Gl,(Z[i]) and 755. Note that 6 € Aut(A_;) acts
on TEGI’S) and induces the permutation (77, 73)(Ts,T7)(Ts, Tg) of its irreducible compo-
nents. Therefore 0 € G(_Gig) and ([, J,0) is a subgroup of G(_ﬁis) N Gly(Z[i]). On the other
hand, any g = ( ?; ? ) € G(fis) N GLy(Z[B]) acts on T5, ..., Ty and, therefore, on the
set {fr) = fﬁ =0xC, ﬂ = fg = C x 0} of the corresponding universal covers. If
g(0xC)=0xC, g(Cx0)=Cx0then =~ =0, so that a,d € End(E_,) = Z[f]
and det(g) = ad € End*(E_;) = (B) = C4 imply g = I*J! for some 0 < k,I < 3.
Similarly, for g(0 x C) = C x 0, g(C x 0) = 0 x C one has a = § = 0, whereas
B,y € Z[B], By € Z[B]* = (B) and g = I*J'0 for some 0 < k,l < 3. Consequently,
G(,Gis) NGl (Z[8]) = (I, J,0) and G(fis) = (I, J,0,733). The announced relations among
733, 1, J, 6 imply that

GO = {mp* g™ | 0<k1<3, 0<mmn<1}

is of order 64.
O

Theorem 9. In the notations from Lemma 5, Theorem 6 and Lemma 8, let us con-
sider the subgroups Hgp = (733J%), Hpn = (=I5, 7331%), Hpy = (J?) fG(G’S) =
Aut (A_l,TEGI’S)» their liftings FgES) 17 I‘gﬁ_l, I‘Sg ? | to ball lattices and the blow-up

A ofA 1 at the 2-torsion points As_ior. Then

2—tor
(i) B/F E _, 15 a smooth ball quotient, birational to the smooth hyperelliptic surface
A_ I/HHE7
(i1) B/FEW 1 s a ball quotient with one double point Orby,, (Qos), which is bira-
tional to the smooth Enriques surface Ay~ | Hpyy;

(111) B/ng?q is a smooth ball quotient, birational to the smooth trivial ruled surface
A_y/Hpy = E_1 x P* with an elliptic base E_;.

Proof. (i) Recall that the Z-module m(E_y) = Z +iZ = Z + (1 + i)Z is generated by
1,1+ 4 and Q3 = Y (mod m (E_1)). The translation 7q, : E_; — E_; is of order 2, as
well as the morphism

TQs(_l) : E*l — E*l?

Qs (=1)(P) = =P + Qs

with four fixed points

_Q3+( )2 tor:%Q:}"’{Ql’OSZSB}



According to [5], the quotient A_;/Hpgg by the cyclic group
Hyp = (1, X 7,(—1))

of order 2 is a smooth hyperelliptic surface. Lemma 5 (ii) implies that B/ Fg’g?_l is a
smooth ball quotient, birational to A_1/Hpypg.

(ii) The quotient X3 = As;—= /(—1s) is a smooth K3 surface, called the Kummer
surface of A_;. We claim that the involution 73512 acts on As;— and determines an
unramified double cover

C : XK3 = AQ tor/< 12> — AQ tor/< ]277—33] > 2 tar/HE”r

More precisely, 33I? = 70, (—1) X Tg, leaves invariant the 2-torsion points As s, =
{Qi;10 < i,j < 3} and any choice of an automorphism of P! extends 7337% to an
automorphism of A;——. Note that 7337%(—1I5) = (—1I5)7331%, so that 733/ normalizes
(—1I,) and there is a well defined quotient group Hpg,,./ <—]2) = (7331?%) of order 2. That
allows to define ¢ : Xg3 = Ay~ /Hpy, as an Hp,, /(—15)-Galois cover. We claim that
7331? is a fixed point free involution on X3, in order to conclude that As— /Hpp, is a
smooth Enriques surface. More precisely, the fixed points of 73372 on the set X g3 of the
(—I,)-orbits on A;—= lift to e-fixed points of T33/* on A;—— for e = £1. The e-fixed
points (P, Q) € A_; are subject to

—P + Qg = €P

Q+ Qs =¢Q
For ¢ = 1 the equality @ + @3 = ) has no solution () € E_;, while for ¢ = —1 the
equation —P + Q3 = —P on P € E_; is inconsistent. Therefore 73312 has no e-fixed

points on A_;. By the very definition of the 33/*-action on Ay;— , there are no e-fixed
points for 7'33[ 2 on A;— and T331? © X5 — X3 is a fixed point free involution. As a
result, A;— /Hpgn, is a smooth Enriques surface.

Recall that the exceptional divisor &, (A2 o) of the blow-up

§otor + Ay — A

of A_1 at As_s, 18 Hpp,-invariant, so that &_;,,. descends to the contraction &_;0, :
As— [Hpn, — A_i/Hgy, of &0 (As_ior)/Henr t0 As_ior/Hpn,. In particular, the
smooth Enriques surface A;— /Hpg,, is birational to A_;/Hpg,,. The singular locus

(A_l/HEW)Sing C (As—tor/HEnr), according to the smoothness of Ay— /Hp,,. On the
other hand, 7337% has no fixed points on A;_y,, so that As_ ../ Hg,, consists of eight
double points

OrbHEnr (Q’L]) = OrbHEnr(QB*i:g*j)? O S Z?j S 3
and (A_y/Hpgp, )™ = Ay_10p/Hgpy. Note that

sing
<T£6178)> = {OTbHEm (QUO)a OlrbHEnr (Qll)a OrbHEnr (Q12)}
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is contained in (A_;/H Em)smg and the birational morphism

EHpn, - (E/FEW 1> — A_1/Hpny

sing —sing
resolves <T£61’8)> by smooth rational curves of self-intersection (—2). Therefore (]B% /T gfr) 1) I

consists of the following five double point:

Orby,,. (Qo1), Orba,, (Qi0), Orby,, (Qoz), Orbay, (Q), Orbg,, (Qo3).

Since

Orbitg Qo) € T\ (T9°) ™| [Hzoy = (T30 1) /1

OrbHEnr (Qm,O) € |: m+4 \ < 68))Sing:| /HEnr = (Trln+4 \ L) /HEnr

for V1 < m < 2 belong to the compactifying divisor 7"/ Hg,,, the ball quotient B/ ani 1
has only one singular point

(B/Fbsni) 1>Sing = {OTbHEm(Qo,:s)}‘

(iii) The quotient X = A _1/Hpry = F_1 X [E_1/{(—1))] of A_; by the reflection

J? =1 x (—1) is a smooth surface, birational to the smooth ball quotient B/Fggﬁ?fl. It

is well known that C'= E_;/(—1) is a smooth projective curve. More precisely, if
1 1 1
1) = — - =
-5+ 3 e
AE(ZHZ)\{0}

is the Weierstrass p-function, associated with the lattice Z + iZ = m(E_1), then the
map
Vi B\ {op.,} — P,
Y+ (Z+iZ)=[1:p(t+ (Z+iZ)) :p'(t + (Z +4Z))| = [1 : p(t) : p'(1)]

extends by ¥(0g_,) = [0:0: 1] = py to a projective embedding of E_;. The image
V(E-) = {[z 2yl € P 2% = (x — p(Q1))(z — p(Q2))(z — p(Q3)) }

is a cubic hypersurface in P2. As far as p(t) is even and p’(¢) is an odd function of ¢, the
multiplication p_; by —1 on E_; acts on ¢(E_;) by the rule

pallzroyl) =z 2 =yl

The fixed points of this action are py and p(Q;) for 1 < i < 3. The fibres of the
projection
I p(B_) \ {poc} —> P'\ {goe = [0: 1]},
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H([z:z:y]) =[z: 2]
are exactly the p_j-orbits on ¢(E_1) \ {pso}, so that its image

P\ {goo} = (W (E-1) \ {poo}) = ((E-1) \ {Poc})/{11-1)

is the corresponding Galois quotient by the cyclic group (u_1) of order 2. Thus,

Y(E-1)/ (1) = (E-1) \ {pc})/ (1-1) U{ps} = (P" \ {go}) U {pe} = P".
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