Galois groups of co-abelian ball quotient covers

Azniv Kasparian

Abstract

If $X' = (\mathbb{B}/\Gamma)'$ is a torsion free toroidal compactification of a discrete ball quotient $X_\circ = \mathbb{B}/\Gamma$ and $\xi : (X', T = X' \setminus X_\circ) \to (X, D = \xi(T))$ is the blow-down of the (-1)-curves to the corresponding minimal model, then $G' = Aut(X', T)$ coincides with the finite group $G = Aut(X, D)$. In particular, for an elliptic curve E with endomorphism ring $R = \text{End}(E)$ and a split abelian surface $X = A = E \times E$, G is a finite subgroup of $Aut(A) = T_A \ltimes GL(2, R)$, where $(T_A, +)$ is the translation group of A and $GL(2, R) = \{g \in R_{2 \times 2} \mid \det(g) \in R^*\}$.

The present work classifies the finite subgroups H of $Aut(A = E \times E)$ for an arbitrary elliptic curve E. By the means of the geometric invariants theory, it characterizes the Kodaira-Enriques types of $A/H \simeq (\mathbb{B}/\Gamma)'/H$, in terms of the fixed point sets of H on A. The abelian and the K3 surfaces A/H are elaborated in [7]. The first section provides necessary and sufficient conditions for A/H to be a hyper-elliptic, ruled with elliptic base, Enriques or a rational surface. In such a way, it depletes the Kodaira-Enriques classification of the finite Galois quotients A/H of a split abelian surface $A = E \times E$. The second section derives a complete list of the conjugacy classes of the linear automorphisms $g \in GL(2, R)$ of A of finite order, by the means of their eigenvalues. The third section classifies the finite subgroups H of $GL(2, R)$. The last section provides explicit generators and relations for the finite subgroups H of $Aut(A)$ with K3, hyper-elliptic, rules with elliptic base or Enriques quotients $A/H \simeq (\mathbb{B}/\Gamma)'/H$.

Let

$$
\mathbb{B} = \{z = (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 < 1\} \simeq SU_{2,1}/S(U_2 \times U_1).
$$

be the complex 2-ball. In [4] Holzapfel settled the problem of the characterization of the projective surfaces, which are birational to an eventually singular ball quotient \mathbb{B}/Γ by a lattice Γ of $SU_{2,1}$. Note that if $\gamma \in \Gamma$ is a torsion element with isolated fixed points on \mathbb{B} then \mathbb{B}/Γ has isolated cyclic quotient singularity, which ought to be resolved in order to obtain a smooth open surface. The aforementioned resolution creates smooth rational curves of self-intersection ≤ -2, which alter the local differential geometry of \mathbb{B}/Γ, modeled by \mathbb{B}. That is why we split the problem to the description of the minimal models X_\circ of the smooth toroidal compactifications $X'_\circ = (\mathbb{B}/\Gamma_\circ)'$ of torsion free Γ_\circ and to the characterization of the birational equivalence classes of
X_o/H for appropriate finite automorphism groups H. This reduction is based on the
fact that any finitely generated lattice Γ in the simple Lie group SU_{2,1} has a torsion
free normal subgroup Γ_o of finite index [Γ : Γ_o]. Therefore B/Γ = (B/Γ_o) / (Γ/Γ_o)
and the classification of B/Γ is attempted by the classification of B/Γ_o and the finite
automorphism groups H = Γ/Γ_o of B/Γ_o.

According to the next proposition, for any torsion free ball lattice Γ_o and any
Γ < SU_{2,1}, containing Γ_o as a normal subgroup of finite index, the quotient group
Γ/Γ_o acts on the toroidal compactifying divisor T = (B/Γ_o)' \ (B/Γ_o) and provides a
compactification B/Γ = (B/Γ_o)' / (Γ/Γ_o) of B/Γ with at worst isolated cyclic quotient
singularities. Therefore H = Γ/Γ_o is a subgroup of Aut(X_o,T). The birational
equivalence classes of B/Γ are to be described by the numerical invariants of the
minimal resolutions Y of the singularities of B/Γ. These can be computed by the
means of the geometric invariant theory, applied to X_o and a finite subgroup H of the
biholomorphism group Aut(X_o).

Proposition 1. Let Γ be a lattice of SU_{2,1} and Γ_o be a normal torsion free subgroup
of Γ with finite index [Γ : Γ_o]. Then the group G = Γ/Γ_o acts on the toroidal
compactifying divisor T = (B/Γ_o)' \ (B/Γ_o) and the quotient (B/Γ_o)' / G = (B/Γ) ∪
(T/G) = B/Γ is a compactification of B/Γ with at worst isolated cyclic quotient
singularities.

Proof. Recall that p ∈ ∂_Γ B is a Γ-rational boundary point exactly when the intersection
Γ ∩ Stab_{SU_{2,1}}(p) is a lattice of Stab_{SU_{2,1}}(p). Since [Γ : Γ_o] < ∞, the quotient
Stab_{SU_{2,1}}(p)/[Γ ∩ Stab_{SU_{2,1}}(p)] =

= \{Stab_{SU_{2,1}}(p)/ [Γ_o ∩ Stab_{SU_{2,1}}(p)] \} / \{[Γ ∩ Stab_{SU_{2,1}}(p)]/[Γ_o ∩ Stab_{SU_{2,1}}(p)]\}

has finite invariant volume exactly when Stab_{SU_{2,1}}(p)/[Γ_o ∩ Stab_{SU_{2,1}}(p)] has finite
invariant volume. Therefore the Γ-rational boundary points coincide with the Γ_o-
rational boundary points, ∂_Γ B = ∂_{Γ_o} B. It suffices to establish that the Γ-action on B
admits local extensions on neighborhoods of the liftings of T_i to complex lines through
p_i ∈ ∂_{Γ_o} B with Orb_{Γ_o}(p_i) = κ_i. According to [?], the cusp κ_i, associated with the
smooth elliptic curve T_i has a neighborhood N(κ_i) = T_i × Δ^*(0,ε) ⊂ (B/Γ_o) for a
sufficiently small punctured disc Δ^*(0,ε) = \{ z ∈ C \ | \ |z| < ε \}. The biholomorphisms
γ : B → B from Γ extend to γ : B ∪ ∂_{Γ_o} B → B ∪ ∂_{Γ_o} B, as far as ∂_{Γ_o} B consists of
isolated points. If p_i ∈ ∂_{Γ_o} B, γ(p_i) = p_j ∈ ∂_{Γ_o} B and κ_j = Orb_{Γ_o}(p_j) then there is a
biholomorphism
γ : N(κ_i) ∩ γ^{-1} N(κ_j) → γ N(κ_i) ∩ N(κ_j).

For any q_i ∈ T_i let Δ_{T_i}(q_i,η) be a sufficiently small disc on T_i, centered at q_i,
which is contained in a π_1(T_i)-fundamental domain, centered at q_i. One can view
Δ_{T_i}(q_i,η) = Δ_{\tilde{T_i}}(q_i,η) as a disc on the lifting \tilde{T_i} of T_i to a complex line through p_i.
Then $N(k_i, q_i) := \Delta_{\tilde{T}_i}(q_i, \eta) \times \Delta^*(0, \varepsilon)$ is a bounded neighborhood of $q_i \in T_i$ on \mathbb{B}/Γ_o and the holomorphic map

$$\gamma : N(k_i, q_i) \cap \gamma^{-1} N(k_j, q_j) \to \gamma N(k_i, q_i) \cap N(k_j, q_j) \subseteq N(k_j, q_j) = \Delta_{\tilde{T}_j}(q_j, \eta) \times \Delta^*(0, \varepsilon)$$

is bounded. Thus, $\gamma : \mathbb{B} \to \mathbb{B}$ is locally bounded around $\tilde{T} = \sum_{p_i \in \partial \mathbb{B}_o \mathbb{B}} \tilde{T}_i(p_i)$ and admits a holomorphic extension $\gamma : \mathbb{B} \cup \tilde{T} \to \mathbb{B} \cup \tilde{T}$. This induces a biholomorphism $\gamma_{\Gamma_o} : (\mathbb{B}/\Gamma_o)' \to (\mathbb{B}/\Gamma_o)'$.

The next proposition establishes that an arbitrary torsion free toroidal compactification $(\mathbb{B}/\Gamma_o)'$ has finitely many Galois quotients $(\mathbb{B}/\Gamma_o)' / H = \mathbb{B}/\Gamma_H$ with $\Gamma_H / \Gamma_o = H$. For torsion free $(\mathbb{B}/\Gamma_o)'$ with an abelian minimal model $X_o = A$, the result is proved in [6]. Note also that [9] constructs an infinite series $\{(\mathbb{B}/\Gamma_n)\}'$ of mutually non-birationnal torsion free toroidal compactifications with abelian minimal models, which are finite Galois covers of a fixed $(\mathbb{B}/\Gamma_n)’, T(1)/H = ((\mathbb{B}/\Gamma_n), T(n)) / H_n$, $H_n \leq \text{Aut} ((\mathbb{B}/\Gamma_n)’, T(n))$.

Proposition 2. Let $X' = (\mathbb{B}/\Gamma)' = (\mathbb{B}/\Gamma) \cup T$ be a torsion free toroidal compactification and $\xi : (X', T) \to (X = \xi(X'), D = \xi(T))$ be the blow-down of the (-1)-curves to the minimal model X of X'. Then $\text{Aut}(X', T)$ is a finite group, which coincides with $\text{Aut}(X, D)$.

Proof. Let us denote $G = \text{Aut}(X, D)$, $G' = \text{Aut}(X', T)$ and observe that X' is the blow-up of X at the singular locus D^{sing} of D. Since $D = \sum_{i=1}^{h} D_i$ has smooth elliptic irreducible components D_i, the singular locus $D^{\text{sing}} = \sum_{1 \leq i < j \leq h} D_i \cap D_j$ and its complement $X \setminus D^{\text{sing}}$ are G-invariant. We claim that the G-action extends to the exceptional divisor $E = \xi^{-1}(D^{\text{sing}})$ of ξ, so that $X' = (X \setminus D^{\text{sing}}) \cup E$ is G-invariant. Indeed, for any $g \in G$ and $p \in D^{\text{sing}}$ with $q = g(p)$, let us choose local holomorphic coordinates $x = (x_1, x_2)$, respectively, $y = (y_1, y_2)$ on sufficiently small neighborhoods $N(p)$, $N(q)$ of p and q on X with $gN(p) \subseteq N(q)$. Then $g : N(p) \to N(q) \subseteq \mathbb{C}^2$ consists of two local holomorphic functions $g = (g_1, g_2)$ on $N(p)$. By the very definition of a blow-up,

$$\xi^{-1}N(p) = \{(x_1, x_2) \times [x_1 : x_2] \mid (x_1, x_2) \in N(p)\} \quad \text{and} \quad \xi^{-1}N(q) = \{(g_1(x), g_2(x)) \times [g_1(x) : g_2(x)] \mid g(x) = (g_1(x), g_2(x)) \in N(q)\},$$

so that

$$g : \xi^{-1}N(p) \to \xi^{-1}N(q),$$

$$(x_1, x_2) \times [x_1 : x_2] \mapsto (g_1(x), g_2(x)) \times [g_1(x) : g_2(x)]$$

3
extends the action of \(g \in G \) to \(\xi^{-1}(D_{\text{sing}}) \) and \(G \subset \text{Aut}(X') \). Towards the \(G \)-invariance of \(T \), note that the birational maps \(\xi : T_i \to \xi(T_i) = D_i \) of the smooth irreducible components \(T_i \) of \(T \) are biregular. Thus, the \(G \)-invariance of \(D = \sum_{i=1}^{h} D_i \) implies the \(G \)-invariance of \(T = \sum_{i=1}^{h} T_i \) and \(G \subseteq G' = \text{Aut}(X', T) \). For the opposite inclusion \(G' = \text{Aut}(X', T) \subseteq G = \text{Aut}(X, D) \) observe that an arbitrary \(g' \in G' \) acts on the union \(E \) of the \((-1)\)-curves on \(X' \) and permutes the finite set \(\xi(E) = D_{\text{sing}} \). In such a way, \(g' \) turns to be a biregular morphism of \(X = (X' \setminus E) \cup D_{\text{sing}} \). The restriction of \(g' \) on \(T_i \) has image \(g'(T_i) = T_j \) for some \(1 \leq j \leq h \) and induces a biholomorphism \(g' : D_i \to D_j \). As a result, \(g' \in G' \) acts on \(D \) and \(g' \in G = \text{Aut}(X, D) \).

In order to justify that \(G = \text{Aut}(X, D) \) is a finite group, let us consider the natural representation

\[
\varphi : G \to \text{Sym}(D_1, \ldots, D_h)
\]

in the permutation group of the irreducible components \(D_1, \ldots, D_h \) of \(D \). As far as the image \(\varphi(G) \) is a finite group, it suffices to prove that the kernel \(\ker \varphi \) is finite. Fix \(p \in D_{\text{sing}} \) and two local irreducible branches \(U_o \) and \(V_o \) of \(D \) through \(p \). If \(U_o \subset D_i \) and \(V_o \subset D_j \) for \(i \neq j \) then consider the natural representation

\[
\varphi_o : \ker \varphi \to \text{Sym}(D_i \cap D_j).
\]

The group homomorphism \(\varphi_o \) has a finite image, so that the problem reduces to the finiteness of \(G_o := \ker (\varphi_o |_{\ker \varphi}) \). By its very definition, \(G_o \leq \text{Stab}_G(p) \). Let us move the origin of \(D_i \) at \(p \) and realize \(G_o \) as a subgroup of the finite cyclic group \(\text{End}^*(D_i) \). After an eventual shrinking, \(U_o \) is contained in a coordinate chart of \(X \). Then \(U = \cap_{g_o \in G_o} [g_o(U_o)] \) is a \(G_o \)-invariant neighborhood of \(p \) on \(D_i \). Similarly, pass to a \(G_o \)-invariant neighborhood \(V \subset V_o \) of \(p \) on \(D_j \), intersecting transversally \(U \). Through any point \(v \in V \) there is a local complex line \(U(v), \) parallel to \(U \). The union \(W = \cup_{v \in V} U(v) \) is a neighborhood of \(p \) on \(X \), biholomorphic to \(U \times V \). In holomorphic coordinates \((u, v) \in W\), one gets \(G_o \leq \text{End}^*(U) \times \text{End}^*(V) \). Note that \(\text{End}^*(U) \subseteq \text{End}^*(D_i) \) and \(\text{End}^*(D_i) \) is a finite cyclic group of order 1, 2, 3, 4 or 6, so that \(|G_o| < \infty \).

\[\square \]
1 Kodaira-Enriques classification of the finite Galois quotients of a split abelian surface

Let $A = E \times E$ be the Cartesian square of an elliptic curve E. For an arbitrary finite automorphism group $H \leq \text{Aut}(A)$, we characterize the Kodaira-Enriques classification type of A/H in terms of the fixed point set $\text{Fix}_A(H)$ of H on A. Partial results for this problem are provided by [7]. Namely, any A/H is a finite cyclic Galois quotient of a smooth abelian surface A/K or a normal model A/K of a K3 surface. The surface A/K is abelian exactly when $K = \mathcal{T}(H)$ is a translation group. The note [7] specifies that a necessary and sufficient condition for $A/\mathcal{T}(H)/h)$ to have irregularity $q(Y) = h^{1,0}(Y) = 1$ is the presence of an entire elliptic curve in the fixed point set $\text{Fix}_A(h)$ of h. This result is similar to S. Tokunaga and M. Yoshida’s study [11] of the discrete subgroups $\Lambda \leq \mathbb{C}^n \ltimes U(n)$ with compact quotient \mathbb{C}^n/Λ. Namely, [11] establishes that if the linear part $\mathcal{L}(\Lambda)$ of such Λ does not fix pointwise a complex line on \mathbb{C}^2, then \mathbb{C}^n/Λ has vanishing irregularity. Further, [7] observes that if some $h \in H$ fixes pointwise an entire elliptic curve on A, then the Kodaira dimension $\kappa(A/H) = -\infty$ drops down. Tokunaga and Yoshida prove the same statement for discrete subgroups $\Lambda \leq \mathbb{C}^n \ltimes U(n)$ with compact quotient \mathbb{C}^n/Λ. The note [7] proves also that if A/K is a K3 double cover of A/H then A/H is birational to an Enriques surface if and only if $A/K \to A/H$ is unramified.

The present note establishes that an arbitrary cyclic cover $\zeta^K_H : A/K \to A/H$ of degree ≥ 3 by a K3 surfaces A/K with isolated cyclic quotient singularities is ramified over a finite set of points and A/H is a rational surface. If a K3 surface A/K is a double cover $\zeta^K_H : A/K \to A/H$ of A/H then A/H is birational to an Enriques surface exactly when ζ^K_H is unramified. The quotients A/H with ramified K3 double covers $\zeta^K_H : A/K \to A/H$ are rational surfaces. If $H = \mathcal{T}(H)/h)$ and the fixed points of $\mathcal{L}(h)$ on A contain an elliptic curve then A/H is hyper-elliptic (respectively, ruled with an elliptic base) if and only if H has not a fixed point on A (respectively, H has a fixed point on A, whereas H has a pointwise fixed elliptic curve on A). If $H = \mathcal{T}(H)/h)$ and $\mathcal{L}(h)$ has isolated fixed points on A then A/H is a rational surface.

In order to construct the normal subgroup K of H, let us recall that the automorphism group $\text{Aut}(A) = T_A \ltimes \text{Aut}_{\hat{o}_A}(A)$ of A is a semi-direct product of the translation group $T_A \simeq (\mathbb{A}, +)$ and the stabilizer $\text{Aut}_{\hat{o}_A}(A)$ of the origin $\hat{o}_A \in A$. Each $g \in \text{Aut}_{\hat{o}_A}(A)$ is a linear transformation

$$g = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in GL_2(\mathbb{C}),$$

leaving invariant the fundamental group $\pi_1(A) = \pi_1(E) \times \pi_1(E)$ of $A = E \times E$. Therefore $a_{ij} \pi_1(E) \subseteq \pi_1(E)$ for all $1 \leq i, j \leq 2$ and $a_{ij} \in R$ for the endomorphism ring R of E. The same holds for the entries of the inverse matrix

$$g^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} \in \text{Aut}_{\hat{o}_A}(A). \quad (1)$$
Now, \(\det(g) \in R \) and \(\det(g^{-1}) = (\det(g))^{-1} \in R \) imply that \(\det(g) \in R^* \) is a unit. Thus, \(\text{Aut}_{\phi_A}(A) \) is contained in

\[
\text{Gl}(2, R) := \{ g \in (R)_{2 \times 2} \mid \det(g) \in R^* \}.
\]

The opposite inclusion \(\text{Gl}(2, R) \subseteq \text{Aut}_{\phi_A}(A) \) is clear from (1) and \(\text{Aut}_{\phi_A}(A) = \text{Gl}(2, R) \).

The map \(\mathcal{L} : \text{Aut}(A) \rightarrow \text{Gl}(2, R) \), associating to \(g \in \text{Aut}(A) \) its linear part \(\mathcal{L}(g) \in \text{Gl}(2, R) \) is a group homomorphism with kernel \(\ker(\mathcal{L}) = T_A \). Denote by \(\mathcal{O}_{-d} \) the integers ring of an imaginary quadratic number field \(\mathbb{Q}(\sqrt{-d}) \). The determinant \(\det : \text{Gl}(2, R) \rightarrow R^* \) is a group homomorphism in the cyclic units group

\[
R^* = \langle \zeta_d \rangle \simeq \begin{cases}
\mathbb{C}_2 & \text{for } R \neq \mathbb{Z}[i], \mathcal{O}_{-3}, \\
\mathbb{C}_4 & \text{for } R = \mathbb{Z}[i] = \mathcal{O}_{-1}, \\
\mathbb{C}_6 & \text{for } R = \mathcal{O}_{-3}
\end{cases}
\]

of order \(o(R) \). For an arbitrary subgroup \(H \) of \(\text{Aut}(A) \), let us denote by \(K = K_H \) the kernel of the group homomorphism \(\det \mathcal{L} : H \rightarrow R^* \). The image \(\det \mathcal{L}(H) \subseteq (R^*, \cdot) \) is a cyclic group of order \(m \), dividing \(o(R^*) \), i.e., \(\det \mathcal{L}(H) = \langle \zeta_d^k \rangle \) for some natural divisor \(k = \frac{o(R^*)}{m} \) of \(o(R^*) \). For an arbitrary \(h_0 \in H \) with \(\det \mathcal{L}(h_0) = \zeta_d^k \) the first homomorphism theorem reads as

\[
\{K_H, h_0 K_H, \ldots, h_0^{m-1} K_H\} = H/K_H \simeq \langle \zeta_d^k \rangle = \{1, \zeta_d^k, \zeta_d^{2k}, \ldots, \zeta_d^{(m-1)k}\}.
\]

Therefore \(H = K_H \langle h_0 \rangle \) is a product of \(K_H = \ker(\det \mathcal{L}|_H) \) and the cyclic subgroup \(\langle h_0 \rangle \) of \(H \).

Denote by \(E_1(H) \) the set of \(h \in H \), whose linear parts \(\mathcal{L}(h) \in GL_2(R) \) have eigenvalue 1 of multiplicity 1. In other words, \(h \in E_1(H) \) exactly when \(\mathcal{L}(h) \) fixes pointwise an elliptic curve on \(A \) through the origin \(\partial_A \). Put \(E_0(H) \) for the set of \(h \in H \), whose linear parts have no eigenvalue 1. Observe that \(h \in E_0(H) \) if and only if \(\mathcal{L}(h) \in \text{GL}(2, R) \) has isolated fixed points on \(A \).

An automorphism \(h \in H \setminus \{\text{Id}\} \) is called a reflection if fixes pointwise an elliptic curve on \(A \). We claim that \(h \in H \) is a reflection if and only if \(h \in E_1(H) \) and \(h \) has a fixed point on \(A \). Indeed, if \(h \) fixes an elliptic curve \(F \) on \(A \), then one can move the origin \(\partial_A \) of \(A \) on \(F \), in order to represent \(h \) by a linear transformation \(h = \mathcal{L}(h) \in \text{GL}(2, R) \setminus \{\text{Id}\} = E_1(\text{GL}(2, R)) \cup E_0(\text{GL}(2, R)) \). Any \(h = \mathcal{L}(h) \in E_0(\text{GL}(2, R)) \) has isolated fixed points on \(A \), so that \(h = \mathcal{L}(h) \in E_1(H) \) and \(\text{Fix}_A(h) \neq \emptyset \). Conversely, if \(h \in E_1(H) \) and \(\text{Fix}_A(h) \neq \emptyset \), then after moving the origin of \(A \) at \(\partial_A \in \text{Fix}_A(h) \), one attains \(h = \mathcal{L}(h) \). Thus, \(h \) fixes pointwise an elliptic curve on \(A \) or \(h \) is a reflection.

Towards the complete classification of the Kodaira-Enriques type of \(A/H \), we use the following results from [7]:
Proposition 3. (i) (cf. Corollary 5 from [7]) The quotient A/H of $A = E \times E$ by a finite automorphism group H is an abelian surface if and only if $H = \ker(L|_H) = T(H)$ is a translation group.

(ii) (Lemma 7 from [7]) The quotient A/H is birational to a K3 surface if and only if $H = \ker(\det L|_H)$ and $H \supseteq \ker(L|_H) = T(H)$.

Proposition 4. (i) (cf. Lemma 11 from [7]) If a finite automorphism group $H \leq \text{Aut}(A)$ contains a reflection then A/H is of Kodaira dimension $\kappa(A/H) = -\infty$.

(ii) (cf. Proposition 12 from [7]) A smooth model Y of A/H is of irregularity $q(Y) = h^{1,0}(Y) = 1$ if and only if $H = T(H)\langle h \rangle$ is a product of its normal translation subgroup $T(H) = \ker(L|_H)$ and a cyclic group $\langle h \rangle$, generated by $h \in E_1(H)$.

From now on, we consider only subgroups $H \leq \text{Aut}(A,T)$ with $\det L(H) \neq \{1\}$ and distinguish between translation $K = \ker(\det L|_H) = \ker(L|_H) = T(H)$ and non-translation $T = \ker(\det L|_H) \supseteq \ker(L|_H) = T(H)$. Any $h \notin K = \ker(\det L|_H)$ belongs to $E_1(H)$ or to $E_0(H)$.

Proposition 5. Let $H = T(H)\langle h \rangle$ be a product of its (normal) translation subgroup $T(H) = \ker(L|_H)$ and a cyclic group $\langle h \rangle$, generated by $h \in E_1(H)$. Then:

(i) the fixed point set $\text{Fix}_A(H) = \emptyset$ of H on A is empty if and only if A/H is a smooth hyper-elliptic surface;

(ii) the fixed point set $\text{Fix}_A(H) \neq \emptyset$ is non-empty if and only if A/H is a smooth ruled surface with an elliptic base. If so, then $\text{Fix}_A(H)$ is of codimension 1 in A.

Proof. According to Proposition 4 (ii), $H = T(H)\langle h \rangle$ with $h \in E_1(H)$ if and only if any smooth model Y of A/H has irregularity $q(Y) = h^{1,0}(Y) = 1$. More precisely, Y is a hyper-elliptic surface or a ruled surface with an elliptic base.

If $\text{Fix}_A(H) = \emptyset$ then $A \to A/H$ is an unramified cover and the Kodaira dimension $\kappa(A/H) = \kappa(A) = 0$. Therefore A/H is hyper-elliptic.

Suppose that there is an H-fixed point $p \in \text{Fix}_A(H)$ and move the origin o_A of A at p. For any $h_1 \in \text{Stab}_H(o_A) \setminus \{Id_A\}$ one has $o_A = h_1(o_A) = \tau(h_1)L(h_1)(o_A) = \tau(h_1)(o_A)$, so that h_1 has trivial translation part $\tau(h_1) = \tau_{o_A}$. As a result, $h_1 = L(h_1) \in E_1(H) \setminus \{Id_A\}$ is a reflection and fixes pointwise an elliptic curve on A. In particular, $\text{Fix}_A(H)$ is of complex codimension 1. If

$$L(h) = \begin{pmatrix} 1 & 0 \\ 0 & \lambda_2(h) \end{pmatrix}$$

with $\lambda_2(h) \neq 1$ then

$$h_1 = \begin{pmatrix} 1 & 0 \\ 0 & \lambda_2(h)^i \end{pmatrix}$$

with $i \in \mathbb{Z}$, $\lambda_2(h)^i \neq 1$.

By Proposition 4 (i), the quotient $A/\langle h_1 \rangle$ by the cyclic group $\langle h_1 \rangle$, generated by the reflection $h_1 = L(h_1) \in E_1(H)$ is of Kodaira dimension $\kappa(A/\langle h_1 \rangle) = -\infty$. Along the finite (not necessarily Galois) cover $A/\langle h_1 \rangle \to A/H$, one has $\kappa(A/\langle h_1 \rangle) \geq \kappa(A/H)$,
whereas $\kappa(A/H) = -\infty$ and A/H is birational to a ruled surface with an elliptic base. Note that all $h \in H$ with $\text{Fix}_A(h) \neq \emptyset$ are reflections, so that the quotient A/H is a smooth surface by a result of Chevalley [5].

That proves the proposition, as far as the assumption $\text{Fix}_A(H) \neq \emptyset$ for a hyper-elliptic A/H leads to a contradiction, as well as the assumption $\text{Fix}_A(H) = \emptyset$ for a ruled A/H with an elliptic base.

\[\square \]

Proposition 6. Let $H = \mathcal{T}(H)\langle h \rangle$ for some

\[h \in E_0(H) = \{ h \in H \mid \lambda_j \mathcal{L}(h) \neq 1, \ 1 \leq j \leq 2 \} \]

with $\det \mathcal{L}(h) \neq 1$. Then A/H is a rational surface.

Proof. We claim that A/H with $A = E \times \tilde{E}$ is simply connected. To this end, let us denote by R the endomorphism ring of E and lift H to a subgroup \tilde{H} of the affine-linear group $\text{Aff}(\mathbb{C}^2, R) = (\mathbb{C}^2, +) \ltimes \text{GL}(2, R)$, containing $(\pi_1(A), +)$ as a normal subgroup with quotient $\tilde{H}/\pi_1(A) = H$. Then

\[A/H = [\mathbb{C}^2/\pi_1(A)] / [\tilde{H}/\pi_1(A)] \simeq \mathbb{C}^2/\tilde{H}. \]

The universal cover $\tilde{A} = \mathbb{C}^2$ of A is a path connected, simply connected locally compact metric space and \tilde{H} is a discontinuous group of homeomorphisms of \mathbb{C}^2. That allows to apply Armstrong’s result [1] and conclude that

\[\pi_1(A/H) = \pi_1 \left(\mathbb{C}^2/\tilde{H} \right) \simeq \hat{H}/\hat{N}, \]

where \hat{N} is the normal subgroup of \hat{H} generated by $\hat{h} \in \hat{H}$ with $\text{Fix}_{\mathbb{C}^2}(\hat{h}) \neq \emptyset$. There remains to be shown the coincidence $\hat{H} = \hat{N}$. In the case under consideration, let us choose generators $\tau_{(p_i, q_i)}$ of $\mathcal{T}(H)$, $1 \leq i \leq m$ and fix liftings $(p_i, q_i) \in \mathbb{C}^2 = \tilde{A}$ of $(p_i + \pi_1(E), q_i + \pi_1(E)) = (P_i, Q_i)$. If $\pi_1(E) = \lambda_1 \mathbb{Z} + \lambda_2 \mathbb{Z}$ for some $\lambda_1, \lambda_2 \in \mathbb{C}^*$ with $\lambda_2 \notin \mathbb{C} \setminus \mathbb{R}$, then $\pi_1(A) = \pi_1(E) \times \pi_1(E)$ is generated by

\[\Lambda_{11} = (\lambda_1, 0), \quad \Lambda_{12} = (\lambda_2, 0), \quad \Lambda_{21} = (0, \lambda_1) \quad \text{and} \quad \Lambda_{22} = (0, \lambda_2). \]

Let $\tilde{h} = \tau_{(u, v)} \mathcal{L}(h) \in \tilde{H}$ be a lifting of $h = \tau_{(U, V)} \mathcal{L}(h) \in H$, i.e., $(u + \pi_1(E), v + \pi_1(E)) = (U, V)$. Then \tilde{H} is generated by its subset

\[S = \left\{ \Lambda_{ij}, \quad \tau_{(p_k, q_k)} \tilde{h}, \quad 1 \leq i, j \leq 2, \ 1 \leq k \leq m \right\}. \]

Since $\mathcal{L}(h)$ has eigenvalues $\lambda_1 \mathcal{L}(h) \neq 1, \lambda_2 \mathcal{L}(h) \neq 1$, for any $(a, b) \in \mathbb{C}^2$ the automorphism $\tau_{(a,b)} \mathcal{L}(h) \in \text{Aut}(\mathbb{C}^2)$ has a fixed point on \mathbb{C}^2. One can replace the generators Λ_{ij} and $\tau_{(p_k, q_k)}$ of \tilde{H} by $\Lambda_{ij}\tilde{h}$, respectively, $\tau_{(p_k, q_k)}\tilde{h}$, since

\[\langle S \rangle \supseteq \left\{ \Lambda_{ij}\tilde{h}, \quad \tau_{(p_k, q_k)}\tilde{h}, \quad \tilde{h}, \quad 1 \leq i, j \leq 2, \ 1 \leq k \leq m \right\}. \]
and $A_{ij}, \tau_{(p_k,q_k)} \in \langle \{ A_{ij}, \tau_{(p_k,q_k)}, \tilde{h} \mid 1 \leq i, j \leq 2, 1 \leq k \leq m \} \rangle$. Thus
\[
\tilde{H} = \langle A_{ij}, \tau_{(p_k,q_k)}, \tilde{h} \mid 1 \leq i, j \leq 2, 1 \leq k \leq m \rangle
\]
coincides with \tilde{N}, because \tilde{H} is generated by elements with fixed points. As a result, \(\pi_1(A/H) = \{1\} \).

Note that the simply connected surfaces A/H are either rational or K3. According to $\det L(h) \neq 1$, the quotient A/H is not birational to a K3 surface, so that A/H is a rational surface with isolated cyclic quotient singularities.

\[\square \]

Proposition 7. Let $H < Aut(A)$ be a finite subgroup of the form $H = K\langle h \rangle$ with $L(K) < SL(2, R)$ and $\det L(H) = \langle \det(h) \rangle \neq \{1\}$.

(i) The complement $H \setminus K$ has fixed points on A, $Fix_A(H \setminus K) \neq \emptyset$ if and only if A/H is a rational surface;

(ii) The complement $H \setminus K$ has no fixed points on A, $Fix_A(H \setminus K) = \emptyset$ if and only if A/H is birational to an Enriques surface Y. If so, then the K3 universal cover \tilde{Y} of Y is birational to A/K and the index $[H : K] = 2$.

Proof. First of all, the H/K-Galois cover $\zeta : A/K \to A/H$ is ramified if and only if the complement $H \setminus K$ has a fixed point on A. More precisely, a point $\text{Orb}_K(p) \in A/K$, $p \in A$ is fixed by $hK \in H/K \setminus \{K\}$ exactly when $h\text{Orb}_K(p) = \text{Orb}_K(p)$ or
\[
\{hk(p) \mid k \in K\} = \{h(p) \mid k \in K\}. \tag{2}
\]
The condition (2) implies the existence of $k_0 \in K$ with $h(p) = k_0(p)$. Therefore $h_1 = k_0^{-1} h \in \text{Stab}_H(p) \setminus K$ has a fixed point and
\[
h_1 K = (k_0^{-1} h) K = k_0^{-1} (hK) = k_0^{-1} K h = Kh = hK,
\]
as far as K is a normal subgroup of H. Conversely, if $h_1(p) = p$ for some $h_1 \in H \setminus K$ then $K_p = Kh_1(p) = h_1 K(p)$ and the point $\text{Orb}_K(p) \in A/K$ is fixed by $h_1 K \in H/K$.

Note that the presence of a covering $\zeta : A/K \to A/H$ by a (singular) K3 model A/K implies the vanishing $q(X) = h^{1,0}(X)$ of the irregularity of any smooth model X of A/H, as far as $q(X) \leq q(Y) = 0$ for any smooth H/K-Galois cover Y of X, birational to A/K. The smooth projective surfaces S with irregularity $q(S) = 0$ and Kodaira dimension $\kappa(S) \leq 0$ are the rational, K3 and Enriques S. Due to $L(h) \neq 1$, the smooth model X of A/H is not a K3 surface. Thus, X is either an Enriques or a rational surface.

If $\text{Fix}_A(H \setminus K) = \emptyset$ and $\zeta : A/K \to A/H$ in unramified, then $\kappa(X) = \kappa(Y) = 0$ by [10] and X is an Enriques surface.

Let us assume that $\text{Fix}_A(H \setminus K) \neq \emptyset$ and the minimal resolution Y of the singularities of A/H is an Enriques surface. Consider the minimal resolution $\rho_1 : Y \to A/K$
of the singularities of A/K and the resolution $\nu_2 : X_2 \to A/H$ of $\zeta(A/H)^{\text{sing}}$. Then there is a commutative diagram

$$
\begin{array}{ccc}
A/K & \xrightarrow{\rho_1} & Y \\
\downarrow{\zeta} & & \downarrow{\zeta_1} \\
A/H & \xleftarrow{\nu_2} & X_2
\end{array}
$$

(3)

with H/K-Galois cover ζ_1, ramified over the pull-back $\nu_2^{-1}B(\zeta)$ of the branch locus $B(\zeta) \subseteq A/H$ of ζ. The minimal resolution $\mu_2 : X \to X_2$ of the singularities $X_2^{\text{sing}} = (A/H)^{\text{sing}} \setminus \zeta(A/K)^{\text{sing}}$ of X_2 and $\zeta_1 : Y \to X_2$ give rise to the fibered product commutative diagram

$$
\begin{array}{ccc}
Y & \xrightarrow{\text{pr}_1} & Z = Y \times_{X_2} X \\
\downarrow{\zeta_1} & & \downarrow{\zeta_2} \\
X_2 & \xleftarrow{\mu_2} & X
\end{array}
$$

(4)

with ramified H/K-Galois cover ζ_2 and birational pr_1. Note that Z is a smooth surface, since otherwise $\emptyset \neq \text{pr}_1(Z^{\text{sing}}) \subseteq X^{\text{sing}} = \emptyset$. Moreover, Z is of type K3. Let us consider the universal double covering $U_X : \tilde{X} \to X$ of X by a K3 surface \tilde{X}. Since Z is simply connected and $U_X : \tilde{X} \to X$ is unramified, the finite cover $\zeta_2 : Z \to X$ lifts to a morphism $\tilde{\zeta} : Z \tilde{X}$, closing the commutative diagram

$$
\begin{array}{ccc}
\tilde{X} & \xrightarrow{U_X} & X \\
\downarrow{\tilde{\zeta}} & & \downarrow{\zeta_2} \\
Z & & X
\end{array}
$$

(5)

The finite ramified morphism $\zeta_2 = U_X \tilde{\zeta}$ has finite ramified factor $\tilde{\zeta}$, as far as the universal covering $U_X : \tilde{X} \to X$ is unramified. If $B(\tilde{\zeta}) \subseteq Z$ is the branch locus of $\tilde{\zeta}$ then the canonical divisor

$$
O_Z = K_Z = \tilde{\zeta}^*K_{\tilde{X}} + B(\tilde{\zeta}) = \tilde{\zeta}^*O_{\tilde{X}} + B(\tilde{\zeta}),
$$

which is an absurd. Therefore, $\text{Fix}_A(H \setminus K) \neq \emptyset$ implies that A/H is a rational surface.

If $\zeta : A/K \to A/H$ is unramified and A/H is an Enriques surface then $\zeta_1 : Y \to X_2$ from diagram (3) and $\zeta_2 : Z \to X$ from (4) are unramified. As a result, $\tilde{\zeta} : Z \to \tilde{X}$ from diagram (5) is a finite ramified cover of smooth simply connected surfaces,
whereas \(\deg(\tilde{\zeta}) = 1 \) and \(Z \) coincides with the universal cover \(\tilde{X} \) of \(X \). Thus, \(\tilde{X} \) is birational to \(A/K \) and

\[
\deg(\zeta) = \deg(\zeta_1) = \deg(\zeta_2) = \deg(U_X) = 2,
\]

so that \([H : K] = |H/K| = \deg(\zeta) = 2\). \(\square \)

By the very construction, the surfaces \(A/H \) and \(\overline{B/\Gamma_H} = (\overline{B/\Gamma})' / H \) are simultaneously singular. The classical work [5] of Chevalley establishes that \(A/H \) is singular if and only if there is \(h \in H \), whose linear part \(L(h) \in GL(2, R) \) has eigenvalues \(\{\lambda_1 L(h), \lambda_2 L(h)\} \not\in 1 \). Thus, \(A/H \) and \(\overline{B/\Gamma_H} \) are smooth exactly when birational to a hyper-elliptic or a ruled surface with an elliptic base.

Let \(T_i \) be an irreducible component of \(T = (\overline{B/\Gamma})' \setminus (\overline{B/\Gamma}) \) of \(\overline{B/\Gamma} \). Then the irreducible component \(Orb_H(T_i)/H \) of \(T/H = \left(\overline{B/\Gamma_H} \right) \setminus (\overline{B/\Gamma_H}) \) is elliptic (respectively, rational) if and only if \(Fix_A(H) \cap D_i = \emptyset \) (respectively, \(Fix_A(H) \cap D_i \neq \emptyset \)) for the image \(D_i = \xi(T_i) \) of \(T_i \) under the blow-down \(\xi : (\overline{B/\Gamma})' \to A \) of the \((-1)\)-curves.
2 Linear automorphisms of finite order

Throughout this section, let R be the endomorphism ring of an elliptic curve E. It is well known that $R = \mathbb{Z} + f\mathcal{O}_{-d}$ for a natural number $f \in \mathbb{N}$, called the conductor of E and integers ring \mathcal{O}_{-d} of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$. More precisely, $\mathcal{O}_{-d} = \mathbb{Z} + \omega_{-d}\mathbb{Z}$ with

$$\omega_{-d} = \begin{cases} \sqrt{-d} & \text{for } -d \not\equiv 1 \pmod{4}, \\ \frac{1 + \sqrt{-d}}{2} & \text{for } -d \equiv 1 \pmod{4}. \end{cases}$$

and $R = \mathbb{Z} + f\omega_{-d}\mathbb{Z}$ for $R \not\equiv \mathbb{Z}$. In particular, R is a subring of $\mathbb{Q}(\sqrt{-d})$. We write $R \subset \mathbb{Q}(\sqrt{-d})$ both, for the case of $R = \mathbb{Z} + f\omega_{-d}\mathbb{Z}$ or $R = \mathbb{Z}$, without specifying the presence of a complex multiplication on E. (For $R = \mathbb{Z}$ one hat $R \subset \mathbb{Q}(\sqrt{-d})$ for $\forall d \in \mathbb{N}$.)

The automorphism group of the abelian surface $A = E \times E$ is a semi-direct product

$$\text{Aut}(A) = (A, +) \rtimes \text{GL}(2, R)$$

of its translation subgroup $(A, +)$ and the isotropy group

$$\text{Aut}_{\partial A}(A) = \text{GL}(2, R) = \{ g \in R_{2x2} \mid \det(g) \in R^* \}$$

of the origin $\partial A \in A$.

Lemma 8. Let R be the endomorphism ring of an elliptic curve E. If R is different from $\mathcal{O}_{-1} = \mathbb{Z}[i]$ and \mathcal{O}_{-3} then

$$R^* = \langle -1 \rangle = \{ \pm 1 \} = \mathbb{C}_2$$

is the cyclic group of the square roots of the unity.

If $R = \mathbb{Z}[i]$ is the ring of the Gaussian integers then

$$R^* = \langle i \rangle = \{ \pm 1, \pm i \} = \mathbb{C}_4$$

is the cyclic group of the roots of unity of order 4.

The units group of Eisenstein integers $R = \mathcal{O}_{-3}$ is the cyclic group

$$R^* = \langle e^{\frac{2\pi i}{3}} \rangle = \{ \pm 1, \ e^{\frac{2\pi i}{3}}, \ e^{\frac{4\pi i}{3}} \} = \mathbb{C}_6$$

of the sixth roots of unity.

Proof. Recall that the units group \mathcal{O}^*_{-d} of the integers ring \mathcal{O}_{-d} of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$ is

$$\mathcal{O}^*_{-d} = \langle -1 \rangle \simeq \mathbb{C}_2 \quad \text{for } d \not\equiv 1, 3 \quad \text{and}$$

12
\[O_{-1}^* = \mathbb{Z}[i]^* = \langle i \rangle = \mathbb{C}_4,\]
\[O_{-3}^* = \langle e^{\frac{2\pi i}{6}} \rangle = \mathbb{C}_6.\]

The units group \(R^*\) of the subring \(R = \mathbb{Z} + fO_{-d}\) of \(O_{-d}\) is a subgroup of \(O_{-d}^*\), so that \(R^* = \langle -1 \rangle \simeq \mathbb{C}_2\) for \(R = \mathbb{Z}\) or \(R = \mathbb{Z} + fO_{-d}\) with \(d \in \mathbb{N} \setminus \{1, 3\}, f \in \mathbb{N}\). In the case of \(R = \mathbb{Z} + fO_{-1}\), the assumption \(i \in R^*\) implies \(R = O_{-1}\) and happens only for the conductor \(f = 1\). Similarly, the existence of \(e^{\frac{2\pi i}{3}} \in R^* \setminus \{\pm 1\}\) for \(R = \mathbb{Z} + fO_{-3}\) forces
\[e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}i}{2} = -1 + \frac{1 + \sqrt{-3}}{2} = -1 + \omega_{-3} \in R^*,\]
whereas \(\omega_{-3} \in R\) and \(R = O_{-3}\).

Towards the description of \(g \in GL(2, R)\) of finite order, let us recall that the polynomials
\[f(x) = x^n + a_1x^{n-1} + \ldots + a_{n-1}x + a_n \in \mathbb{Z}[x]\]
with leading coefficient 1 are called monic.

Definition 9. If \(A\) is a subring with unity of a ring \(B\) then \(b \in B\) is integral over \(A\) if \(b\) annihilates a monic polynomial
\[f(x) = x^n + a_1x^{n-1} + \ldots + a_{n-1}x + a_n \in A[x]\]
with coefficients from \(A\).

It is well known (cf. [2]) that \(b \in B\) is integral over \(A\) if and only if the polynomial ring \(A[b]\) is a finitely generated \(A\)-module.

Definition 10. The complex numbers \(c \in \mathbb{C}\), which are integral over \(\mathbb{Z}\) are called algebraic integers.

Any algebraic integer \(c\) is algebraic over \(\mathbb{Q}\). If \(g(x) \in \mathbb{Q}[x] \setminus \mathbb{Q}\) is a polynomial of minimal degree \(k\) with a root \(c\) then \(g(x)\) divides any \(h(x) \in \mathbb{Q}[x] \setminus \mathbb{Q}\) with \(h(c) = 0\). An arbitrary \(g'(x) \in \mathbb{Q}[x]\) of degree \(k\) with a root \(c\) is of the form \(g'(x) = qg(x)\) for some \(\mathbb{Q}^*\). The polynomials \(qg(x)\) with arbitrary \(q \in \mathbb{Q}^*\) are referred to as minimal polynomials of \(c\) over \(\mathbb{Q}\). If \(c\) is algebraic over \(\mathbb{Q}\) then the ring of the polynomials \(\mathbb{Q}[c]\) of \(c\) with rational coefficients coincides with the field \(\mathbb{Q}(c)\) of the rational functions of \(c\), \(\mathbb{Q}[c] = \mathbb{Q}(c)\) and the degree \([\mathbb{Q}(c) : \mathbb{Q}]\) equals the degree of a minimal polynomial of \(c\) over \(\mathbb{Q}\).

Definition 11. If \(c \in \mathbb{C}\) is algebraic over \(\mathbb{Q}\), then \([\mathbb{Q}(c) : \mathbb{Q}] = \dim_{\mathbb{Q}} \mathbb{Q}(c)\) is called the degree of \(c\) over \(\mathbb{Q}\).
Let \(c \) be an algebraic integer and \(f(x) \in \mathbb{Z}[x] \setminus \mathbb{Z} \) be a monic polynomial of minimal degree with a root \(c \). Then any \(h(x) \in \mathbb{Z}[x] \) with \(h(c) = 0 \) is divisible by \(f(x) \). Thus, \(f(x) \) is unique and referred to as the minimal integral relation of \(c \). If \(f(x) \in \mathbb{Z}[x] \setminus \mathbb{Z} \) is the minimal integral relation of \(c \in \mathbb{C} \) and \(g(x) \in \mathbb{Q}[x] \setminus \mathbb{Q} \) is a minimal polynomial of \(c \) over \(\mathbb{Q} \), then \(g(x) = a f(x) \) for the leading coefficient \(a = \text{LC}(g) \in \mathbb{Q}^* \) of \(g(x) \). More precisely, \(g(x) \) divides \(f(x) \) and \(f(x) \) is indecomposable over \(\mathbb{Q} \), as far as it is indecomposable over \(\mathbb{Z} \). In such a way, one obtains the following

Lemma 12. If \(c \in \mathbb{C} \) is an algebraic integer, then the degree \(\deg_{\mathbb{Q}}(c) = [\mathbb{Q}(c) : \mathbb{Q}] \) of \(c \) over \(\mathbb{Q} \) equals the degree of the minimal integral relation

\[
f(x) = x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \in \mathbb{Z}[x] \quad \text{of} \quad c.
\]

Lemma 13. Let \(E \) be an elliptic curve, \(R = \text{End}(E) \) and \(g \in \text{GL}(2, R) \). Then any eigenvalue \(\lambda_1 \) of \(g \) is an algebraic integer of degree 1, 2 or 4 over \(\mathbb{Q} \).

Proof. It suffices to observe that if \(A \subset B \) are subrings with unity of a ring \(C \), \(A \) is a Noetherian ring, \(B \) is a finitely generated \(A \)-module and \(c \in C \) is integral over \(B \), then \(c \) is integral over \(A \). Indeed, let \(f \in \mathbb{N} \) be the conductor of \(E \) and

\[
\omega_{-d} = \begin{cases} \sqrt{-d} & \text{for } -d \not\equiv 1(\text{mod}4), \\ \frac{1+\sqrt{-d}}{2} & \text{for } -d \equiv 1(\text{mod}4). \end{cases}
\]

Then the integers ring \(\mathbb{Z} \) is Noetherian and the endomorphism ring

\[
R = \mathbb{Z} + f\mathcal{O}_{-d} = \mathbb{Z} + f\omega_{-d}\mathbb{Z}
\]

of \(E \) is a free \(\mathbb{Z} \)-module of rank 2. The eigenvalue \(\lambda_1 \in \mathbb{C} \) of \(g \in \text{GL}(2, R) \) is a root of the characteristic polynomial

\[
\mathcal{X}_g(\lambda) = \lambda^2 - \text{tr}(g)\lambda + \text{det}(g) \in R[\lambda]
\]

of \(g \), so that \(\lambda_1 \) is integral over \(R \). According to the claim, \(\lambda_1 \) is integral over \(\mathbb{Z} \) or \(\lambda_1 \in \mathbb{C} \) is an algebraic integer. On one hand, the degree of \(\lambda_1 \) over \(\mathbb{Q}(\sqrt{-d}) \) is

\[
\deg_{\mathbb{Q}(\sqrt{-d})}(\lambda_1) = [\mathbb{Q}(\sqrt{-d}, \lambda_1) : \mathbb{Q}(\sqrt{-d})] = 1 \quad \text{or} \quad 2,
\]

so that

\[
[\mathbb{Q}(\sqrt{-d}, \lambda_1) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{-d}, \lambda_1) : \mathbb{Q}(\sqrt{-d})][\mathbb{Q}(\sqrt{-d}) : \mathbb{Q}] = 2 \quad \text{or} \quad 4.
\]

On the other hand, the inclusions

\[
\mathbb{Q} \subseteq \mathbb{Q}(\lambda_1) \subseteq \mathbb{Q}(\sqrt{-d}, \lambda_1)
\]

14
of subfields imply that

\[[\mathbb{Q}(\lambda_1) : \mathbb{Q}] = \frac{[\mathbb{Q}(\sqrt{-d}, \lambda_1) : \mathbb{Q}]}{[\mathbb{Q}(\sqrt{-d}, \lambda_1) : \mathbb{Q}(\lambda_1)]}. \]

Therefore, the degree \(\deg_{\mathbb{Q}}(\lambda_1) = [\mathbb{Q}(\lambda_1) : \mathbb{Q}] \) of \(\lambda_1 \) over \(\mathbb{Q} \) is a divisor of the degree \([\mathbb{Q}(\sqrt{-d}, \lambda_1) : \mathbb{Q}] \) or \(\deg_{\mathbb{Q}}(\lambda_1) \in \{1, 2, 4\} \).

In order to justify the claim, recall that \(c \in \mathbb{C} \) is integral over \(\mathbb{B} \) if and only if the polynomial ring \(\mathbb{B}[c] = \mathbb{B} + \mathbb{B}c + \ldots + \mathbb{B}c^{n-1} \) is a finitely generated \(\mathbb{B} \)-module. If \(\mathbb{B} = \mathbb{A}\beta_1 + \ldots + \mathbb{A}\beta_s \) is a finitely generated \(\mathbb{A} \)-module, then

\[B[c] = \sum_{i=1}^{s} \sum_{j=0}^{n-1} \mathbb{A}\beta_ic^j \]

is a finitely generated \(\mathbb{A} \)-module. Since \(\mathbb{A} \) is a Noetherian ring, the \(\mathbb{A} \)-submodule \(\mathbb{A}[c] \) of \(B[c] \) is a finitely generated \(\mathbb{A} \)-module.

\[\blacksquare \]

Note that if \(h = \tau_{(U,V)} \mathcal{L}(h) \in H \leq \text{Aut}(\mathbb{A}) \) is an automorphism of \(\mathbb{A} = E \times E \) of finite order \(r \) then

\[h^r = \tau_{r-1} \sum_{s=0}^{r-1} \mathcal{L}(h)^s (\frac{U}{V}) \mathcal{L}(h)^r = I_d \]

implies that \(\sum_{s=0}^{r-1} \mathcal{L}(h)^s (\frac{U}{V}) = \delta_A \) and \(\mathcal{L}(h)^r = I_2 \). In other words, the automorphisms \(h \in \text{Aut}(\mathbb{A}) \) of finite order have linear parts \(\mathcal{L}(h) \in \text{GL}(2, R) \) of finite order.

From now on, we concentrate on \(g \in \text{GL}(2, R) \) of finite order.

Proposition 14. If \(R \) is the endomorphism ring of an elliptic curve \(E \) and \(g \in \text{GL}(2, R) \) is of finite order \(r \), then \(g \) is diagonalizable and the eigenvalues \(\lambda_j \) of \(g \) are primitive roots of unity of degree \(r_j = 1, 2, 3, 4, 6, 8 \) or 12.

Proof. Let us assume that \(g \in \text{GL}(2, R) \) of finite order \(r \) is not diagonalizable. Then there exists \(S \in \text{GL}(2, \mathbb{C}) \), reducing \(g \) to its Jordan normal form

\[J = S^{-1}gS = \begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{pmatrix}. \]

By an induction on \(n \), one verifies that

\[J^n = \begin{pmatrix} \lambda_1^n & (n-1)\lambda_1^{n-1} \\ 0 & \lambda_1^n \end{pmatrix} \quad \text{for} \quad \forall n \in \mathbb{N}. \]

In particular,

\[I_2 = S^{-1}I_2S = S^{-1}g^rS = (S^{-1}gS)^r = J^r = \begin{pmatrix} \lambda_1^r & (r-1)\lambda_1^{r-1} \\ 0 & \lambda_1^r \end{pmatrix} \]

\[J = S^{-1}gS = \begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{pmatrix}. \]

By an induction on \(n \), one verifies that

\[J^n = \begin{pmatrix} \lambda_1^n & (n-1)\lambda_1^{n-1} \\ 0 & \lambda_1^n \end{pmatrix} \quad \text{for} \quad \forall n \in \mathbb{N}. \]

In particular,

\[I_2 = S^{-1}I_2S = S^{-1}g^rS = (S^{-1}gS)^r = J^r = \begin{pmatrix} \lambda_1^r & (r-1)\lambda_1^{r-1} \\ 0 & \lambda_1^r \end{pmatrix} \]

\[J = S^{-1}gS = \begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{pmatrix}. \]

By an induction on \(n \), one verifies that

\[J^n = \begin{pmatrix} \lambda_1^n & (n-1)\lambda_1^{n-1} \\ 0 & \lambda_1^n \end{pmatrix} \quad \text{for} \quad \forall n \in \mathbb{N}. \]

In particular,

\[I_2 = S^{-1}I_2S = S^{-1}g^rS = (S^{-1}gS)^r = J^r = \begin{pmatrix} \lambda_1^r & (r-1)\lambda_1^{r-1} \\ 0 & \lambda_1^r \end{pmatrix} \]

\[J = S^{-1}gS = \begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{pmatrix}. \]
is an absurd, justifying the diagonalizability of \(g \).

If

\[
D = S^{-1}gS = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}
\]

is a diagonal form of \(g \) then

\[
I_2 = S^{-1}I_2S = S^{-1}g^rS = (S^{-1}gS)^r = \begin{pmatrix} \lambda_1^r & 0 \\ 0 & \lambda_2^r \end{pmatrix}
\]

reveals that \(\lambda_1 \) and \(\lambda_2 \) are \(r \)-th roots of unity.

Thus, \(\lambda_j \) are of finite order \(r_j \), dividing \(r \) and the least common multiple \(m = LCM(r_1, r_2) \in \mathbb{N} \) divides \(r \). Conversely,

\[
I_2 = \begin{pmatrix} \lambda_1^m & 0 \\ 0 & \lambda_2^m \end{pmatrix} = (S^{-1}gS)^m = S^{-1}g^mS
\]

implies that \(g^m = SI_2S^{-1} = I_2 \), so that \(r \in \mathbb{N} \) divides \(m \in \mathbb{N} \) and \(r = m \).

Let \(\lambda_j \in \mathbb{C}^* \) be a primitive \(r_j \)-th root of unity. Then the cyclotomic polynomials \(\Phi_{r_j}(x) \in \mathbb{Z}[x] \) are the minimal integral relations of \(\lambda_j \). More precisely, the minimal integral relations \(f_j(x) \in \mathbb{Z}[x] \setminus \mathbb{Z} \) of \(\lambda_j \) are monic polynomials of degree \(\deg_{\mathbb{Q}}(\lambda_j) \).

On the other hand, \(\Phi_{r_j}(x) \in \mathbb{Z}[x] \setminus \mathbb{Z} \) are irreducible over \(\mathbb{Z} \) and \(\mathbb{Q} \). Therefore \(\Psi_{r_j}(x) \) are minimal polynomials of \(\lambda_j \) over \(\mathbb{Q} \) and \(\Psi_{r_j}(x) = qf_j(x) \) for some \(q \in \mathbb{Q}^* \). As far as \(\Phi_{r_j}(x) \) and \(f_j(x) \) are monic, there follows \(q = 1 \) and \(\Phi_{r_j}(x) \equiv f_j(x) \in \mathbb{Z}[x] \).

Recall Euler’s function

\[
\varphi : \mathbb{N} \rightarrow \mathbb{N},
\]

associating to each \(n \in \mathbb{N} \) the number of the residues \(0 \leq r \leq n - 1 \) modulo \(n \), which are relatively prime to \(n \). The degree of \(\Phi_{r_j}(x) \) is \(\varphi(r_j) \). If \(r_j = p_1^{a_1} \cdots p_m^{a_m} \) is the unique factorization of \(r_j \in \mathbb{N} \) into a product of different prime numbers \(p_s \), then

\[
\varphi(p_1^{a_1} \cdots p_m^{a_m}) = \varphi(p_1^{a_1}) \cdots \varphi(p_m^{a_m}) = p_1^{a_1-1}(p_1-1) \cdots p_m^{a_m-1}(p_m-1).
\]

According to Lemma 13, the algebraic integers \(\lambda_j \) are of degree

\[
\deg_{\mathbb{Q}}(\lambda_j) = \deg \Phi_{r_j}(x) = \varphi(r_j) = 1, 2, \text{ or } 4.
\]

If \(r_j \) has a prime divisor \(p \geq 7 \) then \(\varphi(r_j) \) has a factor \(p-1 \geq 6 \), so that \(\varphi(r_j) > 4 \).

Therefore \(r_j = 2^a3^b5^c \) for some non-negative integers \(a, b, c \). If \(c \geq 1 \) then

\[
\varphi(r_j) = \varphi(2^a3^b)\varphi(5^c) = \varphi(2^a3^b)5^{c-1} \cdot 4 \in \{1, 2, 4\}
\]

exactly when \(\varphi(r_j) = 4 \), \(c = 1 \) and \(\varphi(2^a3^b) = 1 \). For \(b \geq 1 \) one has

\[
\varphi(2^a3^b) = \varphi(2^a)3^{b-1} \cdot 2 > 1,
\]
so that \(\varphi(2^a3^b) = 1 \) requires \(b = 0 \) and \(\varphi(2^a) = 1 \). As a result, \(a = 0 \) or 1 and \(r_j = 5 \) or 10, if 5 divides \(r_j \). From now on, let us assume that \(r_j = 2^a3^b \) with \(a, b \in \mathbb{N} \cup \{0\} \).

If \(b \geq 2 \) then \(\varphi(r_j) = \varphi(2^a).3^{b-1}.2 \) with \(b - 1 \geq 1 \) is divisible by 3 and cannot equal 1, 2 or 4. Therefore \(r_j = 2^a.3 \) or \(r_j = 2^a \) with \(a \geq 0 \). Straightforwardly,

\[
\varphi(2^a.3) = 2\varphi(2^a) \in \{1, 2, 4\}
\]

exactly when \(\varphi(2^a) = 1 \) or \(\varphi(2^a) = 2 \). These amount to \(a \in \{0, 1, 2\} \) and reveal that 3, 6, 12 are possible values for \(r_j \). Finally, \(\varphi(r_j) = \varphi(2^a) \in \{1, 2, 4\} \) for \(r_j = 1, 2, 4 \) or 8. Thus, \(\varphi(r_j) \in \{1, 2, 4\} \) if and only if

\[
r_j \in \{1, 2, 3, 4, 5, 6, 8, 10, 12\}.
\]

In order to exclude \(r_j = 5 \) and \(r_j = 10 \) with \(\varphi(5) = \varphi(10) = 4 \), recall that \(\lambda_j \) is of degree \(\deg_{\mathbb{Q}(\sqrt{-d})}(\lambda_j) = \lceil \mathbb{Q}(\sqrt{-d}, \lambda_j) : \mathbb{Q}(\sqrt{-d}) \rceil \leq 2 \) over \(\mathbb{Q}(\sqrt{-d}) \), so that

\[
[\mathbb{Q}(\sqrt{-d}, \lambda_j) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{-d}, \lambda_j) : \mathbb{Q}(\lambda_j)] [\mathbb{Q}(\lambda_j) : \mathbb{Q}] = 4 [\mathbb{Q}(\sqrt{-d}, \lambda_j) : \mathbb{Q}(\lambda_j)] \geq 4,
\]

whereas \([\mathbb{Q}(\sqrt{-d}, \lambda_j) : \mathbb{Q}] = [\mathbb{Q}(\lambda_j) : \mathbb{Q}] = 4 \) and \([\mathbb{Q}(\sqrt{-d}, \lambda_j) : \mathbb{Q}(\lambda_j)] = 1 \). Therefore \(\mathbb{Q}(\sqrt{-d}, \lambda_j) = \mathbb{Q}(\lambda_j) \), so that \(\sqrt{-d} \in \mathbb{Q}(\lambda_j) \) and \(\mathbb{Q}(\sqrt{-d}) \subset \mathbb{Q}(\lambda_j) \) with

\[
[\mathbb{Q}(\lambda_j) : \mathbb{Q}(\sqrt{-d})] = \frac{[\mathbb{Q}(\lambda_j) : \mathbb{Q}]}{[\mathbb{Q}(\sqrt{-d}) : \mathbb{Q}]} = \frac{4}{2} = 2.
\]

As far as \(\mathbb{Q}(\sqrt{-d}) \) and \(\mathbb{Q}(\lambda_j) \) are finite Galois extensions of \(\mathbb{Q} \) (i.e., normal and separable), the subfield \(\mathbb{Q}(\sqrt{-d}) \) of \(\mathbb{Q}(\lambda_j) \) of index \([\mathbb{Q}(\lambda_j) : \mathbb{Q}(\sqrt{-d})] = 2 \) is the fixed point set of a subgroup \(H \) of the Galois group \(\text{Gal}(\mathbb{Q}(\lambda_j)/\mathbb{Q}) \) with \(|H| = 2 \). The minimal polynomial of \(\lambda_j \) over \(\mathbb{Q} \) is the cyclotomic polynomial \(\Phi_{r_j}(x) \in \mathbb{Z}[x] \) of degree \(\deg(\Phi_{r_j}) = \varphi(r_j) = 4 \) for \(r_j \in \{5, 10\} \) and the Galois group

\[
\text{Gal}(\mathbb{Q}(\lambda_j)/\mathbb{Q}) \simeq \mathbb{Z}_{r_j}^*
\]

coincides with the multiplicative group \(\mathbb{Z}_{r_j}^* \) of the congruence ring \(\mathbb{Z}_{r_j} \) modulo \(r_j \). More precisely, the roots of \(\Phi_{r_j}(x) \) are \(\{\lambda_j^s \mid s \in \mathbb{Z}_{r_j}^*\} \) and for any \(s \in \mathbb{Z}_{r_j}^* \) the correspondence \(\lambda_j \mapsto \lambda_j^s \) extends to an automorphism of \(\mathbb{Q}(\lambda_j) \), fixing \(\mathbb{Q} \). The groups

\[
\mathbb{Z}_5^* = \{\pm 1(\text{mod}5), \pm 3(\text{mod}5)\} = \langle 3(\text{mod}5) \rangle = \langle -3(\text{mod}5) \rangle \simeq \mathbb{C}_4
\]

17
and
\[\mathbb{Z}_{10}^* = \{ \pm 1 (\text{mod} 10), \pm 3 (\text{mod} 10) \} = \langle 3 (\text{mod} 10) \rangle = \langle -3 (\text{mod} 10) \rangle \simeq \mathbb{C}_4 \]
are cyclic and contain unique subgroups \(H_5 = \langle -1 (\text{mod} 5) \rangle \), respectively, \(H_{10} = \langle -1 (\text{mod} 10) \rangle \) or order 2. Denote by \(h \) the generator of \(H_5 \) or \(H_{10} \) with \(h(\lambda_j) = \lambda_j^{-1} \), \(h | Q = Id_Q \). In both cases, the degree
\[\deg_{\mathbb{Q}(\sqrt{-d})}(\lambda_j) = [\mathbb{Q}(\lambda_j, \sqrt{-d}) : \mathbb{Q}(\sqrt{-d})] = [\mathbb{Q}(\lambda_j) : \mathbb{Q}(\sqrt{-d})] = 2, \]
so that the characteristic polynomial
\[\chi_g(\lambda) = \lambda^2 - \text{tr}(g) \lambda + \det(g) \in R[\lambda] \subset \mathbb{Q}(\sqrt{-d})[\lambda] \]
of \(g \) is irreducible over \(\mathbb{Q}(\sqrt{-d}) \). In fact, \(\chi_g(\lambda) \) is a minimal polynomial of \(\lambda_j \) over \(\mathbb{Q}(\sqrt{-d}) \) and divides the cyclotomic polynomial \(\Phi_{r_j}(\lambda) \in \mathbb{Z}[\lambda] \subset \mathbb{Q}(\sqrt{-d})[\lambda] \) with \(\Phi_{r_j}(\lambda_j) = 0 \). In particular, the other eigenvalue \(\lambda_{3 - j} \) of \(g \) is a root of \(\Phi_{r_j}(\lambda) \) or a primitive \(r_j \)-th root of unity. That allows to express \(\lambda_{3 - j} = \lambda_j^t \) by some \(t \in \mathbb{Z}_{r_j}^* \).

According to
\[\lambda_j^{t+1} = \lambda_j \lambda_j^t = \lambda_j \lambda_{3 - j} = \det(g) \in R^* \subset \mathbb{Q}(\sqrt{-d}) = \mathbb{Q}(\lambda_j)^{(h)}, \]
one has
\[\lambda_j^{t+1} = h(\lambda_j^{t+1}) = \lambda_j^{t-1} \quad \text{or} \quad \lambda_j^{2(t+1)} = 1. \]
If \(\lambda_j \) is a primitive fifth root of unity then \(\lambda_j^{2(t+1)} = 1 \) requires that \(2(t + 1) \) to be divisible by 5. Since \(GCD(2, 5) = 1 \), 5 is to divide \(t + 1 \) or \(t \equiv -1 (\text{mod} 5) \). Similarly, if \(\lambda_j \) is a primitive tenth root of unity then 10 divides \(2(t + 1) \), i.e., \(2(t + 1) = 10z \) for some \(z \in \mathbb{Z} \). As a result, 5 divides \(t + 1 \) and \(t \equiv -1 (\text{mod} 10) \). Thus, for any \(r_1 \in \{ 5, 10 \} \) there follows \(\lambda_{3 - j} = \lambda_j^t = \lambda_j^{-1} \).

Expressing \(\lambda_j = e^{2\pi i s / r_j} \) for some natural number \(1 \leq s \leq r_j - 1 \), relatively prime to \(r_j \), one observes that
\[\text{tr}(g) = \lambda_j + \lambda_{3 - j} = \lambda_j + \lambda_j^{-1} = e^{2\pi i s / r_j} + e^{-2\pi i s / r_j} = 2 \cos \left(\frac{2\pi s}{r_j} \right) \in R \cap \mathbb{R}. \]

We claim that \(R \cap \mathbb{R} = \mathbb{Z} \). The inclusion \(\mathbb{Z} \subseteq R \cap \mathbb{R} \) is clear. Conversely, let
\[r \in \mathbb{R} \cap R = \mathbb{R} \cap (\mathbb{Z} + f \omega_{-d} \mathbb{Z}) \]
for the conductor \(f \in \mathbb{N} \) of \(E \) and \(\omega_{-d} \) from (6). In the case of \(-d \not\equiv 1 (\text{mod} 4) \) there exist \(a, b \in \mathbb{Z} \) with \(r = a + f \sqrt{-db} \). The complex number \(a - r + f \sqrt{-db} = 0 \) vanishes exactly when its real part \(a - r \) and its imaginary part \(f \sqrt{db} = 0 \) are zero. Therefore \(b = 0 \) and \(r = a \in \mathbb{Z} \), i.e., \(\mathbb{R} \cap R \subseteq \mathbb{Z} \) for \(-d \not\equiv 1 (\text{mod} 4) \).

If \(-d \equiv 1 (\text{mod} 4) \) then
\[r = a + fb \left(\frac{1 + \sqrt{-d}}{2} \right) \quad \text{for some} \quad a, b \in \mathbb{Z} \]
yields
\[r = a + \frac{\sqrt{3}}{2}b \]
\[\frac{\sqrt{3}}{2}b = 0 \]
by comparison of the real and imaginary parts. As a result, again \(b = 0 \) and \(r = a \in \mathbb{Z} \), i.e., \(\mathbb{R} \cap R \subseteq \mathbb{Z} \) for \(-d \equiv 1 \text{ (mod } 4\)). That justifies \(\mathbb{R} \cap R = \mathbb{Z} \) and implies that \(\text{tr}(g) = 2 \cos \left(\frac{2 \pi s}{r_j} \right) \in \mathbb{Z} \). Bearing in mind the \(\cos \left(\frac{2 \pi s}{r_j} \right) \in [-1, 1] \), one concludes
\[\text{tr}(g) = 2 \cos \left(\frac{2 \pi s}{r_j} \right) \in [-2, 2] \cap \mathbb{Z} = \{0, \pm 1, \pm 2\} \quad \text{or} \quad (7) \]
\[\cos \left(\frac{2 \pi s}{r_j} \right) \in \left\{0, \pm \frac{1}{2}, \pm 1\right\}. \]
For a natural number \(1 \leq s \leq r_j-1 \), one has \(\frac{2 \pi s}{r_j} \in [0, 2\pi) \). The solutions of \(\cos(x) = 0 \) in \([0, 2\pi) \) are \(\frac{\pi}{2} \) and \(\frac{3\pi}{2} \), while \(\cos(x) = \pm 1 \) holds for \(x \in \{0, \pi\} \). Finally, \(\cos(x) = \pm \frac{1}{2} \) is satisfied by \(x \in \left\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right\} \), so that (7) implies
\[\frac{2 \pi s}{r_j} \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \pi, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right\}. \quad (8) \]
For \(r_j = 5 \) or 10 this is an absurd, so that
\[r_j \in \{1, 2, 3, 4, 6, 8, 12\}. \]
\[\square \]

Now we are ready to describe the elements of \(GL(2, R) \) of finite order, by specifying their eigenvalues \(\lambda_1, \lambda_2 \). The roots \(\lambda_1, \lambda_2 \) of the characteristic polynomial
\[\chi_g(\lambda) = \lambda^2 - \text{tr}(g)\lambda + \text{det}(g) \in R[\lambda] \]
of \(g \) are in a bijective correspondence with the trace \(\text{tr}(g) = \lambda_1 + \lambda_2 \in R \) and the determinant \(\text{det}(g) = \lambda_1\lambda_2 \in R^* \) of \(g \). Making use of Lemma 8, we subdivide the problem to the description of finite order \(g \in GL(2, R) \) with a fixed determinant \(\text{det}(g) \in R^* \). The traces of such \(g \) take finitely many values and allow to list explicitly the eigenvalues of all \(g \in GL(2, R) \) of finite order. The classification of the unordered pairs of eigenvalues \(\lambda_1, \lambda_2 \) of \(g \in GL(2, R) \) of finite order is a more specific result than Proposition 14. Note that the next classification of \(\lambda_1, \lambda_2 \) is derived independently of Proposition 14.

Let us start with the case of \(\text{det}(g) = 1 \). The next proposition puts in a bijective correspondence the traces \(\text{tr}(g) \) of \(g \in SL(2, R) \) with the orders \(r \) of \(g \).
Proposition 15. If \(g \in SL(2, R) \) is of finite order \(r \) then the trace

\[
\text{tr}(g) \in \{ \pm 2, \pm 1, 0 \}. \tag{9}
\]

The eigenvalues \(\lambda_1, \lambda_2 \) of \(g \) are of order

\[
r_1 = r_2 = r \in \{ 1, 2, 3, 4, 6 \}. \tag{10}
\]

More precisely,

(i) \(\text{tr}(g) = 2 \) or \(\lambda_1 = \lambda_2 = 1, g = I_2 \) if and only if \(g \) is of order 1;

(ii) \(\text{tr}(g) = -2 \) or \(\lambda_1 = \lambda_2 = -1, g = -I_2 \) if and only if \(g \) is of order 2;

(iii) \(\text{tr}(g) = 1 \) or \(\lambda_1 = e^{\frac{2\pi i}{r_1}}, \lambda_2 = e^{-\frac{2\pi i}{r_1}} \) if and only if \(g \) is of order 6;

(iv) \(\text{tr}(g) = -1 \) or \(\lambda_1 = e^{\frac{2\pi i}{r}}, \lambda_2 = e^{-\frac{2\pi i}{r}} \) if and only if \(g \) is of order 3;

(v) \(\text{tr}(g) = 0 \) or \(\lambda_1 = i, \lambda_2 = -i \) if and only if \(g \) is of order 4.

Proof. If \(g \in SL(2, R) \) is of order \(r \) then the eigenvalues \(\lambda_j \) of \(g \) are of finite order \(r_j \), dividing \(r = \text{LCM}(r_1, r_2) \). According to

\[
1 = \det(g) = \lambda_1 \lambda_2,
\]

one has \(\lambda_1 = e^{\frac{2\pi i}{r_1}}, \lambda_2 = e^{-\frac{2\pi i}{r_1}} \) for some natural number \(1 \leq s \leq r_1 - 1 \), relatively prime to \(r_1 \). Thus, \(\lambda_2 \) is a primitive \(r_1 \)-th root and \(r_1 = r_2 = \text{LCM}(r_1, r_2) = r \). As in the proof of Proposition 14,

\[
\text{tr}(g) = \lambda_1 + \lambda_2 = e^{\frac{2\pi i}{r_1}} + e^{-\frac{2\pi i}{r_1}} = 2 \cos \left(\frac{2\pi s}{r_1} \right) \in \mathbb{R} \cap R = \mathbb{Z}
\]

and \(\cos \left(\frac{2\pi s}{r_1} \right) \in [-1, 1] \) specify (9). Consequently,

\[
\cos \left(\frac{2\pi s}{r_1} \right) \in \left\{ 0, \pm \frac{1}{2}, \pm 1 \right\} \quad \text{and}
\]

\[
\frac{2\pi s}{r_1} \in \left\{ 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \right\},
\]

as in (8). Straightforwardly, \(\lambda_1 = e^0 = 1 \) is of order 1, \(\lambda_1 = e^{\pi i} = -1 \) is of order 2, \(\lambda_1 \in \left\{ e^{\frac{2\pi i}{r_1}}, e^{\frac{4\pi i}{r_1}} \right\} \) are of order 4, \(\lambda_1 \in \left\{ e^{\frac{2\pi i}{r}}, e^{\frac{4\pi i}{r}} \right\} \) are of order 3 and \(\lambda_1 \in \left\{ e^{\frac{2\pi i}{r}}, e^{\frac{4\pi i}{r}} \right\} \) are of order 6. That justifies (10).

If \(g \) is of order \(r = 1 \) then \(\lambda_1 \in \mathbb{C}^* \) is of order \(r_1 = 1 \), so that \(\lambda_1 = 1 \). Consequently, \(\lambda_2 = 1 \) and \(g = I_2 \), as far as \(I_2 \) is the only conjugate of the scalar matrix \(I_2 \). The trace \(\text{tr}(g) = \text{tr}(I_2) = 2 \). Conversely, if \(\lambda_1 = \lambda_2 = 1 \), then \(g = I_2 \) is of order 1.

An automorphism \(g \in SL(2, R) \) of order \(r = 2 \) has eigenvalues \(\lambda_1, \lambda_2 \in \mathbb{C}^* \) of order 2, or \(\lambda_1 = \lambda_2 = -1 \). Consequently, \(g = -I_2 \) and \(\text{tr}(g) = -2 \). Conversely, for \(\lambda_1 = \lambda_2 = -1 \) the matrix \(g = -I_2 \) is of order 2.
Let us suppose that \(g \in SL(2, R) \) is of order 3. Then the eigenvalues \(\lambda_1, \lambda_2 \) of \(g \) are of order 3 or \(\lambda_1 = e^{\frac{2\pi i}{3}}, \lambda_2 = e^{-\frac{2\pi i}{3}} \), up to a transposition. The trace \(\text{tr}(g) = \lambda_1 + \lambda_2 = -1 \). Conversely, if \(\lambda_1 = e^{\frac{2\pi i}{3}}, \lambda_2 = e^{-\frac{2\pi i}{3}} \) then \(r = r_1 = r_2 = 3 \).

For \(g \in SL(2, R) \) of order 4 one has \(\lambda_1, \lambda_2 \in \mathbb{C}^* \) of order 4 or \(\lambda_1 = i, \lambda_2 = -i \), up to a transposition. The trace \(\text{tr}(g) = \lambda_1 + \lambda_2 = 0 \). Conversely, for \(\lambda_1 = i, \lambda_2 = -i \) there follows \(r = r_1 = r_2 = 4 \).

Suppose that \(g \in SL(2, R) \) is of order 6. Then \(\lambda_1, \lambda_2 \in \mathbb{C}^* \) are of order 6 or \(\lambda_1 = e^{\frac{2\pi i}{3}}, \lambda_2 = e^{-\frac{2\pi i}{3}} \), up to a transposition. The trace \(\text{tr}(g) = \lambda_1 + \lambda_2 = 1 \). Conversely, the assumption \(\lambda_1 = e^{\frac{2\pi i}{3}}, \lambda_2 = e^{-\frac{2\pi i}{3}} \) implies \(r = r_1 = r_2 = 6 \).

Note that

\[
g_1 = \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}, \quad g_3 = \begin{pmatrix} 2 & 1 \\ -3 & -1 \end{pmatrix} \in SL(2, \mathbb{Z}) \subseteq SL(2, R)
\]

with \(\text{tr}(g_1) = -1, \text{tr}(g_2) = 0, \text{tr}(g_3) = 1 \) realize all the possibilities, listed in the statement of the proposition.

\[\square\]

If \(E \) is an elliptic curve with complex multiplication by an imaginary quadratic number field \(\mathbb{Q}(\sqrt{-d}) \) and conductor \(f \in \mathbb{N} \) then we denote the endomorphism ring of \(E \) by

\[
R_{-d,f} = \mathbb{Z} + f\mathcal{O}_{-d} = \mathbb{Z} + f\omega_{-d}\mathbb{Z},
\]

where \(\omega_{-d} \) is the non-trivial generator of \(\mathcal{O}_{-d} \) as a \(\mathbb{Z} \)-module, given in (6). If \(E \) has no complex multiplication, we put

\[
R_{0,1} := \mathbb{Z}.
\]

Proposition 16. Let \(g \in GL(2, R_{-d,f}) \) be a linear automorphism of \(A = E \times E \) of order \(r \), with \(\det(g) = -1 \) and eigenvalues \(\lambda_1(g), \lambda_2(g) \in \mathbb{C}^* \).

(i) The automorphism \(g \) is of order 2 if and only if its trace is \(\text{tr}(g) = 0 \) or, equivalently, \(\lambda_1(g) = -1, \lambda_2(g) = 1 \).

(ii) If \(R_{-d,f} \neq \mathbb{Z}[i], \mathcal{O}_{-2}, \mathcal{O}_{-3}, R_{-3,2} \) then any \(g \in GL(2, R_{-d,f}) \setminus SL(2, R) \) is of order 2.

(iii) If \(g \in GL(2, \mathcal{O}_{-2}) \) is of order \(r > 2 \) and \(\det(g) = -1 \) then \(r = 8 \) and the trace \(\text{tr}(g) \in \{ \pm \sqrt{-2} \} \).

More precisely,

(a) \(\text{tr}(g) = \sqrt{-2} \) if and only if \(\lambda_1(g) = e^{\frac{2\pi i}{8}}, \lambda_2(g) = e^{-\frac{2\pi i}{8}} \);

(b) \(\text{tr}(g) = -\sqrt{-2} \) if and only if \(\lambda_1(g) = e^{\frac{3\pi i}{8}}, \lambda_2(g) = e^{-\frac{3\pi i}{8}} \).

(iv) If \(g \in GL(2, \mathbb{Z}[i]) \) is of order \(r > 2 \) and \(\det(g) = -1 \), then \(r \in \{4, 12\} \) and the trace \(\text{tr}(g) \in \{ \pm i, \pm 2i \} \).

More precisely,

(a) \(\text{tr}(g) = 2i \) exactly when \(g = iI_2 \);

(b) \(\text{tr}(g) = -2i \) exactly when \(g = -iI_2 \);

21
(c) \(\text{tr}(g) = i \) exactly when \(\lambda_1(g) = e^{\frac{2\pi i}{3}}, \lambda_2(g) = e^{\frac{4\pi i}{3}} \);

(d) \(\text{tr}(g) = -i \) exactly when \(\lambda_1(g) = e^{\frac{2\pi i}{3}}, \lambda_2(g) = e^{-\frac{4\pi i}{3}} \).

(v) If \(g \in GL(2, R_{-3,f}) \) with \(R_{-3,f} \in \{ R_{-3,1} = O_{-3}, R_{-3,2} = Z + \sqrt{-3}Z \} \) is of order \(r > 2 \) and \(\text{det}(g) = -1 \) then \(r = 6 \) and the trace \(\text{tr}(g) \in \{ \pm \sqrt{-3} \} \).

More precisely,

(a) \(\text{tr}(g) = \sqrt{-3} \) if and only if \(\lambda_1(g) = e^{\frac{2\pi i}{3}}, \lambda_2(g) = e^{\frac{4\pi i}{3}} \);

(b) \(\text{tr}(g) = -\sqrt{-3} \) if and only if \(\lambda_1(g) = e^{-\frac{2\pi i}{3}}, \lambda_2(g) = e^{-\frac{4\pi i}{3}} \).

Proof. The eigenvalues \(\lambda_1(g), \lambda_2(g) \in C^* \) of \(g \in GL(2, R_{-d,f}) \) with \(\text{det}(g) = -1 \) are subject to \(\lambda_2(g) = -\lambda_1(g)^{-1} \). More precisely, if \(\lambda_1(g) = e^{\frac{2\pi i}{r_1}} \) is a primitive \(r_1 \)-th root of unity then \(\lambda_2(g) = e^{-\frac{2\pi i}{r_1}} \). The trace

\[
\text{tr}(g) = \lambda_1(g) + \lambda_2(g) = e^{\frac{2\pi i}{r_1}} - e^{-\frac{2\pi i}{r_1}} = 2i \sin \left(\frac{2\pi s}{r_1} \right) \in R_{-d,f} \cap i\mathbb{R}.
\] (11)

We claim that

\[
R_{-d,f} \cap i\mathbb{R} = \begin{cases}
 f\sqrt{-d}\mathbb{Z} & \text{for } -d \not\equiv 1(\text{mod}4) \text{ or } -d \equiv 1(\text{mod}4), f \equiv 1(\text{mod}2), \\
 \frac{1}{2}f\sqrt{-d}\mathbb{Z} & \text{for } -d \equiv 1(\text{mod}4), f \equiv 0(\text{mod}2).
\end{cases}
\]

Indeed, if \(-d \not\equiv 1(\text{mod}4) \) then \(O_{-d} = Z + \sqrt{-d}Z \) and \(R_{-d,f} = Z + f\sqrt{-d}Z \) contains \(f\sqrt{-d} \), i.e., \(f\sqrt{-d}Z \subseteq R_{-d,f} \cap i\mathbb{R} \). Any \(ir = a + bf\sqrt{-d} \in i\mathbb{R} \cap R_{-d,f} \) with \(r \in \mathbb{R}, a, b \in \mathbb{Z} \) has imaginary part \(r = bf\sqrt{-d} \), so that \(i\mathbb{R} \cap R_{-d,f} \subseteq f\sqrt{-d}Z \) and \(i\mathbb{R} \cap R_{-d,f} = f\sqrt{-d}Z \).

Suppose that \(-d \equiv 1(\text{mod}4) \) and the conductor \(f = 2k + 1 \in \mathbb{N} \) is odd. Then \(R_{-d,2k+1} = Z + f(1+\sqrt{-d})Z \) contains \(f\sqrt{-d} = -f + (2f)^{\frac{1}{2}(1+\sqrt{-d})} \), so that \(f\sqrt{-d}Z \subseteq R_{-d,2k+1} \cap i\mathbb{R} \). Any \(ir = a + \frac{bf}{2}(1+\sqrt{-d}) \) with \(r \in \mathbb{R}, a, b \in \mathbb{Z} \) has real part \(a + \frac{bf}{2} = 0 \) and imaginary part \(r = \frac{bf}{2}\sqrt{d} \). Note that \(\frac{bf}{2} = \frac{b(2k+1)}{2} = -a \in \mathbb{Z} \) is an integer only for an even \(b = 2b_1, b_1 \in \mathbb{Z} \), so that \(r = b_1f\sqrt{d} \) and \(i\mathbb{R} \cap R_{-d,2k+1} \subseteq f\sqrt{-d}Z \). That justifies \(i\mathbb{R} \cap R_{-d,2k+1} = f\sqrt{-d}Z \) for \(-d \equiv 1(\text{mod}4), f \equiv 1(\text{mod}2) \).

Finally, for \(-d \equiv 1(\text{mod}4) \) and an even conductor \(f = 2k \in \mathbb{N} \) the endomorphism ring \(R_{-d,2k} = Z + k(1+\sqrt{-d})Z \) contains \(k\sqrt{-d} \), so that \(k\sqrt{-d}Z \subseteq i\mathbb{R} \cap R_{-d,2k} \). Note that \(ir = a + bk(1+\sqrt{-d}) \) with \(r \in \mathbb{R}, a, b \in \mathbb{Z} \) has real part \(a + bk = 0 \) and imaginary part \(r = bk\sqrt{d} \), so that \(i\mathbb{R} \cap R_{-d,2k} \subseteq k\sqrt{-d}Z \) and \(i\mathbb{R} \cap R_{-d,2k} = k\sqrt{-d}Z \).

Now, (11) implies that

\[
2 \sin \left(\frac{2\pi s}{r_1} \right) \in [-2, 2] \cap i(R_{-d,f} \cap i\mathbb{R}) = \begin{cases}
 [-2, 2] \cap f\sqrt{-d}Z & \text{for } -d \not\equiv 1(\text{mod}4) \text{ or } -d \equiv 1(\text{mod}4), f \equiv 1(\text{mod}2), \\
 [-2, 2] \cap \frac{1}{2}f\sqrt{-d}Z & \text{for } -d \equiv 1(\text{mod}4), f \equiv 0(\text{mod}2).
\end{cases}
\]
If $d \geq 5$ then $\sqrt{d} \geq \sqrt{5} > 2$ and $[-2, \sqrt{d}] \cap f \sqrt{d} \mathbb{Z} = \{0\}$ for all $f \in \mathbb{N}$ and $[-2, \sqrt{d}] \cap \frac{1}{2} \sqrt{d} \mathbb{Z} = \{0\}$ for all $f \in 2\mathbb{N}$. Note that $\sin \left(\frac{2\pi s}{r_1} \right) = 0$ for some natural number $1 \leq s \leq r_1 - 1$ with $\text{GCD}(s, r_1) = 1$ has unique solution $\frac{2\pi s}{r_1} = \pi$, since $\frac{2\pi s}{r_1} \in (0, 2\pi)$. That implies $2s = r_1$, whereas s divides r_1 and $s = \text{GCD}(s, r_1) = 1$, $r_1 = 2$. Thus, $\lambda_1 = e^{\frac{2\pi i}{2}} = e^{\pi i} = -1$, $\lambda_2 = -(-1) = 1$ and g is conjugate to

$$D_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

In particular, g is of order 2. Note that the case of $g \in \text{GL}(2, R)$ with $\lambda_1 = -1$, $\lambda_2 = 1$ is realized by the diagonal matrix $D_2 \in \text{GL}(2, \mathbb{Z}) \leq \text{GL}(2, R_{-d,f})$.

If $d = 1$ and $f \geq 3$ then $2\sin \left(\frac{2\pi s}{r_1} \right) \in [-2, 2] \cap f \mathbb{Z} = \{0\}$ and D_2 is the only diagonal form for g. For $d = 2$ and $f \geq 2$ the intersection $[-2, 2] \cap f \sqrt{2} \mathbb{Z} = \{0\}$, so that any $g \in \text{GL}(2, R_{-d,f})$ with $f \geq 2$ and $\det(g) = -1$ is conjugate to D_2. If $d = 3$ and $f = 2k + 1 \geq 3$ then $[-2, 2] \cap f \sqrt{3} \mathbb{Z} = \{0\}$. Similarly, for $d = 3$ and $f = 2k \geq 4$ one has $[-2, 2] \cap k \sqrt{3} \mathbb{Z} = \{0\}$. In such a way, the existence of $g \in \text{GL}(2, R_{-d,f})$ with $\det(g) = -1$, $\text{tr}(g) \neq 0$ requires $R_{-d,f}$ to be among

$$R_{-1,1} = O_{-1} = \mathbb{Z}[i], \quad R_{-1,2} = \mathbb{Z} + 2i \mathbb{Z}, \quad R_{-2,1} = O_{-2} = \mathbb{Z} + \sqrt{-2} \mathbb{Z},$$

$$R_{-3,1} = O_{-3} = \mathbb{Z} + \frac{1 + \sqrt{-3}}{2} \mathbb{Z} \quad \text{or} \quad R_{-3,2} = \mathbb{Z} + 2 \left(\frac{1 + \sqrt{-3}}{2} \right) \mathbb{Z} = \mathbb{Z} + \sqrt{-3} \mathbb{Z}.$$

The next considerations exploit the following simple observation: If a, b are relatively prime natural numbers and s, r_1 are relatively prime natural numbers then $as = br_1$ if and only if $s = b$ and $r_1 = a$. Namely, b divides as and $\text{GCD}(a, b) = 1$ requires b to divide s. Thus, $s = bs_1$ for some $s_1 \in \mathbb{N}$ and $as_1 = r_1$. Now s_1 is a natural common divisor of the relatively prime s, r_1, so that $s_1 = 1$, $s = b$ and $r_1 = a$.

For $d = 1$ and $f = 2$ one has $2 \sin \left(\frac{2\pi s}{r_1} \right) \in [-2, 2] \cap f \mathbb{Z} = \{0, \pm 2\}$. Let $\text{tr}(g) = 2i$ or $\sin \left(\frac{2\pi s}{r_1} \right) = 1$ for $r_1 \in \mathbb{N}$ and some natural number $1 \leq s \leq r_1 - 1$, $\text{GCD}(s, r_1) = 1$. Then $\frac{2\pi s}{r_1} = \frac{\pi}{2}$ or $4s = r_1$. As a result, $s = 1$, $r_1 = 4$ and $\lambda_1 = e^{\frac{\pi i}{2}} = i$, $\lambda_2 = -e^{-\frac{\pi i}{2}} = i$. Now $g = iI_2$ as the unique matrix, conjugate to the scalar matrix iI_2. However, $iI_2 \notin \text{GL}(2, R_{-1,2}) = \text{GL}(2, \mathbb{Z} + 2i \mathbb{Z})$, so that $g = iI_2$ is not a solution of the problem. For $\text{tr}(g) = -2i$ one has $\sin \left(\frac{2\pi s}{r_1} \right) = -1$, whereas $\frac{2\pi s}{r_1} = \frac{3\pi}{2}$ and $4s = 3r_1$. Thus, $s = 3$, $r_1 = 4$ and $\lambda_1 = e^{\frac{3\pi i}{4}} = -i$, $\lambda_2 = -e^{-\frac{3\pi i}{4}} = -i$. That determines a unique $g = -iI_2$. But $-iI_2 \notin \text{GL}(2, R_{-1,2}) = \text{GL}(2, \mathbb{Z} + 2i \mathbb{Z})$, so that $\lambda_1 = 1$, $\lambda_2 = -1$ are the only possible eigenvalues for $g \in \text{GL}(2, R_{-1,2})$ of finite order with $\det(g) = -1$.

In the case of $d = 1$ and $f = 1$, note that $2 \sin \left(\frac{2\pi s}{r_1} \right) \in [-2, 2] \cap Z = \{0, \pm 1, \pm 2\}$. Besides $g \in \text{GL}(2, \mathbb{Z}[i])$ with $\det(g) = -1$, $\text{tr}(g) = 0$, one has $g = iI_2 \in \text{GL}(2, \mathbb{Z}[i])$ and $g = -iI_2 \in \text{GL}(2, \mathbb{Z}[i])$. The case of $\text{tr}(g) = i$ corresponds to $\sin \left(\frac{2\pi s}{r_1} \right) = \frac{1}{2}$.
and holds for $\frac{2\pi s}{r_1} = \frac{\pi}{6}$ or $\frac{2\pi s}{r_1} = \frac{5\pi}{6}$. Note that $12s = r_1$ implies $s = 1$, $r_1 = 12$ and
\[\lambda_1 = e^{\frac{s\pi i}{6}} = \frac{\sqrt{3}}{2} + \frac{i}{2}, \quad \lambda_2 = -e^{-\frac{s\pi i}{6}} = -\frac{\sqrt{3}}{2} + \frac{i}{2} = e^{\frac{5s\pi i}{6}}. \]
Thus, g is of order $r = LCM(12, 12) = 12$. This possibility is realized, for instance, by
\[
g(i) = \begin{pmatrix} 1 & 1 \\ i & -1 + i \end{pmatrix} \in GL(2, \mathbb{Z}[i]) \quad \text{with} \quad \det(g(i)) = -1, \quad \text{tr}(g(i)) = i.
\]
If $12s = 5r_1$ then $s = 5$, $r_1 = 12$ and
\[\lambda_1 = e^{\frac{5s\pi i}{6}} = \frac{\sqrt{3}}{2} + \frac{i}{2}, \quad \lambda_2 = e^{-\frac{5s\pi i}{6}} = \frac{\sqrt{3}}{2} - \frac{i}{2}, \]
which was already obtained. Note that $\text{tr}(g) = -i$ amounts to
\[\sin \left(\frac{2\pi s}{r_1} \right) = -\frac{1}{2} \quad \text{and holds for} \quad \frac{2\pi s}{r_1} = \frac{7\pi}{6} \quad \text{or} \quad \frac{2\pi s}{r_1} = \frac{11\pi}{6}. \]
If $12s = 7r_1$ then $s = 7$, $r_1 = 12$ and
\[\lambda_1 = e^{\frac{7s\pi i}{6}} = -\frac{\sqrt{3}}{2} - \frac{i}{2}, \quad \lambda_2 = e^{-\frac{7s\pi i}{6}} = \frac{\sqrt{3}}{2} - \frac{i}{2} = e^{-\frac{7s\pi i}{6}}. \]
and g is of order $r = LCM(12, 12) = 12$. Note that
\[
g(-i) = \begin{pmatrix} 1 & 1 \\ -i & -1 - i \end{pmatrix} \in GL(2, \mathbb{Z}[i]) \quad \text{with} \quad \det(g(-i)) = -1, \quad \text{tr}(g(-i)) = -i
\]
realizes the aforementioned possibility.

In the case of $12s = 11r_1$ one has $s = 11$, $r_1 = 12$ and
\[\lambda_1 = e^{\frac{11s\pi i}{6}} = \frac{\sqrt{3}}{2} - \frac{i}{2}, \quad \lambda_2 = -e^{-\frac{11s\pi i}{6}} = -\frac{\sqrt{3}}{2} - \frac{i}{2}, \]
which is already listed as a solution. That concludes the considerations for $g \in GL(2, \mathbb{Z}[i])$ with $\det(g) = -1$.

If $d = 2$ and $f = 1$ then $2\sin \left(\frac{2\pi s}{r_1} \right) \in [-2, 2] \cap \sqrt{2}\mathbb{Z} = \{0, \pm \sqrt{2}\}$. Note that
\[\sin \left(\frac{2\pi s}{r_1} \right) = \frac{\sqrt{7}}{2} \quad \text{holds for} \quad \frac{2\pi s}{r_1} = \frac{\pi}{4} \quad \text{or} \quad \frac{2\pi s}{r_1} = \frac{3\pi}{4}. \]
The equality $r_1 = 8s$ implies $s = 1$ and $r_1 = 8$. As a result, $\lambda_1 = e^{\frac{\pi i}{4}} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $\lambda_2 = -e^{-\frac{\pi i}{4}} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i = e^{\frac{3\pi i}{4}}$. Observe that
\[
g(\sqrt{-2}) = \begin{pmatrix} 1 & 1 \\ \sqrt{-2} & \sqrt{-2} \end{pmatrix} \in GL(2, \mathbb{O}_2), \mathbb{O}_2 = \mathbb{Z} + \sqrt{-2}\mathbb{Z}
\]
with $\det(g(\sqrt{-2})) = -1, \quad \text{tr}(g(\sqrt{-2})) = \sqrt{-2}$ realizes the aforementioned possibility. If $8s = 3r_1$ then $s = 3$, $r_1 = 8$ and
\[\lambda_1 = e^{\frac{3s\pi i}{4}} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{7}}{2}i, \quad \lambda_2 = -e^{-\frac{3s\pi i}{4}} = \frac{\sqrt{2}}{2} + \frac{\sqrt{7}}{2}i = e^{\frac{3s\pi i}{4}}. \]
The corresponding automorphism g is of order $r = LCM(8, 8) = 8$. Note that
\[
g(-\sqrt{-2}) = \begin{pmatrix} 1 & 1 \\ -\sqrt{-2} & -\sqrt{-2} \end{pmatrix} \in GL(2, \mathbb{O}_2)
\]
with $\det(g(-\sqrt{-2})) = -1, \quad \text{tr}(g(-\sqrt{-2})) = -\sqrt{-2}$ realizes this possibility. In the case of $8s = 7r_1$, one has $s = 7$, $r_1 = 8$. The eigenvalues
\[\lambda_1 = e^{\frac{7s\pi i}{4}} = \frac{\sqrt{2}}{2} - \frac{\sqrt{7}}{2}i, \]
and
\[\lambda_2 = -e^{-\frac{7s\pi i}{4}} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{7}}{2}i = e^{-\frac{7s\pi i}{4}}. \]
Proposition 17. If $g \in GL(2, \mathbb{Z}[i])$ is of finite order r and $\det(g) = i$ then
\[\text{tr}(g) \in \{0, \pm(1 + i)\}, \quad r \in \{4, 8\}. \]

More precisely,
(i) $\text{tr}(g) = 0$ or $\lambda_1 = e^{\frac{4\pi i}{8}}$, $\lambda_2 = e^{-\frac{\pi i}{8}}$ if and only if g is of order 8;
(ii) if $\text{tr}(g) = 1 + i$ or $\lambda_1 = i$, $\lambda_2 = 1$ then g is of order 4;
(iii) if $\text{tr}(g) = -1 - i$ or $\lambda_1 = -i$, $\lambda_2 = -1$ then g is of order 4.

Proof. If $\lambda_1 = e^{\frac{4\pi i}{8}}$ for the order $r_1 \in \mathbb{N}$ of $\lambda_1 \in \mathbb{C}^*$ and some natural number $1 \leq s < r_1$, $\text{GCD}(s, r_1) = 1$, then $\lambda_2 = \det(g)\lambda_1^{-1} = ie^{-\frac{2\pi is}{r_1}}$. Therefore, the trace
\[\text{tr}(g) = \lambda_1 + \lambda_2 = \left[\cos \left(\frac{2\pi s}{r_1} \right) + \sin \left(\frac{2\pi s}{r_1} \right) \right] (1 + i) = \]
\[\]
if and only if the real part
\[
 \sqrt{2} \sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) \in \mathbb{Z} \cap [-\sqrt{2}, \sqrt{2}] = \{0, \pm 1\}.
\]
As a result, \(\text{tr}(g) \in \{0, \pm (1 + i)\} \). If \(\text{tr}(g) = 0 \) or, equivalently, \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) = 0 \) for \(\frac{2\pi s}{r_1} + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{9\pi}{4} \right) \) then \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \pi \) or \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = 2\pi \). For \(\frac{2\pi s}{r_1} = \frac{3}{4} \) there follows \(8s = 3r_1 \) and \(s = 3, r_1 = 8 \). As a result, \(\lambda_1 = e^{\frac{3\pi i}{4}} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i, \lambda_2 = ie^{-\frac{3\pi i}{4}} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i = e^{-\frac{\pi i}{4}} \) and \(g \) is of order \(r = \text{LCM}(8, 8) = 8 \). For instance,
\[
 g_i(0) = \begin{pmatrix} i & i \\ -1 - i & -i \end{pmatrix} \in \text{GL}(2, \mathbb{Z}[i])
\]
with \(\det(g_i(0)) = i, \text{tr}(g_i(0)) = 0 \) attains this possibility.

If \(\frac{2\pi s}{r_1} = \frac{7}{4} \) then \(8s = 7r_1 \) and \(s = 7, r_1 = 8 \). The eigenvalues \(\lambda_1 = e^{\frac{7\pi i}{4}} = e^{-\frac{\pi i}{4}} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i, \lambda_2 = ie^{\frac{7\pi i}{4}} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i = e^{\frac{3\pi i}{4}} \) are already obtained.

In the case of \(\text{tr}(g) = 1 + i \), one has \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \), which is equivalent to \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{3\pi}{4} \) for \(\frac{2\pi s}{r_1} + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{9\pi}{4} \right) \). Now, \(\frac{2\pi s}{r_1} = \frac{1}{2} \), whereas \(4s = r_1 \) and \(s = 1, r_1 = 4 \). The eigenvalues are \(\lambda_1 = e^{\frac{\pi i}{4}} = i, \lambda_2 = ie^{-\frac{\pi i}{4}} = 1 \) and \(g \) is of order \(r = \text{LCM}(4, 1) = 4 \). Note that
\[
 g_i(1 + i) = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \in \text{GL}(2, \mathbb{Z}[i])
\]
with \(\det(g_i(1 + i)) = i, \text{tr}(g_i(1 + i)) = 1 + i \) realizes this case.

Finally, for \(\text{tr}(g) = -1 - i \) there follows \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) = -\frac{\sqrt{2}}{2} \). Consequently, \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{5\pi}{4} \) or \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{7\pi}{4} \) for \(\frac{2\pi s}{r_1} + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{9\pi}{4} \right) \). In the case of \(\frac{2\pi s}{r_1} = 1 \) one has \(s = 1, r_1 = 2 \). The eigenvalues of \(g \) are \(\lambda_1 = e^{\pi i} = -1, \lambda_2 = ie^{-\pi i} = -i \), so that \(g \) is of order \(r = \text{LCM}(2, 4) = 4 \). This possibility is realized by
\[
 g_i(-1 - i) = \begin{pmatrix} -i & 0 \\ 0 & -1 \end{pmatrix} \in \text{GL}(2, \mathbb{Z}[i])
\]
with \(\det(g_i(-1 - i)) = i, \text{tr}(g_i(-1 - i)) = -1 - i \).

If \(\frac{2\pi s}{r_1} = \frac{3}{2} \) then \(4s = 3r_1 \) and \(s = 3, r_1 = 4 \). The eigenvalues \(\lambda_1 = e^{\frac{3\pi i}{2}} = -i, \lambda_2 = ie^{\frac{3\pi i}{2}} = -1 \) are already obtained. That concludes the description of the eigenvalues of all \(g \in \text{GL}(2, \mathbb{Z}[i]) \) of finite order with \(\det(g) = i \).

\[\square\]

Proposition 18. If \(g \in \text{GL}(2, \mathbb{Z}[i]) \) is of finite order \(r \) and \(\det(g) = -i \) then
\[
\text{tr}(g) \in \{0, \pm (1 - i)\}, \quad r \in \{4, 8\}.
\]
More precisely,

(i) \(\text{tr}(g) = 0 \) or \(\lambda_1 = e^{\frac{\pi i}{r_1}}, \lambda_2 = e^{\frac{5\pi i}{r_1}} \) if and only if \(g \) is of order 8;

(ii) if \(\text{tr}(g) = 1 - i \) or \(\lambda_1 = -i, \lambda_2 = 1 \) then \(g \) is of order 4;

(iii) if \(\text{tr}(g) = -1 + i \) or \(\lambda_1 = i, \lambda_2 = -1 \) then \(g \) is of order 4.

Proof. If one of the eigenvalues of \(g \) is \(\lambda_1 = e^{\frac{2\pi s}{r_1}} \) then the other one is \(\lambda_2 = -ie^{-\frac{2\pi s}{r_1}} \). Thus, the trace

\[
\text{tr}(g) = \lambda + \lambda_2 = \left[\cos \left(\frac{2\pi s}{r_1} \right) - \sin \left(\frac{2\pi s}{r_1} \right) \right] (1 - i) = \sqrt{2} \cos \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) (1 - i)
\]

belongs to \(\mathbb{Z}[i] = \mathbb{Z} + \mathbb{Z}i \) if and only if \(\sqrt{2} \cos \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) \in \mathbb{Z} \). As a result,

\[
\sqrt{2} \cos \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) \in \mathbb{Z} \cap [-\sqrt{2}, \sqrt{2}] = \{0, \pm1\}
\]

or \(\text{tr}(g) \in \{0, \pm(1 - i)\} \). Note that \(\text{tr}(g) = 0 \) reduces to \(\cos \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) = 0 \) with solutions \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{\pi}{2} \) or \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{3\pi}{2} \). If \(\frac{2\pi s}{r_1} = \frac{1}{4} \) then \(8s = r_1 \) and \(s = 1, r_1 = 8 \). The eigenvalues of \(g \) are \(\lambda_1 = e^{\frac{\pi i}{4}} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, \lambda_2 = -ie^{-\frac{\pi i}{4}} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \) and \(g \) is of order \(r = LCM(8, 8) = 8 \). Note that

\[
g_{-i}(0) = \left(\begin{array}{cc} -i & -1 \\ -1 & i \end{array} \right) \in GL(2, \mathbb{Z}[i])
\]

with \(\text{det}(g_{-i}(0)) = -i, \text{tr}(g_{-i}(0)) = 0 \) realizes the aforementioned possibility. In the case of \(2\pi s = \frac{5\pi}{4} \) there holds \(8s = 5r_1 \), whereas \(s = 5, r_1 = 8 \) and \(\lambda_1 = e^{\frac{5\pi i}{4}} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i, \lambda_2 = -ie^{-\frac{5\pi i}{4}} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \) and \(g \) is of order \(r = LCM(4, 1) = 4 \). This case has been already discussed.

For \(\text{tr}(g) = 1 - i \) one has \(\cos \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \), which reduces to \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{7\pi}{4} \) for \(\frac{2\pi s}{r_1} + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{9\pi}{4} \right) \). Now \(\frac{2\pi s}{r_1} = \frac{3}{2} \) reads as \(4s = 3r_1 \) and determines \(s = 3, r_1 = 4 \). The eigenvalues of \(g \) are \(\lambda_1 = e^{\frac{3\pi i}{4}} = -i, \lambda_2 = -ie^{-\frac{3\pi i}{4}} = 1 \) and \(g \) is of order \(r = LCM(4, 1) = 4 \). This possibility is realized by

\[
g_{-i}(1 - i) = \left(\begin{array}{cc} -i & 0 \\ 0 & 1 \end{array} \right) \in GL(2, \mathbb{Z}[i])
\]

with \(\text{det}(g_{-i}(1 - i)) = -i, \text{tr}(g_{-i}(1 - i)) = 1 - i \).

Finally, \(\text{tr}(g) = -1 + i \) is equivalent to \(\cos \left(\frac{2\pi s}{r_1} + \frac{\pi}{4} \right) = -\frac{\sqrt{2}}{2} \) and holds for \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{3\pi}{4} \) or \(\frac{2\pi s}{r_1} + \frac{\pi}{4} = \frac{5\pi}{4} \). In the case of \(\frac{2\pi s}{r_1} = \frac{1}{2} \), one has \(4s = r_1 \) and \(s = 1, r_1 = 4 \). The eigenvalues of \(g \) are \(\lambda_1 = e^{\frac{\pi i}{4}} = i, \lambda_2 = -ie^{-\frac{\pi i}{4}} = -1 \) and \(g \) is of order \(r = LCM(4, 2) = 4 \). The automorphism

\[
g_{-i}(-1 + i) = \left(\begin{array}{cc} i & 0 \\ 0 & -1 \end{array} \right) \in GL(2, \mathbb{Z}[i])
\]
realizes the case under discussion. For \(\frac{2s}{r_1} = 1 \) there follow \(s = 1, r_1 = 2 \) and \(\lambda_1 = e^{\pi i} = -1, \lambda_2 = -ie^{-\pi i} = i \), which was already discussed. That concludes the description of the automorphisms \(g \in GL(2, \mathbb{Z}[i]) \) with \(\det(g) = -i \).

\[\square \]

Proposition 19. If \(g \in GL(2, \mathcal{O}_{-3}) \) is of finite order \(r \) and \(\det(g) = e^{\pi i} \) then

\[
r = 6 \quad \text{and} \quad \text{tr}(g) \in \left\{ 0, \pm \left(\frac{3}{2} + \frac{\sqrt{3}}{2} \right) \right\}.
\]

More precisely,

(i) \(\text{tr}(g) = 0 \) exactly when \(\lambda_1 = e^{\pi i} \), \(\lambda_2 = e^{-\pi i} \);

(ii) \(\text{tr}(g) = \frac{3}{2} + \frac{\sqrt{3}}{2} \) exactly when \(\lambda_1 = e^{\pi i} \), \(\lambda_2 = 1 \);

(iii) \(\text{tr}(g) = -\frac{3}{2} - \frac{\sqrt{3}}{2} \) exactly when \(\lambda_1 = e^{-\pi i} \), \(\lambda_2 = -1 \).

Proof. If \(\lambda_1 = e^{\frac{2\pi si}{r_1}} \) then \(\lambda_2 = e^{\frac{\pi i}{3}} e^{-\frac{2\pi si}{r_1}} \) and the trace

\[
\text{tr}(g) = \lambda_1 + \lambda_2 = (\sqrt{3} + i) \sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{3} \right)
\]

belongs to \(\mathcal{O}_{-3} = \mathbb{Z} + \frac{1+\sqrt{-3}}{2} \mathbb{Z} \) if and only if \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{3} \right) \in \frac{\sqrt{3}}{2} \mathbb{Z} \). Combining with \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{3} \right) \in [-1, 1] \), one gets \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{3} \right) \in \frac{\sqrt{3}}{2} \mathbb{Z} \cap [-1, 1] = \left\{ 0, \pm \frac{\sqrt{3}}{2} \right\} \) and, respectively, \(\text{tr}(g) \in \left\{ 0, \pm \left(\frac{3}{2} + \frac{\sqrt{3}}{2} \right) \right\} \).

If \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{3} \right) = 0 \) then \(\frac{2\pi s}{r_1} + \frac{\pi}{3} = \pi \) or \(\frac{2\pi s}{r_1} + \frac{\pi}{3} = 2\pi \). For \(\frac{2s}{r_1} = \frac{2}{3} \) there follows \(s = 1, r_1 = 3 \) and \(\lambda_1 = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}, \lambda_2 = e^{\frac{\pi i}{3}} e^{\frac{2\pi i}{3}} = e^{\frac{\pi i}{3}} = \frac{1}{2} - \frac{\sqrt{3}}{2} \). The automorphisms \(g \in GL(2, \mathcal{O}_{-3}) \) with such eigenvalues are of order \(r = \text{LCM}(3, 6) = 6 \). For instance,

\[
\begin{pmatrix}
 e^{\frac{2\pi i}{3}} & 0 \\
 0 & e^{-\frac{\pi i}{3}}
\end{pmatrix} \in GL(2, \mathcal{O}_{-3})
\]

attains the aforementioned possibility.

In the case of \(\frac{2s}{r_1} = \frac{5}{3} \) one has \(s = 5, r_1 = 6 \) and \(\lambda_1 = e^{-\frac{\pi i}{3}}, \lambda_2 = e^{\frac{\pi i}{3}} e^{\frac{2\pi i}{3}} = e^{\frac{2\pi i}{3}}, \)

which was already obtained.

Note that \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \) for \(\frac{2\pi s}{r_1} + \frac{\pi}{3} \in \left(\frac{\pi}{3}, \frac{7\pi}{3} \right) \) implies \(\frac{2\pi s}{r_1} + \frac{\pi}{3} = \frac{2\pi}{3} \), whereas

\(6s = r_1 \) and \(s = 1, r_1 = 6 \). The corresponding eigenvalues are \(\lambda_1 = e^{\frac{\pi i}{3}} = \frac{1}{2} + \frac{\sqrt{3}}{2} i, \lambda_2 = e^{\frac{\pi i}{3}} e^{-\frac{\pi i}{3}} = 1 \) and \(g \) is of order \(r = \text{LCM}(6, 1) = 6 \). Note that

\[
\begin{pmatrix}
 e^{\frac{\pi i}{3}} & 0 \\
 0 & 1
\end{pmatrix} \in GL(2, \mathcal{O}_{-3})
\]

realizes this possibility.

28
The equality \(\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{3} \right) = -\frac{\sqrt{3}}{2} \) holds for \(\frac{2\pi s}{r_1} + \frac{\pi}{3} = \frac{4\pi}{3} \) or \(\frac{2\pi s}{r_1} + \frac{\pi}{3} = \frac{5\pi}{3} \). If \(2s = r_1 \) then \(s = 1, \ r_1 = 2 \) and \(\lambda_1 = e^{\pi i} = -1, \ \lambda_2 = e^{\frac{\pi i}{3}} e^{-\pi i} = e^{-\frac{2\pi i}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i. \) The automorphism \(g \) is of order \(r = \text{LCM}(2, 3) = 6. \) Note that

\[
\begin{pmatrix}
 e^{-\frac{2\pi i}{3}} & 0 \\
 0 & -1
\end{pmatrix} \in GL(2, \mathcal{O}_3)
\]

attains this possibility and concludes the proof of the proposition.

Proposition 20. If \(g \in GL(2, \mathcal{O}_3) \) is of finite order \(r \) and \(\det(g) = e^{-\frac{\pi i}{r}} \) then

\[
r = 6 \quad \text{and} \quad \text{tr}(g) \in \left\{ 0, \pm \left(\frac{3}{2} - \frac{\sqrt{3}}{2} \right) \right\}.
\]

More precisely,

(i) \(\text{tr}(g) = 0 \) exactly when \(\lambda_1 = e^{\frac{2\pi i}{3}}, \ \lambda_2 = e^{-\frac{2\pi i}{3}} \);

(ii) \(\text{tr}(g) = \frac{3}{2} - \frac{\sqrt{3}}{2} i \) exactly when \(\lambda_1 = e^{-\frac{\pi i}{3}}, \ \lambda_2 = 1 \);

(iii) \(\text{tr}(g) = -\frac{3}{2} + \frac{\sqrt{3}}{2} i \) exactly when \(\lambda_1 = \frac{2\pi i}{3}, \ \lambda_2 = -1 \).

Proof. If \(\lambda_1 = e^{\frac{2\pi i}{r_1}} \) then \(\lambda_2 = e^{-\frac{\pi i}{r_1}} e^{-\frac{2\pi i}{r_1}} \) and the trace

\[
\text{tr}(g) = \lambda_1 + \lambda_2 = (-\sqrt{3} + i) \sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{3} \right)
\]

belongs to \(\mathcal{O}_3 = \mathbb{Z} + \frac{1+\sqrt{3}}{2} \mathbb{Z} \) if and only if \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{3} \right) \in \frac{\sqrt{3}}{2} \mathbb{Z} \). As a result, \(\sin \left(\frac{2\pi s}{r_1} = \frac{\pi}{3} \right) \in \frac{\sqrt{3}}{2} \mathbb{Z} \cap [-1, 1] = \left\{ 0, \pm \frac{\sqrt{3}}{2} \right\} \) and \(\text{tr}(g) \in \left\{ 0, \pm \left(\frac{3}{2} - \frac{\sqrt{3}}{2} i \right) \right\} \).

The equation \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{3} \right) = 0 \) for \(\frac{2\pi s}{r_1} - \frac{\pi}{3} \in \left(-\frac{\pi}{3}, \frac{5\pi}{3} \right) \) has solutions \(\frac{2\pi s}{r_1} - \frac{\pi}{3} = 0 \) and \(\frac{2\pi s}{r_1} - \frac{\pi}{3} = \pi. \)

If \(6s = r_1 \) then \(s = 1, \ r_1 = 6 \) and \(\lambda_1 = e^{\frac{\pi i}{3}} = \frac{1}{2} + \frac{\sqrt{3}}{2} i, \ \lambda_2 = e^{\frac{\pi i}{6}} e^{-\frac{\pi i}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i. \) The automorphisms \(g \in GL(2, \mathcal{O}_3) \) with such eigenvalues are of order \(r = \text{LCM}(6, 3) = 6. \) For instance,

\[
\begin{pmatrix}
 e^{\frac{\pi i}{3}} & 0 \\
 0 & e^{-\frac{2\pi i}{3}}
\end{pmatrix} \in GL(2, \mathcal{O}_3)
\]

attains this case.

If \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \) then \(\frac{2\pi s}{r_1} - \frac{\pi}{3} = \frac{\pi}{3} \) or \(\frac{2\pi s}{r_1} - \frac{\pi}{3} = \frac{2\pi}{3}. \) For \(3s = r_1 \) one has \(s = 1, \ r_1 = 3 \) and \(\lambda_1 = e^{2\frac{\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \ \lambda_2 = e^{\frac{\pi i}{3}} e^{-\frac{2\pi i}{3}} = e^{-\pi i} = -1, \) attained by

\[
\begin{pmatrix}
 e^{\frac{\pi i}{3}} & 0 \\
 0 & -1
\end{pmatrix} \in GL(2, \mathcal{O}_3).\]
All $g \in GL(2, \mathcal{O}_{-3})$ with such eigenvalues are of order $r = LCM(3, 2) = 6$.

In the case of $2s = r_1$ there follows $s = 1$, $r_1 = 2$ and $\lambda_1 = e^{\pi i} = -1$, $\lambda_2 = e^{-\pi i}e^{-\pi i/6} = e^{-2\pi i/6}$, which is already discussed.

The equation $\sin\left(\frac{2\pi s}{r_1} - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$ for $\frac{2\pi s}{r_1} - \frac{\pi}{3} \in (-\frac{\pi}{3}, \frac{5\pi}{3})$ has solution $\frac{2\pi s}{r_1} - \frac{\pi}{3} = \frac{5\pi}{3}$. Therefore $6s = 5r_1$ and $s = 5$, $r_1 = 6$. As a result, $\lambda_1 = e^{\pi i} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$, $\lambda_2 = e^{-\pi i/6}e^{\pi i/6} = 1$ and g is of order $r = LCM(6, 1) = 6$. Note that

$$
\begin{pmatrix}
 e^{-\pi i/6} & 0 \\
 0 & 1
\end{pmatrix} \in GL(2, \mathcal{O}_{-3})
$$

attains this possibility and concludes the proof of the proposition.

\[\square\]

Proposition 21. If $g \in GL(2, \mathcal{O}_{-3})$ is of finite order r and $\det(g) = e^{\frac{2\pi i}{3}}$ then

$$
\text{tr}(g) \in \left\{ 0, \pm\left(1 + \frac{\sqrt{-3}}{2}\right), \pm\left(1 + \sqrt{-3}\right) \right\}, \quad r \in \{3, 6, 12\}.
$$

More precisely,

(i) $\text{tr}(g) = 0$ or $\lambda_1 = e^{\frac{5\pi i}{6}}$, $\lambda_2 = e^{-\frac{\pi i}{6}}$ if and only if g is of order 12;

(ii) if $\text{tr}(g) = \frac{1+\sqrt{3}}{2}$ or $\lambda_1 = e^{\frac{2\pi i}{3}}$, $\lambda_2 = 1$ then g is of order 3;

(iii) if $\text{tr}(g) = -1 - \sqrt{3}i$ or $g = e^{-\frac{2\pi i}{3}}I_2$ then g is of order 3;

(iv) if $\text{tr}(g) = \frac{-1-\sqrt{3}}{2}$ or $\lambda_1 = e^{-\frac{2\pi i}{3}}$, $\lambda_2 = -1$ then g is of order 6;

(v) if $\text{tr}(g) = 1 + \sqrt{3}i$ or $g = e^{\frac{5\pi i}{6}}I_2$ then g is of order 6.

Proof. If $\lambda_1 = e^{\frac{2\pi i}{3}}$ then $\lambda_2 = e^{\frac{2\pi i}{3}}e^{-\frac{2\pi i}{3}}$ and the trace

$$
\text{tr}(g) = \lambda_1 + \lambda_2 = (1 + \sqrt{3}i)\sin\left(\frac{2\pi s}{r_1} + \frac{\pi}{6}\right)
$$

belongs to $\mathcal{O}_{-3} = \mathbb{Z} + \frac{1+\sqrt{3}}{2}\mathbb{Z}$ if and only if $2\sin\left(\frac{2\pi s}{r_1} + \frac{\pi}{6}\right) \in \mathbb{Z}$. Combining with $\sin\left(\frac{2\pi s}{r_1} + \frac{\pi}{6}\right) \in [-1, 1]$, one obtains $2\sin\left(\frac{2\pi s}{r_1} + \frac{\pi}{6}\right) \in \mathbb{Z} \cap [-2, 2] = \{0, \pm 1, \pm 2\}$ and, respectively,

$$
\text{tr}(g) \in \left\{ 0, \pm\frac{1+\sqrt{3}i}{2}, \pm(1 + \sqrt{3}i) \right\}.
$$

If $\sin\left(\frac{2\pi s}{r_1} + \frac{\pi}{6}\right) = 0$ for $\frac{2\pi s}{r_1} + \frac{\pi}{6} \in \left(\frac{\pi}{3}, \frac{13\pi}{6}\right)$ then $\frac{2\pi s}{r_1} + \frac{\pi}{6} = \pi$ or $\frac{2\pi s}{r_1} + \frac{\pi}{6} = 2\pi$.

For $12s = 5r_1$ one has $s = 5$, $r_1 = 12$ and $\lambda_1 = e^{\frac{5\pi i}{6}} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$, $\lambda_2 = e^{\frac{2\pi i}{3}}e^{\frac{5\pi i}{6}} = e^{-\frac{\pi i}{6}} = \sqrt{2} - \frac{1}{2}i$. Therefore g is of order $r = LCM(12, 12) = 12$. Note that

$$
\begin{pmatrix}
 e^{\frac{5\pi i}{6}} & 0 \\
 0 & e^{-\frac{\pi i}{6}}
\end{pmatrix} \in GL(2, \mathcal{O}_{-3})
$$
attains this possibility.

In the case of $12s = 11r_1$ there follows $s = 11, r_1 = 12$. As a result, $\lambda_1 = e^{\frac{11\pi i}{6}} = \sqrt{3} - \frac{1}{2}i$, $\lambda_2 = e^{\frac{21\pi i}{6}} = e^{\frac{5\pi i}{2}} = -\sqrt{3} + \frac{1}{2}i$, which was already obtained.

If $\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{6} \right) = \frac{1}{2}$ for $\frac{2\pi s}{r_1} + \frac{\pi}{6} \in \left(\frac{\pi}{6}, \frac{13\pi}{6} \right)$ then $\frac{2\pi s}{r_1} + \frac{\pi}{6} = \frac{5\pi}{6}$ and $3s = r_1$. Therefore $s = 1, r_1 = 3$ and $\lambda_1 = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $\lambda_2 = e^{\frac{2\pi i}{3}}e^{-\frac{2\pi i}{3}} = 1$. The order of g is $r = \text{LCM}(3, 1) = 3$. This possibility is attained by

\[
\left(e^{\frac{2\pi i}{3}}, 0
\right) \in \text{GL}(2, \mathbb{O}_{-3}).
\]

The equation $\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{6} \right) = -\frac{1}{2}$ has solutions $\frac{2\pi s}{r_1} + \frac{\pi}{6} = \frac{7\pi}{6}$ and $\frac{2\pi s}{r_1} + \frac{\pi}{6} = \frac{11\pi}{6}$.

If $2s = r_1$ then $s = 1, r_1 = 2, \lambda_1 = e^{\pi i} = -1, \lambda_2 = e^{\frac{2\pi i}{3}}e^{-\pi i} = e^{-\frac{2\pi i}{3}} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$ and g is of order $r = \text{LCM}(2, 6) = 6$. For instance,

\[
\left(e^{-\frac{\pi i}{3}}, 0, -1 \right) \in \text{GL}(2, \mathbb{O}_{-3})
\]

attains these eigenvalues.

For $6s = 5r_1$ one has $s = 5, r_1 = 6 \lambda_1 = e^{\frac{5\pi i}{6}} = e^{-\frac{\pi i}{6}} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$, $\lambda_2 = e^{\frac{2\pi i}{3}}e^{\frac{\pi i}{6}} = e^{\frac{\pi i}{6}} = e^{\pi i} = -1$, which is already obtained.

Note that $\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{6} \right) = 1$ is equivalent to $\frac{2\pi s}{r_1} + \frac{\pi}{6} = \frac{\pi}{2}$, whereas $6s = r_1$ and $s = 1, r_1 = 6$. The eigenvalues $\lambda_1 = e^{\frac{\pi i}{6}} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, $\lambda_2 = e^{\frac{2\pi i}{3}}e^{-\frac{\pi i}{6}} = e^{\frac{\pi i}{6}} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ are equal, so that $g = e^{\frac{\pi i}{6}}I_2$ and $r = \text{LCM}(6, 6) = 6$.

If $\sin \left(\frac{2\pi s}{r_1} + \frac{\pi}{6} \right) = -1$ then $\frac{2\pi s}{r_1} + \frac{\pi}{6} = \frac{3\pi}{2}$ and $3s = 2r_1, s = 2, r_1 = 3$. Then $\lambda_1 = e^{\frac{2\pi i}{3}} = e^{-\frac{\pi i}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $\lambda_2 = e^{\frac{2\pi i}{3}}e^{\frac{2\pi i}{3}} = e^{-\frac{\pi i}{3}}$ determine uniquely $g = e^{-\frac{2\pi i}{3}}I_2$ of order $r = \text{LCM}(3, 3) = 3$. That concludes the description of $g \in \text{GL}(2, \mathbb{O}_{-3})$ of finite order and $\det(g) = e^{\frac{2\pi i}{3}}$.

\[\square\]

Proposition 22. If $g \in \text{GL}(2, \mathbb{O}_{-3})$ is of finite order r and $\det(g) = e^{-\frac{2\pi i}{3}}$ then

\[
\text{tr}(g) \in \left\{ 0, \pm \frac{(1 - \sqrt{-3})}{2}, \pm (1 - \sqrt{-3}) \right\}, \quad r \in \{3, 6, 12\}.
\]

More precisely,

(i) $\text{tr}(g) = 0$ or $\lambda_1 = e^{\frac{2\pi i}{3}}$, $\lambda_2 = e^{-\frac{5\pi i}{6}}$ if and only if g is of order 12;
(ii) if $\text{tr}(g) = \frac{1-\sqrt{3}i}{2}$ or $\lambda_1 = e^{\frac{4\pi i}{3}}$, $\lambda_2 = 1$ then g is of order 3;
(iii) if $\text{tr}(g) = -1 + \sqrt{3}i$ or $g = e^{\frac{2\pi i}{3}}I_2$ then g is of order 3;
(iv) if $\text{tr}(g) = \frac{1+\sqrt{3}i}{2}$ or $\lambda_1 = e^{\frac{2\pi i}{3}}$, $\lambda_2 = -1$ then g is of order 6;
(v) if $\text{tr}(g) = 1 - \sqrt{3}i$ or $g = e^{-\frac{\pi i}{6}}I_2$ then g is of order 6.

31
Proof. If \(\lambda_1 = e^{\frac{2\pi i}{r'}} \) then \(\lambda_2 = e^{-\frac{2\pi i}{3}} e^{-\frac{2\pi i}{r'}} \) and the trace

\[
\text{tr}(g) = \lambda_1 + \lambda_2 = (-1 + \sqrt{3}i) \sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right)
\]

belongs to \(\mathcal{O}_{-3} = \mathbb{Z} + \frac{1 + \sqrt{3}i}{2} \mathbb{Z} \) if and only if \(2 \sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) \in \mathbb{Z} \). Combining with

\[
2 \sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) \in [-2, 2],
\]

one concludes that \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) \in \{0, \pm \frac{1}{2}, \pm 1\} \) and \(\text{tr}(g) \in \{0, \pm \frac{1}{2}, \pm 1\} \).

If \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) = 0 \) with \(\frac{2\pi s}{r_1} - \frac{\pi}{6} \in \left(-\frac{\pi}{6}, \frac{11\pi}{6}\right) \) then \(\frac{2\pi s}{r_1} - \frac{\pi}{6} = 0 \) or \(\frac{2\pi s}{r_1} - \frac{\pi}{6} = \pi \).

For \(12s = r_1 \) one has \(s = 1, r_1 = 12, \lambda_1 = e^{\frac{\pi i}{6}} = \frac{\sqrt{3}}{2} + \frac{1}{2}i, \lambda_2 = e^{-\frac{2\pi i}{3}} e^{-\frac{\pi i}{3}} = e^{-\frac{5\pi i}{6}} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i \), so that \(g \) is of order \(r = \text{LCM}(12, 12) = 12 \). For instance,

\[
\begin{pmatrix}
 e^{\frac{\pi i}{6}} & 0 \\
 0 & e^{-\frac{5\pi i}{6}}
\end{pmatrix} \in \text{GL}(2, \mathcal{O}_{-3})
\]

attains this case.

For \(12s = 7r_1 \) there follows \(s = 7, r_1 = 12, \lambda_1 = e^{\frac{7\pi i}{6}} = e^{-\frac{5\pi i}{6}}, \lambda_2 = e^{-\frac{\pi i}{3}} e^{\frac{5\pi i}{6}} = e^{\frac{\pi i}{6}}, \) which is already discussed.

In the case of \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) = \frac{1}{2} \) note that \(\frac{2\pi s}{r_1} - \frac{\pi}{6} = \frac{\pi}{6} \) or \(\frac{2\pi s}{r_1} - \frac{\pi}{6} = \frac{5\pi}{6} \).

If \(6s = r_1 \) then \(s = 1, r_1 = 6, \lambda_1 = e^{\frac{\pi i}{3}} = \frac{1}{2} + \frac{\sqrt{3}i}{2}, \lambda_2 = e^{-\frac{2\pi i}{3}} e^{-\frac{\pi i}{3}} = e^{-\frac{5\pi i}{6}} = -1 \) and \(g \) is of order \(r = \text{LCM}(6, 2) = 6 \). Note that

\[
\begin{pmatrix}
 e^{\frac{\pi i}{3}} & 0 \\
 0 & -1
\end{pmatrix} \in \text{GL}(2, \mathcal{O}_{-3})
\]

attains this case.

For \(2s = r_1 \) there follows \(s = 1, r_1 = 2, \lambda_1 = e^{\pi i} = -1, \lambda_2 = e^{-\frac{2\pi i}{3}} e^{-\frac{\pi i}{3}} = e^{-\frac{5\pi i}{6}} = e^{\frac{\pi i}{3}}, \) which is already obtained.

Note that \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) = -\frac{1}{2} \) for \(\frac{2\pi s}{r_1} - \frac{\pi}{6} \in \left(-\frac{\pi}{6}, \frac{11\pi}{6}\right) \) implies \(\frac{2\pi s}{r_1} - \frac{\pi}{6} = \frac{7\pi}{6}, \) whereas

\(3s = 2r_1, s = 2 \) and \(r_1 = 3 \). Then \(\lambda_1 = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}i}{2}, \lambda_2 = e^{-\frac{\pi i}{3}} e^{-\frac{\pi i}{3}} = e^{-\frac{2\pi i}{3}} = 1 \) and \(g \) is of order \(r = \text{LCM}(3, 1) = 3 \), attained by

\[
\begin{pmatrix}
 e^{\frac{2\pi i}{3}} & 0 \\
 0 & 1
\end{pmatrix} \in \text{GL}(2, \mathcal{O}_{-3}).
\]

If \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) = 1 \) then \(\frac{2\pi s}{r_1} - \frac{\pi}{6} = \frac{\pi}{2} \) or \(3s = r_1 \). As a result, \(s = 1, r_1 = 3, \lambda_1 = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}i}{2}, \lambda_2 = e^{-\frac{\pi i}{3}} e^{-\frac{\pi i}{3}} = e^{\frac{\pi i}{3}}, \) whereas \(g = e^{\frac{2\pi i}{3}} I_2 \in \text{GL}(2, \mathcal{O}_{-3}) \) is a scalar matrix of order 3.

Finally, \(\sin \left(\frac{2\pi s}{r_1} - \frac{\pi}{6} \right) = -1 \) holds for \(\frac{2\pi s}{r_1} - \frac{\pi}{6} = \frac{3\pi}{2}, \) i.e., \(6s = 5r_1 \) and \(s = 5, r_1 = 6 \).

Now \(\lambda_1 = e^{-\frac{\pi i}{3}} = \frac{1}{2} - \frac{\sqrt{3}i}{2}, \lambda_2 = e^{-\frac{2\pi i}{3}} e^{\frac{\pi i}{3}} = e^{-\frac{\pi i}{3}}, \) so that \(g = e^{-\frac{\pi i}{3}} I_2 \in \text{GL}(2, \mathcal{O}_{-3}) \) is a scalar matrix of order 6. That concludes the proof of the proposition.

\(\square \)
3 Finite linear automorphism groups of $E \times E$

The classification of the finite subgroups K of $SL(2, R)$ for an endomorphism ring R of an elliptic curve E starts with a classification of the Sylow subgroups H_p of K.

Proposition 23. If K is a finite subgroup of $SL(2, R)$ then K is of order $|K| = 2^a3^b$ for some integers $0 \leq a \leq 3$, $0 \leq b \leq 1$.

If K is of even order then the Sylow 2-subgroup H_{2^a} of K is isomorphic to \mathbb{C}_2, \mathbb{C}_4 or the quaternion group $\mathbb{Q}_8 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2g_1 = -g_1g_2 \rangle$ of order 8.

If the order of K is divisible by 3 then the Sylow 3-subgroup H_{3^b} of K is isomorphic to the cyclic group \mathbb{C}_3 of the third roots of unity.

Proof. According to the First Sylow Theorem, if $|K| = p_1^{m_1} \ldots p_k^{m_k}$ for some rational primes $p_j \in \mathbb{N}$ and some $m_j \in \mathbb{N}$, then for any $1 \leq i \leq k$ there is a subgroup $H_{p_j^i} \leq K$ of order $|H_{p_j^i}| = p_j^i$. In particular, any $H_{p_j} = \langle g_{p_j} \rangle \simeq \mathbb{C}_{p_j}$ of prime order p_j, dividing $|K|$ is cyclic and there is an element $g_{p_j} \in K$ of order p_j. By Proposition 15, the order of an element $g \in SL(2, R)$ is $1, 2, 3, 4, 6$ or ∞. As a result, if $g \in SL(2, R)$ is of prime order p then $p = 2$ or 3. In other words, K is of order $|K| = 2^a3^b$ for some non-negative integers a, b.

Suppose that $b \geq 1$ and consider the Sylow subgroup $H_{3^b} \leq K$ of order 3^b. Then any $h \in H_{3^b} \setminus \{I_2\}$ is of order 3 since there is no $g \in SL(2, R)$, whose order is divisible by 9. We claim that $H_{3^b} = \langle h_1 \rangle \simeq \mathbb{C}_3$ is a cyclic group of order 3. Otherwise, $b \geq 2$ and there exists $h_2 \in H_{3^b} \setminus \langle h_1 \rangle$. Note that $h_2h_2 = I_2$ implies $h_2 = h_1^{-j} \in \langle h_1 \rangle$, contrary to the choice of h_2. We are going to show that if $h_1, h_2, h_3h_2 \in SL(2, R)$ are of order 3 then $h_2^2h_2 = I_2$, so that there is no $h_2 \in H_{3^b} \setminus \langle h_1 \rangle$ and $H_{3^b} = \langle h_1 \rangle \simeq \mathbb{C}_3$. According to Proposition 15, $g \in SL(2, R)$ is of order 3 if and only if $\text{tr}(g) = -1$ and g is conjugate to

$$D_g = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}.$$

Similarly, $g \in SL(2, R)$ coincides with the identity matrix I_2 exactly when $\text{tr}(g) = 2$. Thus, we have to check that if $h_1, h_2 \in SL(2, R)$ satisfy $\text{tr}(h_1) = \text{tr}(h_2) = \text{tr}(h_1h_2) = -1$ then $\text{tr}(h_1^2h_2) = 2$. Let

$$D_1 = S^{-1}h_1S = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}$$

be a diagonal form of h_1 for some $S \in GL(2, \mathbb{C})$ and

$$D_2 = S^{-1}h_2S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{C}).$$

33
(More precisely, if \(Q(R) = \mathbb{Q} \) or \(Q(\sqrt{-d}) \) is the fraction field of \(R \) then the eigenvectors of \(h_1 \) have entries from \(Q(R)(\sqrt{-3}) \), so that \(S, D_2 \in Q(R)(\sqrt{-3})_{2 \times 2} \) have entries from \(Q(R)(\sqrt{-3}) = \mathbb{Q}(\sqrt{-3}) \) or \(Q(\sqrt{-d}, \sqrt{-3}) \).) Since the determinant and the trace of a matrix are invariant under conjugation, the statement is equivalent to the fact that if \(\det(D_2) = 1 \) and \(\text{tr}(D_2) = \text{tr}(D_1 D_2) = -1 \) then \(\text{tr}(D_1^2 D_2) = 2 \). Indeed, if \(d = -a - 1 \) and \(\text{tr}(D_1 D_2) = e^{2\pi i} a - e^{-2\pi i} (a + 1) = -1 \) then \(a = e^{2\pi i} \), \(d = e^{-2\pi i} \), whereas \(\text{tr}(D_1^2 D_2) = 2 \). That proves the non-existence of \(h_2 \in H_{3} \setminus \langle h_1 \rangle \) and \(H_{3e} = H_3 = \langle h_1 \rangle \cong \mathbb{C}_3 \).

Suppose that \(K \) is of even order and denote by \(H_{2^n} \) the Sylow 2-subgroup of \(K < SL(2, R) \) of order \(2^n \geq 2 \). Then any \(g \in H_{2^n} \setminus \{I_2\} \) is of order

\[
r \in \{2^i \mid i \in \mathbb{N}\} \cap \{1, 2, 3, 4, 6\} = \{2, 4\}.
\]

Recall from Proposition 15 that there is a unique element \(-I_2\) of \(SL(2, R) \) of order 2 and \(g \in SL(2, R) \) is of order 4 if and only if the trace \(\text{tr}(g) = 0 \). For \(a = 1 \) the Sylow subgroup \(H_2 = \langle -I_2 \rangle \cong \mathbb{C}_2 \) is cyclic of order 2. If \(a = 2 \) then \(H_4 = \langle g \rangle \cong \mathbb{C}_4 \) is cyclic of order 4, since \(SL(2, R) \) has a unique element \(-I_2\) of order 2. From now on, let us assume that \(a \geq 3 \) and fix an element \(g_1 \in H_{2^n} \) of order 4. Due to \(g_1^2 = -I_2 \in \langle g_1 \rangle \), any \(g_2 \in H_{2^n} \setminus \langle g_1 \rangle \) is of order 4 and \(g_2^2 = -I_2 \). Moreover, \(g_1 g_2 \in H_{2^n} \) is of order 4, as far as \(g_1 g_2 = \pm I_2 \) requires \(g_2 = \mp g_1 \in \langle g_1 \rangle \), contrary to the choice of \(g_2 \). We claim that if \(g_1, g_2 \in SL(2, R) \) of order 4 have product \(g_1 g_2 \) of order 4 then they generate a quaternion group

\[
\langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \quad g_2 g_1 = -g_1 g_2 \rangle \cong \mathbb{Q}_8
\]

of order 8. In other words, if \(g_1, g_2 \in R_{2 \times 2} \) have \(\det(g_1) = \det(g_2) = 1 \) and \(\text{tr}(g_1) = \text{tr}(g_2) = \text{tr}(g_1 g_2) = 0 \) then \(g_2 g_1 = -g_1 g_2 \). In particular, if \(g_1, g_2 \in SL(2, R) \) of order 4 have product \(g_1 g_2 \) of order 4 then \(g_2 \not\in \langle g_1 \rangle = \{\pm I_2, \pm g_1\} \). To this end, let

\[
D_1 = S^{-1} g_1 S = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}
\]

be the diagonal form of \(g_1 \) and

\[
D_2 = S^{-1} g_2 S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

for appropriate matrices \(S \) and \(D_2 \) with entries from \(Q(R)(\sqrt{-1}) = \mathbb{Q}(\sqrt{-1}) \) or \(\mathbb{Q}(\sqrt{-d}, \sqrt{-1}) \). The determinant and the trace are invariant under conjugation, so that suffices to show that if \(\det(D_2) = 1 \) and \(\text{tr}(D_2) = \text{tr}(D_1 D_2) = 0 \) then \(D_2 D_1 = -D_1 D_2 \), whereas

\[
g_2 g_1 = (SD_2 S^{-1})(SD_1 S^{-1}) = S(D_2 D_1) S^{-1} =
\]

\[
= S(-D_1 D_2) S^{-1} = -(SD_1 S^{-1})(SD_2 S^{-1}) = -g_1 g_2.
\]

34
Indeed, \(\text{tr}(D_2) = a + d = 0 \) and \(\text{tr}(D_1D_2) = i(a - d) = 0 \) require \(a = d = 0 \). Now, \(\det(D_2) = -bc = 1 \) determines \(c = -\frac{1}{b} \) for some \(b \in \mathbb{Q}(\sqrt{d}, \sqrt{-1}) \) and

\[
D_2D_1 = \begin{pmatrix} 0 & -ib \\ \frac{i}{b} & 0 \end{pmatrix} = -D_1D_2.
\]

Thus, if \(a = 3 \) then the Sylow 2-subgroup of \(K \) is isomorphic to the quaternion group \(\mathbb{Q}_8 \) of order 8,

\[
H_8 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2g_1 = -g_1g_2 \rangle \simeq \mathbb{Q}_8.
\]

There remains to be rejected the case of \(a \geq 4 \). The assumption \(a \geq 4 \) implies the existence of \(g_3 \in H_{2^a} \setminus \langle g_1, g_2 \rangle \). Any such \(g_3 \) is of order 4, together with the products \(g_1g_3 \in H_{2^a} \) for \(1 \leq j \leq 2 \), since \(g_3g_3 = \pm I_2 \) amounts to \(g_3 = \pm g_3^3 \in \langle g_j \rangle \) and contradicts the choice of \(g_3 \). Thus, the subgroups

\[
\langle g_1, g_3 \mid g_1^2 = g_3^2 = -I_2, \ g_3g_1 = -g_1g_3 \rangle \simeq
\]

\[
\langle g_2, g_3, \mid g_2^2 = g_3^2 = -I_2, \ g_3g_2 = -g_2g_3 \rangle \simeq \mathbb{Q}_8
\]

are also isomorphic to \(\mathbb{Q}_8 \). In particular,

\[
D_3 = S^{-1}g_3S = \begin{pmatrix} 0 & b_3 \\ -\frac{1}{b_3} & 0 \end{pmatrix}
\]

with \(b_3 \in \mathbb{Q}(\sqrt{d}, \sqrt{-1})^* \) is subject to

\[
D_3D_2 = \begin{pmatrix} -\frac{b}{b_3} & 0 \\ 0 & -\frac{b}{b_3} \end{pmatrix} = \begin{pmatrix} \frac{b}{b_3} & 0 \\ 0 & \frac{b}{b_3} \end{pmatrix} = -D_2D_3,
\]

whereas \(b_3^2 = -b^2 \) or \(b_3 = \pm ib \). As a result, \(D_3 = D_1D_2 \) and \(g_3 = g_1g_2 \), contrary to the choice of \(g_3 \notin \langle g_1, g_2 \rangle \). Therefore \(a < 4 \) and the Sylow 2-subgroup of a finite group \(K < SL(2, R) \) is \(H_2 \simeq \mathbb{C}_2 \), \(H_4 \simeq \mathbb{C}_4 \) or \(H_8 \simeq \mathbb{Q}_8 \).

\[\square\]

Proposition 24. Any finite subgroup \(K \) of \(SL(2, R) \) is isomorphic to one of the following:

\[
K_1 = \{I_2\},
\]

\[
K_2 = \langle -I_2 \rangle \simeq \mathbb{C}_2,
\]

\[
K_3 = \langle g_1 \rangle \simeq \mathbb{C}_4 \text{ for some } g_1 \in SL(2, R) \text{ with } \text{tr}(g_1) = 0,
\]

\[
K_4 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2g_1g_2 = g_1 \rangle \simeq \mathbb{Q}_8,
\]

\[
K_5 = \langle g_3 \rangle \simeq \mathbb{C}_3 \text{ for some } g_3 \in SL(2, R) \text{ with } \text{tr}(g_3) = -1,
\]

\[
K_6 = \langle g_4 \rangle \simeq \mathbb{C}_6 \text{ for some } g_4 \in SL(2, R) \text{ with } \text{tr}(g_4) = 1
\]

35
\[K_7 = \langle g_1, g_4 \mid g_1^2 = g_4^3 = -I_2, \ g_4 g_1 g_4 = g_1 \rangle \cong \mathbb{Q}_{12} \]

for some \(g_1, g_4 \in SL(2, R) \) with \(\text{tr}(g_1) = 0, \ \text{tr}(g_4) = 1, \)

\[K_8 = \langle g_1, g_2, g_3 \mid g_1^2 = g_2^2 = -I_2, \ g_3^3 = I_2, \ g_2 g_1 = -g_1 g_2, \]

\[g_3 g_1 g_3^{-1} = g_2, \ g_3 g_2 g_3^{-1} = g_1 g_2 \rangle \cong \text{SL}(2, \mathbb{F}_3) \]

for some \(g_1, g_2, g_3 \in SL(2, R), \ \text{tr}(g_1) = \text{tr}(g_2) = 0, \ \text{tr}(g_3) = -1, \) where \(\mathbb{Q}_8 \) denotes the quaternion group of order 8, \(\mathbb{Q}_{12} \) stands for the dicyclic group of order 12 and \(\text{SL}(2, \mathbb{F}_3) \) is the special linear group over the field \(\mathbb{F}_3 \) with three elements.

Proof. By Proposition 23, \(K \) is of order 1, 2, 3, 6, 12 or 24. The only subgroup \(K < \text{SL}(2, R) \) of order 1 is \(K = K_1 = \{I_2\} \). Since \(-I_2\) is the only element of \(\text{SL}(2, R) \) of order 2, the group \(K = K_2 = \langle -I_2 \rangle \cong \mathbb{C}_2 \) is the only cyclic subgroup of \(\text{SL}(2, R) \) of order 2. Any subgroup \(K < \text{SL}(2, R) \) of order 4 is cyclic or \(K = K_3 = \langle g_1 \rangle \) for some \(g_1 \in \text{SL}(2, R) \) with \(\text{tr}(g_1) = 0 \), because \(\text{SL}(2, R) \) has a unique element \(-I_2\) of order 2. Proposition 15 has established the existence of elements \(g_1 \in \text{SL}(2, \mathbb{Z}) \leq \text{SL}(2, R) \) of order 4.

If \(K < \text{SL}(2, R) \) is a subgroup of order 8 then it coincides with its Sylow 2-subgroup

\[K = H_8 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2 g_1 = -g_1 g_2 \rangle = K_4 \cong \mathbb{Q}_8, \]

isomorphic to the quaternion group \(\mathbb{Q}_8 \) of order 8. Note that there is a realization

\[\mathbb{Q}_8 \cong \langle D_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ D_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle < \text{SL}(2, \mathbb{Z}[i]) \]

as a subgroup of \(\text{SL}(2, \mathbb{Z}[i]) \). In general,

\[D_j = \begin{pmatrix} a_j & b_j \\ c_j & -a_j \end{pmatrix} \in \text{SL}(2, R) \]

amount to \(a_j^2 + b_j c_j = -1 \). The anti-commuting relation \(g_2 g_1 = -g_1 g_2 \) is equivalent to \(2a_1 a_2 + b_1 c_2 + b_2 c_1 = 0 \). Therefore \(K_4 = \langle g_1, g_2 \rangle < \text{SL}(2, R) \) is a realization of \(\mathbb{Q}_8 \) if and only if \(a_j, b_j, c_j \in R \) are subject to

\[
\begin{align*}
 a_1^2 + b_1 c_1 &= -1 \\
 a_2^2 + b_2 c_2 &= -1 \\
 2a_1 a_2 + b_1 c_2 + b_2 c_1 &= 0
\end{align*}
\]

The existence of a solution of (12) in an arbitrary \(R = R_{-d,f} = \mathbb{Z} + f\mathcal{O}_{-d} = \mathbb{Z} + f\omega_{-d}\mathbb{Z} \) is an open problem.

If \(|K| = 3 \) then \(K = K_5 = \langle g_3 \rangle \cong \mathbb{C}_3 \) for some \(g_3 \in \text{SL}(2, R) \) with \(\text{tr}(g_3) = -1 \).
From now on, let us assume that K is of order $|K| = 2^a \cdot 3$ for some $1 \leq a \leq 3$ and consider some Sylow subgroups $H_2, H_3 = \langle g_4 \rangle \cong \mathbb{C}_3$ of K. We claim that the product

$$H_{2^a}H_3 = \{gg_4^i \mid g \in H_{2^a}, \ 0 \leq i \leq 2\}$$

depletes K. More precisely, $H_{2^a} \cap H_3 = \{I_2\}$, because 2^a and 3 are relatively prime. Therefore

$$H_{2^a}H_3/H_{2^a} = H_{2^a} \cup H_{2^a}g_4 \cup H_{2^a}g_4^2$$

is a right coset decomposition of the subset $H_{2^a}H_3 \subseteq K$ modulo H_{2^a}. Due to the disjointness of this decomposition, one has $|H_{2^a}H_3| = 3|H_{2^a}| = 3.2^a = |K|$. Therefore, the subset $H_{2^a}H_3$ of K coincides with K and $K = H_{2^a}H_3$ is a product of its Sylow subgroups.

If $K = H_2H_3 = \langle -I_2 \rangle \langle g_3 \rangle$ for some $g_3 \in SL(2, R)$ with $\text{tr}(g_3) = -1$ then $\pm I_2$ commute with g_3^j for all $0 \leq j \leq 2$ and the group K is abelian. Thus, $K = \langle -g_3 \rangle \cong \mathbb{C}_6$ is a cyclic group of order 6, generated by $-g_3 \in SL(2, R)$ with $\text{tr}(-g_3) = 1$.

For $K = H_4H_3 = \langle g_1 \rangle \langle g_3 \rangle$ with $g_1, g_3 \in SL(2, R)$ of $\text{tr}(g_1) = 0$, $\text{tr}(g_3) = -1$, note that $g_4 = -g_3 \in SL(2, R)$ is of order 6. Then $g_4^3 = -I_2 = g_1^2$, because $-I_2 \in SL(2, R)$ is the only element of order 2. We claim that $g_1, g_4 \in SL(2, R)$ are subject to $g_4g_1g_4 = g_1$. To this end, let $S \in \mathbb{Q}(R)(\sqrt{-d}, \sqrt{-3})_{2 \times 2}$ be a matrix, whose columns are eigenvectors of g_1. Then

$$D_4 = S^{-1}g_4S = \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & e^{-\frac{\pi i}{3}} \end{pmatrix}$$

and

$$D_1 = S^{-1}g_1S = \begin{pmatrix} a_1 & b_1 \\ c_1 & -a_1 \end{pmatrix} \text{ with } a_1^2 + b_1c_1 = -1$$

generate the subgroup $K^o = S^{-1}KS \cong K$. It suffices to check that $D_4D_1D_4 = D_1$, because then $g_4g_1g_4 = (SD_4S^{-1})(SD_1S^{-1})(SD_4S^{-1}) = S(D_4D_1D_4)S^{-1} = SD_1S^{-1} = g_1$ and

$$K = \langle g_1, g_3 \rangle = \langle g_1, g_4 = -g_3 \mid g_1^2 = g_4^3 = -I_2, \ g_4g_1g_4 = g_1 \rangle \cong \mathbb{Q}_{12}$$

is isomorphic to the dicyclic group \mathbb{Q}_{12} of order 12. The group $K^o = \langle D_1, D_4 \rangle \cong K$ of order 12 has a cyclic subgroup $\langle D_4 \rangle \cong \mathbb{C}_6$ of order 6. The index $[K^o : \langle D_4 \rangle] = 2$, so that $\langle D_4 \rangle$ is a normal subgroup of K^o and $D_1D_4D_4^{-1} \in \langle D_4 \rangle$ is an element of order 6. More precisely, $D_1D_4D_4^{-1} = D_4$ or $D_1D_4D_4^{-1} = D_4^{-1} = D_4$. If $D_1D_4 = D_4D_1$ then $D_1D_4 \in K^o$ is of order 12, as far as $(D_1D_4)^{12} = (D_1^4)^3(D_4^3)^2 = I_2^3I_2^2 = I_1$, $(D_1D_4)^6 = D_1^2 = -I_2 \neq I_2$, $(D_1D_4)^4 = D_4^3 = -D_4 \neq I_2$, whereas $D_1D_4, (D_1D_4)^2, (D_1D_4)^3 \notin \{I_2\}$. Consequently, $D_1D_4 = -D_4^3D_1$, so that $D_1D_4D_4 = -D_4^3D_1D_1$ and $K \cong K^o \cong \mathbb{Q}_{12}$. For instance, the subgroup

$$\langle D_1 \rangle = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ D_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \text{ and } D_1^2 = D_4^3 = -I_2, \ D_1D_4D_4^{-1} = D_4^{-1}$$

37
of $SL(2, O_{-3})$ realizes Q_{12} as a subgroup of $SL(2, O_{-3})$. The existence of $Q_{12} \simeq K < \text{SL}(2, R)$ for an arbitrary R is an open problem.

There remains to be shown that any subgroup $K = H_8H_3 = \langle g_1, g_2, g_3 \rangle \simeq \mathbb{Q}_8 \mathbb{C}_3$ of $\text{SL}(2, R)$ of order 24 is isomorphic to the special linear group $K_8 \simeq SL(2, \mathbb{F}_3)$ over \mathbb{F}_3. In other words, any $K < \text{SL}(2, R)$ of order $|K| = 24$ can be generated by such $g_1, g_2, g_3 \in \text{SL}(2, R)$ that the subgroup $\langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2g_1 = -g_1g_2 \rangle \simeq \mathbb{Q}_8$ is isomorphic to the quaternion group Q_8 of order 8, g_3 is of order 3 and $g_3g_1g_3^{-1} = g_1g_2g_3g_2^{-1} = g_1g_2$.

First of all, the Sylow 2-subgroup $H_8 \simeq \mathbb{Q}_8$ of K is normal. More precisely, by the Third Sylow Theorem, the number $n_2 \in \mathbb{N}$ of the Sylow 2-subgroups of K (i.e., the number n_2 of the subgroups of K of order 8) divides $|K| = 24$ and $n_2 \equiv 1 \pmod{2}$. Therefore $n_2 = 1$ or $n_2 = 2$. By Second Sylow Theorem, all Sylow 2-subgroups are conjugate to each other, so that $n_2 = 1$ exactly when $H_8 = \langle g_1, g_2 \rangle \simeq \mathbb{Q}_8$ is a normal subgroup of K. Let us assume that $n_2 = 3$ and denote by ν_i the number of the elements $g \in K$ of order i. Due to $-I_2 \in H_8 = \langle g_1, g_2 \rangle < K$, one has $\nu_1 = 1$, $\nu_2 = 1$. Note that $g \in K$ is of order 3 if and only if $-g \in K$ is of order 6, so that $\nu_6 = \nu_3$. By the Third Sylow Theorem, the number $n_3 \in \mathbb{N}$ of the Sylow 3-subgroups of K divides $|K| = 24$ and $n_3 \equiv 1 \pmod{3}$. Therefore $n_3 = 1$ or $n_3 = 4$.

If $n_3 = 1$ and there is a unique normal subgroup $H_3 = \langle g_3 \rangle \simeq \mathbb{C}_3$ of K of order 3, then $g_3^jg_3^{-j} \in \langle g_3, g_3^{-1} \rangle \subset \langle g_3 \rangle$ for $j = 1$ and $j = 2$. If $g_3^jg_3^{-j} = g_3$ then $g_3g_3 = g_3g_3$ for g_3 of order 4 and g_3 of order 3, so that $g_3g_3 \in K$ is of order 12, contrary to the non-existence of an element of $SL(2, R)$ of order 12. Therefore $g_1g_3g_1^{-1} = g_3^2$, $g_2g_3g_2^{-1} = g_3$, whereas

$$(g_1g_2)g_3(g_1g_2)^{-1} = g_1(g_2g_3g_2^{-1})g_1^{-1} = g_1g_3^2g_1^{-1} = (g_1g_3g_1)^{-1}2 = (g_3^2)^2 = g_3$$

and g_1g_2 of order 4 commutes with g_3 of order 3. Thus, $\langle g_1, g_2, g_3 \rangle \simeq \mathbb{Q}_8$ is of order 12, which is an absurd. That assumes the assumption $n_3 = 1$ and proves that $n_3 = 4$.

Let $H_{3,j} = \langle g_{3,j} \rangle \simeq \mathbb{C}_3$, $1 \leq j \leq 4$ be the four subgroups of K of order 3. Then $H_{3,i} \cap H_{3,j} = \{I_2\}$ for all $1 \leq i < j \leq 4$, as far as any $g \in H_{3,i} \setminus \{I_2\}$ generates $H_{3,i}$. As a result, $\bigcup_{i=1}^{4} H_{3,i}$ and K contain 8 different elements $g_{3,i}, g_{3,i}^{-1}$, $1 \leq i \leq 4$ of order 3 and $\nu_6 = \nu_3 = 8$. Thus,

$$24 = |K| = \nu_1 + \nu_2 + \nu_3 + \nu_4 + \nu_6 = 18 + \nu_4,$$

so that K has $\nu_4 = 6$ elements of order 4. Since any Sylow 2-subgroup

$$H_8 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2g_1 = -g_1g_2 \rangle \simeq \mathbb{Q}_8$$

of K contains six elements $\pm g_1, \pm g_3, \pm g_1g_2$ of order 4, there cannot be more than one H_8. In other words, $n_3 = 1$ and H_8 is a normal subgroup of K.

The above considerations show that

$$K = H_8 \times H_3 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2g_1 = -g_1g_2 \rangle \times \langle g_3 \mid g_3^3 = I_2 \rangle \simeq \mathbb{Q}_8 \times \mathbb{C}_3$$

38
is a semi-direct product of \mathbb{Q}_8 and \mathbb{C}_3. Up to an isomorphism, K is uniquely determined by the group homomorphism

$$\varphi_K : H_3 \rightarrow \text{Aut}(H_8),$$

$$\varphi_K(g_j^k)(\pm g_l^k g_3^l) = g_j^k(\pm g_l^k g_3^l)g_3^{-1} \quad \text{for} \quad \forall \pm g_l^k g_3^l \in H_8, \quad 0 \leq k, l \leq 1.$$

Since $H_3 = \langle g_3 \rangle \cong \mathbb{C}_3$ is cyclic, φ_K is uniquely determined by $\varphi_K(g_3) \in \text{Aut}(H_8)$. On the other hand, H_3 is generated by g_1, g_2, so that suffices to specify $\varphi_K(g_3)(g_j) = g_3g_jg_3^{-1} \in H_8$ for $1 \leq j \leq 2$, in order to determine φ_K. If the cyclic group $\langle g_1 \rangle \cong \mathbb{C}_4$ is normalized by g_3 then $g_3g_1g_3^{-1} \in \{ \pm g_1 \}$, as an element of order 4. In the case of $g_3g_1g_3^{-1} = g_1$, the element $g_1 \in K$ of order 4 commutes with the element $g_3 \in K$ of order 3 and their product $g_1g_3 \in K$ is of order 12. The lack of $g \in SL(2, R)$ of order 12 requires $g_3g_1g_3^{-1} = -g_1$. Now,

$$g_3^2g_1g_3^{-2} = g_3(g_3g_1g_3^{-1})g_3^{-1} = g_3(-g_1)g_3^{-1} = g_1$$

is equivalent to $g_3^2g_1 = g_1g_3^2$ and the product $g_1g_3^2 \in K$ of $g_1 \in K$ of order 4 with $g_3^2 \in K$ of order 3 is an element of order 12. The absurd justifies that neither of the cyclic subgroups $\langle g_1 \rangle \cong \langle g_2 \rangle \cong \langle g_1g_2 \rangle \cong \mathbb{C}_4$ of order 4 of H_8 is normalized by g_3. Thus, an arbitrary $g_1 \in H_8 \cong \mathbb{Q}_8$ of order 4 is completed by $g_2 := g_3g_1g_3^{-1} \in H_8 \setminus \langle g_1 \rangle$ of order 4 to a generating set of $H_8 \cong \mathbb{Q}_8$. Then

$$g_3^2g_1g_3^{-2} = g_3(g_3g_1g_3^{-1})g_3^{-1} = g_3g_2g_3^{-1} \in H_8 \setminus (\langle g_1 \rangle \cup \langle g_2 \rangle) = \{ g_1g_2, g_2g_1 \}$$

specifies that either $g_3g_2g_3^{-1} = g_1g_2$ or $g_3g_2g_3^{-1} = g_2g_1$. If $g_3g_2g_3^{-1} = g_2g_1$, we replace the generator g_3 of K by $h_3 = g_3^2$ and note that $h_3g_1h_3^{-1} = g_2g_1$. Now, $h_1 := g_1$ and $h_2 := g_2g_1$ generate $H_8 = \langle h_1, h_2 \mid h_1^2 = h_2^2 = -I_2, h_2h_1 = -h_1h_2 \rangle$ and satisfy $h_3h_1h_3^{-1} = h_2$,

$$h_3h_2h_3^{-1} = g_3[(g_3g_2g_3^{-1})(g_3g_1g_3^{-1})]g_3^{-1} = g_3(g_2g_1g_2)g_3^{-1} = g_3g_1g_3^{-1} =$$

$$= g_2 = -(g_2g_1)g_1 = -h_2h_1 = h_1h_2.$$

Thus, the group

$$K' = \langle g_1, g_2, g_3 \mid g_1^2 = g_2^2 = -I_2, g_2g_1 = -g_1g_2, g_3^2 = I_2, g_3g_1g_3^{-1} = g_2, g_3g_2g_3^{-1} = g_2g_1 \rangle$$

is isomorphic ro the group

$$K = \langle g_1, g_2, g_3 \mid g_1^2 = g_2^2 = -I_2, g_2g_1 = -g_1g_2, g_3^2 = I_2, g_3g_1g_3^{-1} = g_2, g_3g_2g_3^{-1} = g_1g_2 \rangle.$$

We shall realize $SL(2, \mathbb{F}_3)$ as a subgroup $K_8' = \langle D_1, D_2, D_3 \rangle$ of $SL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$. The existence of subgroups $SL(2, \mathbb{F}_3) \cong K_8' \subset SL(2, R)$ is an open problem. Towards the construction of K_8', let us choose

$$D_j = \begin{pmatrix} a_j & b_j \\ c_j & -a_j \end{pmatrix} \quad \text{with} \quad a_j^2 + b_jc_j = -1 \quad \text{for} \quad 1 \leq j \leq 2 \quad \text{and}$$

39
$$D_3 = \begin{pmatrix}
e^{\frac{2\pi i}{3}} & 0 \\
0 & e^{-\frac{2\pi i}{3}}
\end{pmatrix}$$

from $SL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$. After computing

$$D_3D_jD_3^{-1} = \begin{pmatrix}a_j & e^{-\frac{2\pi i}{3}}b_j \\
e^{\frac{2\pi i}{3}}c_j & -a_j\end{pmatrix} \text{ for } 1 \leq j \leq 2,$$

observe that $D_3D_1D_3^{-1} = D_2$ reduces to

$$\begin{pmatrix}a_2 = a_1 \\
b_2 = e^{-\frac{2\pi i}{3}}b_1 \\
c_2 = e^{\frac{2\pi i}{3}}c_1\end{pmatrix}.$$

The relation $D_2D_1 = -D_1D_2$ is equivalent to $2a_1a_2 + b_1c_2 + b_2c_1 = 0$ and implies that $2a_1^2 = b_1c_1$. Now,

$$D_3D_2D_3^{-1} = \begin{pmatrix}a_1 & e^{\frac{2\pi i}{3}}b_1 \\
e^{-\frac{2\pi i}{3}}c_1 & -a_1\end{pmatrix} = \begin{pmatrix}\sqrt{-3}a_1 & \sqrt{-3}e^{\frac{2\pi i}{3}}a_1b_1 \\
\sqrt{-3}e^{-\frac{2\pi i}{3}}a_1c_1 & -\sqrt{-3}a_1^2\end{pmatrix} = D_1D_2$$

is tantamount to

$$\begin{pmatrix}a_1(1 - \sqrt{-3}a_1) = 0 \\
b_1(1 - \sqrt{-3}a_1) = 0 \\
c_1(1 - \sqrt{-3}a_1) = 0\end{pmatrix}$$

and specifies that $a_1 = \frac{\sqrt{-3}}{3}$. Namely, the assumption $a_1 \neq -\frac{\sqrt{-3}}{3}$ forces $a_1 = b_1 = c_1 = 0$, whereas $\det(D_1) = 0$, contrary to the choice of $D_1 \in SL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$.

As a result, $b_1 \neq 0$, $c_1 = -\frac{2}{3b_1}$ and

$$D_1 = \begin{pmatrix}-\frac{\sqrt{-3}}{3} & b_1 \\
-\frac{2}{3b_1} & \frac{\sqrt{-3}}{3}\end{pmatrix}, \quad D_2 = \begin{pmatrix}-\frac{\sqrt{-3}}{3} & e^{-\frac{2\pi i}{3}}b_1 \\
e^{\frac{2\pi i}{3}}c_1 & \frac{\sqrt{-3}}{3}\end{pmatrix}, \quad D_3 = \begin{pmatrix}e^{\frac{2\pi i}{3}} & 0 \\
0 & e^{-\frac{2\pi i}{3}}\end{pmatrix}$$

generate a subgroup $SL(2, \mathbb{F}_3) \simeq K_8^\circ < SL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3})).$

\[\square\]

Corollary 25. If the finite subgroup K of $SL(2, R)$ is not isomorphic to the dicyclic group

$$K_7 = \langle g_1, g_4 \mid g_1^2 = g_4^3 = -I_2, \quad g_4g_1g_4 = g_1 \rangle = \langle g_1, g_3 = -g_4 \mid g_1^2 = -I_2, \quad g_3^2 = I_2, \quad g_3g_1g_3^{-1} = g_1g_2 \rangle \simeq \mathbb{Q}_{12}$$

of order 12 then K is isomorphic to a subgroup of the special linear group

$$K_8 = \langle g_1, g_2, g_3 \mid g_1^2 = g_2^2 = -I_2, \quad g_3^2 = I_2, \quad g_2g_1 = -g_1g_2, \quad g_3g_1g_3^{-1} = g_2, \quad g_3g_2g_3^{-1} = g_1g_2 \rangle \simeq SL(2, \mathbb{F}_3)$$

over the field \mathbb{F}_3 with three elements.
Proof. According to Proposition 24, any finite subgroup \(K < SL(2, R) \) is isomorphic to some of the groups \(K_1, \ldots, K_8 \). Thus, it suffices to establish that any \(K_j, 1 \leq j \leq 6 \) is isomorphic to a subgroup of \(K_8 \). Note that \(K_1 = \{I_2\} \subset K_8 \) and \(K_2 = \{-I_2\} \subset K_8 \) are subgroups of \(K_8 \). The generator \(g_1 \) of \(K_8 \) is of order 4, so that any subgroup \(K_3 \cong \mathbb{C}_4 \) of \(SL(2, R) \) is isomorphic to the subgroup \(\langle g_1 \rangle \) of \(K_8 \). In the proof of Proposition 24 we have seen that \(K_8 \) has a normal Sylow 2-subgroup

\[
H_8 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_2g_1 = -g_1g_2 \rangle \cong \mathbb{Q}_8,
\]
isomorphic to the quaternion group \(\mathbb{Q}_8 \cong \mathbb{K}_4 \) of order 8. The generator \(g_3 \) of \(K_8 \) provides a subgroup \(\langle g_3 \rangle \cong \mathbb{C}_3 \cong \mathbb{K}_5 \) of \(K_8 \). The product \(-I_2 g_3 \) of the commuting elements \(-I_2 \in K_8 \) or order 2 and \(g_3 \in K_8 \) of order 3 is an element \(-g_3 \in K_8 \) of order 6, so that \(K_6 \cong \mathbb{C}_6 \) is isomorphic to the subgroup \(\langle -g_3 \rangle \) of \(K_8 \).

\(\square \)

Towards the classification of the finite subgroups of \(GL(2, R) \), we proceed with the following:

Lemma 26. Let \(H \) be a finite subgroup of \(GL(2, R) \). Then

(i) \(\det(H) \) is a cyclic subgroup of \(R^* \);

(ii) \(H \) is a product \(H = [H \cap SL(2, R)] \langle h_o \rangle \) of its normal subgroup \(H \cap SL(2, R) \) and any \(\mathbb{C}_r \cong \langle h_o \rangle \subseteq H \) with \(\det(H) = \langle \det(h_o) \rangle \) \cong \(\mathbb{C}_s \);

(iii) the order \(s \) of \(\det(H) = \langle \det(h_o) \rangle \) divides the order \(r \) of \(h_o \in H \) and

\[
[H \cap SL(2, R)] \cap \langle h_o \rangle = \langle h_o^s \rangle \cong \mathbb{C}_r;
\]

(iv) \(H \) is of order \(s | [H \cap SL(2, R)] \);

(v) \(s = r \) if and only if \(H = [H \cap SL(2, R)] \ltimes \langle h_o \rangle \) is a semi-direct product.

Proof. (i) The image \(\det(H) \) of the group homomorphism \(\det : H \to R^* \) is a subgroup of \(R^* \). As far as the units group \(R^* \) of the endomorphism ring \(R \) of \(E \) is cyclic, its subgroup \(\det(H) \) is cyclic, as well.

(ii) If \(\det(h_o) \) is a generator of the cyclic subgroup \(\det(H) < R^* \) then one can represent \(H = [H \cap SL(2, R)] \langle h_o \rangle \). The inclusion \([H \cap SL(2, R)] \langle h_o \rangle \subseteq H \) is clear by the choice of \(h_o \in H \). For the opposite inclusion, note that any \(h \in H \) with \(\det(h) = (\det(h_o))^m \) for some \(m \in \mathbb{Z} \) is associated with \(hh_o^{-m} \in H \cap SL(2, R) \), so that \(h = (hh_o^{-m})h_o^m \in [H \cap SL(2, R)] \langle h_o \rangle \) and \(H \subseteq [H \cap SL(2, R)] \langle h_o \rangle \).

(iii) If \(h_o \in H \) is of order \(r \) then \(h_o^s = I_2 \) and \(\det(h_o)^s = 1 \). Therefore the order \(s \) of \(\det(h_o) \in R^* \) divides \(s \). Note that \(h_o^s \in [H \cap SL(2, R)] \cap \langle h_o \rangle \), as far as \(\det(h_o^s) = \det(h_o)^s = 1 \). Therefore \(\langle h_o^s \rangle \) is a subgroup of \([H \cap SL(2, R)] \cap \langle h_o \rangle \). Conversely, any \(h_o^x \in [H \cap SL(2, R)] \cap \langle h_o \rangle \) has \(\det(h_o^x) = \det(h_o)^x = 1 \), so that \(s \) divides \(x \) and \(h_o^x \in \langle h_o^s \rangle \). That justifies \([H \cap SL(2, R)] \cap \langle h_o \rangle \subseteq \langle h_o^s \rangle \) and \([H \cap SL(2, R)] \cap \langle h_o \rangle = \langle h_o^s \rangle \). The order of \(\langle h_o^s \rangle \) and \(h_o^s \) is \(\frac{s}{r} \), since \(s \) divides \(r \).
(iv) It suffices to show that

$$H = \cup_{j=0}^{s-1} [H \cap SL(2, R)] h_o^j$$

is the coset decomposition of H with respect to its normal subgroup $H \cap SL(2, R)$, in order to conclude that the order $|H|$ of H is s times the order $|H \cap SL(2, R)|$ of $H \cap SL(2, R)$. The inclusion $H \supseteq \cup_{j=0}^{s-1} [H \cap SL(2, R)] h_o^j$ is clear by the choice of $h_o \in H$. According to $H = \langle H \cap SL(2, R) \rangle \langle h_o \rangle$, any element of H is of the form $h = gh_o^m$ for some $g \in H \cap SL(2, R)$ and $m \in \mathbb{Z}$. If $m = sq + r_o$ is the division of m by s with residue $0 \leq r_o \leq s - 1$ then $h = [g(h_o^s)^q]h_o^r \in \langle H \cap SL(2, R) \rangle h_o^s$, due to $h_o \in H \cap SL(2, R)$. Therefore $H \subseteq \bigcup_{j=0}^{s-1} [H \cap SL(2, R)] h_o^j$ and $H = \bigcup_{j=0}^{s-1} [H \cap SL(2, R)] h_o^j$.

The cosets $[H \cap SL(2, R)] h_o^i$ and $[H \cap SL(2, R)] h_o^j$ are mutually disjoint for any $0 \leq i < j \leq s - 1$, because the assumption $g_1 h_i = g_2 h_o^j$ for $g_1, g_2 \in H \cap SL(2, R)$ implies that $h_o^{-i} = g_2^{-1} g_1 \in \langle H \cap SL(2, R) \rangle \langle h_o \rangle = \langle h_o^s \rangle$. As a result, s divides $0 < j - i < s$, which is an absurd.

(v) According to (iii), the order s of $\det(h_o)$ divides the order r of h_o. On the other hand, $h_o^s = I_2$ exactly when r divides s, so that $h_o^s = I_2$ is equivalent to $r = s$. Thus, $r = s$ exactly when

$$[H \cap SL(2, R)] \cap \langle h_o \rangle = \{I_2\}.$$

As far as the product of the normal subgroup $H \cap SL(2, R)$ and the subgroup $\langle h_o \rangle$ is the entire H, one has a semi-direct product $H = [H \cap SL(2, R)] \rtimes \langle h_o \rangle$ if and only if $r = s$.

\[\square\]

Lemma 27. Let $H = \langle H \cap SL(2, R) \rangle \langle h_o \rangle$ be a finite subgroup of $GL(2, R)$ for $h_o \in H$ of order r with $\det(H) = \langle \det(h_o) \rangle \simeq \mathbb{C}_s$ and $H \cap SL(2, R)$ be generated by $g_0 = h_o^s, g_1, \ldots, g_t$. Then $H \cap SL(2, R)$, r and

$$h_o g_i h_o^{-1} \in H \cap SL(2, R) \quad \text{for all} \quad 1 \leq i \leq t$$

determine H up to an isomorphism.

Proof. By the proof of Lemma 26 (iv), H has a coset decomposition

$$H = \cup_{j=0}^{s-1} [H \cap SL(2, R)] h_o^j$$

with respect to its normal subgroup $H \cap SL(2, R)$. Therefore, the group structures of $H \cap SL(2, R)$ and $\langle h_o \rangle \simeq \mathbb{C}_r$, together with the multiplication rule for $h_1 h_o^i, h_2 h_o^j \in H$ with $h_1, h_2 \in H \cap SL(2, R)$ and $0 \leq i, j \leq s - 1$ determine the group H up to an isomorphism. Let us represent $h_1 = g_{j_1}^{a_1} g_{j_2}^{a_2} \cdots g_{j_k}^{a_k}$ and $h_2 = g_{j_1}^{b_1} g_{j_2}^{b_2} \cdots g_{j_k}^{b_k}$ as words in the alphabet $g_0 = h_o^s, g_1, \ldots, g_t$ with some integral exponents $a_p, b_q \in \mathbb{Z}$. (The group H is finite, so that any g_i is of finite order r_i and one can reduce the exponent of g_i to a residue modulo r_i.) In order to determine the product $(h_1 h_o^i)(h_2 h_o^j)$ as an element
of $H = \bigcup_{j=0}^{s-1} \langle g_0, g_1, \ldots, g_t \rangle h_o^j$, it suffices to specify $g'_i \in H \cap SL(2, R) = \langle g_0, g_1, \ldots, g_t \rangle$ with $h_o g_i = g'_i h_o$ for all $0 \leq i \leq t$. That allows to move gradually h'_o to the end of $(h_1 h_o)(h_2 h'_o)^j$, producing $h_1 h_2 h_{o+j} \in [H \cap SL(2, R)] h_o^{i+j(\text{mod} s)}$ for an appropriate $h'_o \in H \cap SL(2, R)$. In other words, the group structures of $H \cap SL(2, R)$ and $\langle h_o \rangle \simeq \mathbb{C}_r$, together with the conjugates $g'_i = h_o g_i h_o^{-1}$ of g_i determine the group multiplication in H. Note that $h_o g_i h_o^{-1} = g_o$, since $g_0 = h_o$ commutes with h_o. The conjugates $g'_i = h_o g_i h_o^{-1}$ with $1 \leq i \leq t$ belong to the normal subgroup $H \cap SL(2, R) \ni g_i$ of H and have the same orders r_i as g_i.

Any finite subgroup $H = [H \cap SL(2, R)] \langle h_o \rangle$ of $GL(2, R)$ with determinant $\det(H) = \langle \det(h_o) \rangle \simeq \mathbb{C}_s$ has a conjugate

$$S^{-1}HS = \{S^{-1}[H \cap SL(2, R)]S\} \langle S^{-1}h_oS \rangle = [S^{-1}HS \cap SL(2, \mathbb{C})] \langle S^{-1}h_oS \rangle$$

with a diagonal matrix $S^{-1}h_oS$. More precisely, if R is a subring of the integers ring \mathcal{O}_{-d} of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$ and $\lambda_1 = \lambda_1(h_o)$, $\lambda_2 = \lambda_2(h_o)$ are the eigenvalues of h_o, then there exists a basis

$$v_1 = \begin{pmatrix} s_{11} \\ s_{21} \end{pmatrix}, \quad v_2 = \begin{pmatrix} s_{12} \\ s_{22} \end{pmatrix} \quad \text{of} \quad \mathbb{C}^2,$$

consisting of eigenvectors v_j of h_o, associated with the eigenvalues $\lambda_j = \lambda_j(h_o)$. This is due to the finite order of h_o, because the Jordan block

$$J = \begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{pmatrix} \quad \text{with} \quad \lambda_1 \in \mathbb{C}^*$$

is of infinite order in $GL(2, \mathbb{C})$. The matrix $S = (s_{ij})_{i,j=1}^2$ with columns v_1, v_2 is nonsingular and its entries belong to the extension $\mathbb{Q}((\sqrt{-d}, \lambda(h_o)) = \mathbb{Q}(\sqrt{-d}, \lambda_1(h_o))$ of $\mathbb{Q}(\sqrt{-d})$ by some of the eigenvalues of h_o. Making use of the classification of $h_o \in GL(2, R)$ of finite order r and $\det(h_o) \in R^*$ of order s, done in section 2, one determines explicitly the field $F_{-d}^{(s,r)} = \mathbb{Q}(\sqrt{-d}, \lambda_1(h_o))$, obtained from $\mathbb{Q}(\sqrt{-d})$ by adjoining an eigenvalue $\lambda_1(h_o)$ of $h_o \in H$. The group

$$S^{-1}HS = [S^{-1}HS \cap SL(2, \mathbb{C})] \langle S^{-1}h_oS \rangle$$

has a diagonal generator $D_o = S^{-1}h_oS$ and the conjugates

$$(S^{-1}h_oS)(S^{-1}g_iS)(S^{-1}h_oS)^{-1} = S^{-1}(h_o g_i h_o^{-1})S$$

are easier to be computed.

The next lemma collects the fields $F_{-d}^{(s,r)}$.

43
Lemma 28. Let $H = [H \cap SL(2, R)](h_o)$ be a finite subgroup of $GL(2, R)$ with $h_o \in H$ of order r, $\det(h_o) \in R^*$ of order s and $F_{-d}^{(s,r)}$ be the number field

$$F_{-d}^{(s,r)} = \begin{cases}
\mathbb{Q}(\sqrt{-d}) & \text{for } s = r = 2, \\
\mathbb{Q}(i) & \text{for } s \in \{2, 4\}, r = 4, \\
\mathbb{Q}(\sqrt{-3}) & \text{for } (s, r) = (2,6) \text{ or } s \in \{3, 6\}, \\
\mathbb{Q}(\sqrt{2}, i) & \text{for } s \in \{2, 4\}, r = 8, \\
\mathbb{Q}(\sqrt{3}, i) & \text{for } s = 2, r = 12.
\end{cases}$$

Then there exists a matrix $S \in GL(2, F_{-d}^{(s,r)})$ such that

$$D_o = S^{-1}h_o S = \begin{pmatrix} \lambda_1(h_o) & 0 \\
0 & \lambda_2(h_o) \end{pmatrix}$$

is diagonal and

$$H^o = S^{-1}HS = [S^{-1}HS \cap SL(2, F_{-d}^{(s,r)})](D_o)$$

is a subgroup of $GL(2, F_{-d}^{(s,r)})$, isomorphic to H.

Summarizing the results of section 2, one obtains also the following

Corollary 29. If $h_o \in GL(2, R) \setminus SL(2, R)$ is of order r with $\det(h_o) \in R^*$ of order s and eigenvalues $\lambda_1(h_o), \lambda_2(h_o)$, then

$$\frac{\lambda_1(h_o)}{\lambda_2(h_o)} \in \{ \pm 1, \pm i, e^{\pm \frac{2\pi i}{4}}, e^{\pm \frac{2\pi i}{6}}, e^{\pm \frac{2\pi i}{8}} \}.$$

More precisely,

(i) $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = 1$ exactly when $h_o \in \{ \pm iI_2, e^{\pm \frac{2\pi i}{3}}I_2, e^{\pm \frac{2\pi i}{4}}I_2 \}$

is a scalar matrix;

(ii) $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = -1$ for

(a) $\lambda_1(h_o) = 1, \lambda_2(h_o) = -1$ and an arbitrary $R = R_{-d,f}$;

(b) $\lambda_1(h_o) = e^{\pm \frac{\pi i}{4}}, \lambda_2(h_o) = e^{\mp \frac{\pi i}{4}}, R = \mathbb{Z}[i], s = 4$;

(c) $\lambda_1(h_o) = e^{\pm \frac{\pi i}{4}}, \lambda_2(h_o) = e^{\mp \frac{\pi i}{4}}, R = \mathbb{O}_3, s = 3$

(d) $\lambda_1(h_o) = e^{\pm \frac{2\pi i}{3}}, \lambda_2(h_o) = e^{\mp \frac{2\pi i}{3}}, R = \mathbb{O}_3, s = 6$.

(iii) $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = \pm i$ for
Proposition 30. Let \(\lambda \) be an element of order \(s \) and eigenvalues \(\lambda_1(h_o), \lambda_2(h_o) \). Then \(r = s \) and \(H \) is isomorphic to \(H_{C_1(j)} \simeq \mathbb{C}_s \) for some \(1 \leq j \leq 4 \), where

\[
H_{C_1(1)} = \langle h_o \rangle \simeq \mathbb{C}_2 \quad \text{with} \quad \lambda_1(h_o) = 1, \quad \lambda_2(h_o) = -1,
\]

\[
H_{C_1(2)} = \langle h_o \rangle \simeq \mathbb{C}_3 \quad \text{with} \quad R = \mathcal{O}_{-3}, \quad h_o = e^{-\frac{2\pi i}{3}}I_2 \quad \text{or} \quad \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \quad \lambda_2(h_o) = 1,
\]

\[
H_{C_1(3)} = \langle h_o \rangle \simeq \mathbb{C}_4 \quad \text{with} \quad R = \mathbb{Z}[i], \quad \{\lambda_1(h_o), \lambda_2(h_o)\} = \{i, 1\} \quad \text{or} \quad \{-i, -1\},
\]

\[
H_{C_1(4)} = \langle h_o \rangle \simeq \mathbb{C}_6 \quad \text{with} \quad R = \mathcal{O}_{-3},
\]

\[
\{\lambda_1(h_o), \lambda_2(h_o)\} = \left\{ e^{\frac{2\pi i}{3}}, \frac{1}{\lambda_2(h_o)} \right\}, \quad \left\{ e^{-\frac{2\pi i}{3}}, -1 \right\} \quad \text{or} \quad \left\{ e^{\frac{2\pi i}{3}}, e^{-\frac{2\pi i}{3}} \right\}.
\]

Proof. By Lemma 26 (ii), the group \(H = \langle h_o \rangle \simeq \mathbb{C}_r \) is cyclic and generated by any \(h_o \in H \), whose determinant \(\det(h_o) \) generates \(\det(H) = \langle \det(h_o) \rangle \). Moreover, Lemma 26 (iii) specifies that \(\{I_2\} = [H \cap SL(2, R)] \cap \langle h_o \rangle = \langle h_o^s \rangle \) or the order \(r \) of \(h_o \) coincides with the order \(s \) of \(\det(h_o) \). For \(s \in \{3, 4, 6\} \) one can assume that \(\det(h_o) = e^{2\pi i} \), since the generators of \(\det(H) = \langle \det(h_o) \rangle \simeq \mathbb{C}_s \) are \(e^{\frac{2\pi i}{s}} \) and \(e^{-\frac{2\pi i}{s}} \). Making use of the classification of the elements \(h_o \in GL(2, R) \) of order \(s \) with \(\det(h_o) = e^{2\pi i} \), done in section 2, one concludes that \(H \simeq H_{C_1(j)} \) for some \(1 \leq j \leq 4 \). \(\square \)
Proposition 31. Let H be a finite subgroup of $GL(2, R)$,

$$H \cap SL(2, R) = \langle -I_2 \rangle \simeq C_2$$

and $h_o \in H$ be an element of order r with $\det(H) = \langle \det(h_o) \rangle \simeq C_s$ and eigenvalues $\lambda_1(h_o), \lambda_2(h_o)$. Then H is isomorphic to $H_{C_2}(i)$ for some $1 \leq i \leq 6$, where

$$H_{C_2}(1) = \langle iI_2 \rangle \simeq C_4 \quad \text{with} \quad R = \mathbb{Z}[i],$$

$$H_{C_2}(2) = \langle -I_2 \rangle \times \langle h_o \rangle \simeq C_2 \times C_2 \quad \text{with} \quad \lambda_1(h_o) = 1, \quad \lambda_2(h_o) = -1,$$

$$H_{C_2}(3) = \langle h_o \rangle \simeq C_6 \quad \text{with} \quad R = \mathcal{O}_3, \quad h_o = e^{\frac{2\pi}{3}}I_2 \quad \text{or} \quad \lambda_1(h_o) = e^{-\frac{2\pi}{3}}, \quad \lambda_2(h_o) = -1,$$

$$H_{C_2}(4) = \langle h_o \rangle \simeq C_8 \quad \text{with} \quad R = \mathbb{Z}[i], \quad \lambda_1(h_o) = e^{\frac{2\pi}{3}}, \quad \lambda_2(h_o) = e^{-\frac{2\pi}{3}},$$

$$H_{C_2}(5) = \langle -I_2 \rangle \times \langle h_o \rangle \simeq C_2 \times C_4 \quad \text{with} \quad R = \mathbb{Z}[i], \quad \lambda_1(h_o) = i, \quad \lambda_2(h_o) = 1,$$

$$H_{C_2}(6) = \langle h_o \rangle \simeq C_8 \quad \text{with} \quad R = \mathbb{Z}[i], \quad \lambda_1(h_o) = e^{\frac{2\pi}{3}}, \quad \lambda_2(h_o) = e^{-\frac{2\pi}{3}},$$

$$H_{C_2}(7) = \langle -I_2 \rangle \times \langle h_o \rangle \simeq C_2 \times C_6 \quad \text{with} \quad R = \mathcal{O}_3,$$

$$\{\lambda_1(h_o), \lambda_2(h_o)\} = \{e^{\frac{2\pi}{3}}, e^{-\frac{2\pi}{3}}, 1\} \quad \text{or} \quad \{e^{\frac{2\pi}{3}}, -1\}.$$ \hfill (13)

Proof. By Lemma 26 (iii), one has $h_o^s \in H \cap SL(2, R) = \langle -I_2 \rangle$ for some $s \in \{2, 3, 4, 6\}$. If $h_o^s = I_2$ then $s = r$ and

$$H = \langle -I_2 \rangle \times \langle h_o \rangle \simeq C_2 \times C_s$$

is a direct product, as far as the scalar matrix $-I_2$ commutes with h_o. When h_o is of odd order $s = 3$, its opposite matrix $-h_o \in H$ is of order 6 and $H = \langle -h_o \rangle \simeq C_6$. Without loss of generality, $h_1 := -h_o$ has $\det(h_1) = e^{\frac{2\pi}{3}}$ and Proposition 21 specifies that either $h_1 = e^{\frac{2\pi}{3}}I_2$ or $\lambda_1(h_1) = e^{-\frac{2\pi}{3}}, \lambda_2(h_o) = -1$. For $s = 2$ the group $H = \langle -I_2 \rangle \times \langle h_o \rangle = H_{C_2}(2) \simeq C_2 \times C_2$, where $h_o \in H$ has eigenvalues $\lambda_1(h_o) = 1, \lambda_2(h_o) = -1$. The case $s = 4$ occurs only for $R = \mathbb{Z}[i]$. Assuming $\det(h_o) = i$, one gets $\lambda_1(h_o) = \varepsilon i, \lambda_2(h_o) = \varepsilon$ for some $\varepsilon \in \{\pm 1\}$ by Proposition 17. Since $-I_2 \in H$, one can replace h_o by $-h_o$ and reduce to the case of $\varepsilon = 1$. If $s = 6$, then Proposition 19 provides (13).

In the case of $h_o^s = -I_2$, the intersection $\langle h_o \rangle SL(2, R) = \langle -I_2 \rangle = H \cap SL(2, R)$ and the group

$$H = \langle h_o \rangle \simeq C_{2s}$$

is cyclic. More precisely, for $s = 2$ Proposition 16 implies that $h_o = \pm iI_2$ and $H \simeq H_{C_2}(1)$. If $s = 3$ and $\det(h_o) = e^{\frac{2\pi}{3}}$ then $H \simeq H_{C_2}(3)$ by Proposition 21. For $s = 4$ and $\det(h_o) = i$ one has $H \simeq H_{C_2}(6)$, according to Proposition 17. Making use of Proposition 19, one observes that there are no $h_o \in GL(2, R)$ of order 12 with $\det(h_o) = e^{\frac{2\pi}{3}}$ and concludes the proof of the proposition. \qed
Towards the description of the finite subgroups $H = [H \cap SL(2, R)] \langle h_0 \rangle$ of $GL(2, R)$ with $H \cap SL(2, R) \cong \mathbb{C}_t$ for some $t \in \{3, 4, 6\}$, one needs the following

Lemma 32. If $g \in GL(2, \mathbb{C})$ has different eigenvalues $\lambda_1 \neq \lambda_2$ then any $h \in GL(2, \mathbb{C})$ with $hg \neq gh$ and $h^2g = gh^2$ has vanishing trace $\text{tr}(h) = 0$.

Proof. The trace is invariant under conjugation, so that

$$g = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

can be assumed to be diagonal. If

$$h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{C}),$$

then $h^2g = gh^2$ is equivalent to

$$\begin{vmatrix} (\lambda_1 - \lambda_2)b(a + d) = 0 \\ (\lambda_1 - \lambda_2)c(a + d) = 0 \end{vmatrix}.$$

Due to $\lambda_1 \neq \lambda_2$, there follow $b(a + d) = 0$ and $c(a + d) = 0$. The assumption $\text{tr}(h) = a + d \neq 0$ leads to $b = c = 0$. As a result,

$$h = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$

is a diagonal matrix and commutes with g. The contradiction justifies that $\text{tr}(h) = 0$. \hfill \Box

Lemma 33. Let $H = [H \cap SL(2, R)] \langle h_0 \rangle$ be a finite subgroup of $GL(2, R)$ with

$$H \cap SL(2, R) = \langle g \rangle \cong \mathbb{C}_t \quad \text{for some} \quad t \in \{3, 4, 6\} \quad \text{and}$$

$$\det(H) = \langle \det(h_0) \rangle = \langle e^{\frac{2\pi i}{s}} \rangle \cong \mathbb{C}_s, \quad s > 1$$

for some $h_0 \in H$ of order r. Then:

1. $\frac{r}{s}$ divides t;
2. $\frac{r}{s} = t$ if and only if $H = \langle h_0 \rangle \cong \mathbb{C}_r$ is cyclic and $H \cap SL(2, R) = \langle h_0^s \rangle$;
(iii) if \(\frac{\tau}{s} < t \) then \(H \) is isomorphic to the non-cyclic abelian group

\[
H' = \langle g, h_o \mid g^t = h_o^s = I_2, \ h_o g = g h_o \rangle
\]

or to the non-abelian group

\[
H'' = \langle g, h_o \mid g^t = h_o^s = I_2, \ h_o g h_o^{-1} = g^{-1} \rangle;
\]

(iv) if \(\frac{\tau}{s} < t \) and \(H \cong H'' \) is non-abelian then \(h_o \) has eigenvalues \(\lambda_1(h_o) = i e^{\frac{2\pi}{t}} \), \(\lambda_2(h_o) = -i e^{\frac{2\pi}{t}} \) and

\[
(r, s) \in \{(2, 2), \ (6, 6)\} \quad \text{for} \quad t = 3,
\]

\[
(r, s) \in \{(2, 2), \ (8, 4), \ (6, 6)\} \quad \text{for} \quad t = 4,
\]

\[
(r, s) \in \{(2, 2), \ (8, 4), \ (6, 6)\} \quad \text{for} \quad t = 6.
\]

Proof. (i) Note that if \(\det(h_o) \in R^* \) is of order \(s \) then \(\det(h_o^s) = \det(h_o)^s = 1 \) and \(h_o^s \in H \cap SL(2, R) = \langle g \rangle \) is an element of order \(\frac{\tau}{s} \). Since \(\langle g \rangle \cong C_t \) is of order \(t \), the ratio \(\frac{\tau}{s} \in \mathbb{N} \) divides \(t \). Proposition 16 provides the list of \(\frac{\tau}{s} = \frac{\tau}{t} \) for \(s = 2 \). If \(s = 3 \) then the values of \(\frac{\tau}{s} \) are taken from Propositions 21 and 22. Propositions 17 and 18 supply the range of \(\frac{\tau}{s} = \frac{\tau}{t} \) for \(s = 4 \), while Propositions 19 and 20 give account for \(\frac{\tau}{s} = \frac{\tau}{t} \) in the case of \(s = 6 \).

(ii) Note that \(h_o^s \in \langle g \rangle \) is of order \(\frac{\tau}{s} = t \) exactly when \(\langle g \rangle = \langle h_o^s \rangle \) and \(H = \langle h_o \rangle \cong C_r \) is a cyclic group.

(iii) According to Lemma 27, the group \(H = [H \cap SL(2, R)]\langle h_o \rangle = \langle g \rangle \langle h_o \rangle \) is completely determined by the order \(t \) of \(g \), the order \(r \) of \(h_o \) and the conjugate \(x = h_o g h_o^{-1} \in H \cap SL(2, R) = \langle g \rangle \) of \(g \) by \(h_o \). The order \(t \) of \(g \) is invariant under conjugation, so that \(x = g^m \) for some \(m \in \mathbb{Z}_t^* \). The Euler function \(\varphi(t) = 2 \) for \(t \in \{3, 4, 6\} \) and \(\mathbb{Z}_t^* = \{ \pm 1 (\text{mod} t) \} \). Therefore \(x = h_o g h_o^{-1} = g \) or \(x = h_o g h_o^{-1} = g^{-1} \).

(iv) If \(H \cong H'' \) is a non-abelian group then

\[
h_o^2 g h_o^{-2} = h_o (h_o g h_o^{-1}) h_o^{-1} = h_o g^{-1} h_o^{-1} = (h_o g h_o^{-1})^{-1} = (g^{-1})^{-1} = g,
\]

so that \(g \) commutes with \(h_o^2 \), but does not commute with \(h_o \). By Lemma 32 there follows \(\text{tr}(h_o) = 0 \). There exists a matrix \(S \in GL \left(2, \mathbb{Q} \left(\sqrt{-d}, e^{\frac{2\pi i}{t}} \right) \right) \), such that

\[
D = S^{-1} g S = \begin{pmatrix} e^{\frac{2\pi i}{t}} & 0 \\ 0 & e^{-\frac{2\pi i}{t}} \end{pmatrix} \in SL \left(2, \mathbb{Q} \left(\sqrt{-d}, e^{\frac{2\pi i}{t}} \right) \right)
\]

is diagonal. Since the trace is invariant under conjugation,

\[
D_o := S^{-1} h_o S = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in GL \left(2, \mathbb{Q} \left(\sqrt{-d}, e^{\frac{2\pi i}{t}} \right) \right),
\]

48
The relation \(h_o g = g^{-1} h_o \) implies the vanishing of \(a \). As a result, the characteristic polynomial
\[
X_{h_o}(\lambda) = \lambda^2 + \det(h_o) = \lambda^2 + e^{\frac{2\pi i}{r}} = 0
\]
has roots \(\lambda_1(h_o) = ie^{\frac{2\pi i}{r}} \), \(\lambda_2(h_o) = -ie^{\frac{2\pi i}{r}} \). More precisely, for \(s = 2 \) one has \(\lambda_1(h_o) = -1 \), \(\lambda_2(h_o) = 1 \), so that \(h_o \) and \(D_o \) are of order \(r = 2 \). The ratio \(\frac{r}{s} = 1 \) divides any \(t \in \{3, 4, 6\} \). If \(s = 3 \) then \(\lambda_1(h_o) = e^{\frac{3\pi i}{r}} \), \(\lambda_2(h_o) = e^{-\frac{3\pi i}{r}} \), so that \(h_o \) and \(D_o \) are of order \(r = 12 \). The quotient \(\frac{s}{r} = 4 \) divides only \(t = 4 \). Therefore \(\frac{s}{r} = t \) and \(H = \langle h_o \rangle \simeq \mathbb{C}_1 \), according to (ii). In the case of \(s = 4 \), one has \(\lambda_1(h_o) = e^{\frac{4\pi i}{r}} \), \(\lambda_2(h_o) = e^{-\frac{4\pi i}{r}} \), whereas \(h_o \) and \(D_o \) are of order \(r = 8 \). The quotient \(\frac{s}{r} = 3 \) divides only \(t \in \{4, 6\} \). Finally, for \(s = 6 \) the automorphism \(h_o \) has eigenvalues \(\lambda_1(h_o) = e^{\frac{6\pi i}{r}} \), \(\lambda_2(h_o) = e^{-\frac{6\pi i}{r}} \). Consequently, \(h_o \) and \(D_o \) are of order \(r = 6 \) and \(\frac{s}{r} = 1 \) divides all \(t \in \{3, 4, 6\} \).

\[\square \]

Lemma 34. (i) For arbitrary \(d \in \mathbb{N} \) and \(t \in \{3, 4, 6\} \) there is a dihedral subgroup
\[
D_t = \langle g, h_o \mid g^t = h_o^t = I_2, \ h_o g h_o^{-1} = g^{-1} \rangle < GL(2, \mathbb{Q}(\sqrt{-d}))
\]
of order \(2t \) with \(D_t \cap SL(2, \mathbb{Q}(\sqrt{-d})) = \langle g \rangle \simeq \mathbb{C}_t \), \(\det(D_t) = \det(h_o) = (-1) \simeq \mathbb{C}_2 \)
and eigenvalues \(\lambda_1(h_o) = -1 \), \(\lambda_2(h_o) = 1 \) of \(h_o \).

(ii) For an arbitrary \(t \in \{3, 4, 6\} \) there is a subgroup
\[
H_t = \langle g, h_o \mid g^t = h_o^t = I_2, \ h_o g h_o^{-1} = g^{-1} \rangle < GL(2, \mathbb{Q}(\sqrt{-3}))
\]
of order \(6t \) with \(H_t \cap SL(2, \mathbb{Q}(\sqrt{-3})) = \langle g \rangle \simeq \mathbb{C}_t \), \(\det(H_t) = \det(h_o) = (e^{\frac{2\pi i}{6}}) \simeq \mathbb{C}_6 \)
and eigenvalues \(\lambda_1(h_o) = e^{\frac{2\pi i}{6}} \), \(\lambda_2(h_o) = e^{-\frac{2\pi i}{6}} \) of \(h_o \).

(iii) For an arbitrary \(t \in \{4, 6\} \) there is a subgroup
\[
H'_t = \langle g, h_o \mid g^t = h_o^4 = -I_2, \ h_o g h_o^{-1} = g^{-1} \rangle < GL(2, \mathbb{Q}(\sqrt{2}, i))
\]
of order \(4t \) with \(H'_t \cap SL(2, \mathbb{Q}(\sqrt{2}, i)) = \langle g \rangle \simeq \mathbb{C}_t \), \(\det(H'_t) = \det(h_o) = \langle i \rangle \simeq \mathbb{C}_4 \)
and eigenvalues \(\lambda_1(h_o) = e^{\frac{4\pi i}{6}} \), \(\lambda_2(h_o) = e^{-\frac{4\pi i}{6}} \) of \(h_o \).

Proof. (i) Let us choose a diagonalizing matrix \(S \in GL(2, \mathbb{Q}(\sqrt{-d})) \) of \(h_o \), so that
\[
D_o = S^{-1} h_o S = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.
\]
Taking into account Proposition 15, one has to show the existence of
\[
D = S^{-1} g S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-d}))
\]
with
\[
D_o D D_o^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = D^{-1}
\]
for any trace $\text{tr}(g) = \text{tr}(D) = a + d \in \{0, \pm 1\}$. More precisely, for $a = d = 0$, $b \neq 0$ and $c = -b^{-1}$, then the matrix

$$D = D_4 = \begin{pmatrix} 0 & b \\ -b^{-1} & 0 \end{pmatrix}$$

of order 4 and the matrix D_o of order 2 generate a dihedral group D_4 of order 8. If $a = d = -\frac{1}{2}$, $b \neq 0$ and $c = -\frac{3}{4}b^{-1}$ then

$$D = D_3 = \begin{pmatrix} -\frac{1}{2} & b \\ -\frac{3}{4}b^{-1} & -\frac{1}{2} \end{pmatrix}$$

of order 3 and D_o of order 2 generate a symmetric group $D_3 \simeq S(3)$ of degree 3. In the case of $a = d = \frac{1}{2}$, $b \neq 0$ and $c = -\frac{3}{4}b^{-1}$, the matrix

$$D = D_6 = \begin{pmatrix} \frac{1}{2} & b \\ -\frac{3}{4}b^{-1} & \frac{1}{2} \end{pmatrix}$$

of order 6 and the matrix D_o of order 2 generate a dihedral group D_6 of order 12.

(ii) By Proposition 19, if $h_o \in GL(2, R)$ has eigenvalues $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_o) = e^{-\frac{2\pi i}{3}}$ then $R = O_{-3}$. Let us consider

$$D_o = S^{-1}h_oS = \begin{pmatrix} e^{\frac{2\pi i}{4}} & 0 \\ 0 & e^{-\frac{\pi i}{4}} \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{-3}))$$

for some $S \in GL(2, \mathbb{Q}(\sqrt{-3}))$ and

$$D = S^{-1}gS = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-3}))$$

with trace $\text{tr}(g) = \text{tr}(D) = a + d \in \{0, \pm 1\}$. Then

$$D_oDD_o^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = D^{-1}$$

is equivalent to $a = d$. Consequently, D_3, D_4, D_6 from the proof of (i) satisfy the required conditions.

(iii) Note that

$$D_o = S^{-1}h_oS = \begin{pmatrix} e^{\frac{3\pi i}{4}} & 0 \\ 0 & e^{-\frac{\pi i}{4}} \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{2}, i))$$
for some $S \in GL(2, \mathbb{Q}(\sqrt{2}, i))$ and
\[
D = S^{-1}gS = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{2}, i))
\]
with trace $\text{tr}(g) = \text{tr}(D) = a + d \in \{0, 1\}$ satisfy
\[
D_oDD_o^{-1} = \begin{pmatrix} a & -b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = D^{-1}
\]
extactly when $a = d$. In the notations from the proof of (i), one has $\langle D_4, D_o \rangle \simeq \mathcal{H}_4'$ and $\langle D_6, D_o \rangle \simeq \mathcal{H}_6'$.

\[\square\]

Corollary 35. Let H be a finite subgroup of $GL(2, R)$,
\[
H \cap SL(2, R) = \langle g \rangle \simeq \mathbb{C}_3
\]
and $h_o \in H$ be an element of order r with $\det(H) = \langle \det(h_o) \rangle \simeq \mathbb{C}_s$ and eigenvalues $\lambda_1(h_o), \lambda_2(h_o)$. Then H is isomorphic to some $H_{C3}(i)$, $1 \leq i \leq 5$, where
\[
H_{C3}(1) = \langle h_o \rangle \simeq \mathbb{C}_6
\]
with $R = R_{-3,f}$, $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{\frac{4\pi i}{3}}$,
\[
H_{C3}(2) = \langle g, h_o \mid g^3 = h_o^2 = I_2, \ h_ogh_o^{-1} = g^{-1} \rangle \simeq S_3
\]
is the symmetric group of degree 3, $\lambda_1(h_o) = -1, \lambda_2(h_o) = 1,$
\[
H_{C3}(3) = \langle g \rangle \times \langle e^{\frac{2\pi i}{3}}I_2 \rangle \simeq \mathbb{C}_3 \times \mathbb{C}_3
\]
with $R = O_{-3}$ and any $g \in SL(2, O_{-3})$ of trace $\text{tr}(g) = -1$,
\[
H_{C3}(4) = \langle g \rangle \times \langle h_o \rangle \simeq \mathbb{C}_3 \times \mathbb{C}_6
\]
with $R = O_{-3}$, $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}},$
\[
H_{C3}(5) = \langle g, h_o \mid g^3 = h_o^6 = I_2, \ h_ogh_o^{-1} = g^{-1} \rangle
\]
of order 18 with $R = O_{-3}, \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}}.$

There exist subgroups
\[
H_{C3}(1), H_{C3}(3), H_{C3}(4) < GL(2, O_{-3}),
\]
as well as subgroups
\[
H_{C3}(2)_{o} < GL(2, \mathbb{Q}(\sqrt{-d})) , \ H_{C3}(5)_{o} < GL(2, \mathbb{Q}(\sqrt{-3}))
\]
with $H_{C3}(j)_{o} \simeq H_{C3}(j)$ for $j \in \{2, 5\}$. 51
Proof. By Lemma 33 (i), the quotient \(\frac{\pi}{s} \) is a divisor of \(t = 3 \), so that either \(r = s \) or \(r = 3s = 6 \).

For \(s = 2 \), \(r = 6 \) one has a cyclic group \(H = \langle h_\circ \rangle \simeq \mathbb{C}_6 \) with \(\det(h_\circ) = -1 \). Up to an inversion \(h_\circ \mapsto h_\circ^{-1} \) of the generator, Proposition 16 specifies that \(\lambda_1(h_\circ) = e^{\frac{2\pi i}{3}} \), \(\lambda_2(h_\circ) = e^{\frac{2\pi i}{3}} \) and justifies the realization of \(H_{C3}(1) = \langle h_\circ \rangle \) over \(\mathbb{C}_3 \).

Form now on, let \(r = s \in \{2, 3, 46\} \). According to Lemma 33(iii) and (iv), the group \(H = \langle g, h_\circ \rangle \) is either abelian or isomorphic to some \(H_{C3}(j) \) for \(j \in \{2, 5\} \).

If \(H = \langle g, h_\circ \mid g^3 = h_\circ^r = I_2, \ gh_\circ = h_\circ g \rangle \) is an abelian group of order \(3r \), then \(H = \langle g \rangle \times \langle h_\circ \rangle \simeq \mathbb{C}_3 \times \mathbb{C}_r \) is a direct product by Lemma 26 (iv). (Here we use that the semi-direct product \(H = [H \cap SL(2, \mathbb{R})] \rtimes \langle h_\circ \rangle = \langle g \rangle \rtimes \langle h_\circ \rangle \) is a direct product if and only if \(gh_\circ = h_\circ g \).

The order \(r = s = 2 \) of \(h_\circ \) is relatively prime to the order \(3 \) of \(g \), so that \(gh_\circ \) is an element of order \(6 \) and \(\langle g, h_\circ \rangle = \langle gh_\circ \rangle \simeq \mathbb{C}_6 \simeq H_{C3}(1) \).

The order \(r = s = 4 \) of \(h_\circ \) is relatively prime to the order \(3 \) of \(g \) and \(gh_\circ \) is of order \(12 \). By the classification of \(x \in GL(2, \mathbb{R}) \) of finite order, done in section 2, one has \(\det(gh_\circ) = -1 \). Therefore \(\det(h_\circ) = -1 \) and \(s = 2 \), contrary to the assumption \(s = 4 \).

For \(r = s = 3 \) one can assume \(\det(h_\circ) = e^{\frac{2\pi i}{3}} \), after an eventual inversion \(h_\circ \mapsto h_\circ^{-1} \). Then by Proposition 22 one has \(h_\circ = e^{\frac{2\pi i}{3}} I_2 \) or \(\lambda_1(h_\circ) = e^{\frac{2\pi i}{2}}, \lambda_2(h_\circ) = 1 \). Assume that \(\lambda_1(h_\circ) = e^{\frac{2\pi i}{3}}, \lambda_2(h_\circ) = 1 \) and note that the commuting \(g \) and \(h_\circ \) can be simultaneously diagonalized by an appropriate \(S \in GL(2, \mathbb{C}) \). Consequently,

\[
D = S^{-1} gS = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \quad \text{and} \quad D_0 = S^{-1} h_\circ S = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & 1 \end{pmatrix}
\]

are subject to \(D^2 D_0 = e^{\frac{2\pi i}{3}} I_2 \). As a result,

\[
g^2 h_\circ = (S D S^{-1})^{-1} (SD_0 S^{-1}) = S (D^2 D_0) S^{-1} = e^{\frac{2\pi i}{3}} I_2
\]

and \(H = \langle g, h_\circ \rangle \simeq \langle g, g^2 h_\circ \rangle \simeq H_{C3}(3) \).

Finally, for \(r = s = 6 \), let us assume that \(\det(h_\circ) = e^{-\frac{2\pi i}{3}} \). Then

\[
\{\lambda_1(h_\circ), \lambda_2(h_\circ)\} = \left\{ e^{\frac{2\pi i}{3}}, e^{-\frac{2\pi i}{3}} \right\}, \quad \left\{ e^{-\frac{2\pi i}{3}}, 1 \right\} \quad \text{or} \quad \left\{ e^{\frac{2\pi i}{3}}, -1 \right\}.
\]

Similarly to the case of \(r = s = 3 \), the commuting \(g \) and \(h_\circ \) admit a simultaneous diagonalization

\[
D = S^{-1} gS = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad D_0 = S^{-1} h_\circ S = \begin{pmatrix} \lambda_1(h_\circ) & 0 \\ 0 & \lambda_2(h_\circ) \end{pmatrix}.
\]

If \(\lambda_1(h_\circ) = e^{-\frac{2\pi i}{3}}, \lambda_2(h_\circ) = 1 \) then

\[
DD_0 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \quad \text{and} \quad H \simeq \langle D, D_0 \rangle = \langle D, DD_0 \rangle \simeq H_{C3}(4).
\]
For $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}$ and $\lambda_2(h_o) = -1$ note that

$$DD_o = \begin{pmatrix} e^{-\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix},$$

so that again $H \simeq \langle D, D_o \rangle = \langle D, DD_o \rangle \simeq H_{C3}(4)$.

Note that

$$g = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad h_o = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \in GL(2, \mathcal{O}_3)$$

generate a group, isomorphic to $H_{C3}(4)$.

\[\square\]

Corollary 36. Let H be a finite subgroup of $GL(2, R)$,

$$H \cap SL(2, R) = \langle g \rangle \simeq C_4$$

and $h_o \in H$ be an element of order r with $\det(H) = \langle \det(h_o) \rangle \simeq C_s$ and eigenvalues $\lambda_1(h_o), \lambda_2(h_o)$. Then H is isomorphic to some $H_{C4}(i), 1 \leq i \leq 9$, where

$$H_{C4}(1) = \langle h_o \rangle \simeq C_8$$

with $R = \mathcal{O}_{-2}$, $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{\frac{3\pi i}{3}},$

$$H_{C4}(2) = \langle g \rangle \times \langle h_o \rangle \simeq C_4 \times C_2$$

with $R = R_{-1,f}$, $\lambda_1(h_o) = -1$, $\lambda_2(h_o) = 1,$

$$H_{C4}(3) = \langle g, h_o \mid g^2 = -I_2, \ h_o^2 = I_2, \ h_oh_o^{-1} = g^{-1} \rangle \simeq D_4$$

is the dihedral group of order 8 with $\lambda_1(h_o) = -1$, $\lambda_2(h_o) = 1,$

$$H_{C4}(4) = \langle h_o \rangle \simeq C_{12}$$

with $R = \mathcal{O}_{-3}$, $\lambda_1(h_o) = e^{\frac{2\pi i}{6}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{6}},$

$$H_{C4}(5) = \langle g \rangle \times \langle e^{\frac{2\pi i}{3}}I_2 \rangle \simeq C_4 \times C_3$$

for $R = \mathcal{O}_{-3}$ and $\forall g \in SL(2, \mathcal{O}_{-3})$ with $\mathrm{tr}(g) = 0,$

$$H_{C4}(6) = \langle g \rangle \times \langle h_o \rangle \simeq C_4 \times C_4$$

with $R = \mathbb{Z}[i]$, $\lambda_1(h_o) = i$, $\lambda_2(h_o) = 1,$

$$H_{C4}(7) = \langle ig \rangle \times \langle h_o \rangle \simeq C_2 \times C_8$$

53
with \(R = \mathbb{Z}[i], \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}}, \)

\[
H_{C4}(8) = \langle g, h_o \mid g^2 = h_o^4 = -I_2, \ h_oh_o^{-1} = g^{-1} \rangle
\]

of order 16 with \(R = \mathbb{Z}[i], \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}}, \)

\[
H_{C4}(9) = \langle g, h_o \mid g^2 = -I_2, \ h_o^6 = I_2, \ h_oh_o^{-1} = g^{-1} \rangle
\]

of order 24 with \(R = O_3, \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}}. \)

There exist subgroups

\[
H_{C4}(1) < GL(2, O_{-2}), \ H_{C4}(4), H_{C4}(5) < GL(2, O_{-3}),
\]

\[
H_{C4}(2), H_{C4}(6) < GL(2, \mathbb{Z}[i]),
\]

as well as subgroups

\[
H_{C4}^0(7), H_{C4}^0(8) < GL(2, \mathbb{Q}(\sqrt{2}, i)), \ H_{C4}^0(3) < GL(2, \mathbb{Q}(\sqrt{-d})),
\]

\[
H_{C4}^0(9) < GL(2, \mathbb{Q}(\sqrt{-3})),
\]

with \(H_{C4}^0(j) \simeq H_{C4}(j) \) for \(j \in \{3, 7, 8, 9\}. \)

Proof. If \(\frac{r}{s} = 4 \) then either \((s, r) = (2, 8) \) and \(H \simeq H_{C4}(1) \) or \((s, r) = (3, 12) \) and \(H \simeq H_{C4}(4) \). By Proposition 16 there exists an element \(h_o \in GL(2, O_{-2}) \) of order 8 with \(\det(h_o) = -1 \). Proposition 21 provides an example of \(h_o \in GL(2, O_{-3}) \) of order 12 with \(\det(h_o) = e^{\frac{2\pi i}{3}} \). There remain to be considered the cases with \(\frac{r}{s} \in \{1, 2\} \). According to Lemma 33, the non-abelian \(H \) under consideration are isomorphic to \(H_{C4}(3), H_{C4}(8) \) or \(H_{C4}(9) \). By Lemma 34 (i) there is a subgroup \(H_{C4}^0(3) < GL(2, \mathbb{Q}(\sqrt{-d})) \), conjugate to \(H_{C4}(3) \). Lemma 34 (iii) provides an example of \(S^{-1}H_{C4}(8)S = H_{C4}^0(8) < GL(2, \mathbb{Q}(\sqrt{2}, i)) \), while Lemma 34(ii) justifies the existence of \(S^{-1}H_{C4}(9)S = H_{C4}^0(9) < GL(2, \mathbb{Q}(\sqrt{-3})) \).

There remain to be classified the non-cyclic abelian groups \(H = [H \cap SL(2, R)]\langle h_o \rangle \) with \(H \cap SL(2, R) \simeq C_4, \langle h_o \rangle \simeq C_r, \det(h_o) = e^{\frac{2\pi i}{3}} \) for \(s \in \{2, 3, 4, 6\}, r \in \{s, 2s\} \).

If \(r = s = 2 \) then by Proposition 16, the eigenvalues of \(h_o \) are \(\lambda_1(h_o) = -1 \) and \(\lambda_2(h_o) = 1 \). There exists a matrix \(S \in GL(2, \mathbb{Q}(\sqrt{-d})) \), such that

\[
D_o = S^{-1}h_oS = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Proposition 15 establishes that \(g \in SL(2, R) \) is of order 4 exactly when \(\text{tr}(g) = 0 \). The trace and the determinant are invariant under conjugation, so that

\[
D = S^{-1}gS = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-d})).
\]

54
The commutation
\[DD_o = \begin{pmatrix} -a & b \\ -c & -a \end{pmatrix} = \begin{pmatrix} -a & -b \\ c & -a \end{pmatrix} = D_o D \]
holds only when \(b = c = 0 \) and
\[D = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} . \]

Bearing in mind that \(D \in SL(2, \mathbb{Q}(\sqrt{-d})) \), one concludes that \(i \in \mathbb{Q}(\sqrt{-d}) \), whereas \(d = 1 \) and \(R = R_{-1.f} \). The matrices
\[g = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} , \quad h_o = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbb{Z}[i]) \]
generate a subgroup of \(GL(2, \mathbb{Z}[i]) \), isomorphic to \(H_{C4}(2) \).

For \(s = 2 \) and \(r = 4 \) one has \(R = \mathbb{Z}[i] \) and \(h_o = \pm I_2 \). Bearing in mind that \(g \in SL(2, R) \) is of order 4 if and only if \(\text{tr}(g) = 0 \), let
\[g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}[o]). \]

Then
\[gh_o = \pm \begin{pmatrix} ai & bi \\ ci & -ai \end{pmatrix} \in \mathbb{Z}[i]_{2 \times 2} \]
has determinant \(\det(gh_o) = \det(g) \det(h_o) = \det(h_o) = -1 \) and trace \(\text{tr}(gh_o) = 0 \). By Proposition 16, \(gh_o \) has eigenvalues \(\lambda_1(gh_o) = -1, \lambda_2(gh_o) = 1 \) and \(H \cong H_{C4}(2) \).

If \(s = r = 3 \) then \(R = \mathcal{O}_{-3} \) and either \(h_o = e^{-\frac{2\pi i}{3}} \) or \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = 1 \). Replacing \(e^{-\frac{2\pi i}{3}} I_2 \) by its inverse, one observes that \(H_{C4}(5) = \langle g, e^{-\frac{2\pi i}{3}} I_2 \rangle < GL(2, \mathcal{O}_{-3}) \).

If \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = 1 \), then there exists \(S \in GL(2, \mathbb{Q}(\sqrt{-3})) \), such that
\[D_o = S^{-1} h_o S = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & 1 \end{pmatrix} . \]

The determinant and the trace are invariant under conjugation, so that
\[D = S^{-1} g S = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-3})). \]

Note that
\[DD_o = \begin{pmatrix} e^{\frac{2\pi i}{3}} a & b \\ e^{\frac{2\pi i}{3}} c & -a \end{pmatrix} = \begin{pmatrix} e^{\frac{2\pi i}{3}} a & e^{\frac{2\pi i}{3}} b \\ e^{\frac{2\pi i}{3}} c & -a \end{pmatrix} = D_o D \]
is equivalent to \(b = c = 0 \) and \(1 = \det(g) = \det(D) = -a^2 \) specifies that
\[D = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} . \]
That contradicts \(F \in SL(2, \mathbb{Q}(\sqrt{-3})) \) and justifies the non-existence of \(H \) with \(s = r = 3 \).

Let \(s = 3, \ r = 6 \). According to Proposition 21, there follows \(R = \mathcal{O}_{-3} \) with \(h_o = e^{\frac{\pi i}{3}} I_2 \) or \(\lambda_1(h_o) = e^{\frac{\pi i}{3}}, \lambda_2(h_o) = 1 \). If \(h_o = e^{\frac{\pi i}{3}} \) then \(H = \langle g, h_o \rangle = \langle g, g^2 h_o = -h_o = e^{-\frac{2\pi i}{3}} I_2 \rangle \simeq H_{C_4}(5) \). In the case of \(\lambda_1(h_o) = e^{\frac{\pi i}{3}}, \lambda_2(h_o) = 1 \) let us choose \(S \in GL(2, \mathbb{Q}(\sqrt{-3})) \) with

\[
D_o = S^{-1} h_o S = \begin{pmatrix} e^{-\frac{\pi i}{3}} & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{-3})) \quad \text{and}
\]

\[
D = S^{-1} g S = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-3})).
\]

Then

\[
DD_o = \begin{pmatrix} e^{-\frac{\pi i}{3}} a & b \\ e^{-\frac{\pi i}{3}} c & -a \end{pmatrix} = \begin{pmatrix} e^{-\frac{\pi i}{3}} a & e^{-\frac{\pi i}{3}} b \\ c & -a \end{pmatrix} = D_o D
\]

if and only if

\[
D = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-3})),
\]

which is an absurd.

Let us suppose that \(s = r = 4 \). The Proposition 17 specifies that \(R = \mathbb{Z}[i] \) and \(\lambda_1(h_o) = \varepsilon i, \lambda_2(h_o) = \varepsilon \) for some \(\varepsilon \in \{\pm 1\} \). As far as \(g^2 = -I_2 \in H \), there is no loss of generality in assuming that \(\lambda_1(h_o) = i, \lambda_2(h_o) = 1 \) and \(H \simeq H_{C_4}(6) \). Note that

\[
g = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad h_o \in \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbb{Z}[i])
\]

generate a subgroup, isomorphic to \(H_{C_4}(6) \).

For \(s = 4, \ r = 8 \), Proposition 17 implies that \(R = \mathbb{Z}[i] \) and \(\lambda_1(h_o) = e^{\frac{\pi i}{4}}, \lambda_2(h_o) = e^{-\frac{\pi i}{4}} \). Note that \((ig)^2 = -g^2 = I_2\), so that \(ig \in H = \langle g, h_o \rangle \) is of order 2 and \(h_o^6 = iI_2 \), according to \(\lambda_1(h_o^6) = \lambda_1(h_o)^6 = i, \lambda_2(h_o^6) = \lambda_2(h_o)^6 = i \). Consequently,

\[
H = \langle g, h_o \rangle = \langle h_o^6 g = ig, h_o \rangle = \langle ig \rangle \times \langle h_o \rangle \simeq \mathbb{C}_2 \times \mathbb{C}_8,
\]

as far as \(\langle ig \rangle \cap \langle h_o \rangle = \{I_2\} \). More precisely, if \(ig = h_o^m \), then the second eigenvalue

\[
1 = -i^2 = \lambda_2(ig) = \lambda_2(h_o^m) = e^{-\frac{\pi i m}{4}},
\]

whereas \(m \in 8\mathbb{Z} \) and the first eigenvalue

\[
-1 = \lambda_1(ig) = \lambda_1(h_o^m) = e^{\frac{3\pi i m}{4}} = 1,
\]

which is an absurd. Thus, \(H \simeq H_{C_4}(7) \) and there exists a subgroup

\[
H_{C_4}^0(7) = \langle \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right), \left(\begin{array}{cc} e^{\frac{3\pi i}{4}} & 0 \\ 0 & e^{-\frac{\pi i}{4}} \end{array} \right) \rangle \subset GL(2, \mathbb{Q}(\sqrt{2}, i)),
\]

56
conjugate to $H_{C4}(7)$.

Let us assume that $s = r = 6$. Then Proposition 19 applies to provide $R = O_{-3}$ and

$$\{\lambda_1(h_o), \lambda_2(h_o)\} = \left\{e^{\frac{2\pi i}{3}}, e^{-\frac{2\pi i}{3}}\right\}, \left\{e^{\frac{2\pi i}{3}}, -1\right\}.$$

Choose a matrix $S \in GL(2, \mathbb{Q}(\sqrt{-3}))$ with

$$D_o = S^{-1}h_oS = \left(\begin{array}{cc} \lambda_1(h_o) & 0 \\ 0 & \lambda_2(h_o) \end{array} \right) \in GL(2, \mathbb{Q}(\sqrt{-3})), \quad D = S^{-1}gS = \left(\begin{array}{cc} a & b \\ c & -a \end{array} \right) \in SL(2, \mathbb{Q}(\sqrt{-3})).$$

If $\lambda_1(h_o) \neq \lambda_2(h_o)$ then

$$DD_o = \left(\begin{array}{cc} \lambda_1(h_o)a & \lambda_2(h_o)b \\ \lambda_1(h_o)c & -\lambda_2(h_o)a \end{array} \right) = \left(\begin{array}{cc} \lambda_1(h_o)a & \lambda_1(h_o)b \\ \lambda_2(h_o)c & -\lambda_2(h_o)a \end{array} \right) = D_oD$$

is tantamount to $b = c = 0$, $a = \pm i$ and

$$D = \pm \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right) \in SL(2, \mathbb{Q}(\sqrt{-3}))$$

is an absurd.

Similarly, in the case of $s = 6$, $r = 12$, Proposition 19 derives that $R = O_{-3}$ and

$$\{\lambda_1(h_o), \lambda_2(h_o)\} = \left\{e^{\frac{2\pi i}{3}}, e^{-\frac{2\pi i}{3}}\right\}, \left\{e^{\frac{2\pi i}{3}}, -1\right\}.$$

Note that $\lambda_1(h_o) \neq \lambda_2(h_o)$ for all the possibilities and apply the considerations for $s = r = 6$, in order to exclude the case $s = 6$, $r = 12$.

\[\square\]

Corollary 37. Let H be a finite subgroup of $GL(2, R)$,

$$H \cap SL(2, R) = \langle g \rangle \cong C_6$$

and $h_o \in H$ be an element of order r with $\det(H) = \langle \det(h_o) \rangle \cong C_s$ and eigenvalues $\lambda_1(h_o), \lambda_2(h_o)$. Then H is isomorphic to some $H_{C6}(i)$, $1 \leq i \leq 7$, where

$$H_{C6}(1) = \langle h_o \rangle \cong C_{12}$$

with $R = \mathbb{Z}[i]$, $\lambda_1(h_o) = e^{\frac{\pi i}{6}}$, $\lambda_2(h_o) = e^{\frac{5\pi i}{6}}$,

$$H_{C6}(2) = \langle g \rangle \times \langle h_o \rangle \cong C_6 \times C_{12}$$

with $R = O_{-3}$ or $R = R_{-3,2}$, $\lambda_1(h_o) = -1$, $\lambda_2(h_o) = 1$,

$$H_{C6}(3) = \langle g, h_o \mid g^3 = -I_2, \quad h_o^2 = I_2, \quad h_oh_o^{-1} = g^{-1} \rangle \cong D_6$$

57
is the dihedral group of order 12, \(\lambda_1(h_o) = -1, \lambda_2(h_o) = 1 \),

\[H_{C6}(4) = \langle g \rangle \times \langle e^{\frac{2\pi i}{3}} I_2 \rangle \simeq \mathbb{C}_6 \times \mathbb{C}_3 \]

with \(R = O_{-3} \) and \(\forall g \in SL(2, O_{-3}) \) of \(\text{tr}(g) = 1 \),

\[H_{C6}(5) = \langle g, h_o \mid g^3 = h_o^4 = -I_2, \ h_o g h_o^{-1} = g^{-1} \rangle \]

of order 24 with \(R = \mathbb{Z}[i] \), \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}} \),

\[H_{C6}(6) = \langle g, h_o \mid g^3 = -I_2, \ h_o^6 = I_2, \ h_o g h_o^{-1} = g^{-1} \rangle \]

of order 36 with \(R = O_{-3} \), \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}} \),

\[H_{C6}(7) = \langle g \rangle \times \langle h_o \rangle \simeq \mathbb{C}_6 \times \mathbb{C}_6 \]

of order 36 with \(R = O_{-3} \), \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}} \).

There exist subgroups

\[H_{C6}(1) < GL(2, \mathbb{Z}[i]), \ H_{C6}(2), H_{C6}(4), H_{C6}(7) < GL(2, O_{-3}), \]

as well as subgroups

\[H_{C6}^o(3) < GL(2, \mathbb{Q}(\sqrt{-d})), \ H_{C6}^o(5) < GL(2, \mathbb{Q}(\sqrt{2}, i)), \]

\[H_{C6}^o(6) < GL(2, \mathbb{Q}(\sqrt{-3})) \]

with \(H_{C6}^o(j) \simeq H_{C6}(j) \) for \(j \in \{3, 5, 6\} \).

Proof. According to Lemma 33(i), the ratio \(\zeta \in \{1, 2, 3, 6\} \) is a divisor of \(t = 6 \). If \(r = 6s \) then \(s = 2 \) and \(H = \langle h_o \rangle \simeq \mathbb{C}_{12} \simeq H_{C6}(1) \) by Lemma 33 (i), (ii). According to Proposition 16, the existence of \(h_o \in GL(2, \mathbb{R}) \) of order 12 with \(\det(h_o) = -1 \) requires \(R = \mathbb{Z}[i] \) and there exist \(h_o \in GL(2, \mathbb{Z}[i]) \) of order 12 with \(\det(h_o) = -1 \).

For \(r = 3s \) Lemma 33(i) specifies that \(s = 2 \). Combining with Lemma 33(iv), one concludes that

\[H = \langle g, h_o \mid g^3 = -I_2, \ h_o^6 = I_2, \ h_o g = g h_o \rangle \]

is a non-cyclic abelian group of order \(st = 12 \). By Proposition 16, \(R = O_{-3} \) or \(R = R_{-3,2} \) and \(h_o \) has eigenvalues \(\lambda_1(h_o) = e^{\frac{\pi i}{3}}, \lambda_2(h_o) = e^{\frac{2\pi i}{3}} \) for some \(\varepsilon \in \{ \pm 1 \} \). Due to \(\langle g, h_o \rangle = \langle g, h_o^{-1} = h_o^{5} \rangle \) by \(h_o = (h_o^{5})^5 \), one can assume that \(\lambda_1(h_o) = e^{\frac{\pi i}{3}}, \lambda_2(h_o) = e^{\frac{2\pi i}{3}} \). The commuting matrices \(g \) and \(h_o \) admit a simultaneous diagonalization

\[D = S^{-1} g S = \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & e^{\frac{2\pi i}{3}} \end{pmatrix}, \ D_o = S^{-1} h_o S = \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & e^{\frac{2\pi i}{3}} \end{pmatrix} \]
by an appropriate $S \in GL(2, \mathbb{Q}(\sqrt{-3}))$. Then

$$D^2D_o = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

implies that $\lambda_1(g^2h_o) = -1$, $\lambda_2(g^2h_o) = 1$. As a result, $H = \langle g, h_o \rangle = \langle g, g^2h_o \rangle$ is a subgroup of $GL(2, \mathcal{O}_{-3})$, isomorphic to $H_{C6}(2)$.

Form now on, $\frac{r}{s} \in \{1, 2\}$. In particular, $\frac{r}{s} < t = 6$ and the non-abelian

$$H = \langle g, h_o \mid g^6 = h_o^r = I_2, \ h_o g h_o^{-1} = g^{-1} \rangle$$

occurs for $(r, s) \in \{(2, 2), (8, 4), (6, 6)\}$, according to Lemma 33(iv). Namely, for $r = s = 2$ one has a dihedral group $H \simeq \mathcal{D}_6 \simeq H_{C6}(3)$ of order 12, which is realized as a subgroup of $GL(2, \mathbb{Q}(\sqrt{-3})))$ by Lemma 34(i). In the case of $s = 4$ and $r = 8$ the group $H \simeq H_{C6}(5)$ of order 24 is embedded in $GL(2, \mathbb{Q}(\sqrt{2}, i))$ by Lemma 34(iii). In the case of $r = s = 6$ one has $H \simeq H_{C6}(6)$ of order 36, realized as a subgroup of $GL(2, \mathbb{Q}(\sqrt{-3}))$ by Lemma 34(ii).

There remain to be considered the non-cyclic abelian H with $r = 2s$, $s \in \{2, 3, 4\}$ or $r = s \in \{2, 3, 4, 6\}$. If $s = 2$, $r = 4$ then Proposition 16 requires $R = \mathbb{Z}[i]$ and $h_o = \pm iI_2$. Up to an inversion of h_o, one can assume that $h_o = iI_2$. Then $H = \langle g, iI_2 \rangle = \langle -g = (iI_2)^2g, iI_2 \rangle$ is generated by the element $-g$ of order 3 and the scalar matrix $iI_2 \in H$ of order 4, so that $-ig = (iI_2)(-g) \in H$ of order 12 generates H, $H \simeq H_{C6}(1) \simeq \mathbb{C}_{12}$. (Note that for $g \in SL(2, \mathbb{Z}[i])$ of order 6 one has $g^3 = -I_2$, whereas $(-g)^3 = -g^3 = I_2$. The assumptions $-g = I_2$ and $(-g)^2 = g^2 = I_2$ lead to an absurd.)

Let us assume that $s = 3$ and $r = 6$. Then Proposition 21 implies that $R = \mathcal{O}_{-3}$ with $h_o = E^\frac{\pi i}{3} I_2$ or $\lambda_1(h_o) = e^{-\frac{\pi i}{6}}$, $\lambda_2(h_o) = -1$. Note that $H = \langle g, e^{\frac{\pi i}{6}} I_2 \rangle = \langle g, e^{-\frac{\pi i}{6}} I_2 \rangle$ by $e^{-\frac{\pi i}{6}} = \left(e^{\frac{\pi i}{6}}\right)^5$, $e^{\frac{\pi i}{6}} = \left(e^{-\frac{\pi i}{6}}\right)^5$. Further,

$$g^3 \left(e^{-\frac{\pi i}{6}} I_2 \right) = \left(e^{\frac{\pi i}{6}} I_2 \right) \left(e^{-\frac{\pi i}{6}} I_2 \right) = e^{2\pi i} I_2$$

implies that

$$H = \langle g, e^{-\frac{\pi i}{6}} I_2 \rangle = \langle g, g^3 \left(e^{-\frac{\pi i}{6}} I_2 \right) = e^{2\pi i} I_2 = \langle g \rangle \times \langle e^{2\pi i} \rangle \simeq \mathbb{C}_6 \times \mathbb{C}_3 \simeq H_{C6}(4).$$

For any $g \in SL(2, \mathcal{O}_{-3})$ of order 6, there is a subgroup $H_{C6}(4) = \langle g, e^{2\pi i} I_2 \rangle < GL(2, \mathcal{O}_{-3})$.

For $s = 4$, $r = 8$ there follow $R = \mathbb{Z}[i]$ and $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_o) = e^{-\frac{2\pi i}{3}}$, according to Proposition 17. Suppose that $S \in GL(2, \mathbb{Q}(\sqrt{2}, i))$ diagonalizes h_o,

$$D_o = S^{-1} h_o S = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{2}, i)).$$

59
By Proposition 15, \(g \in SL(2, \mathbb{Z}[i]) \) is of order 6 exactly when \(\text{tr}(g) = 1 \). Since the determinant and the trace are invariant under conjugation, one has

\[
D = S^{-1}gS = \begin{pmatrix} a & b \\ c & 1-a \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{2}, i)).
\]

However,

\[
DD_o = \begin{pmatrix} e^{\frac{3\pi i}{4}}a & e^{-\frac{\pi i}{4}}b \\ e^{\frac{3\pi i}{4}}c & e^{-\frac{\pi i}{4}}(1-a) \end{pmatrix} = \begin{pmatrix} e^{\frac{3\pi i}{4}}a & e^{\frac{3\pi i}{4}}b \\ e^{-\frac{\pi i}{4}}c & e^{-\frac{\pi i}{4}}(1-a) \end{pmatrix} = D_oD
\]

if and only if \(b = c = 0 \) and \(a = e^{\frac{\pi i}{4}} \) for some \(\varepsilon \in \{\pm 1\} \). Now,

\[
D = \begin{pmatrix} e^{\frac{\pi i}{4}} & 0 \\ 0 & 1-e^{\frac{\pi i}{4}} \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{2}, i))
\]

is an absurd, justifying the non-existence of \(H \) with \(s = 4 \) and \(r = 8 \).

In the case of \(r = s = 2 \) Proposition 16 implies that \(\lambda_1(h_o) = -1 \), \(\lambda_2(h_o) = 1 \), so that \(H \simeq H_{C_6}(2) \simeq \mathbb{C}_6 \times \mathbb{C}_2 \).

For \(r = s = 3 \) Proposition 21 reveals that \(R \simeq O_{-3} \) with \(h_o = e^{-\frac{2\pi i}{3}}I_2 \) or \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = 1 \). It is clear that

\[
H = \langle g, e^{-\frac{2\pi i}{3}}I_2 \rangle = \langle g, e^{\frac{2\pi i}{3}}I_2 \rangle = \langle e^{-\frac{2\pi i}{3}}I_2 \rangle \simeq H_{C_6}(4) \simeq \mathbb{C}_3 \times \mathbb{C}_3.
\]

If \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = 1 \) then the commuting matrices \(g \) and \(h_o \) admit a simultaneous diagonalization

\[
D = S^{-1}gS = \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & e^{-\frac{\pi i}{3}} \end{pmatrix}, \quad D_o = S^{-1}h_oS = \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{-3}))
\]

by an appropriate \(S \in GL(2, \mathbb{Q}(\sqrt{-3})) \). Then \(D^2D_o = e^{-\frac{2\pi i}{3}}I_2 \), whereas \(g^2h_o = S\left(e^{\frac{2\pi i}{3}}I_2\right)S^{-1} = e^{\frac{2\pi i}{3}}I_2 \) and

\[
H = \langle g, h_o \rangle = \langle g, g^2h_o = e^{-\frac{2\pi i}{3}}I_2 \rangle \simeq H_{C_6}(4) \simeq \mathbb{C}_6 \times \mathbb{C}_3.
\]

The assumption \(r = s = 4 \) implies that \(R = \mathbb{Z}[i] \) and \(\lambda_1(h_o) = \varepsilon i, \lambda_2(h_o) = \varepsilon \) for some \(\varepsilon \in \{\pm 1\} \), according to Proposition 17. Due to \(g^3 = -I_2 \), one has \(\langle g, h_o \rangle = \langle g, -h_o = g^3h_o \rangle \), so that there is no loss of generality in assuming \(\varepsilon = 1 \). If \(S \in GL(2, \mathbb{Q}(i)) \) conjugates \(h_o \) to its diagonal form

\[
D_o = S^{-1}h_oS = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbb{Q}(9i)),
\]

60
then
\[D = S^{-1}gS = \begin{pmatrix} a & b \\ c & 1-a \end{pmatrix} \in SL(2, \mathbb{Q}(i)). \]

The relation
\[DD_o = \begin{pmatrix} ia & b \\ ic & 1-a \end{pmatrix} = \begin{pmatrix} ia & ib \\ c & 1-a \end{pmatrix} = D_oD \]
implies that
\[D = \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & e^{-\frac{\pi i}{3}} \end{pmatrix} \in SL(2, \mathbb{Q}(i)) \text{ for some } \varepsilon \in \{\pm\}. \]

The contradiction proves the non-existence of \(H \) with \(r = s = 4 \).

Finally, for \(r = s = 6 \) Proposition 19 specifies that \(R = \mathcal{O}_{-3} \) and
\[\{\lambda_1(h_o), \lambda_2(h_o)\} = \left\{ e^{\frac{2\pi i}{3}}, e^{-\frac{2\pi i}{3}} \right\}, \quad \left\{ 1, e^{\frac{2\pi i}{3}} \right\} \quad \text{or} \quad \left\{ e^{-\frac{2\pi i}{3}}, -1 \right\}. \]

The commuting matrices \(g \) and \(h_o \) admit simultaneous diagonalization
\[D = S^{-1}gS = \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & e^{-\frac{\pi i}{3}} \end{pmatrix}, \]
\[D_o = S^{-1}h_oS = \begin{pmatrix} \lambda_1(h_o) & 0 \\ 0 & \lambda_2(h_o) \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{-3})) \]
by an appropriate \(S \in GL(2, \mathbb{Q}(\sqrt{-3})) \). Let us denote
\[D_o := \begin{pmatrix} e^{\frac{\pi i}{3}} & 0 \\ 0 & e^{-\frac{\pi i}{3}} \end{pmatrix}, \quad D'_o := \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{\pi i}{3}} \end{pmatrix}, \quad D''_o := \begin{pmatrix} e^{-\frac{\pi i}{3}} & 0 \\ 0 & -1 \end{pmatrix} \in GL(2, \mathcal{O}_{-3}) \]
and observe that
\[D^2D_o = D''_o, \quad D62D''_o = D'_o. \]

By its very definition,
\[H = \langle D, D_o \rangle < GL(2, \mathcal{O}_{-3}) \]
is isomorphic to \(H_{C6}(7) \). The equalities \(\langle D, D'_o = D^2D''_o \rangle = \langle D, D''_o \rangle \) and \(\langle D, D''_o = D^2D_o \rangle = \langle D, D_o \rangle \) conclude the proof of the proposition.

\[\square \]

Proposition 38. Let \(H \) be a finite subgroup of \(GL(2, R) \),
\[H \cap SL(2, R) = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \quad g_2g_1 = -g_1g_2 \rangle \cong \mathbb{Q}_8, \]
and \(h_o \in H \) be an element of order \(r \) with \(\det(H) = \langle \det(h_o) \rangle \cong \mathbb{C}_s \) and eigenvalues \(\lambda_1(h_o), \lambda_2(h_o) \). Then \(H \) is isomorphic to some \(H_{\mathbb{Q}_8}(i), \quad 1 \leq i \leq 9 \), where
\[H_{\mathbb{Q}_8}(1) = \langle g_1, g_2, iI_2 \mid g_1^2 = g_2^2 = -I_2, \quad g_2g_1 = -g_1g_2 \rangle \]
is of order 16 with $R = \mathbb{Z}[i]$,
\[H_{Q_8}(2) = \langle g_1, g_2, h_0 \mid g_1^2 = g_2^2 = -I_2, \ h_0^2 = I_2, \ g_2g_1 = -g_1g_2, \ h_0g_1h_0^{-1} = -g_1, \ h_0g_2h_0^{-1} = -g_2 \rangle \]
is of order 16 with $R = \mathbb{Z}[i]$, $\lambda_1(h_0) = -1$, $\lambda_2(h_0) = 1$,
\[H_{Q_8}(3) = \langle g_1, g_2, h_0 \mid g_1^2 = g_2^2 = h_0^4 = -I_2, \ g_2g_1 = -g_1g_2, \ h_0g_1h_0^{-1} = g_2, \ h_0g_2h_0^{-1} = g_1 \rangle \]
is of order 16 with $R = O_2$, $\lambda_1(h_0) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_0) = e^{\frac{4\pi i}{3}}$, $h_0^2 = \pm g_1g_2$,
\[H_{Q_8}(4) = \langle g_1, g_2, h_0 \mid g_1^2 = g_2^2 = -I_2, \ h_0^2 = I_2, \ g_2g_1 = -g_1g_2, \ h_0g_1h_0^{-1} = g_2, \ h_0g_2h_0^{-1} = g_1 \rangle \]
is of order 16 with $R = R_{-2}, \lambda_1(h_0) = -1$, $\lambda_2(h_0) = 1$,
\[H_{Q_8}(5) = \langle g_1, g_2 \rangle \times \langle e^{\frac{2\pi i}{3}} \rangle \simeq \mathbb{Q}_8 \times C_3 \]
is of order 24 with $R = O_3$,
\[H_{Q_8}(6) = \langle g_1, g_2, h_0 \mid g_1^2 = g_2^2 = -I_2, \ h_0^3 = I_2, \ g_2g_1 = -g_1g_2, \ h_0g_1h_0^{-1} = g_2, \ h_0g_2h_0^{-1} = g_1 \rangle \]
is of order 24 with $R = O_{-3}$, $\lambda_1(h_0) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_0) = 1$,
\[H_{Q_8}(7) = \langle g_1, g_2, h_0 \mid g_1^2 = g_2^2 = h_0^4 = -I_2, \ g_2g_1 = -g_1g_2, \ h_0g_1h_0^{-1} = -g_1, \ h_0g_2h_0^{-1} = -g_2 \rangle \]
is of order 32 with $R = \mathbb{Z}[i]$, $\lambda_1(h_0) = e^{\frac{3\pi i}{4}}$, $\lambda_2(h_0) = e^{-\frac{3\pi i}{4}}$,
\[H_{Q_8}(8) = \langle g_1, g_2, h_0 \mid g_1^2 = g_2^2 = h_0^4 = -I_2, \ g_2g_1 = -g_1g_2, \ h_0g_1h_0^{-1} = g_2, \ h_0g_2h_0^{-1} = g_1 \rangle \]
is of order 32 with $R = \mathbb{Z}[i]$, $\lambda_1(h_0) = e^{\frac{3\pi i}{4}}$, $\lambda_2(h_0) = e^{-\frac{3\pi i}{4}}$,
\[H_{Q_8}(9) = \langle g_1, g_2, h_0 \mid g_1^2 = g_2^2 = -I_2, \ h_0^4 = I_2, \ g_2g_1 = -g_1g_2, \ h_0g_1h_0^{-1} = g_2, \ h_0g_1h_0^{-1} = g_2 \rangle \]
is of order 32 with $R = \mathbb{Z}[i]$, $\lambda_1(h_0) = i$, $\lambda_2(h_0) = 1$.

There exist subgroups
\[H_{Q_8}(1), \ H_{Q_8}(2), \ H_{Q_8}(9) < GL(2, \mathbb{Z}[i]), \ q_{8}(5) < GL(2, O_{-3}), \]
as well as subgroups
\[H_{Q_8}^o(4) < GL(2, \mathbb{Q}(\sqrt{-2})), \ H_{Q_8}^o(6) < GL(2, \mathbb{Q}(\sqrt{-3})), \]
\[H_{Q_8}^o(3), \ H_{Q_8}^o(7), \ H_{Q_8}^o(8) < GL(2, \mathbb{Q}(\sqrt{2}, i)), \]
such that $H_{Q_8}^o(j) \simeq H_{Q_8}(j)$ for $j \in \{3, 4, 6, 7, 8\}.$
Proof. According to Lemmas 26 and 27, the group \(H = \langle g_1, g_2 \rangle \) with \(\det(H) = \langle \det(h_o) \rangle \simeq C_8 \) is completely determined by the order \(r \) of \(h_o \) and the elements \(x_j = h_og_jh_o^{-1} \in \langle g_1, g_2 \rangle \), \(1 \leq j \leq 2 \) of order 4. Bearing in mind that \(\langle g_1, g_2 \rangle^{(4)} = \{ \pm g_1, \pm g_2, \pm g_1g_2 \} \), let us split the considerations into Case A with \(x_j \in \{ \pm g_j \} \) for \(1 \leq j \leq 2 \), Case B with \(h_o g_1 h_o^{-1} = g_2 \), \(h_o g_2 h_o^{-1} = \varepsilon g_1 \) for some \(\varepsilon = \pm 1 \) and Case C with \(h_o g_1 h_o^{-1} = g_2 \), \(h_o g_2 h_o^{-1} = \varepsilon g_1 g_2 \) for some \(\varepsilon = \pm 1 \).

In the case A, let us distinguish between Case A1 with \(x_j = h_og_jh_o^{-1} = g_j \) for \(\forall 1 \leq j \leq 2 \) and Case A2 with \(x_k = h_og_kh_o^{-1} = -g_k \) for some \(k \in \{1, 2\} \). Note that if \(h_og_j = g_jh_o \) for \(\forall 1 \leq j \leq 2 \) then \(h_o \in H \) is a scalar matrix. Indeed, if \(h_o \) has diagonal form

\[
D_o = S^{-1}h_oS = \begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix}
\]

for some \(S \in GL(2, \mathbb{Q}(\sqrt{-d}, \lambda_1)) \) and

\[
D_j = S^{-1}g_jS = \begin{pmatrix}
a_j & b_j \\
c_j & -a_j
\end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-d}, \lambda_1)) \quad \text{for} \quad 1 \leq j \leq 2
\]

then

\[
D_oD_jD_o^{-1} = \begin{pmatrix}
a_j & \frac{\lambda_1 b_j}{\lambda_2} \\
\frac{\lambda_2 c_j}{\lambda_1} & -a_j
\end{pmatrix}
\]

(14)

coincides with \(D_j \) if and only if

\[
\begin{vmatrix}
\frac{\lambda_1}{\lambda_2} & 1 \\
\frac{\lambda_2}{\lambda_1} & -1
\end{vmatrix} b_j = 0 \quad \text{and} \quad \begin{vmatrix}
\frac{\lambda_1}{\lambda_2} & 1 \\
\frac{\lambda_2}{\lambda_1} & -1
\end{vmatrix} c_j = 0.
\]

The assumption \(\lambda_1(h_o) = \lambda_1 \neq \lambda_2(h_o) \) implies \(b_j = c_j = 0 \) for \(\forall 1 \leq j \leq 2 \), so that

\[
D_1 = \pm i \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \quad \text{and} \quad D_2 = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\]

are diagonal. In particular, \(D_1 \) commutes with \(D_2 \), contrary to \(D_2D_1 = -D_1D_2 \). Thus, in the Case A1 with \(h_og_j = g_jh_o \) for \(\forall 1 \leq j \leq 2 \) the matrix \(h_o \in H \) is to be scalar. By Propositions 16, 17, 18, 19, 20, 21, 22, the scalar matrices \(h_o \in GL(2, R) \setminus SL(2, R) \) are

\[
h_o = iI_2 \in GL(2, \mathbb{Z}[i]) \quad \text{of order} \quad 4,
\]

\[
h_o = e^{\pm 2\pi i}I_2 \in GL(2, \mathbb{Z}[i]) \quad \text{of order} \quad 3 \quad \text{and}
\]

\[
h_o = e^{\pm \pi i}I_2 \in GL(2, \mathbb{Z}[i]) \quad \text{of order} \quad 6.
\]

For any subgroup

\[
\mathbb{Q}_8 \simeq \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \quad g_2g_1 = -g_1g_2 \rangle \subset SL(2, \mathbb{Z}[i])
\]

63
one obtains a group
\[H_{Q8}(1) = \langle g_1, g_2, i I_2 \mid g_1^2 = g_2^2 = -I_2, \quad g_2 g_1 = -g_1 g_2 \rangle < GL(2, \mathbb{Z}[i]) \]
of order 16. As far as \(-I_2 \in H \cap SL(2, R)\), the group \(H\) contains \(e^{2\pi i} I_2\) if and only if it contains \(-e^{2\pi i} I_2 = e^{-2\pi i} I_2\). Since \(\langle g_1, g_2 \rangle \cap \langle e^{2\pi i} I_2 \rangle = \{I_2\}\), any finite group \(H\) with \(e^{2\pi i} I_2 \in H\) is a subgroup of \(GL(4, \mathbb{O}_{-3})\) of the form
\[H_{Q8}(5) = \langle g_1, g_2 \rangle \times \langle e^{2\pi i} I_2 \rangle \cong \mathbb{Q}_8 \times \mathbb{C}_3. \]

These deplete \(H = [H \cap SL(2, R)]\langle h_o \rangle = \langle g_1, g_2 \rangle \langle h_o \rangle \simeq \mathbb{Q}_8 \mathbb{C}_s\) of Case A1.

In the Case A2, one can assume that \(h_o g_1 h_o^{-1} = -g_1\). If \(h_o g_2 h_o = g_2\) then \(h_o (g_1 g_2) h_o^{-1} = -g_1 g_2\), so that there is no loss of generality in supposing \(h_o g_2 h_o^{-1} = -g_2\).

By Lemma 33(iv), \(h_o g_1 h_o^{-1} = -g_1\) requires \(\lambda_1(h_o) = i e^{\frac{2\pi i}{s}}, \lambda(h_o) = -i e^{\frac{2\pi i}{s}}\), whereas \(\frac{\lambda_1(h_o)}{\lambda_2(h_o)} + 1 = \frac{\lambda_1(h_o)}{\lambda_2(h_o)} + 1 = 0\). If
\[D_o = S^{-1} h_o S = \begin{pmatrix} i e^{\frac{2\pi i}{s}} & 0 \\ 0 & -i e^{\frac{2\pi i}{s}} \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{-d}, i e^{\frac{2\pi i}{s}})) \]
is a diagonal form of \(h_o \in H\) and
\[D_j = S^{-1} g_j S = \begin{pmatrix} a_j & b_j \\ c_j & -a_j \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{-d}, i e^{\frac{2\pi i}{s}})) \quad \text{for} \quad 1 \leq j \leq 2, \]
then \(D_o D_j D_o^{-1} = -D_j\) for \(1 \leq j \leq 2\) is equivalent to \(a_1 = a_2 = 0\). As a result, \(b_j \neq 0\) and \(c_j = -\frac{1}{b_j}\).Straightforwardly, \(D_2 D_1 = -D_1 D_2\) amounts to \(2a_1 a_2 + b_1 c_2 + b_2 c_1 = 0\), whereas \(\frac{b_1}{a_1} + \frac{b_2}{a_2} = 0\). Denoting \(\beta := \frac{b_1}{a_1} \in \mathbb{Q}(\sqrt{-d}, i e^{\frac{2\pi i}{s}})\), one computes that \(\beta = \pm i \in \mathbb{Q}(\sqrt{-d}, i e^{\frac{2\pi i}{s}})\). Then by Lemma 28 there follows \(s = 2\) with \(d = 1\) or \(s = 4\). For \(s = 2\) one has \(\lambda_1(h_o) = -1, \lambda_2(h_o) = 1\), so that \(h_o \in H\) is of order 2 and
\[H = H_{Q8}(2) = \langle g_1, g_2, h_o \mid g_1^2 = g_2^2 = -I_2, \quad h_o^2 = I_2, \]
\[g_2 g_1 = -g_1 g_2, \quad h_o g_1 h_o^{-1} = -g_1, \quad h_o g_2 h_o^{-1} = -g_2 \]
is a subgroup of \(GL(2, R_{-1,f})\) of order 16. Note that
\[h_o = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad g_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{and} \quad g_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \]
generate a subgroup of \(GL(2, \mathbb{Z}[i])\), isomorphic to \(H_{Q8}(2)\). In the case of \(s = 4\), the element \(h_o \in H\) with eigenvalues \(\lambda_1(h_o) = e^{\frac{2\pi i}{4}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{4}}\) is of order 8 and
\[H = H_{Q8}(7) = \langle g_1, g_2, h_o \mid g_1^2 = g_2^4 = h_o^4 = -I_2, \quad g_2 g_1 = -g_1 g_2 \]
\[h_o g_1 h_o^{-1} = -g_1, \quad h_o g_2 h_o^{-1} = -g_2 \]
is a subgroup of $GL(2, \mathbb{Z}[i])$ of order 32. The matrices

$$D_o = \begin{pmatrix} e^{\frac{3\pi i}{4}} & 0 \\ 0 & e^{-\frac{\pi i}{4}} \end{pmatrix}, \ D_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ D_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

generate a subgroup $H_{Q8}^o(7)$ of $GL(2, \mathbb{Q}(\sqrt{2}, i))$, isomorphic to $H_{Q8}(7)$. That concludes the Case A.

In the Case B, let us observe that $h_o g_1 h_o^{-1} = g_2$ and $h_o g_2 h_o^{-1} = \varepsilon g_1$ imply $h_o^2 g_1 h_o^{-2} = \varepsilon g_1$ and $h_o^2 g_2 h_o^{-2} = \varepsilon g_2$. If $h_o^2 \in H \cap SL(2, R)$ then $\det(h_o) = \lambda_1(h_o) \lambda_2(h_o) = -1$. The matrices

$$D_o = S^{-1} h_o S = \begin{pmatrix} \lambda_1(h_o) & 0 \\ 0 & \lambda_2(h_o) \end{pmatrix} \quad \text{and} \quad D_j = S^{-1} g_j S = \begin{pmatrix} a_j & b_j \\ c_j & -a_j \end{pmatrix}$$

with $a_j^2 + b_j c_j = -1, 2a_1 a_2 + b_1 c_2 + b_2 c_1 = 0$ satisfy $D_o D_1 D_o^{-1} = D_2$ if and only if

$$D_2 = \begin{pmatrix} a_1 & b_1 \\ -c_1 \lambda_1^2(h_o) & -a_1 \end{pmatrix}.$$

Then $D_o D_2 D_o^{-1} = \varepsilon D_1$ is equivalent to

$$\begin{vmatrix} (\varepsilon - 1) a_1 & 0 \\ (\varepsilon - \lambda_1^4(h_o)) b_1 & 0 \\ (\varepsilon - \frac{1}{\lambda_1^4(h_o)}) c_1 & 0 \end{vmatrix} = 0.$$

According to $\det(D_1) = 1 \neq 0$, there follows $(\varepsilon - 1)(\varepsilon - \lambda_1^4(h_o)) = 0$. In the case of $-1 = \varepsilon = \lambda_1^4(h_o)$, Proposition 16 implies that $R = \mathcal{O}_{-2}, h_o$ is of order 8 and

$$D_o = S^{-1} h_o S = \begin{pmatrix} e^{\frac{\pi i}{4}} & 0 \\ 0 & e^{\frac{3\pi i}{4}} \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{2}, i)).$$

Moreover,

$$D_1 = \begin{pmatrix} 0 & b_1 \\ -\frac{1}{b_1} & 0 \end{pmatrix}, \ D_2 = \begin{pmatrix} 0 & -ib_1 \\ -\frac{1}{ib_1} & 0 \end{pmatrix},$$

so that the subgroup

$$H_{Q8}(3) = \langle g_1, g_2, h_o \mid g_1^2 = g_2^3 = h_o^4 = -I_2, \ g_2 g_1 = -g_1 g_2, \ h_o g_1 h_o^{-1} = g_2, \ h_o g_2 h_o^{-1} = -g_1 \rangle < GL(2, \mathcal{O}_{-2})$$

of order 16 is conjugate to the subgroup

$$H_{Q8}^o(3) = \langle D_o = \begin{pmatrix} e^{\frac{\pi i}{4}} & 0 \\ 0 & e^{\frac{3\pi i}{4}} \end{pmatrix}, \ D_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle,$$
\[D_2 = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} < GL(2, \mathbb{Q}(\sqrt{2}, i)). \]

For \(\varepsilon = 1 \) and \(\lambda_4^i(h_o) \neq 1 \) there follows
\[D_2 = D_1 = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \]
which contradicts \(D_2D_1 = -D_1D_2 \). Therefore \(\varepsilon = 1 \) implies \(\lambda_4^i(h_o) = 1 \) and
\[D_o = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
is of order 2, since all \(h_o \in H \) of order 4 with \(\det(h_o) = -1 \) are scalar matrices and commute with \(g_1, g_2 \). In such a way, one obtains the group
\[H_{Q_8}(4) = \langle g_1, g_2, h_o \mid g_1^2 = g_2^2 = -I_2, \ h_o^2 = I_2, \ g_2g_1 = -g_1g_2, \ h_o g_1 h_o^{-1} = g_2, \ h_o g_2 h_o^{-1} = g_1 \rangle \]
of order 16. The matrices
\[D_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & -a_1 \end{pmatrix} \quad \text{and} \quad D_2 = \begin{pmatrix} a_1 & -b_1 \\ -c_1 & -a_1 \end{pmatrix} \]
generate a subgroup of \(GL(2, \mathbb{Q}(\sqrt{-d})) \), isomorphic to \(Q_8 \) exactly when \(a_1 = \pm \frac{\sqrt{-1}}{2} \in \mathbb{Q}(\sqrt{-d}) \) and \(c_1 = -\frac{1}{b_1} \) for some \(b_1 \in \mathbb{Q}(\sqrt{-d})^* \). Therefore \(H_{Q_8}(4) \) occurs only as a subgroup of \(GL(2, R_{-2, f}) \) and
\[D_o = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad D_1 = \begin{pmatrix} \frac{\sqrt{-1}}{2} & 1 \\ -\frac{1}{2} & -\frac{\sqrt{-1}}{2} \end{pmatrix}, \quad D_2 = \begin{pmatrix} \frac{\sqrt{-1}}{2} & 1 \\ \frac{1}{2} & -\frac{\sqrt{-1}}{2} \end{pmatrix} \]
generate a subgroup \(H_{Q_8}^o(4) \) of \(GL(2, \mathbb{Q}(\sqrt{-2})) \), isomorphic to \(H_{Q_8}(4) \). That concludes the Case B with \(h_o^2 \in H \cap SL(2, R) \).

Let us suppose that \(h_o g_1 h_o^{-1} = g_2, \ h_o g_2 h_o^{-1} = \varepsilon g_1 \) with \(\det(h_o) \in R^* \) of order \(s > 2 \). Note that \(h_o^s \in H \cap SL(2, R) = \langle g_1, g_2 \rangle \) implies \(h_o^j g_1 h_o^{-j} \in \{ \pm g_1 \} \) for \(\forall 1 \leq j \leq 2 \), so that \(s \in \{ 4, 6 \} \) has to be an even natural number. The group
\[H' = \langle g_1, g_2, h_o^2 \mid g_1^2 = g_2^2 = -I_2, \ h_o^2 = I_2, \ g_2g_1 = -g_1g_2, \ h_o^2 g_1 h_o^{-2} = \varepsilon g_1, \ h_o^2 g_2 h_o^{-2} = \varepsilon g_2 \rangle \]
with \(h_o^2 \in GL(2, R) \setminus SL(2, R), \ H' \cap SL(2, R) = \langle g_1, g_2 \rangle \simeq Q_8 \) is of order \(8^s \in \{ 16, 24 \} \) and satisfies the assumptions of Case A. Thus, for \(\varepsilon = 1 \) one has \(h_o^2 = i I_2 \) or \(h_o^2 = e^{\frac{2\pi i}{s}} I_2 \). If \(h_o^2 = i I_2 \) then \(h_o \in H \) is of order 8 with \(\det(h_o) = \pm i \). Therefore \(R = \mathbb{Z}[i] \)
and h_o has eigenvalues $\lambda_1(h_o) = e^{\frac{4\pi}{3}}$, $\lambda_2(h_o) = e^{-\frac{4\pi}{3}}$ with $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = \frac{\lambda_2(h_o)}{\lambda_1(h_o)} = -1$. The relations $D_oD_1D_o^{-1} = D_2$, $D_oD_2D_o^{-1} = D_1$ on the diagonal form D_o of h_o hold for

$$D_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & -a_1 \end{pmatrix}, \quad D_2 = \begin{pmatrix} a_1 & -b_1 \\ -c_1 & -a_1 \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{2}, i)).$$

The group $\langle D_1, D_2 \rangle$ is isomorphic to \mathbb{Q}_8 if and only if $a_1 = \pm \frac{\sqrt{2}}{2}$ and $c_1 = -\frac{1}{b_1}$ for some $b_1 \in \mathbb{Q}(\sqrt{2}, i)$. In such a way, one obtains the group

$$H_{Q8}(8) = \langle g_1, g_2, h_o | g_1^2 = g_2^2 = h_o^4 = -I_2, \ g_2g_1 = -g_1g_2, \ h_o g_1 h_o^{-1} = g_2, \ h_o g_2 h_o^{-1} = g_1 \rangle$$

for $R = \mathbb{Z}[i]$. Note that $H_{Q8}(8)$ is of order 32 and has a conjugate $H_{Q8}^\prime(8) = \langle D_1, D_2, D_o \rangle < GL(2, \mathbb{Q}(\sqrt{2}, i))$. If $h_o = e^{\frac{2\pi i}{3}}I_2$ then $R = \mathcal{O}_{-3}$ and $h_o \in H$ is of order 6 with $\det(h_o) = e^{\pm \frac{2\pi i}{3}}$. According to $h_o g_1 h_o^{-1} = g_2 \neq g_1$, h_o is not a scalar matrix, so that $\lambda_1(h_o) = e^{-\frac{4\pi}{3}}$, $\lambda_2(h_o) = -1$ for $\det(h_o) = e^{\frac{4\pi i}{3}}$. Now, $D_oD_1D_o^{-1} = D_2$ is tantamount to

$$D_2 = \begin{pmatrix} a_1 & e^{\frac{2\pi i}{3}} b_1 \\ e^{-\frac{2\pi i}{3}} c_1 & -a_1 \end{pmatrix}$$

and $D_oD_2D_o^{-1} = D_1$ reduces to

$$\begin{vmatrix} 1 - e^{\frac{2\pi i}{3}} & b_1 \\ 1 - e^{-\frac{2\pi i}{3}} & c_1 \end{vmatrix} = 0.$$

As a result, $b_1 = c_1$ and

$$D_1 = D_2 = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

commute with each other. Thus, there is no group H of Case B with $h_o^2 = e^{\frac{2\pi i}{3}}I_2$. If $h_o g_1 h_o^{-1} = g_2$, $h_o g_2 h_o^{-1} = -g_1$ and $h_o^2 \not\in \langle g_1, g_2 \rangle$ then

$$H' = \langle g_1, g_2, h_o^2 | g_1^2 = g_2^2 = -I_2, \ h_o^2 = I_2, \ g_2g_1 = -g_1g_2, \ h_o^2 g_1 h_o^{-2} = -g_1, \ h_o^2 g_2 h_o^{-2} = -g_2 \rangle$$

is isomorphic to $H_{Q8}(2)$ or $H_{Q8}(7)$, according to the considerations for Case A. More precisely, if $H' \simeq H_{Q8}(2)$ then h_o of order 4 has $\det(h_o) = \pm i$ and $R = \mathbb{Z}[i]$. Due to $-I_2 \in \langle g_1, g_2 \rangle$, one can assume that

$$D_o = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}.$$
Then $D_oD_1D_o^{-1} = D_2$ requires

$$D_2 = \begin{pmatrix} a_1 & ib_1 \\ -ic_1 & -a_1 \end{pmatrix},$$

so that $D_oD_2D_o^{-1} = -D_1$ results in $a_1 = 0$. Bearing in mind that det(D_1) = det(D_2) = 1, one concludes that

$$D_1 = \begin{pmatrix} 0 & b_1 \\ 0 & 0 \end{pmatrix}, \quad D_2 = \begin{pmatrix} 0 & ib_1 \\ 0 & 0 \end{pmatrix}.$$

For $b_1 = 1$, one obtains a subgroup $\langle D_1, D_2, D_o \rangle$ of $GL(2, \mathbb{Z}[i])$, isomorphic to

$$H_{Q8}(9) = \langle g_1, g_2, h_o \mid g_1^2 = g_2^2 = -I_2, \ h_o^4 = I_2, \ g_2g_1 = -g_1g_2, \ h_o g_1 h_o^{-1} = g_2, \ h_o g_2 h_o^{-1} = -g_1 \rangle < GL(2, \mathbb{Z}[i]).$$

Since det(h_o) = i is of order $s = 4$, the group $H_{Q8}(9)$ is of order 32. If $H' = \langle g_1, g_2, h_o^2 \rangle \simeq H_{Q8}(7)$ then $h_o \in H$ is to be of order 16, since h_o^2 is of order 8. The lack of $h_o \in GL(2, R)$ of order 16 reveals that the groups $H_{Q8}(3), H_{Q8}(4), H_{Q8}(8), H_{Q8}(9)$ deplete Case B.

There remains to be considered Case C with $h_o g_1 h_o^{-1} = g_2, h_o g_2 h_o^{-1} = \varepsilon g_1 g_2, h_o(g_1 g_2) h_o^{-1} = \varepsilon g_1$ for some $\varepsilon = \pm 1$. Note that $h_o^2 g_1 h_o^{-2} = \varepsilon g_1 g_2, h_o^2 g_2 h_o^{-2} = g_1, h_o^3 g_1 h_o^{-3} = g_1, h_o^3 g_2 h_o^{-3} = g_2$ require the divisibility of s by 3, as far as $\langle g_j \rangle$ are normal subgroups of $\langle g_1, g_2 \rangle$ and $h_o^s \in \langle g_1, g_2 \rangle$. In other words, $s \in \{3, 6\}$ and $R = \mathcal{O}_{-3}$. The non-scalar matrices $h_o \in GL(2, \mathcal{O}_{-3})$ with det(h_o) = $e^{\frac{2\pi i}{3}}$ have eigenvalues $\{\lambda_1(h_o), \lambda_2(h_o)\} = \{e^{\frac{2\pi i}{3}}, 1\}, \{e^{-\frac{2\pi i}{3}}, -1\}$ or $\{e^{\frac{2\pi i}{3}}, e^{-\frac{2\pi i}{3}}\}$. If h_o is of order 3 or 6 then $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = e^{\frac{2\pi i}{3}}$ and $D_oD_1D_o^{-1} = D_2$ specifies that

$$D_2 = \begin{pmatrix} a_1 & e^{\frac{2\pi i}{3}}b_1 \\ e^{-\frac{2\pi i}{3}c_1} & -a_1 \end{pmatrix}.$$

Now, $2a_1a_2 + b_1c_2 + b_2c_1 = 0$ reduces to $2a_2^2 = b_1c_1$ and $a_2^2 + b_1c_1 = -1$ requires $a_1 = \pm \frac{3}{3}, c_1 = -\frac{2}{3b_1}$ for some $b_1 \in \mathbb{Q}(\sqrt{-3})^*$. Replacing, eventually, D_j by D_j^3, one has

$$D_1 = \begin{pmatrix} \frac{\sqrt{-3}}{3} & b_1 \\ -\frac{2}{3b_1} & -\frac{\sqrt{-3}}{3} \end{pmatrix}, \quad D_2 = \begin{pmatrix} \frac{\sqrt{-3}}{3} & e^{\frac{2\pi i}{3}}b_1 \\ -2e^{-\frac{2\pi i}{3}}\frac{1}{3b_1} & -\frac{\sqrt{-3}}{3} \end{pmatrix}.$$

Now,

$$D_1D_2 = \begin{pmatrix} \frac{\sqrt{-3}}{3} & e^{\frac{2\pi i}{3}}b_1 \\ -2e^{-\frac{2\pi i}{3}}\frac{1}{3b_1} & -\frac{\sqrt{-3}}{3} \end{pmatrix}$$
and \(D_oD_o^{-1} = \varepsilon D_1 D_2 \) holds for \(\varepsilon = 1 \). Thus,

\[
H^o_{Q_8}(6) = \langle D_1, D_2, D_o \rangle < GL(2, \mathbb{Q}(\sqrt{-3}))
\]

is conjugate to

\[
H_{Q_8}(6) = \langle g_1, g_2, h_o \mid g_1^2 = g_2^2 = -I_2, \ h_o^3 = I_2, \ g_2g_1 = -g_1g_2 \rangle \\
\text{with } h_o g_1 h_o^{-1} = g_2, \ h_o g_2 h_o^{-1} = g_1 g_2 < GL(2, O_{-3})
\]
of order 24 with \(\lambda_1(h_o) = e^{\frac{2\pi i}{3}} \), \(\lambda_2(h_o) = 1 \) or to

\[
H = \langle g_1, g_2, h_o \mid g_1^2 = g_2^2 = -I_2, \ h_o^3 = -I_2, \ g_2g_1 = -g_1g_2 \rangle \\ (15)
\]

of order 24 with \(\lambda_1(h_o) = e^{-\frac{2\pi i}{3}}, \ \lambda_3(h_o) = -1 \). Due to \(-I_2 \notin \langle g_1, g_2 \rangle \), the presence of \(h_o \in H \) of order 6 with \(\det(H) = \langle \det(h_o) \rangle \simeq \mathbb{C}_3 \) is equivalent to the existence of \(-h_o \in H \) of order 3 with \(\det(H) = \langle \det(-h_o) \rangle \simeq \mathbb{C}_3 \) and \(H \) from (15) is isomorphic to \(H_{Q_8}(6) \). If \(h_o \) has diagonal form

\[
D_o = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \in GL(2, \mathbb{Q}(\sqrt{-3}))
\]
of order 12 with \(\det(D_o) = e^{\frac{2\pi i}{3}}, \ \frac{\lambda_1(h_o)}{\lambda_2(h_o)} = -1 \), then \(D_o D_1 D_o^{-1} = D_2 \) implies that

\[
D_2 = \begin{pmatrix} a_1 & -b_1 \\ c_1 & a_1 \end{pmatrix}
\]

with \(a_1^2 = b_1 c_1 = -\frac{1}{2} \). Therefore, \(a_1 = \pm \frac{\sqrt{-7}}{2} \in GL(2, \mathbb{Q}(\sqrt{-3})) \), which is an absurd. If \(h_o g_1 h_o^{-1} = g_2, \ h_o g_2 h_o^{-1} = \varepsilon g_1 g_2 \) and \(s = 6 \) then \(h_o \in H \) is of order 6, according to Proposition 19. Now \(H'' = \langle g_1, g_2, h_o^3 \rangle < GL(2, R) \) with \(h_o^3 \notin \langle g_1, g_2 \rangle \) is subject to Case A with a scalar matrix \(h_o \in H \), according to \(h_o^3 g_1 h_o^{-3} = g_1, \ h_o^3 g_2 h_o^{-3} = g_2 \). If \(h_o^3 = iI_2 \) then \(h_o \) is of order \(r = 12 \). The assumption \(h_o^3 = e^{\frac{2\pi i}{3}} I_2 \) holds for \(h_o \) of order \(r = 9 \). Both contradict to \(r = 6 \) and establish that any subgroup \(H < GL(2, R) \) with \(H \cap SL(2, R) \simeq Q_8 \) is isomorphic to \(H_{Q_8}(i) \) for some \(1 \leq i \leq 9 \).

\(\square \)

Proposition 39. Let \(H \) be a finite subgroup of \(GL(2, R) \),

\[
H \cap SL(2, R) = K_7 = \langle g_1, g_4, \ g_1^2 = g_4^3 = -I_2, \ g_1 g_4 g_1^{-1} = g_4^{-1} \rangle \simeq Q_{12}
\]

and \(h_o \in H \) be an element of order \(r \) with \(\det(H) = \langle \det(h_o) \rangle \simeq \mathbb{C}_s \) and eigenvalues \(\lambda_1(h_o), \lambda_2(h_o) \). Then \(H \) is isomorphic to \(H_{Q_{12}}(i) \) for some \(1 \leq i \leq 10 \), where

\[
H_{Q_{12}}(i) = \langle g_1, g_4, h_o = iI_2 \mid g_1^2 = g_4^3 = -I_2, \ g_1 g_4 g_1^{-1} = g_4^{-1} \rangle
\]

69
is of order 24 with $R - \mathbb{Z}[i]$,

$$H_{Q12}(2) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = -I_2, \quad h_o^6 = I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$

$$h_o g_1 h_o^{-1} = g_1 g_4, \quad h_o g_4 h_o^{-1} = g_4$$

of order 24, with $R = \mathcal{O}_{-3}$, $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{\frac{4\pi i}{3}}$,

$$H_{Q12}(3) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = h_o^6 = -I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$

$$h_o g_1 h_o^{-1} = g_1 g_4^2, \quad h_o g_4 h_o^{-1} = g_4$$

is of order 24 with $R = \mathcal{O}_{-3}, \lambda_1(h_o) = e^{\frac{4\pi i}{3}}, \lambda_2(h_o) = e^{\frac{5\pi i}{3}}$,

$$H_{Q12}(4) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = -I_2, \quad h_o^2 = I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$

$$h_o g_1 h_o^{-1} = -g_1, \quad h_o g_4 h_o^{-1} = g_4$$

is of order 24 with $\lambda_1(h_o) = -1, \lambda_2(h_o) = 1$,

$$H_{Q12}(5) = \langle g_1, g_4, h_o = e^{\frac{2\pi i}{3}} I_2 \mid g_1^2 = g_4^3 = -I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1}$$

is of order 36 with $R = \mathcal{O}_{-3}$,

$$H_{Q12}(6) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = -I_2, \quad h_o^3 = I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$

$$h_o g_1 h_o^{-1} g_4 g_4^2, \quad h_o g_4 h_o^{-1} = g_4$$

is of order 36 with $R = \mathcal{O}_{-3}, \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = 1$,

$$H_{Q12}(7) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = h_o^6 = -I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$

$$h_o g_1 h_o^{-1} = -g_1, \quad h_o g_4 h_o^{-1} = g_4$$

is of order 36 with $R = \mathcal{O}_{-3}, \lambda_1(h_o) = e^{-\frac{\pi i}{3}}, \lambda_2(h_o) = e^{\frac{5\pi i}{3}}$,

$$H_{Q12}(8) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = h_o^4 = -I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$

$$h_o g_1 h_o^{-1} = g_1, \quad h_o g_4 h_o^{-1} = g_4$$

is of order 48 with $R = \mathbb{Z}[i], \lambda_1(h_o) = e^{\frac{3\pi i}{4}}, \lambda_2(h_o) = e^{-\frac{3\pi i}{4}}$,

$$H_{Q12}(9) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = -I_2, \quad h_o^6 = I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$

$$h_o g_1 h_o^{-1} = g_1 g_4, \quad h_o g_4 h_o^{-1} = g_4$$

is of order 72 with $R = \mathcal{O}_{-3}, \lambda_1(h_o) = 1, \lambda_2(h_o) = e^{\frac{\pi i}{3}}$,

$$H_{Q12}(10) = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = -I_2, \quad h_o^6 = I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},$$
\[h_oh_1h_o^{-1} = -g_1, \quad h_og_4h_o^{-1} = g_4 \]
is of order 72 with \(R = \mathcal{O}_{-3}, \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{-\frac{2\pi i}{3}}. \)

There exist subgroups
\[H_{Q12}(2), H_{Q12}(4), H_{Q12}(5), H_{Q12}(6), H_{Q12}(9), H_{Q12}(10) < GL(2, \mathcal{O}_{-3}), \]
as well as subgroups
\[H_{Q12}^o(1), H_{Q12}^o(3), H_{Q12}^o(7) < GL(2, \mathbb{Q}(\sqrt{3}, i)), \quad H_{Q12}^o(8) < GL(2, \mathbb{Q}(\sqrt{2}, \sqrt{3}, i)) \]
with \(H_{Q12}^o(j) \simeq H_{Q12}(j) \) for \(j \in \{1, 3, 7, 8\}. \)

Proof. According to Lemma 27, the groups \(H = K_7\langle h_0 \rangle \) with \(\det(H) = \langle \det(h_0) \rangle \simeq \mathbb{C}_s \) are determined up to an isomorphism by the order \(r \) of \(h_0 \), the element \(h_0g_1h_o^{-1} \in K_7 \) of order 4 and the element \(h_0g_4h_o^{-1} \in K_7 \) of order 6. Let us denote by \(K_7^{(m)} \) the set of the elements of \(K_7 \) of order \(m \). Straightforwardly,

\[K_7^{(6)} = \{ g_4, g_4^{-1} \}, \quad K_7^{(4)} = \{ \pm g_1g_4 \mid 0 \leq i \leq 3 \}. \]

Inverting \(g_1g_4g_1^{-1} = g_4^{-1} \), one obtains \(g_1g_4^{-1}g_1^{-1} = g_4 \). If \(h_0g_4h_o^{-1} = g_4^{-1} \) then

\[(g_1h_o)g_4(g_1h_o^{-1}) = g_1(h_0g_4h_o^{-1})g_1^{-1} = g_1g_4^{-1}g_1^{-1} = g_4. \]

As far as \(K_7 = \langle g_1, g_4, h_o \rangle = \langle g_1, g_4, g_1h_o \rangle \), there is no loss of generality in assuming \(h_0g_1h_o^{-1} = g_4 \).

We start the study of \(H \) by a realization of \(K_7 \) as a subgroup of the special linear group \(SL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3})) \). Let

\[D_4 = S^{-1}g_4S = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \]

be a diagonal form of \(g_4 \) for some \(S \in GL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3})) \) and

\[D_1 = S^{-1}g_1S = \begin{pmatrix} a_1 & b_1 \\ c_1 & -a_1 \end{pmatrix} \quad \text{with} \quad a_1^2 + b_1c_1 = -1. \]

Then

\[D_1D_4D_1^{-1} = \begin{pmatrix} -\sqrt{-3}a_1^2 + e^{\frac{2\pi i}{3}} & -\sqrt{-3}a_1b_1 \\ -\sqrt{-3}a_1c_1 & \sqrt{-3}a_1^2 + E^{\frac{2\pi i}{3}} \end{pmatrix} \in SL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3})) \]

coincides with \(D_4^{-1} \) if and only if

\[D_1 = \begin{pmatrix} 0 & b_1 \\ -b_1 & 0 \end{pmatrix} \quad \text{for some} \quad b_1 \in \mathbb{Q}(\sqrt{-d}, \sqrt{-3})^*. \]
That allows to compute explicitly

\[
K_7^{(4)} = \left\{ \pm D_1 = \pm \begin{pmatrix} 0 & b_1 \\ -b_1^{-1} & 0 \end{pmatrix}, \quad \pm D_1 D_4 = \pm \begin{pmatrix} 0 & \left(-e^{\frac{2\pi i}{3}} b_1\right)^{-1} \\ -\left(e^{\frac{2\pi i}{3}} b_1\right)^{-1} & 0 \end{pmatrix} \right\},
\]

\[
\pm D_1 D_4^2 = \pm \begin{pmatrix} 0 & e^{-\frac{2\pi i}{3}} b_1 \\ -e^{-\frac{2\pi i}{3}} b_1 & 0 \end{pmatrix},
\]

\[
K_7^{(4)} = \left\{ D_1 D_4^j = \begin{pmatrix} 0 & e^{-\frac{2\pi i}{3}} b_1 \\ -\left(e^{-\frac{2\pi i}{3}} b_1\right)^{-1} & 0 \end{pmatrix} \quad 0 \leq j \leq 5 \right\}.
\]

Now, \(D_oD_4D_o^{-1} = D_4\) amounts to

\[
D_o = \begin{pmatrix} \lambda_1(h_o) & 0 \\ 0 & \lambda_2(h_o) \end{pmatrix}
\]

and

\[
D_oD_1D_o^{-1} = \begin{pmatrix} -\left[\frac{\lambda_1(h_o)}{\lambda_2(h_o)}\right]^{-1} & 0 \\ 0 & \frac{\lambda_1(h_o)}{\lambda_2(h_o)} b_1 \end{pmatrix} = \begin{pmatrix} 0 & e^{-\frac{2\pi i}{3}} b_1 \\ -\left(e^{-\frac{2\pi i}{3}} b_1\right)^{-1} & 0 \end{pmatrix} = D_1 D_4^j
\]

if and only if \(\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = e^{-\frac{2\pi i}{3}}\). Note that the ratio \(\frac{\lambda_1(h_o)}{\lambda_2(h_o)}\) of the eigenvalues of \(h_o\) is determined up to an inversion and

\[
\left\{ e^{-\frac{2\pi i}{3}} \mid 0 \leq j \leq 5 \right\} = \left\{ 1 = e^0, \quad e^{\frac{2\pi i}{3}}, \quad -1 = e^{\pi i} \mid 1 \leq j \leq 2 \right\}.
\]

For any \(h_o \in H\) with \(\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = e^{\frac{2\pi i}{3}}, 0 \leq j \leq 3\) the group

\[
H = \langle g_1, g_4, h_o \mid g_1^2 = g_4^3 = -I_2, \quad h_o = I_2, \quad g_1 g_4 g_1^{-1} = g_4^{-1},
\]

\[
\lambda_1(h_o) = 1 \quad \lambda_2(h_o) = 0
\]

Note that \(\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = 1\) exactly when \(h_o \in H \setminus SL(2,R)\) is a scalar matrix. According to Propositions 16, 17, 18, 19, 20, 21, 22, the only scalar matrices \(h_o \in GL(2,R) \setminus SL(2,R)\) are \(h_o = \pm i I_2\) for \(R = \mathbb{Z}[i]\) and \(h_o = e^{\frac{2\pi i}{3}} I_2\) or \(e^{\frac{4\pi i}{3}} I_2\) with \(R = \mathbb{O}_{-3}\). Replacing, eventually, \(h_o = -i I_2\) by \(h_o^{-1} = i I_2\), one obtains the group \(H_{Q/12}(1) = \langle g_1, g_4, i I_2 \rangle\) with \(R = \mathbb{Z}[i]\). Note that \(H_{Q/12}(1) = \langle D_1, D_4, h_o = i I_2 \rangle\) is a realization of \(H_{Q/12}(1)\) as a subgroup of \(GL(2, \mathbb{Q}(\sqrt{3}, i))\). Bearing in mind that \(-I_2 \in K_7\), one observes that \(e^{-\frac{2\pi i}{3}} I_2 \in H\) if and only if \(-e^{-\frac{2\pi i}{3}} I_2 = e^{\frac{2\pi i}{3}} I_2 \in H\). Replacing, eventually, \(e^{\frac{2\pi i}{3}} I_2\) and \(e^{\frac{4\pi i}{3}} I_2\) by their inverse matrices, one observes that \(h_o = e^{\frac{2\pi i}{3}} I_2 \in H\) whenever \(H\) contains a scalar matrix of order 3 or 6. That provides the group \(H_{Q/12}(5) = \langle g_1, g_4, e^{\frac{2\pi i}{3}} I_2 \rangle\). Note that

\[
\langle D_1 \rangle = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad D_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & -e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad D_o = e^{\frac{2\pi i}{3}} I_2 \rangle < GL(2, \mathbb{O}_{-3})
\]

72
is a realization of $H_{Q12}(5)$ as a subgroup of $GL(2, \mathcal{O}_3)$.

For $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = e^{\frac{2\pi i}{3}}$, Corollary 29 specifies that either $R = \mathcal{O}_3$, $s = 2$, $r = 6$, $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_o) = e^{\frac{2\pi i}{3}}$ and $H \cong H_{Q12}(2)$ or $R = \mathcal{O}_3$, $s = 6$, $r = 6$, $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_o) = e$. In the second case, one can restrict to $e = 1$, due to $I_2 \subset K_7 \subset H$. The corresponding group $H \cong H_{Q12}(9)$. Both, $H_{Q12}(2)$ and $H_{Q12}(9)$ can be realized as subgroups of $GL(2, \mathcal{O}_3)$, setting

$$g_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad g_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}.$$

$$h_o = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{\frac{2\pi i}{3}} \end{pmatrix} \quad \text{or, respectively,} \quad h_o = \begin{pmatrix} e^{-\frac{2\pi i}{3}} & 0 \\ 0 & 1 \end{pmatrix}.$$

If $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = e^{\frac{2\pi i}{3}}$ then, eventually, replacing h_o by h_o^{-1}, one has $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_o) = e^{\frac{2\pi i}{3}}$, $s = 2$, $r = 12$, $R = \mathbb{Z}[i]$ and $H \cong H_{Q12}(3)$ or $\lambda_1(h_o) = e$, $\lambda_2(h_o) = e^{\frac{2\pi i}{3}}$, $s = 3$, $R = \mathcal{O}_3$, by Corollary 29. Note that $-I_2 \subset K_7 \subset H$ reduces the second case to $\lambda_1(h_o) = 1$, $\lambda_2(h_o) = e^{\frac{2\pi i}{3}}$, $s = 3$, $r = 3$, $R = \mathcal{O}_3$ and $H \cong H_{Q12}(6)$. Note that

$$g_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad g_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad h_o = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{2\pi i}{3}} \end{pmatrix}.$$

generate a subgroup of $GL(2, \mathcal{O}_3)$, isomorphic to $H_{Q12}(6)$. In the case of $H \cong H_{Q12}(3)$ the eigenvalues of h_o are primitive twelfth roots of unity, so that

$$D_1 = \begin{pmatrix} 0 & b_1 \\ -b_1^{-1} & 0 \end{pmatrix}, \quad D_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad D_o = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{\frac{2\pi i}{3}} \end{pmatrix}.$$

generate a subgroup $H_{Q12}(3) < GL(2, \mathbb{Q}(\sqrt{3}, i))$, isomorphic to $H_{Q12}(3)$.

For $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = -1$ there are four non-equivalent possibilities for the eigenvalues $\lambda_1(h_o), \lambda_2(h_o)$ of h_o. The first one is $\lambda_1(h_o) = 1, \lambda_2(h_o) = -1$ with $s = 2, r = 2$ for any $R = R_{-d,f}$ and $H \cong H_{Q12}(4)$ of order 24. Note that

$$D_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad D_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad h_o = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

realizes $H_{Q12}(4)$ as a subgroup of $GL(2, \mathcal{O}_3)$. The second one is $\lambda_1(h_o) = e^{\frac{3\pi i}{4}}, \lambda_2(h_o) = e^{-\frac{3\pi i}{4}}$ with $s = 4, r = 8, R = \mathbb{Z}[i]$ and $H \cong H_{Q12}(8)$ of order 48. Observe that

$$D_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad D_4 = \begin{pmatrix} e^{\frac{3\pi i}{4}} & 0 \\ 0 & e^{-\frac{3\pi i}{4}} \end{pmatrix}, \quad D_o = \begin{pmatrix} e^{\frac{3\pi i}{4}} & 0 \\ 0 & e^{-\frac{3\pi i}{4}} \end{pmatrix}.$$
generate a subgroup of $GL(2, \mathbb{Q}(\sqrt{2}, \sqrt{3}, i))$, isomorphic to $H_{Q12}(8)$. In the third case,
$\lambda_1(h_o) = e^{-\frac{2\pi i}{6}}$, $\lambda_2(h_o) = e^{\frac{2\pi i}{6}}$ with $s = 3$, $r = 12$, $R = \mathcal{O}_3$ and $H \simeq H_{Q12}(7)$ of order 36, realized by

$$D_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad D_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad D_o = \begin{pmatrix} e^{-\frac{2\pi i}{6}} & 0 \\ 0 & e^{\frac{2\pi i}{6}} \end{pmatrix}$$

as a subgroup of $GL(2, \mathbb{Q}(\sqrt{3}, i))$. In the fourth case, $\lambda_1(h_o) = e^{\frac{2\pi i}{3}}$, $\lambda_2(h_o) = e^{-\frac{2\pi i}{3}}$ with $s = 6$, $r = 6$, $R = \mathcal{O}_3$ and $H \simeq H_{Q12}(10)$ of order 72. The matrices

$$g_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad g_4 = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}, \quad h_o = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix}$$

generate a subgroup of $GL(2, \mathcal{O}_3)$, isomorphic to $H_{Q12}(10)$. The groups $H_{Q12}(4)$, $H_{Q12}(7)$, $H_{Q12}(8)$, $H_{Q12}(10)$ with $\frac{\lambda_1(h_o)}{\lambda_2(h_o)} = -1$ are non-isomorphic, as far as they are of different orders.

\[\square\]

Proposition 40. Let H be a finite subgroup of $GL(2, R)$,

$$H \cap SL(2, R) = K_8 = \langle g_1, g_2, g_3 \mid g_1^2 = g_2^2 = -I_2, \quad g_3^2 = I_2, \quad g_2g_1 = g_1g_2, \rangle$$

$$g_3g_1g_3^{-1} = g_2, \quad g_3g_2g_3^{-1} = g_1g_2 \simeq SL(2, \mathbb{F}_3)$$

and $h_o \in H$ be an element of order r with $\det(H) = \det(h_o) \simeq \mathbb{C}_s$ and eigenvalues $\lambda_1(h_o), \lambda_2(h_o)$. Then H is isomorphic to $H_{SL(2,3)}(i)$ for some $1 \leq i \leq 9$, where

$$H_{SL(2,3)}(1) = \langle g_1, g_2, g_3, iI_2 \mid g_1^2 = g_2^2 = -I_2, \quad g_3^2 = I_2, \quad g_2g_1 = g_1g_2, \rangle$$

$$g_3g_1g_3^{-1} = g_2, \quad g_3g_2g_3^{-1} = g_1g_2$$

of order 48 with $R = \mathbb{Z}[i]$,

$$H_{SL(2,3)}(2) = \langle g_1, g_2, g_3, h_o \mid g_1^2 = g_2^2 = -I_2, \quad g_3^2 = I_2, \quad h_o^2 = I_2, \quad g_2g_1 = g_1g_2 \rangle$$

$g_3g_1g_3^{-1} = g_2, \quad g_3g_2g_3^{-1} = g_1g_2, \quad h_o^2g_1h_o^{-1} = g_1, \quad h_o^2g_2h_o^{-1} = g_2, \quad h_o^2g_3h_o^{-1} = g_2g_3$ of order 48 with $R = \mathbb{Z}[i], \lambda_1(h_o) = -1, \lambda_2(h_o) = 1$,

$$H_{SL(2,3)}(3) = \langle g_1, g_2, g_3, h_o \mid g_1^2 = g_2^4 = h_o^2 = -I_2, \quad g_3^3 = I_2, \quad g_2g_1 = g_1g_2, \rangle$$

$g_3g_1g_3^{-1} = g_2, \quad g_3g_2g_3^{-1} = g_1g_2, \quad h_o^2g_1h_o^{-1} = g_2, \quad h_o^2g_2h_o^{-1} = g_1, \quad h_o^2g_3h_o^{-1} = g_2g_3$ of order 48 with $R = \mathcal{O}_2, \lambda_1(h_o) = e^{\frac{2\pi i}{3}}, \lambda_2(h_o) = e^{\frac{2\pi i}{3}},$ $H_{SL(2,3)}(4) = \langle g_1, g_2, g_3, h_o \mid g_1^2 = g_2^2 = -I_2, \quad g_3^3 = I_2, \quad h_o^2 = I_2, \quad g_2g_1 = g_1g_2, \rangle$
of order 48 with \(R = R_{-2, f} \), \(\lambda_1(h_o) = -1 \), \(\lambda_2(h_o) = 1 \),

\[
H_{SL(2,3)}(5) = K_8 \times \langle e^{\frac{2\pi i}{7}} I_2 \rangle \simeq SL(2, \mathbb{F}_3) \times \mathbb{C}_3
\]
of order 72 with \(R = \mathcal{O}_{-3} \),

\[
H_{SL(2,3)}(6) = \langle g_1, g_2, g_3, h_o \mid g_1^2 = g_2^2 = g_3^3 = I_2, \quad g_2 g_1 = -g_1 g_2, \quad g_3 g_1^{-1} = g_2, \quad g_3 g_2^{-1} = g_1 g_2, \quad h_o g_1 h_o^{-1} = g_2, \quad h_o g_2 h_o^{-1} = g_1 g_2, \quad h_o g_3 h_o^{-1} = g_3 \rangle
\]
of order 72 with \(R = \mathcal{O}_{-3} \), \(\lambda_1(h_o) = e^{\frac{2\pi i}{7}}, \lambda_2(h_o) = 1 \),

\[
H_{SL(2,3)}(7) = \langle g_1, g_2, g_3, h_o \mid g_1^2 = g_2^2 = h_o^3 = I_2, \quad g_2 g_1 = -g_1 g_2, \quad g_3 g_1^{-1} = g_2, \quad g_3 g_2^{-1} = g_1, \quad h_o g_1 h_o^{-1} = -g_1, \quad h_o g_2 h_o^{-1} = -g_2, \quad h_o g_3 h_o^{-1} = -g_2 g_3 \rangle
\]
of order 96 with \(R = \mathbb{Z}[i] \), \(\lambda_1(h_o) = e^{\frac{\pi i}{4}}, \lambda_2(h_o) = e^{-\frac{\pi i}{4}} \),

\[
H_{SL(2,3)}(8) = \langle g_1, g_2, g_3, h_o \mid g_1^2 = g_2^2 = h_o^4 = I_2, \quad g_2 g_1 = -g_1 g_2, \quad g_3 g_1^{-1} = g_2, \quad g_3 g_2^{-1} = g_1 g_2, \quad h_o g_1 h_o^{-1} = g_2, \quad h_o g_2 h_o^{-1} = g_1, \quad h_o g_3 h_o^{-1} = g_1 g_3 \rangle
\]
of order 96 with \(R = \mathbb{Z}[i] \), \(\lambda_1(h_o) = e^{\frac{3\pi i}{4}}, \lambda_2(h_o) = e^{-\frac{\pi i}{4}} \),

\[
H_{SL(2,3)}(9) = \langle g_1, g_2, g_3, h_o \mid g_1^2 = g_2^2 = h_o^4 = I_2, \quad g_2 g_1 = -g_1 g_2, \quad g_3 g_1^{-1} = g_2, \quad g_3 g_2^{-1} = g_1, \quad h_o g_1 h_o^{-1} = -g_1, \quad h_o g_2 h_o^{-1} = -g_1 g_2, \quad h_o g_3 h_o^{-1} = g_2 g_3 \rangle
\]
of order 96 with \(R = \mathbb{Z}[i] \), \(\lambda_1(h_o) = i, \lambda_2(h_o) = 1 \).

There exists a subgroup

\[
H_{SL(2,3)}(5) < GL(2, \mathcal{O}_{-3}),
\]
as well as subgroups

\[
H^0_{SL(2,3)}(1), H^0_{SL(2,3)}(2), H^0_{SL(2,3)}(9) < GL(2, \mathbb{Q}(\sqrt{3}, i)),
\]
\[
H^0_{SL(2,3)}(4) < GL(2, \mathbb{Q}(\sqrt{-2}, \sqrt{-3})),
\]
\[
H^0_{SL(2,3)}(3), H^0_{SL(2,3)}(7), H^0_{SL(2,3)}(8) < GL(2, \mathbb{Q}(\sqrt{2}, \sqrt{3}, i))
\]
with \(H^0_{SL(2,3)}(j) \simeq H_{SL(2,3)}(j) \) for \(1' \leq j \leq 4 \) or \(6 \leq j \leq 9 \).
Proof. According to Lemma 27, the groups H under consideration are uniquely determined up to an isomorphism by the order r of h_o and by the elements $h_o g_j h_o^{-1} \in K_8^{(4)}, 1 \leq j \leq 2$, $x_3 := h_o g_3 h_o^{-1} \in K_8^{(3)}$. (Throughout, $G^{(\nu)}$ denotes the set of the elements of order ν from a group G.) Recall by Proposition 24 the realization of $K_8 \cong SL(2, \mathbb{F}_3)$ as a subgroup \mathcal{K}_8 of $GL(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$, generated by the matrices

$$
D_1 = \begin{pmatrix}
-\frac{\sqrt{-3}}{3} & b_1 \\
-2 & \sqrt{-3} \\
\frac{\sqrt{-3}}{3} & 0
\end{pmatrix},
D_2 = \begin{pmatrix}
-\frac{\sqrt{-3}}{3} & e^{-\frac{2\pi i}{3}} b_1 \\
-2 & \sqrt{-3} \\
\frac{2\pi i}{3} & 0
\end{pmatrix},
D_3 = \begin{pmatrix}
-\frac{2\pi i}{3} & 0 \\
-2 & \sqrt{-3} \\
e^{-\frac{2\pi i}{3}} & 0
\end{pmatrix}
$$

with some $b_1 \in \mathbb{Q}(\sqrt{-d}, \sqrt{-3})^\times$. After computing

$$
D_1 D_2 = \begin{pmatrix}
-\frac{\sqrt{-3}}{3} & e^{-\frac{2\pi i}{3}} b_1 \\
-2 & \sqrt{-3} \\
\frac{2\pi i}{3} & 0
\end{pmatrix},
$$

one puts

$$
\delta_j := \begin{pmatrix}
-\frac{\sqrt{-3}}{3} & e^{-\frac{2\pi i}{3}} b_1 \\
-2 & \sqrt{-3} \\
\frac{2\pi i}{3} & 0
\end{pmatrix} \text{ for } 0 \leq j \leq 2
$$

and observes that $\delta_0 = D_1$, $\delta_1 = D_2$, $\delta_2 = D_1 D_2$. The elements of \mathcal{K}_8 of order 4 constitute the subset

$$
\mathcal{K}_8^{(4)} = \{ \pm \delta_j \mid 0 \leq j \leq 2 \}.
$$

In order to list the elements of \mathcal{K}_8 of order 3, let us note that $D_3 D_1 D_3^{-1} = D_2$ and $D_3 D_2 D_3^{-1} = D_1 D_2$ imply $D_3 (D_1 D_2) D_3^{-1} = D_1$. Thus, for any even permutation j, l, m of $0, 1, 2$, one has

$$
\left| \begin{array}{c}
D_3 \delta_j D_3^{-1} = \delta_l \\
D_3 \delta_l D_3^{-1} = \delta_m \\
D_3 \delta_m D_3^{-1} = \delta_j
\end{array} \right| \text{ or, equivalently, } \left| \begin{array}{c}
D_3 \delta_j = \delta_l D_3 \\
D_3 \delta_l = \delta_m D_3 \\
D_3 \delta_m = \delta_j D_3
\end{array} \right. \quad (16)
$$

Making use of (16, one computes that

$$
(-\delta_j D_3)^2 = \delta_m D_3^2, \quad (-\delta_j D_3)^3 = (-\delta_j D_3) (-\delta_j D_3)^2 = I_2 \quad \text{for all } 0 \leq j \leq 2,
$$

so that $-\delta_j D_3 \in \mathcal{K}_8^{(3)}$. As a result, $\delta_j D_3^2 = (-\delta_l D_m)^2 \in \mathcal{K}_8^{(3)}$ for all $0 \leq j \leq 2$ and

$$
\mathcal{K}_8^{(3)} = \{ D_3, \ -\delta_j D_3, \ D_3^2, \ \delta_j D_3^2 \mid 0 \leq j \leq 2 \}.
$$

Proposition 24 has established that \mathcal{K}_8 has a unique Sylow 2-subgroup

$$\mathcal{H}_8 = \langle \delta_0, \delta_1 \mid \delta_0^2 = \delta_1^2 = -I_2, \ \delta_1 \delta_0 = -\delta_0 \delta_1 \rangle = \{ \pm I_2, \pm \delta_j \mid 0 \leq j \leq 2 \}.$$
so that the set $K_8^{(4)} = H_8^{(4)}$ of the elements of K_8 of order 4 are contained in $H_8 \cong Q_8$. In other words, $x_j := h_o \delta_j h_o^{-1} \in H_8$ and $H' = \langle g_1, g_2, h_o \rangle \cong H' = \langle \delta_0, \delta_1, D_0 \rangle$ is a subgroup of H with $H \cap SL(2, R) \cong Q_8$. Proposition 38 establishes that any such H' is isomorphic to $H_{Q_8(i)}$ for some $1 \leq i \leq 9$.

We claim that for any $1 \leq i \leq 9$ there is (at most) a unique finite subgroup $H = \langle g_1, g_2, g_3, h_o \rangle$ of $GL(2, R)$ with $\langle g_1, g_2, h_o \rangle \cong H_{Q_8(i)}$, $H \cap SL(2, R) = \langle g_1, g_2, g_3 \rangle \cong SL(2, \mathbb{F}_3)$ and $\det(H) = \langle \det(h_o) \rangle$. To this end, let us consider the adjoint representation

\[
Ad : K_8 \longrightarrow S(K_8^{(4)}) \cong S_6
\]

and its restriction

\[
Ad : K_8^{(3)} \longrightarrow S(K_8^{(4)}) \cong S_6
\]

to the elements of K_8 of order 3. Note that

\[
\langle x_0, x_1 \rangle = h_o \langle \delta_0, \delta_1 \rangle h_o^{-1} = h_o H_8 h_o^{-1} = H_8,
\]

as far as $H_8 \cong Q_8$ is normal subgroup of $H' = H_8 \langle h_o \rangle$. The adjoint action

\[
Ad_{h_o} : K_8 \longrightarrow K_8
\]

\[
Ad_{h_o}(x) = h_o x h_o^{-1} \quad \text{for} \quad \forall x \in K_8
\]

of h_o is a group homomorphism and transforms the relations $D_3 \delta_s D_3^{-1} = \delta_{s+1}$ for $0 \leq s \leq 1$ into the relations $x_3 x_s x_3^{-1} = x_{s+1}$ for $0 \leq s \leq 1$. For any $1 \leq i \leq 9$ the subgroup $H' \cong H_{Q_8(i)}$ of H determines uniquely $x_0, x_1 \in H_8$. We claim that for any such x_0, x_1 there is a unique $x_3 \in K_8^{(3)}$ with

\[
Ad_{x_3}(x_0) = x_1, \quad Ad_{x_3}(x_1) = x_0 x_1.
\]

(17)

Indeed, Proposition 38 specifies the following five possibilities:

Case 1 \quad $x_0 = \delta_0$, \quad $x_1 = \delta_1$;

Case 2 \quad $x_0 = \delta_0$, \quad $x_1 = -\delta_1$;

Case 3 \quad $x_0 = \delta_1$, \quad $x_1 = -\delta_0$;

Case 4 \quad $x_0 = -\delta_1$, \quad $x_1 = \delta_0$;

Case 5 \quad $x_0 = -\delta_1$, \quad $x_1 = \delta_2$.

For any $0 \leq s \neq t \leq 2$ and $\varepsilon, \eta \in \{\pm 1\}$ note that

\[
Ad_{\varepsilon \delta_s}(\eta \delta_s) = \eta \delta_s, \quad Ad_{\varepsilon \delta_t}(\eta \delta_t) = -\eta \delta_t.
\]
Combining with (14), one concludes that
\[
\text{Ad}_{D_2}(\langle \delta_i \rangle) = \text{Ad}_{(-\delta_i D_2)}(\langle \delta_i \rangle) = \langle \delta_i \rangle,
\]
\[
\text{Ad}_{D_3}(\langle \delta_i \rangle) = \text{Ad}_{(-\delta_i D_3)}(\langle \delta_i \rangle) = \langle \delta_i \rangle,
\]
\[
\text{Ad}_{D_3}(\langle \delta_m \rangle) = \text{Ad}_{(-\delta_i D_3)}(\langle \delta_m \rangle) = \langle \delta_j \rangle
\]
for any \(0 \leq s \leq 2\) and any even permutation \(j, l, m\) of \(0, 1, 2\). Similarly,
\[
\text{Ad}_{D_3}(\langle \delta_j \rangle) = \text{Ad}_{\delta_i D_3}(\langle \delta_j \rangle) = \langle \delta_m \rangle,
\]
\[
\text{Ad}_{D_3}(\langle \delta_l \rangle) = \text{Ad}_{\delta_i D_3}(\langle \delta_l \rangle) = \langle \delta_j \rangle,
\]
\[
\text{Ad}_{D_3}(\langle \delta_m \rangle) = \text{Ad}_{\delta_i D_3}(\langle \delta_m \rangle) = \langle \delta_l \rangle
\]
for any \(0 \leq s \leq 2\) and any even permutation \(j, l, m\) of \(0, 1, 2\). In the case 1, (17) read as \(\text{Ad}_{x_3}(\delta_0) = \delta_1, \text{Ad}_{x_3}(\delta_1) = \delta_2\) and imply that \(x_3 = D_3\), according to (16) and \(\text{Ad}_{(-\delta_i)} \neq Id_{K_8}\) for all \(0 \leq s \leq 2\). In the Case 2, \(\text{Ad}_{x_3}(\delta_0) = \delta_1\) and \(\text{Ad}_{x_3}(\delta_1) = -\delta_2\) specify that \(x_3 = -\delta_1 D_3 = -D_2 D_3\). In the next Case 3, the relations \(\text{Ad}_{x_3}(\delta_1) = -\delta_0\), \(\text{Ad}_{x_3}(\delta_0) = \delta_2\) hold if and only if \(x_3 = \delta_1 D_3^2 = D_2 D_3^2\). Further, \(\text{Ad}_{x_3}(\delta_1) = \delta_0\), \(\text{Ad}_{x_3}(\delta_0) = -\delta_2\) in Case 4 are satisfied by \(x_3 = \delta_0 D_3^2 = D_1 D_3^2\) and \(\text{Ad}_{x_3}(\delta_1) = \delta_2\), \(\text{Ad}_{x_3}(\delta_2) = \delta_0\) in Case 5 are valid for \(x_3 = D_3\). Given a presentation of \(H' \simeq H_{Q8}(i)\) with generators \(g_1, g_2, h_o\), one adjoins a generator \(g_3 \in SL(2, R)\) of order 3 and the relation \(h_o g_3 h_o^{-1} = x_3\), in order to obtain a presentation of \(H \simeq H_{SL(2,3)}(i), 1 \leq i \leq 9\).

4 Explicit Galois groups for \(A/H\) of fixed Kodaira-Enriques type

In order to classify the finite subgroups \(H\) of \(Aut(A)\), for which \(A/H\) is of a fixed Kodaira-Enriques classification type, one needs to describe the finite subgroups \(H\) of \(Aut(A)\) for \(A = E \times E\). Making use of the classification of the finite subgroups \(\mathcal{L}(H)\) of \(GL(2, R)\), done in section 3, let \(\det \mathcal{L}(H) = \langle \det \mathcal{L}(h_o) = e^{2\pi i s} \rangle \simeq \mathbb{C}_s\) for some \(s \in \{1, 2, 3, 4, 6\}\), \(h_o \in H\). (In the case of \(s = 1\), we choose \(h_o = Id_A\).) By Proposition 24 one has \(\mathcal{L}(H) \cap SL(2, R) = \langle \mathcal{L}(h_1), \ldots, \mathcal{L}(h_t) \rangle\) for some \(0 \leq t \leq 3\). (Assume \(\mathcal{L}(H) \cap SL(2, R) = \{I_2\}\) for \(t = 0\).) The linear part
\[
\mathcal{L}(H) = \langle \mathcal{L}(h) \rangle, \langle SL(2, R) \rangle \langle \mathcal{L}(h_o) \rangle = \langle \mathcal{L}(h_1), \ldots, \mathcal{L}(h_t) \rangle \langle \mathcal{L}(h_o) \rangle
\]
of \(H\) is a product of its normal subgroup \(\langle \mathcal{L}(h_1), \ldots, \mathcal{L}(h_t) \rangle\) and the cyclic group \(\langle \mathcal{L}(h_o) \rangle\). The translation part \(\mathcal{T}(H) = \ker(\mathcal{L}|_H)\) of \(H\) is a finite subgroup of \((\mathcal{T}_A, +) \simeq (A, +)\). The lifting \(\mathcal{T}(H) = \langle \mathcal{T}(h_i) \rangle \langle \mathcal{L}(h_o) \rangle\) of \(H\) is a free \(\mathbb{Z}\)-module of rank 4. Therefore \(\overline{\mathcal{T}(H)} = \langle \mathcal{T}(h_i) \rangle \langle \mathcal{L}(h_o) \rangle\) has at most four generators and
\[
\mathcal{T}(H) = \langle \mathcal{T}(h_i) \rangle \langle \mathcal{L}(h_o) \rangle = \langle \mathcal{T}(h_i) \rangle \langle \mathcal{L}(h_o) \rangle
\]
for some \(0 \leq m \leq 4\).
(In the case of \(m = 0 \) one has \(\mathcal{T}(H) = \{Id_A\} \).) We claim that

\[
H = \mathcal{T}(H)(h_1, \ldots, h_t, h_o) = \langle \tau(P,Q_i), h_j, h_o \mid 1 \leq i \leq m, 1 \leq j \leq t \rangle
\]

for some \(0 \leq m \leq 4, 0 \leq t \leq 3 \). The choice of \(\langle \tau(P,Q_i), h_j, h_o \rangle \in H \) justifies the inclusion \(\langle \tau(P,Q_i), h_j, h_o \mid 1 \leq i \leq m, 1 \leq j \leq t \rangle \subseteq H \). For the opposite inclusion, an arbitrary element \(h \in H \) with \(\mathcal{L}(h) = \mathcal{L}(h_1)^{k_1} \cdots \mathcal{L}(h_t)^{k_t} \mathcal{L}(h_o)^{k_o} \) for some \(k_i \in \mathbb{Z} \) produces a translation \(\tau_{U,V} := h_{1}^{k_o}h_{t}^{k_t} \cdots h_{1}^{k_1} \in \ker(\mathcal{L}|_H) = \mathcal{T}(H) = \langle \tau(P,Q_i) \mid 1 \leq i \leq m \rangle \), so that \(h = \tau_{U,V}h_1^{k_1} \cdots h_t^{k_t}h_o^{k_o} \in \langle \tau(P,Q_i), h_j, h_o \mid 1 \leq i \leq m, 1 \leq j \leq t \rangle \) and \(H \subseteq \langle \tau(P,Q_i), h_j, h_o \mid 1 \leq i \leq m, 1 \leq j \leq t \rangle \). In such a way, we have derived the following

Lemma 41. If \(H \) is a finite subgroup of \(\text{Aut}(A) \), \(A = E \times E \) with

\[
\det \mathcal{L}(H) = \langle \det \mathcal{L}(h_o) = e^{2\pi i} \rangle \simeq \mathbb{C}_{s} \quad \text{and}
\]

\[
\mathcal{L}(H) \cap \text{SL}(2,R) = \langle \mathcal{L}(h_1), \ldots, \mathcal{L}(h_t) \rangle \quad \text{for some} \quad 0 \leq t \leq 3 \quad \text{then}
\]

\(H = \langle \tau(P,Q_i), h_j, h_o \mid 1 \leq i \leq m, 1 \leq j \leq t \rangle \)

is generated by \(0 \leq m \leq 3 \) translations and at most four non-translation elements.

Bearing in mind that \(A/H \) is birational to a K3 surface exactly when \(\mathcal{L}(H) \) is a subgroup of \(\text{SL}(2,R) \), one obtains the following

Corollary 42. The quotient \(A/H \) by a finite subgroup \(H \) of \(\text{Aut}(A) \) has a smooth K3 model if and only if \(H \) is isomorphic to some \(H^{K3}(j,m) \) with \(1 \leq j \leq 8, 0 \leq m \leq 3 \), where

\[
H^{K3}(1,m) = \langle \tau(P,Q_i), \tau_{U,V}(-I_2) \mid 1 \leq i \leq m \rangle
\]

\[
H^{K3}(2,m) = \langle \tau(P,Q_i), \ h_1 \mid 1 \leq i \leq m \rangle
\]

for \(\mathcal{L}(h_1) \in \text{SL}(2,R) \), \(\text{tr} \mathcal{L}(h_1) = 0 \),

\[
H^{K3}(3,m) = \langle \tau(P,Q_i), \ h_1, h_2 \mid 1 \leq i \leq m \rangle
\]

for \(\mathcal{L}(h_1), \mathcal{L}(h_2) \in \text{SL}(2,R) \), \(\text{tr} \mathcal{L}(h_1) = \text{tr} \mathcal{L}(h_2) = 0 \), \(\mathcal{L}(h_2)\mathcal{L}(h_1) = -\mathcal{L}(h_1)\mathcal{L}(h_2) \),

\[
H^{K3}(4,m) = \langle \tau(P,Q_i), \ h_3 \mid 1 \leq i \leq m \rangle
\]

for \(\mathcal{L}(h_3) \in \text{SL}(2,R) \), \(\text{tr} \mathcal{L}(h_3) = -1 \),

\[
H^{K3}(5,m) = \langle \tau(P,Q_i), \ h_4 \mid 1 \leq i \leq m \rangle
\]

for \(\mathcal{L}(h_4) \in \text{SL}(2,R) \), \(\text{tr} \mathcal{L}(h_4) = 1 \),

\[
H^{K3}(6,m) = \langle \tau(P,Q_i), \ h_1, h_4 \mid 1 \leq i \leq m \rangle
\]

79
for $\mathcal{L}(h_1), \mathcal{L}(h_4) \in SL(2, R)$, $\text{tr}\mathcal{L}(h_1) = 0$, $\text{tr}\mathcal{L}(h_4) = 1$, $\mathcal{L}(h_1)\mathcal{L}(h_4)[\mathcal{L}(h_1)]^{-1} = [\mathcal{L}(h_4)]^{-1},$

$$H^{K_3}(7, m) = \langle \tau(P, Q_i), \ h_1, h_2, h_3 \ | \ 1 \leq i \leq m \rangle$$

for $\mathcal{L}(h_1), \mathcal{L}(h_2), \mathcal{L}(h_3) \in SL(2, R)$, $\text{tr}\mathcal{L}(h_1) = \text{tr}\mathcal{L}(h_2) = 0$, $\text{tr}\mathcal{L}(h_3) = -1,

$$\mathcal{L}(h_2)\mathcal{L}(h_1) = -\mathcal{L}(h_1)\mathcal{L}(h_2),$$

$$\mathcal{L}(h_3)\mathcal{L}(h_1)[\mathcal{L}(h_3)]^{-1} = \mathcal{L}(h_2), \ \mathcal{L}(h_3)\mathcal{L}(h_2)[\mathcal{L}(h_3)]^{-1} = \mathcal{L}(h_1)\mathcal{L}(h_2),$$

$$H^{K_3}(8, m) = \langle \tau(P, Q_i), \ h_1, h_2, h_3 \ | \ 1 \leq i \leq m \rangle$$

for $\mathcal{L}(h_1), \mathcal{L}(h_2), \mathcal{L}(h_3) \in SL(2, R)$, $\text{tr}\mathcal{L}(h_1) = \text{tr}\mathcal{L}(h_2) = 0$, $\text{tr}\mathcal{L}(h_3) = -1,

$$\mathcal{L}(h_2)\mathcal{L}(h_1) = -\mathcal{L}(h_1)\mathcal{L}(h_2),$$

$$\mathcal{L}(h_3)\mathcal{L}(h_1)[\mathcal{L}(h_3)]^{-1} = \mathcal{L}(h_2), \ \mathcal{L}(h_3)\mathcal{L}(h_2)[\mathcal{L}(h_3)]^{-1} = \mathcal{L}(h_1)\mathcal{L}(h_2).$$

We are going to show that for an arbitrary finite subgroup $H < \text{Aut}(A)$ with an abelian linear part $\mathcal{L}(H) < GL(2, R)$, there exist an isomorphic model $F_1 \times F_2$ of A and a normal subgroup N_1 of H, embedded in $\text{Aut}(F_1)$, such that the quotient group H/N_1 is an automorphism group of F_2. This result can be viewed as a generalization of Bombieri-Mumford’s classification [3] of the hyper-elliptic surfaces. More precisely, if $H = \mathcal{T}(H) \langle h_o \rangle$ for some $h_o \in H$ with eigenvalues $\lambda_1 \mathcal{L}(h_o) = 1$, $\lambda_2 \mathcal{L}(h_o) = \det \mathcal{L}(h_o) = e^{2\pi i s}, s \in \{2, 3, 4, 6\}$, then there is a translation subgroup N_1 of $\text{Aut}(F_1)$, such that $G \simeq H/N_1$ is a non-translation group, acting on the split abelian surface $F'_1 \times F_2 = (F_1 \times N_1) \times F_2$. According to Proposition 5, the quotient A/H is hyper-elliptic (respectively, ruled with elliptic base) exactly when the finite Galois covering $A \to A/H$ is unramified (respectively, ramified). Since $F_1 \to F_1/N_1 = F'_1$ is unramified for a translation subgroup $N_1 \mathcal{T}_{F_1} < \text{Aut}(F_1)$, the covering $A \to A/H$ is unramified and only if the covering $F'_1 \times F_2 \to (F'_1 \times F_2)/G$ is unramified for $G = H/N_1$. In particular, the first canonical projection $\text{pr}_1 : G \to \text{Aut}(F'_1)$ is a group monomorphism and G is an abelian group with at most two generators, according to the classification of the finite translation groups of F'_1. Thus, Bombieri-Mumford’s classification of the hyper-elliptic surfaces $(F'_1 \times F_2)/G$ reduces to the classification of the split, fixed point free abelian subgroups $G < \text{Aut}(F'_1 \times F_2)$ with at most two generators, for which the canonical projections $\text{pr}_1 : G \to \text{Aut}(F'_1)$ and $\text{pr}_2 : G \to \text{Aut}(F_2)$ are injective group homomorphisms.

Towards the classification of the finite subgroups of $\text{Aut}(E)$, let us recall that the semi-direct products $\langle a \rangle \rtimes \langle b \rangle \simeq \mathbb{C}_m \rtimes \mathbb{C}_s$ of cyclic groups are completely determined by the adjoint action of b on a. Namely, $\text{Ad}_b(a) = bab^{-1} = a^j$ for some residue $j \in \mathbb{Z}_m^*$ modulo m, relatively prime to m. Now $\text{Ad}_b(a) = a^j = a$ requires $j^s \equiv 1 \pmod{m}$. In other words, $j \in \mathbb{Z}_m^*$ is of order r, dividing s and $\langle a \rangle \rtimes \langle b \rangle$ is isomorphic to

$$G_s^{(j)}(m) := \mathbb{C}_m \rtimes_j \mathbb{C}_s = \langle a, b \ | \ a^m = 1, b^s = 1, bab^{-1} = a^j \rangle \quad (18)$$
for some \(j \in \mathbb{Z}_m^* \) of order \(r \), dividing \(s \). Form now on, we use the notation (18) without further reference. Note that the only \(j \in \mathbb{Z}_m^* \) of order 1 is \(j \equiv 1(\text{mod} m) \) and
\[G_m^{(l)}(m) = \langle a, b, c \rangle \simeq \mathbb{C}_m \times \mathbb{C}_s \] is the direct product of \(\langle a \rangle = \mathbb{C}_m \) and \(\langle b \rangle = \mathbb{C}_s \).

Lemma 43. Let \(G \) be a finite subgroup of the automorphism group \(\text{Aut}(E) \) of an elliptic curve \(E \) with endomorphism ring \(\text{End}(E) = R \). Then \(G \) is isomorphic to some of the groups \(G_1(m, n), G_2^{(-1,-1)}(m, n), G_3^{(j)}(m), s \in \{3, 4, 6\} \), where

\[G_1(m, n) = \langle \tau_{P_1}, \tau_{P_2} \rangle \simeq \mathbb{C}_m \times \mathbb{C}_n, \quad m, n \in \mathbb{N} \]

is a translation group with at most two generators,

\[G_2^{(-1,-1)}(m, n) = \langle \tau_{P_1}, \tau_{P_2} \rangle \times \langle -1 \rangle \simeq (\mathbb{C}_m \times \mathbb{C}_n) \times \langle -1 \rangle \]

\[G_3^{(j)}(m) = \langle \tau_{P_1} \rangle \times \langle e^{\frac{2\pi i}{j}} \rangle \simeq \mathbb{C}_m \times \mathbb{C}_3 \]

\[G_4^{(j)}(m) = \langle \tau_{P_1} \rangle \times \langle i \rangle \simeq \mathbb{C}_m \times \mathbb{C}_4 \]

\[G_5^{(j)}(m) = \langle \tau_{P_1} \rangle \times \langle e^{\frac{\pi i}{j}} \rangle \simeq \mathbb{C}_m \times \mathbb{C}_6 \]

for some \(j \in \mathbb{Z}_m^* \) of order 1 or 3, \(R = \mathcal{O}_{-3} \),

\[G_6^{(j)}(m) = \langle \tau_{P_1} \rangle \times \langle i \rangle \simeq \mathbb{C}_m \times \mathbb{C}_6 \]

for some \(j \in \mathbb{Z}_m^* \) of order 1, 2, 4 or 6.

Proof. Any finite translation group \(G \triangleleft (\mathcal{L}_E, +) \) lifts to a lattice \(\tilde{G} \triangleleft (\tilde{E} = \mathbb{C}, +) \) of rank 2, containing \(\pi_1(E) \). By the Structure Theorem for finitely generated modules over the principal ideal domain \(\mathbb{Z} \), there exists a \(\mathbb{Z} \)-basis \(\lambda_1, \lambda_2 \) of \(\tilde{G} \) and natural numbers \(m, n \in \mathbb{N} \), such that

\[\tilde{G} = \lambda_1 \mathbb{Z} + \lambda_2 \mathbb{Z}, \quad \pi_1(E) = m\lambda_1 \mathbb{Z} + mn\lambda_2 \mathbb{Z}. \]

As a result, \(P_1 = \lambda_1 + \pi_1(E) \in (\mathbb{E}, +) \) of order \(m \) and \(P_2 = \lambda_2 + \pi_1(E) \in (\mathbb{E}, +) \) of order \(mn \) generate the finite translation group \(G = \tilde{G}/\pi_1(E) \simeq \mathbb{C}_m \times \mathbb{C}_mn \).

If \(G \) is a finite non-translation subgroup of \(\text{Aut}(E) \) then the linear part \(\mathcal{L}(G) \) of \(G \) is a non-trivial subgroup of the units group \(R^* \). Bearing in mind that

\[R^* = \begin{cases}
\langle -1 \rangle \simeq \mathbb{C}_2 & \text{for } R \neq \mathbb{Z}[i], \mathcal{O}_{-3}, \\
\langle i \rangle \simeq \mathbb{C}_4 & \text{for } R = \mathbb{Z}[i], \\
\langle e^{\frac{\pi i}{j}} \rangle & \text{for } R = \mathcal{O}_{-3},
\end{cases} \]

81
one concludes that $G = \langle e^{2\pi i/s} \rangle \simeq \mathbb{C}_s$ for some $s \in \{2, 3, 4, 6\}$. Any lifting $g_0 = \tau_U e^{2\pi i} \in G$ of $\mathcal{L}(g_0) = e^{2\pi i}$ has a fixed point $P_0 \in E$. After moving the origin of E at P_0, one can assume that $g_0 = e^{2\pi i}$. Bearing in mind that the translation part $T(G) = \ker(|_G)$, one observes that $G = \mathcal{T}(G) \langle e^{2\pi i/s} \rangle$. The inclusion $\mathcal{T}(G) \langle e^{2\pi i/s} \rangle \subseteq G$ is clear. For any $g \in G$ with $\mathcal{L}(g) = e^{2\pi i/j}$ for some $0 \leq j \leq s - 1$, one has $g \left(e^{2\pi i} \right)^{-j} \in \ker(\mathcal{L}|_G) = T(G)$, so that $G \subseteq \mathcal{T}(G) \langle e^{2\pi i/s} \rangle$ and $G = \mathcal{T}(G) \langle e^{2\pi i/s} \rangle$. Note that $\mathcal{T}(G)$ is a normal subgroup of G with $\mathcal{T}(G) \cap \langle e^{2\pi i/s} \rangle = \{\text{Id}_E\}$, so that

$$G = \mathcal{T}(G) \rtimes \langle e^{2\pi i/s} \rangle$$

is a semi-direct product. As a result, there is an adjoint action

$$\text{Ad} : \langle e^{2\pi i/s} \rangle \longrightarrow \text{Aut}(\mathcal{T}(G)),$$

$$\text{Ad}_{e^{2\pi i/s}}(\tau_{P_1}) = e^{2\pi i/s} \tau_{P_1} e^{-2\pi i/s} = \tau_s e^{2\pi i/s} P_1$$

of $\langle e^{2\pi i/s} \rangle$ on $\mathcal{T}(G)$, which is equivalent to the invariance of $\mathcal{T}(G)$ under a multiplication by $e^{2\pi i/s} \in \mathbb{R}^*$. The translation group $\mathcal{T}(G) = \langle \tau_{P_1}, \tau_{P_2} \rangle$ has at most two generators, so that

$$G = \langle \tau_{P_1}, \tau_{P_2} \rangle \rtimes \langle e^{2\pi i/s} \rangle$$

for some $s \in \{2, 3, 4, 6\}$. If $s = 2$ and $\langle \tau_{P_1}, \tau_{P_2} \rangle \simeq \mathbb{C}_m \times \mathbb{C}_n = \langle \tau_{Q_1} \rangle \times \langle \tau_{Q_2} \rangle$, then $\tau_{Q_1} = \tau_{Q_2} = \tau_{Q_k}$ for $1 \leq k \leq 2$. The residue classes $-1(\text{mod}m) \in \mathbb{Z}_m^*$ and $-1(\text{mod}n) \in \mathbb{Z}_n^*$ are order 1 or 2.

We claim that $G = \langle \tau_{P_1}, \tau_{P_2} \rangle \rtimes \langle e^{2\pi i/s} \rangle$ has at most two generators for $s \in \{3, 4, 6\}$. Indeed, $\tau_{P_1} \in \mathcal{T}(G)$ implies that $\text{Ad}_{e^{2\pi i/s}}(\tau_{P_1}) = \tau_s e^{2\pi i/s} P_1 \in \mathcal{T}(G)$. For $s \in \{3, 4, 6\}$ the points $P_1, e^{2\pi i/j} P_1$ have \mathbb{Z}-linearly independent liftings from $\widetilde{\mathcal{T}(G)}$, so that $\mathcal{T}(G) = \langle \tau_{P_1}, \tau_{P_2} \rangle = \langle \tau_{P_1}, \tau_s e^{2\pi i/j} P_1 \rangle$. As a result,

$$G = \langle \tau_{P_1}, \tau_{P_2} \rangle \rtimes \langle e^{2\pi i/s} \rangle$$

$$= \langle \tau_{P_1}, e^{2\pi i/j} \tau_{P_1} e^{-2\pi i/j} \rangle \rtimes \langle e^{2\pi i/s} \rangle = \langle \tau_{P_1} \rangle \rtimes \langle e^{2\pi i/s} \rangle \simeq \mathbb{C}_s \times_j \mathbb{C}_s = \langle a \rangle \rtimes_j \langle c \rangle = \langle a, c | a^m = 1, c^s = 1, cac^{-1} = a^j \rangle$$

for some $j \in \mathbb{Z}_m^*$ of order r, dividing $s \in \{3, 4, 6\}$.

Let us put $G_{1}^{(1)}(m, n) := G_{1}(m, n)$, in order to list the finite subgroups of $\text{Aut}(E)$ as $G_{s}^{(1,2)}(m, n)$ with $s \in \{1, 2\}$ and $G_{s}^{(j)}(m)$ with $s \in \{3, 4, 6\}$.

Lemma 44. Let H be a finite subgroup of $\text{Aut}(A)$ with abelian linear part $\mathcal{L}(H)$. Then:

(i) there exists $S \in \text{GL}(2, \mathbb{C})$, such that all the elements of

$$S^{-1}HS = \{S^{-1}hs = (\tau_{U_1} \lambda_1 \mathcal{L}(h), \tau_{U_2} \lambda_2 \mathcal{L}) | h \in H\} < \text{Aut}(S^{-1}A)$$

82
have diagonal linear parts;
(ii) if \(F_1 = S^{-1}(E \times \delta_E) \), \(F_2 = S^{-1}(\delta_E \times E) \) then \(S^{-1}A = F_1 \times F_2 \) and the canonical projections
\[
\text{pr}_k : S^{-1}HS \to Aut(F_k),
\]
\[
\text{pr}_k(\tau_{U_1}, \lambda_1L(h), \tau_{U_2}, \lambda_2L(h)) = \tau_{U_k}\lambda_kL(h),
\]
are group homomorphisms with \(\text{pr}_k(S^{-1}HS) \simeq G_s^{(j_1,j_2)}(m,n) \), \(s \in \{1, 2\} \) or \(G_s^{(j)} \), \(s \in \{3, 4, 6\} \);
(iii) \(S^{-1}HS = \ker(\text{pr}_2)\langle h_1, \ldots, h_t \rangle \) for any liftings \(h_j = (\alpha_j, \beta_j) \in S^{-1}HS \) of the generators \(\beta_1, \ldots, \beta_t \) of \(\text{pr}_2(S^{-1}HS) \), \(1 \leq t \leq 3 \);
(iv) \(S^{-1}A/\ker(\text{pr}_2) = C_1 \times F_2 \), where \(C_1 \) is an elliptic curve for a translation subgroup \(\ker(\text{pr}_2) < (\mathcal{T}_{F_1}, +) < Aut(F_1) \) or a rational curve for a non-translation subgroup \(\ker(\text{pr}_2) < Aut(F_1) \), \(\ker(\text{pr}_2) \setminus (\mathcal{T}_{F_1}, +) \neq \emptyset \);
(v) \(A/H \simeq (C_1 \times F_2)/G \) for :
\[
G := \langle h_1, \ldots, h_t \rangle / (\langle h_1, \ldots, h_t \rangle \cap \ker(\text{pr}_2))
\]
with isomorphic second projection
\[
\overline{\text{pr}}_2 : G \to \text{pr}_2(S^{-1}HS)
\]
and first projection
\[
\overline{\text{pr}}_1 : G \to \overline{\text{pr}}_1(G) < Aut(C_1)
\]
with kernel \(\ker(\overline{\text{pr}}_1|G) \simeq \ker(\text{pr}_1|S^{-1}HS) \).

Proof. (i) It is well known that for any finite set \(\{L(h) \mid h \in H\} \) of commuting matrices, there exists \(S \in GL(2, \mathbb{C}) \), such that
\[
S^{-1}L(h)S = L(S^{-1}hS) = \begin{pmatrix}
\lambda_1L(h) & 0 \\
0 & \lambda_2L(h)
\end{pmatrix}
\]
are diagonal for all \(h \in H \). Namely, if there is \(h_o \in H \), whose linear part \(L(h_o) \) has two different eigenvalues \(\lambda_1L(h_o) \neq \lambda_2L(h_o) \), then one takes the \(j \)-th column of \(S \in \mathbb{Q}(\sqrt{-1})_{2 \times 2} \) to be an eigenvector, associated with \(\lambda_jL(h_o), 1 \leq j \leq 2 \). The conjugate \(S^{-1}L(h_o)S \) is a diagonal matrix. It suffices to show that \(v_j \) are eigenvectors of all \(L(h) \), in order to conclude that \(S^{-1}L(h)S \) are diagonal, as the matrices of \(L(h) \) with respect to the basis \(v_1, v_2 \) of \(\mathbb{C}^2 \). Indeed, for any \(h \in H \) the relation \(L(h)L(h_o) = L(h_o)L(h) \) implies that
\[
\lambda_jL(h_o)[L(h)v_j] = L(h)L(h_o)v_j = L(h_o)[L(h)v_j].
\]
Therefore \(L(h)v_j \) is an eigenvector of \(L(h_o) \) with associated eigenvalue \(\lambda_jL(h_o) \), so that \(L(h)v_j \) is proportional to \(v_j \), i.e., \(L(h)v_j = c_hv_j \) for some \(c_h \in \mathbb{C} \), which turns to be an eigenvalue \(c_h = \lambda_jL(h) \) of \(L(h) \). If \(\lambda_1L(h) = \lambda_2L(h) \) for \(\forall h \in H \) then all \(L(h) \) are scalar matrices. In particular, \(L(h) \) are diagonal.
(ii) Note that the direct product \(A = E \times E \) of elliptic curves coincides with their direct sum. If
\[
S^{-1}A := S^{-1}A/\pi_1(A) = \mathbb{C}^2/\pi_1(A),
\]
then \(S^{-1}A \to S^{-1}A \) is an isomorphism of abelian surfaces and
\[
S^{-1}(A) = S^{-1}(E \times E) = S^{-1}[(E \times \tilde{\phi}_E) \times (\tilde{\phi}_E \times E)] = S^{-1}(E \times \tilde{\phi}_E) \times S^{-1}(\tilde{\phi}_E \times E) = F_1 \times F_2.
\]
The canonical projections \(pr_k : S^{-1}HS \to Aut(F_k) \) are group homomorphisms, according to
\[
pr_k((\tau_{V_1}\lambda_1\mathcal{L}(g), \tau_{V_2}\lambda_2\mathcal{L}(g)))(\tau_{U_1}\lambda_1\mathcal{L}(h), \tau_{U_2}\lambda_2\mathcal{L}(h)) = pr_k(\tau_{V_1+\lambda_1\mathcal{L}(g)}V_1(\lambda\mathcal{L}(\lambda_1\mathcal{L}(h)), \tau_{V_2+\lambda_2\mathcal{L}(g)}U_2(\lambda_2\mathcal{L}(\lambda_2\mathcal{L}(h)))) = \tau_{V_2+hS}(\lambda_k\mathcal{L}(g), \lambda_k\mathcal{L}(h)) = pr_k(\tau_{V_2}\lambda_k\mathcal{L}(g), \tau_{U_2}\lambda_k\mathcal{L}(h)),\chi_k(\tau_{U_2}\lambda_k\mathcal{L}(h)) \text{ for } \forall g, h \in W \text{ with } S^{-1}gS = \tau_{V_1,V_2}(\mathcal{L}(S^{-1}gS), S^{-1}hS) = \tau_{U_1,U_2}(\mathcal{L}(S^{-1}hS)). \text{ The image } pr_k(S^{-1}HS) \text{ of } S^{-1}HS \text{ is a finite subgroup of } Aut(F_k) \text{ for } 1 \leq k \leq 2.
\]
(iii) If \(h_j = (\alpha_j, \beta_j) \in S^{-1}HS \) are liftings of the generators \(\beta_j \) of \(pr_2(S^{-1}HS) \), then \(\ker(pr_2)\langle h_1, \ldots, h_t \rangle \) is a subgroup of \(S^{-1}HS \), as far as \(\ker(pr_2) \) is a normal subgroup of \(S^{-1}HS \). For any \(pr_2(S^{-1}hS) = \beta_1^m \ldots \beta_t^m \) for some \(m_i \in \mathbb{Z} \), one has \((S^{-1}HS)\langle h_1^m, \ldots, h_t^m \rangle \in \ker(pr_2) \), so that \(S^{-1}hS \in \ker(pr_2)\langle h_1, \ldots, h_t \rangle \) and \(S^{-1}HS = \ker(pr_2)\langle h_1, \ldots, h_t \rangle \).

(iv) The subgroup \(\ker(pr_2) \) of \(S^{-1}HS \) acts identically on \(F_2 \) and can be thought of as a subgroup of \(Aut(F_1) \), \(pr_1(\ker(pr_2)) \cong \ker(pr_2) \). Thus,
\[
S^{-1}A/\ker(pr_2) \cong [F_1/pr_1(\ker(pr_2))] \times F_2 = C_1 \times F_2
\]
with an elliptic curve \(C_1 \) exactly when \(pr_1(\ker(pr_2)) \) is a translation subgroup of \(Aut(F_1) \) or a rational curve \(C_1 \) for a non-translation subgroup \(pr_1(\ker(pr_2)) \) of the automorphism group \(Aut(F_1) \) of \(F_1 \).

(v) Since \(\ker(pr_2) \) is a normal subgroup of \(S^{-1}HS \) with quotient
\[
S^{-1}HS/\ker(pr_2) = [\ker(pr_2)\langle h_1, \ldots, h_t \rangle] / \ker(pr_2) = \langle h_1, \ldots, h_t \rangle / (\langle h_1, \ldots, h_t \rangle \cap \ker(pr_2)) = G,
\]
one has
\[
A/H \cong (S^{-1}A)/(S^{-1}HS) \cong [S^{-1}A/\ker(pr_2)]/[S^{-1}HS/\ker(pr_2)] = (C_1 \times F_2)/G.
\]
By the First Isomorphism Theorem, the epimorphism \(pr_2 : S^{-1}HS \to pr_2(S^{-1}HS) \) gives rise to an isomorphism
\[
\overline{pr}_2 : S^{-1}HS/\ker(pr_2) = G \longrightarrow pr_2(S^{-1}HS).
\]
The homomorphism $\text{pr}_1 : S^{-1}HS \to Aut(F_1)$ induces a homomorphism

$$\overline{\text{pr}} : S^{-1}HS/\ker(\text{pr}_2) = G \to Aut(F_1)/\text{pr}_1(\ker(\text{pr}_2)) \simeq Aut(C_1).$$

in the automorphism group of $C_1 = F_1/\text{pr}_1(\ker(\text{pr}_2))$. It suffices to show that the kernel

$$\ker(\overline{\text{pr}}) = \{S^{-1}hS \ker(\text{pr}_2) \mid \text{pr}_1(S^{-1}hS) \in \text{pr}_1 \ker(\text{pr}_2)\} = \ker(\text{pr}_2) \ker(\text{pr}_1)]/\ker(\text{pr}_2),$$

since

$$[\ker(\text{pr}_2) \ker(\text{pr}_1)]/\ker(\text{pr}_2) \simeq \ker(\text{pr}_1)/[\ker(\text{pr}_2) \cap \ker(\text{pr}_1)] = \ker(\text{pr}_1).$$

Indeed, if there exists $S^{-1}h_1S(\text{pr}_1(S^{-1}hS), Id_{F_2}) \in \ker(\text{pr}_2)$ then

$$S^{-1}(h_1^{-1}h)S = (Id_{F_1}, \text{pr}_2(S^{-1}hS)) \in S^{-1}HS \cap \ker(\text{pr}_1),$$

so that $S^{-1}hS \in S^{-1}h_1S \ker(\text{pr}_1) \subset \ker(\text{pr}_2) \ker(\text{pr}_1)$ for all $S^{-1}hS \ker(\text{pr}_2) \in \ker(\overline{\text{pr}})$. Conversely, any element of $[\ker(\text{pr}_2) \ker(\text{pr}_1)]/\ker(\text{pr}_2)$ is of the form

$$(g_1, Id_{F_2})(Id_{F_1}, g_2) \ker(\text{pr}_2) = (g_1, g_2) \ker(\text{pr}_2)$$

for some $(g_1, Id_{F_2}), (Id_{F_1}, g_2) \in S^{-1}HS \cap [Aut(F_1) \times Aut(F_2)]$, so that

$$\text{pr}_1(g_1, g_2) = g_1 = \text{pr}_1((g_1, Id_{F_2})) \in \text{pr}_1 \ker(\text{pr}_2)$$

reveals that $(g_1, g_2) \ker(\text{pr}_2) \in \ker(\overline{\text{pr}})$.

\[\square\]

According to Lemma 43, the finite automorphism groups of elliptic curves have at most three generators. Combining with Lemma 44(iii), one concludes that the finite subgroups H of $Aut(E \times E)$ with abelian linear part $L(H)$ have at most six generators. Their linear parts $L(H)$ have at most two generators.

Lemma 45. Let $h = \tau_{[U,V]}L(h)$ be an automorphism of $A = E \times E$ and $w = (u,v) \in \mathbb{C}^2 = \mathbb{A}$ be a lifting of $(u,v) + \pi_1(A) = (U,V) \in A$. Then h has no fixed points on A if and only if for any $\mu = (\mu_1, \mu_2) \in \pi_1(A)$ the affine-linear transformation

$$\tilde{h}(w, \mu) = \tau_{w+\mu}L(h) \in Aff(\mathbb{C}^2, R) := (\mathbb{C}^2, +) \times GL(2, R)$$

has no fixed points on \mathbb{C}^2.

Proof. The statement of the lemma is equivalent to the fact that $Fix_A(h) \neq \emptyset$ exactly when $Fix_{\mathbb{C}^2}(\tilde{h}(w, \mu)) \neq \emptyset$ for some $\mu \in \pi_1(A)$. Indeed, if $(p, q) \in Fix_{\mathbb{C}^2}(\tilde{h}(w, \mu))$ then $(P, Q) = (p + \pi_1(E), q + \pi_1(E)) \in A$ is a fixed point of h, according to

$$h(P, Q) = L(h) \begin{pmatrix} P \\ Q \end{pmatrix} + \begin{pmatrix} U \\ V \end{pmatrix} = L(h) \begin{pmatrix} p \\ q \end{pmatrix} + \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} + \begin{pmatrix} \pi_1(E) \\ \pi_1(E) \end{pmatrix} =$$

85
\[
\begin{pmatrix}
 p \\
 q
\end{pmatrix}
+ \begin{pmatrix}
 \pi_1(E) \\
 \pi_1(E)
\end{pmatrix}
= \begin{pmatrix}
 P \\
 Q
\end{pmatrix}.
\]

Conversely, if
\[
\mathcal{L}(h) \begin{pmatrix}
 P \\
 Q
\end{pmatrix}
+ \begin{pmatrix}
 U \\
 V
\end{pmatrix}
= \begin{pmatrix}
 P \\
 Q
\end{pmatrix},
\]
then for any lifting \((p, q) \in \mathbb{C}^2\) of \((P, Q) = (p + \pi_1(E), q + \pi_1(E))\), one has
\[
\mathcal{L}(h) \begin{pmatrix}
 p \\
 q
\end{pmatrix}
+ \begin{pmatrix}
 U \\
 V
\end{pmatrix}
+ \begin{pmatrix}
 \pi_1(E) \\
 \pi_1(E)
\end{pmatrix}
= \begin{pmatrix}
 p \\
 q
\end{pmatrix}
+ \begin{pmatrix}
 \pi_1(E) \\
 \pi_1(E)
\end{pmatrix}.
\]

In other words,
\[
\mu = \begin{pmatrix}
 \mu_1 \\
 \mu_2
\end{pmatrix}
:= \mathcal{L}(h) \begin{pmatrix}
 p \\
 q
\end{pmatrix}
+ \begin{pmatrix}
 u \\
 v
\end{pmatrix}
- \begin{pmatrix}
 p \\
 q
\end{pmatrix}
\]
and \((p, q) \in \text{Fix}_{\mathbb{C}^2}(\widetilde{h}(w, -\mu))\).

\[\square\]

Now we are ready to characterize the automorphisms \(h \in \text{Aut}(A)\) without fixed points.

Lemma 46. An automorphism \(h = \tau_{(U, V)} \mathcal{L}(h) \in \text{Aut}(A) \setminus (\mathcal{T}_A, +)\) acts without fixed points on \(A = E \times E\) if and only if its linear part \(\mathcal{L}(h)\) has eigenvalues \(\lambda_1 \mathcal{L}(h) = 1\), \(\lambda_2 \mathcal{L}(h) \neq 1\) and
\[
\mathcal{L}(h) \begin{pmatrix}
 u \\
 v
\end{pmatrix}
\neq \lambda_2 \begin{pmatrix}
 u \\
 v
\end{pmatrix}
for any lifting \((u, v) \in \mathbb{C}^2\) of \((u + \pi_1(E), v + \pi_1(E)) = (U, V)\).

Proof. The fixed points \((P, Q) \in A\) of \(h = \tau_{(U, V)} \mathcal{L}(h)\) are described by the equality
\[
(\mathcal{L}(h) - I_2) \begin{pmatrix}
 P \\
 Q
\end{pmatrix}
= \begin{pmatrix}
 -U \\
 -V
\end{pmatrix}. \tag{19}
\]

If \(\det(\mathcal{L}(h) - I_2) \neq 0\) or \(1 \in \mathbb{C}\) is not an eigenvalues of \(\mathcal{L}(h)\), then consider the adjoint matrix
\[
(\mathcal{L}(h) - I_2)^* = \begin{pmatrix}
 d & -b \\
 -c & a
\end{pmatrix} \in \mathbb{R}_{2 \times 2}
\]
of
\[
\mathcal{L}(h) - I_2 = \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \in \mathbb{R}_{2 \times 2}.
\]

According to \((\mathcal{L}(h) - I_2)^*(\mathcal{L}(h) - I_2) = \det(\mathcal{L}(h) - I_2)I_2 = (\mathcal{L}(h) - I_2)(\mathcal{L}(h) - I_2)^*\), one obtains
\[
\det(\mathcal{L}(h) - I_2) \begin{pmatrix}
 P \\
 Q
\end{pmatrix}
= (\mathcal{L}(h) - I_2)^*(\mathcal{L}(h) - I_2) \begin{pmatrix}
 u \\
 v
\end{pmatrix}
= -(\mathcal{L}(h) - I_2)^* \begin{pmatrix}
 U \\
 V
\end{pmatrix}. \tag{20}
\]
Then for an arbitrary lifting $(u_1, v_1) \in \mathbb{C}^2$ of
\[
\begin{pmatrix}
 u_1 + \pi_1(E) \\
v_1 + \pi_1(E)
\end{pmatrix} = \begin{pmatrix}
 U_1 \\
V_1
\end{pmatrix} := -(L(h) - I_2)^* \begin{pmatrix}
 U \\
V
\end{pmatrix},
\]
the point
\[
(p, q) = \left(\frac{u_1}{\det(L(h) - I_2)}, \frac{v_1}{\det(L(h) - I_2)} \right) \in \mathbb{C}^2
\]
descends to $(P, Q) = (p + \pi_1(E), q + \pi_1(E))$, subject to (20). As a result,
\[
(L(h) - I_2) \begin{pmatrix} P \\ Q \end{pmatrix} = \frac{1}{\det(L(h) - I_2)} (L(h) - I_2) \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} + \begin{pmatrix} \pi_1(E) \\ \pi_1(E) \end{pmatrix} =
\begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} \pi_1(E) \\ \pi_1(E) \end{pmatrix}
\]
and $(P, Q) \in Fix_A(h)$.

From now on, let us suppose that the linear part $L(h) \in GL(2, R)$ of $h \in Aut(A) \setminus (\mathcal{T}_A, +)$ has eigenvalues $\lambda_1 L(h) = 1$ and $\lambda_2 L(h) = \det L(h) \in R^* \setminus \{1\}$. We claim that a lifting $(u, v) \in \mathbb{C}^2$ of $(u + \pi_1(E), v + \pi_1(E)) = (U, V) \in A$ satisfies
\[
L(h) \begin{pmatrix} u \\ v \end{pmatrix} = \lambda_2 L(h) \begin{pmatrix} u \\ v \end{pmatrix}
\]
if and only if there exists $(p, q) \in \mathbb{C}^2$ with
\[
(L(h) - I_2) \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} -u \\ -v \end{pmatrix},
\]
which amounts to $(p, q) \in Fix_{\mathbb{C}^2}(\tau_{(u,v)}L(h))$. To this end, let us view $L(h) : \mathbb{C}^2 \to \mathbb{C}^2$ as a linear operator in \mathbb{C}^2 and reduce the claim to the equivalence of $(-u, -v) \in \ker(L(h) - \lambda_2 L(h)I_2)$ with $(-u, -v) \in Im(L(h) - I_2)$. In other word, the statement of the lemma reads as $\ker(L(h) - \lambda_2 L(h)I_2) = Im(L(h) - I_2)$ for the linear operators $L(h) - \lambda_2 L(h)I_2$ and $L(h) - I_2$ in \mathbb{C}^2. By Hamilton-Cayley Theorem, $L(h) \in \mathbb{C}_{2 \times 2}$ is a root of its characteristic polynomial
\[
\chi_{L(h)}(\lambda) = (\lambda - \lambda_1 L(h))(\lambda - 1).
\]
Thus,
\[
(L(h) - \lambda_2 L(h)I_2)Im(L(h) - I_2) = \{(0, 0)\}
\]
is the zero subspace of \mathbb{C}^2 and $Im(L(h) - I_2) \subseteq \ker(L(h) - \lambda_2 L(h)I_2)$. However, $\dim Im(L(h) - I_2) = rk(L(h) - I_2) = 1$ and
\[
\dim \ker(L(h) - \lambda_2 L(h)) = 2 - rk(L(h) - \lambda_2 L(h)I_2) = 2 - 1 = 1,
\]
so that $Im(L(h) - I_2) = \ker(L(h) - \lambda_2 L(h)I_2)$.

\[\square\]
Corollary 47. Let $H = \mathcal{T}(h)(h_o)$ be a finite subgroup of $\text{Aut}(A)$ for some $h_o \in H$ with
\[
\lambda_1 \mathcal{L}(h_o) = 1, \quad \lambda_2 \mathcal{L}(h_o) = e^{\frac{2\pi i}{s}}, \quad s \in \{2, 3, 4, 6\},
\]
$S \in \text{GL}(2, \mathbb{Q}(\sqrt{-d}))$ be a diagonalizing matrix for h_o and
\[
S^{-1}h_oS = \left(\tau_W, e^{\frac{2\pi i}{s}} \right)
\]
after appropriate choice of an origin of $S^{-1}A = F_1 \times F_2$, $F_1 = S^{-1}(E \times \tilde{o}_E), F_2 = S^{-1}(\tilde{o}_E \times E)$. Then A/H is a hyper-elliptic surface if and only if the kernel $\ker(\text{pr}_1)$ of the first canonical projection $\text{pr}_1 : S^{-1}HS \to \text{Aut}(F_1)$ is a translation subgroup of $\text{Aut}(F_2)$. If so, then
\[
S^{-1}A/[\ker(\text{pr}_2) \ker(\text{pr}_1)] \simeq C_1 \times C_2
\]
for some elliptic curves C_1, C_2 and
\[
A/H \simeq (C_1 \times C_2)/G,
\]
where the group G is isomorphic to some of the groups
\[
G_{2}^{HE} = \langle (\tau_{U_1}, -1) \rangle \simeq \mathbb{C}_2
\]
with $U_1 \in C_{1}^{2-\text{tor}} \setminus \tilde{o}_{C_1}$,
\[
G_{2,2}^{HE} = \langle (\tau_{(P, Q_1)}) \rangle \times \langle (\tau_{U_1}, -1) \rangle \simeq \mathbb{C}_2 \times \mathbb{C}_2
\]
with $P, U_1 \in C_{1}^{2-\text{tor}} \setminus \tilde{o}_{C_1}$, $Q_1 \in C_{2}^{2-\text{tor}}$,
\[
G_{3}^{HE} = \langle (\tau_{U_1}, e^{\frac{2\pi i}{s}}) \rangle \simeq \mathbb{C}_3
\]
with $R = \mathcal{O}_{-3}, U_1 \in C_{1}^{3-\text{tor}} \setminus C_{2}^{2-\text{tor}}$,
\[
G_{3,3}^{HE} = \langle (\tau_{(P, Q_1)}) \rangle \times \langle (\tau_{U_1}, e^{\frac{2\pi i}{s}}) \rangle \simeq \mathbb{C}_3 \times \mathbb{C}_3
\]
with $R = \mathcal{O}_{-3}, P, U_1 \in C_{1}^{3-\text{tor}} \setminus C_{2}^{2-\text{tor}}, Q \in C_{2}^{3-\text{tor}} \setminus \tilde{o}_{C_2}$,
\[
G_{4}^{HE} = \langle (\tau_{U_1}, i) \rangle \simeq \mathbb{C}_4
\]
with $R = \mathbb{Z}[i], U_1 \in C_{1}^{4-\text{tor}} \setminus (C_{2}^{2-\text{tor}} \cup C_{1}^{3-\text{tor}})$,
\[
G_{4,4}^{HE} = \langle (\tau_{(P, Q_1)}) \rangle \times \langle (\tau_{U_1}, i) \rangle \simeq \mathbb{C}_2 \times \mathbb{C}_4
\]
with $R = \mathbb{Z}[i], P, U_1 \in C_{1}^{2-\text{tor}} \setminus \tilde{o}_{C_1}, Q_1 \in C_{2}^{(1)}(\text{tor}) \setminus \tilde{o}_{C_2}, U_1 \in C_{1}^{4-\text{tor}} \setminus (C_{2}^{2-\text{tor}} \cup C_{1}^{3-\text{tor}})$,
\[
G_{6}^{HE} = \langle (\tau_{U_1}, e^{\frac{2\pi i}{s}}) \rangle \simeq \mathbb{C}_6
\]
88
with \(R = O_{-3}, \ U_1 \in C_1^{6-\text{tor}} \setminus (C_1^{3-\text{tor}} \cup C_1^{4-\text{tor}} \cup C_1^{5-\text{tor}}) \).

In the notations from Proposition 30, \(A/H \) is a hyper-elliptic surface exactly when \(H \cong S^{-1}HS \) is isomorphic to some of the groups:

\[
H_2^{HE}(m, n) = \langle (\tau_{M_j}, I_{F_2}), (Id_{F_1}, \tau_{N_k}), (\tau_W, -1) \mid 1 \leq j \leq m, \ 1 \leq k \leq n \rangle
\]

with \(W \notin \ker(pr_2), 2W \in \ker(pr_2), \mathcal{L}(H_2^{HE}(m, n)) \cong H_{C1}(1) \cong \mathbb{C}_2, \)

\[
H_2^{HE}(m, n) = \langle (\tau_{M_j}, I_{F_2}), (Id_{F_1}, \tau_{N_k}), \tau_{(X,Y)}, (\tau_W, -1) \mid 1 \leq j \leq m, \ 1 \leq k \leq n \rangle
\]

with \(2X, 2W \in \ker(pr_2), X, W \notin \ker(pr_2), 2Y \in \ker(pr_1), Y \notin \ker(pr_1), \)
\[
\mathcal{L}(H_2^{HE}(m, n)) \cong H_{C1}(1) \cong \mathbb{C}_2
\]

\[
H_3^{HE}(m, n) = \langle (\tau_{M_j}, I_{F_2}), (Id_{F_1}, \tau_{N_k}), (\tau_W, e^{\frac{2\pi}{3}}) \mid 1 \leq j \leq m, \ 1 \leq k \leq n \rangle
\]

with \(R = O_{3}, 3W \in \ker(pr_2), 2W \notin \ker(pr_2), \mathcal{L}(H_3^{HE}(m, n)) \cong H_{C1}(2) \cong \mathbb{C}_3, \)

\[
H_3^{HE}(m, n) = \langle (\tau_{M_j}, I_{F_2}), (Id_{F_1}, \tau_{N_k}), \tau_{(X,Y)}, (\tau_W, e^{\frac{2\pi}{3}}) \mid 1 \leq j \leq m, \ 1 \leq k \leq n \rangle
\]

with \(R = O_{3}, 3X, 3W \in \ker(pr_2), 2X, 2W \notin \ker(pr_2), 3Y \in \ker(pr_1), Y \notin \ker(pr_1), \)
\[
\mathcal{L}(H_3^{HE}(m, n)) \cong H_{C1}(2) \cong \mathbb{C}_3
\]

\[
H_4^{HE}(m, n) = \langle (\tau_{M_j}, I_{F_2}), (Id_{F_1}, \tau_{N_k}), (\tau_W, i) \mid 1 \leq j \leq m, \ 1 \leq k \leq n \rangle
\]

with \(R = \mathbb{Z}[i], 4W \in \ker(pr_2), 2W, 3W \notin \ker(pr_2), \mathcal{L}(H_4^{HE}(m, n)) \cong H_{C1}(i) \cong \mathbb{C}_4, \)

\[
H_4^{HE}(m, n) = \langle (\tau_{M_j}, I_{F_2}), (Id_{F_1}, \tau_{N_k}), \tau_{(X,Y)}, (\tau_W, i) \mid 1 \leq j \leq m, \ 1 \leq k \leq n \rangle
\]

with \(R = \mathbb{Z}[i], 2X \in \ker(pr_2), X \notin \ker(pr_2), (1+Y) \in \ker(pr_1), Y \notin \ker(pr_1), 4W \in \ker(pr_2), 2W, 3W \notin \ker(pr_2), \mathcal{L}(H_4^{HE}(m, n)) \cong H_{C1}(3) \cong \mathbb{C}_4, \)

\[
H_6^{HE}(m, n) = \langle (\tau_{M_j}, I_{F_2}), (Id_{F_1}, \tau_{N_k}), (\tau_W, e^{\frac{2\pi}{3}}) \mid 1 \leq j \leq m, \ 1 \leq k \leq n \rangle
\]

with \(R = O_{-3}, 6W \in \ker(pr_2), 3W, 4W, 5W \notin \ker(pr_2), \) where \(m, n \in \{0,1,2\}. \)

Proof. In the notations from Lemma 44, the kernel \(\ker(pr_2) \) of the second canonical projection \(pr_2 : S^{-1}HS \to \text{Aut}(F_2) \) is a translation group, so that

\[
S^{-1}A \to S^{-1}A/\ker(pr_2) = C_1 \times F_2
\]

is unramified and \(C_1 \) is an elliptic curve. Thus, the covering \(A \to A/H \) is unramified if and only if \(C_1 \times F_2 \to (C_1 \times F_2)/G \cong A/H \) is unramified. In other words, \(A/H \) is a hyper-elliptic surface exactly when the group \(G \) has no fixed point on \(C_1 \times F_2 \). For any \(g \in G \) with \(\mathcal{L}(g) \notin I_2 \) the second component \(pr_2^{-1}(g) = \tau_{r_2} e^{\frac{2\pi i}{s-j}} \) for some \(1 \leq j \leq s-1 \), \(V_2 \in F_2 \) has a fixed point on \(F_2 \). Towards \(F_i x_{C_1 \times F_2}(g) = \emptyset \) one has to have
\(\overline{pr}_1(g) \neq Id_{C_1}, \) so that \(\ker(\overline{pr}_1) \subseteq T(G) = G \cap \ker(\mathcal{L}) \) and \(\ker(\overline{pr}_1) \subseteq H = H \cap \ker(\mathcal{L}) \) are translation groups. The covering \(C_1 \times F_2 \rightarrow (C_1 \times F_2)/\ker(\overline{pr}_1) = C_1 \times C_2 \) is unramified, \(C_2 \) is an elliptic curve and \(A_1/H \) is a hyper-elliptic surface exactly when \(G_o = G/\ker(\overline{pr}_1) \) has no fixed points on \((C_1 \times F_2)/\ker(\overline{pr}_1) \). The canonical projections

\[
\overline{pr}_1 : G_o \rightarrow Aut(C_1) \text{ and } \overline{pr}_2 : G_o \rightarrow Aut(C_2)
\]

are injective. Since \(\overline{pr}_1(G_o) \) is a translation subgroup of \(Aut(C_1) \), the group \(G_o \simeq \overline{pr}_1 \) is abelian and has at most two generators. As a result, \(\overline{pr}_2(G_o) \simeq G_o \) is an abelian subgroup of \(Aut(C_2) \) with at most two generators and non-trivial linear part \(\mathcal{L}(\overline{pr}_2(G_o)) = \langle e^{2\pi i} \rangle \simeq \mathbb{C}_s \) for some \(s \in \{2, 3, 4, 6\} \). According to Lemma 43,

\[
\overline{pr}_2(G_o) \simeq \langle \tau_{Q_1} \rangle \times \langle e^{2\pi i} \rangle \simeq \mathbb{C}_m \times \mathbb{C}_s
\]

for some \(Q_1 \in C_2 \) with \(\tau_{Q_1} = \text{Ad}_{e^{2\pi i}}(\tau_{Q_1}) = \tau_{e^{2\pi i} Q_1} \). In other words, the point \(\tau_{Q_1} \in C_2^{(e^{2\pi i} - 1)_{\text{tor}}} \setminus \{\partial C_2\} \). If \(s = 2 \) then any \(Q_1 \in C_2^{2 \text{-tor}} \) works out and the order of \(Q_1 \in (\mathbb{C}_2, +) \) is \(m = 2 \).

For \(s = 3 \) note that the endomorphism ring of \(C_2 \) is \(\text{End}(C_2) = \mathcal{O}_3 \). Therefore the fundamental group \(\pi_1(C_2) = c(\mathbb{Z} + \tau \mathbb{Z}) \) for some \(\tau \in \mathbb{Q}(\sqrt{-3}) \) and \(c \in \mathbb{C}^* \). By \(c \in \pi_1(C_2) \) and \(e^{\pi i} \in \text{End}(C_2) \) one has \(e^{\pi i} c \in \pi_1(C_2) \). Due to the linear independence of \(c \) and \(e^{\pi i} \) over \(\mathbb{Z} \), one has \(\pi_1(C_2) = c(\mathbb{Z} + e^{\pi i} \mathbb{Z}) = c\mathcal{O}_3 \). For \(\alpha = e^{\pi i} - 1 = -\frac{3}{2} + \frac{\sqrt{3}}{2} i \) the equation

\[
\alpha \left(x + e^{\pi i} y \right) = \left(a + e^{\pi i} b \right) c \text{ for some } a, b \in \mathbb{Z}
\]

has a solution \(x = -\frac{a+b}{3}, y = -\frac{a-2b}{3} \). Note that \(x(\text{mod}\mathbb{Z}) \equiv y(\text{mod}\mathbb{Z}) \) and

\[
\left(x + e^{\pi i} y \right) c(\text{mod}\mathbb{Z} + e^{\pi i} \mathbb{Z}) = \left(x + e^{\pi i} \right)(\text{mod}\pi_1(C_2)) \in \left\{ \partial C_2, \pm \left(1 + e^{\pi i} \right)(\text{mod}\pi_1(C_2)) \right\} = C_2^{3 \text{-tor}}
\]

whereas \(C_2^{2 \text{-tor}} = C_2^{3 \text{-tor}} \) and \(m = 3 \). Thus, \(Q_1 \in C_2^{3 \text{-tor}} \setminus \{\partial C_2\} \) in the case of \(s = 3 \).

If \(s = 4 \) then \(\text{End}(C_2) = \mathbb{Z}[i] \) and \(\pi_1(C_2) = c\mathbb{Z}[i] \) for some \(c \in \mathbb{C}^* \). The equation \((i-1)(x + iy)c = (a + bi)c \) for some \(a, b \in \mathbb{Z} \) has a solution \(x = -\frac{a+b}{2}, y = -\frac{a-b}{2} \) with

\[
(x + iy)c(\text{mod}\mathbb{Z}[i]) = x + iy(\text{mod}\pi_1(C_2)) \in \left\{ \partial C_2, \left(\frac{1+i}{2} \right) c(\text{mod}\pi_1(C_2)) \right\} = C_2^{(i+1) \text{-tor}}
\]

so that \(m = 4 \) and \(Q_1 \in C_2^{(i+1) \text{-tor}} \setminus \{\partial C_2\} \).

For \(s = 6 \) one has \(e^{\pi i} - 1 = e^{2\pi i} \) and \(C_2^{2\pi i \text{-tor}} = \{\partial C_2\} \), Therefore \(\overline{pr}_2(G_o) = \langle e^{\pi i} \rangle \simeq \mathbb{C}_6 \) in this case.
The restrictions on $P_1, U_1 \in C_1$ arise from the isomorphism $G_o \simeq \overline{\text{pr}}_1(G_o) \simeq \overline{\text{pr}}_2(G_o)$. Namely, $(\tau_{U_1}, e^{\frac{2\pi i}{s}}) \in G_o$ with $\overline{\text{pr}}_2(\tau_{U_1}, e^{\frac{2\pi i}{s}}) = E^{\frac{2\pi i}{s}}$ of order $s \in \{2, 34, 6\}$ has to have $\tau_{U_1} = \overline{\text{pr}}_1(\tau_{U_1}, e^{\frac{2\pi i}{s}}) \in (C_1, +)$ of order s. That amounts to $U_1 \in C_1^{s-\text{tor}}$ and $U_1 \not\in C_1^{q-\text{tor}}$ for all $1 \leq t < s$. If $\overline{\text{pr}}_2(G_o) = \langle \tau Q_1 \rangle \times \langle e^{\frac{2\pi i}{s}} \rangle$ with $Q_1 \neq \delta C_2$ then the order m of $Q_1 \in C_2$ has to coincide with the order of $P_1 \in C_1$.

In order to relate the classification G^{HE}_o, G^{HE}_m of G_o with the classification of the groups $H^{HE}_o(m, n), H^{HE}_o(m, n)$ of $H \simeq S^{-1}HS$, note that $P_1, U_1 \in C_1^{p-\text{tor}} \setminus C_1^{q-\text{tor}}$ for some natural numbers $p > q$ exactly when the corresponding liftings $X, W \in F_1$ are subject to $pX, pQ \in \ker(\text{pr}_2), qX, qW \not\in \ker(\text{pr}_2)$. Similarly, $Q_1 \in C_2^{p-\text{tor}} \setminus C_2^{q-\text{tor}}$ for $p, q \in \mathbb{N}, P > q$ if and only if an arbitrary lifting $Y \in F_2$ satisfies $pY \in \ker(\text{pr}_1), qY \not\in \ker(\text{pr}_1)$.

\[\square \]

Bearing in mind that A/H with $H = \mathcal{T}(H) \langle h_o \rangle$, $\gamma_1 \mathcal{L}(h_o) = 1, \gamma_2 \mathcal{L}(h_o) \in \mathbb{R}^* \setminus \{1\}$ is either hyper-elliptic or a ruled surface with an elliptic base, one obtains the following

Corollary 48. Let $H = \mathcal{T}(H) \langle h_o \rangle$ be a finite subgroup of $\text{Aut}(A)$ for some $h_o \in H$ with $\gamma_1 \mathcal{L}(h_o) = 1, \gamma_2 \mathcal{L}(h_o) = e^{\frac{2\pi i}{s}}, s \in \{2, 3, 4, 6\}, S \in \text{GL}(2, \mathbb{Q}(\sqrt{-d}))$ be a diagonalizing matrix for h_o and

\[S^{-1}h_oS = \left(\tau_{U_1}, e^{\frac{2\pi i}{s}}\right) \]

after an appropriate choice of an origin of $S^{-1}(A) = F_1 \times F_2, F_1 = S^{-1}(E \times \delta E), F_2 = S^{-1}(\delta E \times E)$. Then A/H is a ruled surface with an elliptic base if and only if the kernel $\ker(\text{pr}_1)$ of the first canonical projection $\text{pr}_1 : S^{-1}HS \to \text{Aut}(F_1)$ contains a non-translation element $S^{-1}hS = \left(\text{Id}_{F_1}, \tau_{U_2}e^{\frac{2\pi i}{s}}\right)$ for some $1 \leq k \leq s - 1, V_2 \in F_2$.

In the notations from Lemma 44, the quotient $A/H \simeq (C_1 \times F_2)/G$ of the split abelian surface $C_1 \times F_2 = S^{-1}A/\ker(\text{pr}_2)$ by its finite automorphism group $G = S^{-1}HS/\ker(\text{pr}_2)$ is a ruled surface with an elliptic base exactly when G is isomorphic to some of the groups

\[G^{RE}_2(m, n) = \langle \tau(P_1, Q_1), \tau(P_2, Q_2), \gamma_1 \mathcal{L}(h_o) \rangle \times \langle (\tau_{U_1}, -1) \rangle \simeq (\mathbb{C}_m \times \mathbb{C}_n) \times_{(-1, -1)} \mathbb{C}_2 = \langle \{a, b, c | a^m = 1, b^n = 1, cac^{-1} = a^{-1}, bcbc^{-1} = b^{-1}\} \rangle \times \langle (\tau_{U_1}, e^{\frac{2\pi i}{s}}) \rangle \simeq \mathbb{C}_m \times_j \mathbb{C}_3 = \langle \{a, c | a^m = 1, c^3 = 1, cac^{-1} = a^{-1}\} \rangle \times \langle (\tau_{U_1}, e^{\frac{2\pi i}{3}}) \rangle \simeq \mathbb{C}_m \times_j \mathbb{C}_4 = \mathbb{C}_2 \]

with $R = \mathcal{O}_3, 2U_1 \in \langle (\tau P_1) \rangle \simeq \mathbb{C}_m$ for some $j \in \mathbb{Z}_m^*$ of order 1 or 3,
\[= \langle a \rangle \times_j \langle c \rangle = \langle a, c \mid a^m = 1, \ c^4 = 1, \ cac^{-1} = a^j \rangle \]

with \(R = \mathbb{Z}[i] \) for some \(j \in \mathbb{Z}_m^* \) or order 1, 2 or 4,

\[G_6^{RE}(m, j) = \langle \tau(P, Q_1) \rangle \times \left(\tau_{U_1}, e^{\frac{2\pi i}{3}} \right) \simeq \mathbb{C}_m \times_j \mathbb{C}_6 = \]

\[= \langle a \rangle \times_j \langle c \rangle = \langle a, c \mid a^m = 1, \ c^6 = 1, \ cac^{-1} = a^j \rangle \]

with \(R = \mathcal{O}_{-3} \) and at least one of \(3U_1, 4U_1 \) or \(5U_1 \) from \((\tau_{P_1}, +)\) for some \(j \in \mathbb{Z}_m^* \) of order 1, 2, 3 or 6.

The classification of \(G \) is an immediate application of the group isomorphism \(\mathfrak{P}_2 : G \to \text{pr}_2(S^{-1}HS) \) from Lemma 44 (v) and the classification of \(\text{Aut}(F_2) \), given in Lemma 43.

Lemma 49. Let \(G \) be a finite subgroup of \(GL(2, R) \) with \(G \cap SL(2, R) \neq \{I_2\} \), such that any \(g \in G \) has an eigenvalue \(\lambda_1(g) = 1 \). Then:

(i) \(G = G_s = \langle g_s, g_o \rangle \) is generated by \(g_s \in SL(2, R) \) of order \(s \in \{2, 3, 4, 6\} \) and \(g_o \in GL(2, R) \) with \(\det(g_o) = -1, \ \text{tr}(g_o) = 0, \ \text{subject to} \ g_o g_s g_o^{-1} = g_s^{-1} \);

(ii) and \(g \in G \) has eigenvalues \(\lambda_1(g) = 1 \) and \(\lambda_2(g) = -1 \);

(iii) the group

\[G_s = \langle g_s, g_o \mid g_s^2 = I_2, \ g_o^2 = I_2, \ g_o g_s g_o^{-1} = g_s^{-1} \rangle \simeq D_s \]

is dihedral of order 2s for \(s \in \{3, 4, 6\} \) or the Klein group \(G_2 \simeq \mathbb{C}_2 \times \mathbb{C}_2 \) for \(s = 2 \).

Proof. Note that \(g \in G \) has an eigenvalue 1 exactly when the characteristic polynomial \(X_g(\lambda) = \lambda^2 - \text{tr}(g)\lambda + \det(g) \in R[\lambda] \) of \(g \) vanishes at \(\lambda = 1 \). This is equivalent to

\[\text{tr}(g) = \det(g) + 1. \]

If \(-I_2 \notin G\), then Proposition 24 specifies that \(G \cap SL(2, R) = \langle g_3 \rangle \simeq \mathbb{C}_3 \). In the notations from Proposition 35, all the finite subgroups \(H_{C3}(i) = [H_{C3}(i) \cap SL(2, R)] \langle g_o \rangle \) of \(GL(2, R) \) with \(H_{C3}(i) \cap SL(2, R) \simeq \mathbb{C}_3 \), such that \(g_o \) has an eigenvalue \(\lambda_1(g_o) = 1 \) are isomorphic to

\[H_{C3}(4) = \langle g, \ g_o \ g^3 = g_o^3 = I_2, \ g_o g_s g_o^{-1} = g^{-1} \rangle \simeq S_3 \simeq D_3 \]

for some \(g \in SL(2, R) \) with \(\text{tr}(g) = -1 \) and \(\lambda_1(g_o) = 1, \ \lambda_2(g_o) = -1 \). Since \(g_o \) is of order 2, the complement

\[H_{C3}(4) \setminus SL(2, R) = \langle g \rangle g_o = \{g^j g_o \mid 0 \leq j \leq 2\} \]

consists of matrices \(g^j g_o \) of determinant \(\det(g^j g_o) = \det(g_o) = -1 \) and \(g \in H_{C3}(4) \setminus SL(2, R) \) has as eigenvalue 1 exactly when \(\text{tr}(g^j g_o) = 0 \). Bearing in mind the invariance of the trace under conjugation, one can consider

\[g = \begin{pmatrix} e^{\frac{2\pi i}{3}} & 0 \\ 0 & e^{-\frac{2\pi i}{3}} \end{pmatrix} \quad \text{and} \quad g_o = \begin{pmatrix} a_o & b_o \\ c_o & -a_o \end{pmatrix} \]
with $a_o^2 + b_o c_o = 1$. Then
\[
g_0 g_0^{-1} = g_0 g o = \begin{pmatrix}
e^{-\frac{2\pi i}{3}} + \sqrt{-3} a_o^2 & \sqrt{-3} a_o b_o \\
\sqrt{-3} a_o c_o & e^{\frac{2\pi i}{3}} + \sqrt{-3} a_o^2
\end{pmatrix} = \begin{pmatrix}
e^{-\frac{2\pi i}{3}} & 0 \\
0 & e^{\frac{2\pi i}{3}}
\end{pmatrix} = g^{-1}
\]
is equivalent to $a_o = 0$ and
\[
g^j g_o = \begin{pmatrix}
e^{\frac{2\pi i j}{3}} & 0 \\
0 & e^{-\frac{2\pi i j}{3}}
\end{pmatrix} \begin{pmatrix}
0 & b_o \\
\frac{1}{b_o} & 0
\end{pmatrix} = \begin{pmatrix}
0 & e^{\frac{2\pi i j}{3}} b_o \\
e^{-\frac{2\pi i j}{3}} b_o & 0
\end{pmatrix}
\]
have tr$(g^j g_o) = 0$ for all $0 \leq j \leq 2$. Thus, any $g \in H_{C3}(4) \setminus SL(2, R)$ has an eigenvalue $\lambda_1(g) = 1$.

If $-I_2 \in G$, then for any $g \in G \setminus SL(2, R)$ with $\lambda_1(g) = 1$, $\lambda_2(g) = \det(g) \in R^* \setminus \{1\}$, one has $-g \in G \setminus SL(2, R)$ with $\lambda_1(-g) = -1$, $\lambda_2(-g) = -\det(g)$. Thus, $-g$ has an eigenvalue 1 exactly when $\lambda_2(-g) = -\det(g) = 1$ or $\lambda_2(g) = \det(g) = -1$. In particular,
\[
G = [G \cap SL(2, R)](g_o)
\]
for some $g_o \in G$ with $\det(g_o) = -1$, tr$(g_o) = 0$ and $G \setminus SL(2, R) = [G \cap SL(2, R)]g_o$.

Thus, for any $g \in G \setminus SL(2, R)$ has $\det(g) = -1$ and g has an eigenvalue $\lambda_1(g) = 1$ exactly when tr$(g) = 0$.

We claim that tr$(g_{1} g_o) = 0$ for all $g_1 \in G \cap SL(2, R)$ and some $g_o \in G$ with $\det(g_o) = -1$, tr$(g_o) = -1$ requires $G \cap SL(2, R)$ to be a cyclic group. Assume the opposite. Then by Proposition 24, either $G \cap SL(2, R)$ contains a subgroup $K_4 = \langle g_1, g_2 \mid g_1^2 = g_2^2 = -I_2, \ g_1 g_2 g_1^{-1} = g_2^{-1} \rangle \cong \mathbb{Q}_8$

isomorphic to the quaternion group \mathbb{Q}_8 of order 8, or
\[
G \cap SL(2, R) = K_7 = \langle g_1, g_4 \mid g_1^2 = g_4^3 = -I_2, \ g_1 g_4 g_1^{-1} = g_4^{-1} \rangle \cong \mathbb{Q}_{12}
\]
is isomorphic to the dicyclic group \mathbb{Q}_{12} of order 12. In either case, one has $h_1, h_2 \in SL(2, R)$ with tr$(h_1) = 0$ and h_2 of order $s \in \{4, 6\}$, such that $h_1 h_2 h_1^{-1} = h_2^{-1}$. Let us consider
\[
D_1 = S^{-1} h_1 S = \begin{pmatrix} a_1 & b_1 \\
c_1 & -a_1 \end{pmatrix} \in SL\left(2, \mathbb{Q}\left(\sqrt{-d}, E\left(\frac{-2\pi i}{s}\right)\right)\right),
\]
\[
D_2 = S^{-1} h_2 S = \begin{pmatrix} e^{\frac{2\pi i}{s}} & 0 \\
0 & e^{-\frac{2\pi i}{s}} \end{pmatrix}
\]
and
\[
D_o = S^{-1} g_o S = \begin{pmatrix} a_o & b_o \\
c_o & -a_o \end{pmatrix} \in GL\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2\pi i}{s}}\right)\right)
\]

93
with \(a_0^2 + b_0c_0 = 1\). The relation

\[
D_1D_2D_1^{-1} = -D_1D_2D_1 = \begin{pmatrix}
-2i\text{Im}(e^{2\pi i})a_1^2 & -2i\text{Im}(e^{2\pi i})a_1b_1 \\
-2i\text{Im}(e^{2\pi i})a_1c_1 & e^{2\pi i} + 2i\text{Im}(e^{2\pi i})a_1^2
\end{pmatrix} = \begin{pmatrix}
e^{-2\pi i} & 0 \\
0 & e^{2\pi i}
\end{pmatrix} = D_2^{-1}
\]

requires \(a_1 = 0\) and

\[
D_1 = \begin{pmatrix}
0 & b_1 \\
-\frac{1}{b_1} & 0
\end{pmatrix}
\]

for some \(b_1 \in \mathbb{Q}(\sqrt{-d}, e^{2\pi i})\).

Now,

\[
\text{tr}(D_2D_0) = \text{tr}\begin{pmatrix}
e^{2\pi i}a_o & e^{2\pi i}b_o \\
e^{-2\pi i}c_o & -e^{2\pi i}a_o
\end{pmatrix} = 2i\text{Im}(e^{2\pi i})a_o = 0
\]

specifies the vanishing of \(a_o\), whereas

\[
D_o = \begin{pmatrix}
0 & b_o \\
\frac{1}{b_o} & 0
\end{pmatrix}
\]

for some \(b_o \in \mathbb{Q}(\sqrt{-de^{2\pi i}})\).

The condition

\[
\text{tr}(D_1D_0) = \text{tr}\begin{pmatrix}
\frac{b_1}{b_o} & 0 \\
0 & -\frac{b_o}{b_1}
\end{pmatrix} = \frac{b_1}{b_o} - \frac{b_o}{b_1} = 0
\]

requires \(b_1 = \varepsilon b_o\) for some \(\varepsilon \in \{\pm\}\) and

\[
\text{tr}(D_1D_2D_o) = \text{tr}\begin{pmatrix}
\varepsilon e^{-2\pi i} & 0 \\
\text{mbox} & 0
\end{pmatrix} = -\varepsilon (e^{2\pi i} - e^{-2\pi i}) = -2i\text{Im}(e^{2\pi i})\varepsilon \neq 0
\]

contradicts the assumption. Therefore \(G \cap SL(2, R) = \langle g \rangle \simeq \mathbb{C}_s\) is cyclic group of order \(s \in \{2, 4, 6\}\). If \(G = [G \cap SL(2, R)]\langle g_o \rangle\) has a normal subgroup \(G \cap SL(2, R) = \langle g \rangle \simeq \mathbb{C}_s\) then \(g = -I_2\) and \(g_o(-I_2) = (-I_2)g_o\), as far as \(-I_2\) is a scalar matrix. As a result, \(G = \langle g \rangle \times \langle g_o \rangle \simeq \mathbb{C}_2 \times \mathbb{C}_2\). For \(G = [G \cap SL(2, R)]\langle g_o \rangle\) with a normal subgroup \(G \cap SL(2, R) = \langle g \rangle \simeq \mathbb{C}_s\) of order \(\{4, 6\}\) note that the element \(g_o^{-1}\) of \(\langle g \rangle\) is of order \(s\), so that either \(g_o^{-1} = g\) or \(g_o^{-1} = g^{-1}\), according to \(\mathbb{Z}_4^* = \{\pm 1(\text{mod}4)\}\), \(\mathbb{Z}_6^* = \{\pm 1(\text{mod}6)\}\). If \(g_o = g^-1\), then there exists a matrix \(S \in GL(2, \mathbb{Q}(\sqrt{-d}, e^{2\pi i}))\), such that

\[
D = S^{-1}gS = \begin{pmatrix} e^{2\pi i} & 0 \\
0 & e^{-2\pi i}
\end{pmatrix} \quad \text{and} \quad D_o = S^{-1}g_oS = \begin{pmatrix} 1 & 0 \\
0 & -1
\end{pmatrix}
\]

94
are diagonal. Then $\text{tr}(gg_o) = \text{tr}(DD_o) = e^{2\pi i s} - e^{-2\pi i s} = 2i \text{Im} \left(e^{2\pi i s} \right) \neq 0$ and 1 is not an eigenvalue of gg_o. Therefore $g_0 gg_o^{-1} = g^{-1}$. If

$$D = S^{-1} gS = \begin{pmatrix} e^{\frac{2\pi i}{s}} & 0 \\ 0 & e^{-\frac{2\pi i}{s}} \end{pmatrix}$$

then the relation

$$D_o DD_o^{-1} = D_o DD_o = \begin{pmatrix} e^{-\frac{2\pi i}{s}} + 2i \text{Im} \left(e^{\frac{2\pi i}{s}} \right) a_o^2 & 2i \text{Im} \left(e^{\frac{2\pi i}{s}} \right) a_o b_o \\ 2i \text{Im} \left(e^{\frac{2\pi i}{s}} \right) a_o c_o & e^{\frac{2\pi i}{s}} - 2i \text{Im} \left(e^{\frac{2\pi i}{s}} \right) a_o^2 \end{pmatrix} = \begin{pmatrix} e^{-\frac{2\pi i}{s}} & 0 \\ 0 & e^{\frac{2\pi i}{s}} \end{pmatrix} = D^{-1}$$

specifies that $a_o = 0$ and

$$D_o = \begin{pmatrix} 0 & b_o \\ 1 & 0 \end{pmatrix}$$

for some $b_o \in \mathbb{Q} \left(e^{\frac{2\pi i}{s}} \right)$.

The non-trivial coset

$$S^{-1} GS \setminus SL \left(2, \mathbb{Q} \left(\sqrt{-d}, e^{\frac{2\pi i}{s}} \right) \right) = \langle D \rangle D_o = \{ D^j D_o \mid 0 \leq j \leq s - 1 \}$$

consists of elements of trace

$$\text{tr}(D^j D_o) = \text{tr} \left(\begin{pmatrix} 0 & e^{\frac{2\pi i}{s} b_o} \\ e^{-\frac{2\pi i}{s} b_o} & 0 \end{pmatrix} \right) = 0,$$

so that any $\Delta \in S^{-1} GS \setminus SL \left(2, \mathbb{Q} \left(\sqrt{-d}, e^{\frac{2\pi i}{s}} \right) \right)$ has an eigenvalue 1 and any $g = S \Delta S^{-1} \in G \setminus SL(2, R)$ has an eigenvalue 1.

Proposition 50. The quotient A/H of $A = E \times E$ is an Enriques surface if and only if H is generated by $h \in H$ of order $s \in \{2, 3, 4, 6\}$ with $L(h) \in SL(2, R)$ and $h_o \in H$ with $\lambda_1 L(h_o) = 1$, $\lambda_2 L(h_o) = -1$, $\tau(h_o) = h_o L(h_o)^{-1} = \tau(U_o V_o)$, subject to $h_o h h_o^{-1} = h_o h h_o = h^{-1}$ and

$$L(h_o) \begin{pmatrix} U_o \\ V_o \end{pmatrix} \neq - \begin{pmatrix} U_o \\ V_o \end{pmatrix}.$$ \hfill (21)
In particular, for $s = 2$ the group

$$H \simeq \mathcal{L}(H) \simeq \mathbb{C}_2 \times \mathbb{C}_2$$

is isomorphic to the Klein group of order 4, while for $s \in \{3, 4, 6\}$ one has a dihedral group

$$H \simeq \mathcal{L}(H) \simeq \mathcal{D}_s = \langle a, b \mid a^s = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle$$
of order $2s$.

Proof. According to Lemmas 41 and 49, the finite subgroups H of $Aut(E \times E)$ with Enriques quotient A/H are of the form

$$H = \langle \tau_{(P_i,Q_i)}, h, h_o \mid 1 \leq i \leq m \rangle$$

with $0 \leq m \leq 3$ and

$$\mathcal{L}(H) = \langle \mathcal{L}(h), \mathcal{L}(h_o) \rangle \quad \mathcal{L}(h)^s = I_2, \quad \mathcal{L}(h_o)^2 = I_2, \quad \mathcal{L}(h_o)\mathcal{L}(h)\mathcal{L}(h_o)^{-1} = \mathcal{L}(h)^{-1} \simeq \mathcal{D}_s$$

for some $\mathcal{L}(h) \in SL(2, \mathbb{R}), \mathcal{L}(h_o) \in GL(2, \mathbb{R}), \lambda_1\mathcal{L}(h_o) = 1, \lambda_2\mathcal{L}(h_o) = -1$. Note that

$$K := \mathcal{L}^{-1}(\mathcal{L}(H) \cap SL(2, \mathbb{R})) = \langle \tau_{(P_i,Q_i)} \mid 1 \leq i \leq m \rangle \langle h \rangle$$
is a normal subgroup of H with a single non-trivial coset

$$H \setminus K = Kh_o = \left\{ \tau_{h(z,j)} = \sum_{i=1}^{m} z_i(P_i,Q_i) h^i h_o \mid z_i \in \mathbb{Z}, \ 0 \leq j \leq s-1 \right\}.$$

The automorphism h, whose linear part $\mathcal{L}(h)$ has eigenvalues $\lambda_1\mathcal{L}(h) = e^{\frac{2\pi i}{s}}$, $\lambda_2\mathcal{L}(h) = e^{-\frac{2\pi i}{s}}$, different from 1 has always a fixed point on A. Without loss of generality, one can assume that $h = \mathcal{L}(h) \in GL(2, \mathbb{R})$, after moving the origin of A at a fixed point of h. If $h_o = \tau_{(U_o,V_o)}\mathcal{L}(h_o)$ for some $(U_o,V_o) \in A$ then the translation parts

$$\tau(h(z,j)) = h(z,j)\mathcal{L}(h(z,j))^{-1} = \tau_{\sum_{i=1}^{m} z_i(P_i,Q_i) + h^j(U_o,V_o)} \quad \forall z = (z_1, \ldots, z_m) \in \mathbb{Z}^m$$

and $0 \leq j \leq s - 1$. The linear parts $\mathcal{L}(h(z,j)) = \mathcal{L}(h^j h_o) = h^j \mathcal{L}(h_o)$ have eigenvalues $\lambda_1(h^j \mathcal{L}(h_o)) = 1, \lambda_2(h^j \mathcal{L}(h_o)) = -1$ for all $0 \leq j \leq s - 1$. Applying Lemma 46, one concludes that $\text{Fix}_A(h(z,j)) = \emptyset$ if and only if no one lifting $(x(z,j), y(z,j)) \in \mathbb{C}^2$ of $\tau(h(z,j))$ is in the kernel of the linear operator $\psi_j = h^j \mathcal{L}(h_o) + I_2 : \mathbb{C}^2 \to \mathbb{C}^2$. For any fixed $0 \leq j \leq s - 1$, note that $(x(z,j), y(z,j)) \notin \ker(\phi_j)$ for all $z = (z_1, \ldots, z_m) \in \mathbb{Z}^m$ implies that the lifting of the \mathbb{R}-span of $\langle \tau_{(P_i,Q_i)} \mid 1 \leq i \leq m \rangle$ to \mathbb{C}^2 is parallel to $\ker(\psi_j)$. It suffices to establish that $\ker(\psi_0) \cap \ker(\psi_1) = \{0, 0\}$, in order to conclude that $m = 0$ and $H = \langle h, h_o \rangle = \langle h_o, h \rangle$. Since the claim $\ker(\psi_0) \cap \ker(\psi_1) = \{0, 0\}$
is independent on the choice of a coordinate system on C^2, one can use Lemma 49 to assume that
\[
\mathcal{L}(h_o) = D_o = \left(\begin{array}{cc} 0 & b_o \\ \frac{1}{b_o} & 0 \end{array} \right) \quad \text{and} \quad h = \mathcal{L}(h) = \left(\begin{array}{cc} e^{2\pi i \alpha} & 0 \\ 0 & e^{-2\pi i \alpha} \end{array} \right)
\]
for some $s \in \{2, 3, 4, 6\}$. Then $\psi_0 = \mathcal{L}(h_o) + I_2$ has kernel $\ker(\psi_0) = \text{Span}_C(b_o, -1)$, while
\[
\psi_1 = h\mathcal{L}(h_o) + I_2 = \left(\begin{array}{cc} 1 & e^{2\pi i \alpha}b_o^{-1} \\ e^{-2\pi i \alpha}b_o & 1 \end{array} \right)
\]
has kernel $\ker(\psi_1) = \text{Span}_C\left(e^{2\pi i \alpha}b_o, -1\right)$. For $s \in \{2, 3, 4, 6\}$ the vectors $(b_o, -1)$ and $(e^{2\pi i \alpha}b_o, -1)$ are linearly independent over C, so that $\ker(\psi_0) \cap \ker(\psi_1) = \{(0, 0)\}$. Now, $\mathcal{L}(h^j h_o) = h^j \mathcal{L}(h_o) \neq I_2$ for any $0 \leq j \leq s - 1$, as far as $\mathcal{L}(h_o) \not\in \langle h \rangle < SL(2, R)$. On the other hand, the subgroup $\langle h = \mathcal{L}(h) \rangle$ of H is contained in $SL(2, R)$, so that the translation part $T(H) = \ker(\mathcal{L}|_H) = Id_A$ is trivial. As a result, $\mathcal{L} : H \rightarrow \mathcal{L}(H)$ is a group isomorphism and the relation $\mathcal{L}(h_o) h \mathcal{L}(h_o)^{-1} = h^{-1}$ implies that
\[
h_o h_o^{-1} = (\tau_{(U_o, V_o)}\mathcal{L}(h_o)) h (\tau_{\mathcal{L}(h_o)^{-1}(U_o, V_o)}\mathcal{L}(h_o)^{-1}) =
\]
\[
= \tau_{(U_o, V_o) - \mathcal{L}(h_o) h \mathcal{L}(h_o)^{-1}(U_o, V_o)} \mathcal{L}(h_o) h \mathcal{L}(h_o)^{-1} = \tau_{(U_o, V_o) - h^{-1}(U_o, V_o) h^{-1}} = h^{-1}.
\]
After acting by h on $(U_o, V_o) = h^{-1}(U_o, V_o)$, one obtains that $h(U_o, V_o) = (U_o, V_o)$, or $(U_o, V_o) \in A$ is a fixed point of h. Bearing in mind that $K = \langle h \rangle \simeq \langle \mathcal{L}(h) \rangle = \mathcal{L}(H) \cap SL(2, R)$ is a normal subgroup of $H \simeq \mathcal{L}(H) = \mathcal{L}(H) \cap SL(2, R)\langle \mathcal{L}(h_o)\rangle$, let us represent the complement $H \setminus K$ as the set of the entries of the left coset
\[
H \setminus K = h_o K = \{h_o h^j \mid 0 \leq j \leq s - 1\}.
\]
Then $h_o h^j = \tau_{(U_o, V_o)}(\mathcal{L}(h_o) h^j)$ have translation parts
\[
\tau(h_o h^j) = h_o h^j \mathcal{L}(h_o h^j)^{-1} = h_o \mathcal{L}(h_o)^{-1} = \tau(h_o) = \tau_{(U_o, V_o)}
\]
and linear parts $\mathcal{L}(h_o) h^j$ with eigenvalues $\lambda_1(\mathcal{L}(h_o) h^j) = 1$, $\lambda_2(\mathcal{L}(h_o) h^j) = -1$. According to Lemma 46, the automorphism $h_o h^j \in \text{Aut}(A)$ has no fixed point on A if and only if no one lifting $(u_o, v_o) \in C^2$ of $(u_o + \pi_1(E), v_o + \pi_1(E)) = (U_o, V_o)$ is in the kernel of $\varphi_j = \mathcal{L}(h_o) h^j + I_2$. We claim that if
\[
h \left(\begin{array}{c} u_o \\ v_o \end{array} \right) = \left(\begin{array}{c} u_o \\ v_o \end{array} \right) + \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right) \quad \text{for some} \quad (\mu_1, \mu_2) \in \pi_1(A),
\]
then $\varphi_j(u_o, v_o) - \varphi_0(u_o, v_o) \in \pi_1(A)$. Indeed, by an induction on j, one has
\[
h^j \left(\begin{array}{c} u_o \\ v_o \end{array} \right) - \left(\begin{array}{c} u_o \\ v_o \end{array} \right) \in \pi_1(A),
\]
97
whereas
\[
\varphi_j(u_o, v_o) - \varphi_0(u_o, v_o) = \mathcal{L}(h_o)h_j \begin{pmatrix} u_o \\ v_o \end{pmatrix} - \mathcal{L}(h_o) \begin{pmatrix} u_o \\ v_o \end{pmatrix} \in \pi_1(A).
\]

Thus, the assumption \((u_o, v_o) \in \ker(\varphi_j)\) implies that
\[
\varphi_0(u_o, v_o) = \mathcal{L}(h_o)(u_o, v_o) + (u_o, v_o) = (\mu_1', \mu_2') \in \pi_1(A),
\]
whereas
\[
\mathcal{L}(h_o) \begin{pmatrix} U_o \\ V_o \end{pmatrix} = - \begin{pmatrix} U_o \\ V_o \end{pmatrix},
\]
contrary to the assumption (21). Note that (21) is equivalent to \(\varphi_0(u_o, v_o) \not\in \pi_1(A)\) for all liftings \((u_o, v_o) \in \mathbb{C}^2\) of \((u_o + \pi_1(E), v_o + \pi_1(E)) = (U_o, V_o)\) and is slightly stronger than \(Fix_A(h_o) = \emptyset\), which amounts to \(\varphi_0(u_o, v_o) \neq 0\) for \(\forall (u_o, v_o) \in \mathbb{C}^2\) with \((u_o + \pi_1(E), v_o + \pi_1(E)) = (U_o, V_o)\).
References

[10] Peters C., Classification of complex algebraic surfaces from the point of view of Mori theory, Preprint.