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Preface to the English Edition 

Almost five years have past since the original book had been written. At 
the time the English version became ready, it seemed natural to write an 
additional chapter in order to add some new results, and perhaps even more 
importantly, to express some new points of view on the subject of the book. 

At this time distance, it is not surprising that some things look too naive 
now. For example, it would appear strange that quantum groups, that are 
so much in fashion today, would need additional “advertising”, which was 
the purpose of the last chapter of the original book. That chapter could be 
harmlessly excluded from the English translation: its main aim was to attract 
more attention to some important subjects - something that has been already 
achieved today. We have nevertheless retained the chapter, for books have 
their own lives and, to change a book in this way would mean to create a 
new one. We also think that the chapter in question will provide an insight 
into the fast development of the subject of quantum groups over a relatively 
short period of time. 

The last chapter contains more results, both new and old, unavailable to 
the author at the time of writing of the main body of the text. After selecting 
them in a limited period of time, the author was unable to paint the complete 
picture, but he still hopes that every bit of new information will be useful. At 
the end we have added a number of new references mentioned in this chapter. 

I would like to thank Prof. R. Dimitric for completing a hard work of 
translating this book from the Russian into English. In addition, he has 
rendered the author’s rudimentary English version of the last chapter into a 
readable text. I am also grateful for his patience in clarifying mathematical 
concepts as well as finding the most suitable way of expressing them, even in 
the cases when the author himself was unsure of the intended meaning. 

The author also expresses gratitude to his publisher “Springer-Verlag” , for 
their attention and help. 
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Introduction 

While admiring elegant proofs that lead us to the very tops of peaks of 
mathematical achievement, we often ask ourselves one and the same question: 
how was it possible to think of that? There are no surprises here: all that 
elegance is a result of tuning up of sufficiently coarse, technically complex and 
intricate reasoning, when the work was done in terms of perfectly elementary 
objects and formulas in the area called “calculations” that are rarely shown 
in a mathematical paper with its true weight. What are these elementary 
reasonings based upon? Certainly (and arguably) upon two components: on 
purely physical, for instance geometrical intuition, “‘the sense” for simple 
mathematical objects and the highly developed combinatorial thinking of 
a mathematician, enabling him to operate easily with elementary abstract 
objects: diagrams, words, formulas. 

In this article we primarily discuss this combinatorial aspect of algebraic 
reasoning, the matter that could be called combinatorial algebra. In this 
wide context, however, combinatorial algebra contains homological algebra 
and vigorously developing computer algebra. On the other hand, by the term 
combinatorial algebra in its narrow meaning, we mean the study of alge- 
braic objects defined by its generators and relations. We will find ourselves 
somewhere in between these two interpretations. 

It is not possible to encompass the whole of combinatorial algebra. Part 
of the questions, connected with homological algebra, identities and com- 
binatorial group theory has been left out consciously since that material 
is contained in sufficient detail in other volumes of the series: (Bakhturin, 
Ol’shanskij, 1988), (Gel’fand, Manin, 1989), (Bokut’, L’vov, Kharchenko, 
1988)) (Ol’shanskij, Shmel’kin, 1989). Topics related to computer algebra 
and asymptotical methods in topology have been presented in a sketchy form, 
since there are fairly detailed surveys in those directions in Russian such as 
(Babenko, 1986)) (Latyshev, 1988), (Buchberger, Collins, Loos, 1982) and 
new volumes are in preparation. On the other hand, some questions have 
been treated in more detail, primarily in order to show those elementary 
bricks that make up complicated combinatorial proofs. Consequently, the 
text contains quite a few completely simple claims, with short, almost ob- 
vious proofs and illustrating examples whose aim is to help in familiarizing 
with the technique of combinatorial reasoning. On the other hand, the article 
contains sufficiently many of the latest results in the area of combinatorial 
algebra, equipped with sketchy proofs and references to more rigorous reason- 
ing. In that, the author did not strive to find the initial sources of this or that 
fact, but was rather led by considerations on availability of the sources to the 
Soviet reader. For example, the book by Krause and Lenagan: “Growth of 
algebras and Gelfand-Kirillov dimension”, which would be natural to quote, 
was absent not only during preparation of the script by I.M. Gel’fand and 
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A.A. Kirillov, but also in USSR in general, thus the unique reference to this 
work is the acknowledgement of its existence. 

The main object of our investigations will be infinite-dimensional algebras 
and their asymptotic behavior. In the whole, however, the class of the objects 
we will study will be considerably wider. For example, considerable attention 
will be paid to infinite groups and semigroups. Giving up certain finiteness 
conditions is usually telling in a most radical way through the character of 
problems solved and the obstacles arising in the process. Sometimes the dif- 
ficulties arise already at the level of definitions, when this or that idea, based 
on some sorting out turns to be unsuitable. Here is the kingdom of unsolvabil- 
ity. In addition, problems of exact description of objects, so characteristic in 
the finite case, are replaced here by problems on description and calculation 
of some, fairly coarse characteristics of objects, such as their growth, which 
allow us to give a relatively clear picture of laws of asymptotic behavior of 
objects. 

The main technique in the exposition is based on application of Griibner 
basis (Sect. 2) as well as the method of generating functions (Sect. 3). Graded 
algebras of general position are studied in Sect. 4 and the algorithmic un- 
solvability of fundamental asymptotic questions is shown. Section 5 and part 
of Sect. 7 are devoted to problems on growth. The sixth section is devoted 
to word combinatorics as well as to nilpotency questions, while the seventh 
is devoted to identities in algebras. The eighth and partly the ninth sections 
concentrate around questions on relationships among different series: Hilbert, 
Poincare, PoincarbBetti. Basic properties of local rings are briefly considered 
in the ninth section. Hyperbolic and quantum groups are the subject of con- 
sideration in the last section. Lastly, the first section and sufficiently detailed 
index have an auxiliary character. 

This work would not have appeared without help of other mathematicians. 
First of all, I would like to single out I.K. Babenko, whose paper (Babenko, 
1986) was substantially explored by the author. It would have been impos- 
sible to have worked without material (manuscripts among them) that were 
kindly allowed to my disposal by L.A. Bokut’, E.S. Golod, R.I. Grigorchuk, 
V.N. Gerasimov, A.A. Kirillov, V.T. Markov, A.A. Mikhalev, M.V. Sapir, V.I. 
Trofimov as well as by foreign colleagues D. Anick, J. Backelin, L. Avramov, 
T. Gateva-Ivanova (who also gave many valuable advices after reading the 
manuscript), I.E. Roos. Extremely useful and fruitful were discussions on 
the material in the article with A.Z. Anan’in, A.Ya. Belov, V.V. Borisenko, 
A.I. Bondal, E.I. Zel’manov (who also allowed me to ‘get acquainted with 
proofs in his manuscripts), S.K. Kozhokar’, IV. L’vov, A.V. Mikhalev, Yu. 
M. Ryabukhin, A.D. Chanyshev, G.P. Chekanu. After reading the first vari- 
ant of the manuscript I received valuable comments by V.N. Latyshev, A.I. 
Kostrikin, I.R. Shafarevich. I deeply acknowledge all of them and other of my 
colleagues for their help. All the deficiences are on the author’s conscience. 
Note that the references cited with the results are not necessarily pointing to 
the first authors of those results. 
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$1. Basic Objects and Constructions 

1.1. Introduction. This section has an introductory character. We have 
gathered here, for the convenience of the reader, the most important defini- 
tions and constructions that we will need in the sequel. 

Let us introduce the basic notation in our investigations. First of all, we 
will fix the symbol K to denote the ground field, throughout the whole paper. 
Recall that an algebra A is a vector space with a multiplication law satisfying 
the conditions of linearity and distributivity. For example (oa + pb)c = sac+ 
,Bcfora,pE K;a,b,c~A. 

As a rule we will omit the multiplication symbol, but, in the case of Lie (su- 
per)algebrss, we will, following tradition, denote the product of two elements 
by [ab] (details follow). 

The term algebra will usually denote an associative algebra with the unity 
1, i.e. multiplication will be assumed to be associative: (ab)c = a(bc). The 
exceptions will be the nil algebras (1.2), where the unity is not required, and, 
naturally, Lie (super)algebras, where there is no associativity. In order to 
give uniform definitions of Lie algebras and superalgebras, we recall that a 
mapping d : A --+ A is called derivation on a (not necessarily associative) 
algebra A if the following conditions are satisfied: d(xy) = (dx)y + x(dy). A 
Lie algebra L is an anticommutative algebra, where multiplication by any el- 
ement is a derivation. In other words, the following two identities are satisfied 
in L: 

bYI + [Y4 = 0, 

kdY41 = [bYI + [Ybll 
(the second identity is equivalent to the Jacoby identity - see 1.2). 

Any algebra of derivations of an associative algebra with the following 
multiplication: 

[dldz] = dld2 - dzdl 

may be an example- of a Lie algebra. 

Remark. In the case of characteristic 2, the identity [XX] = 0 (automatically 
satisfied for other characteristics) ought to be added to the definition of a Lie 
algebra. 

The use of superalgebras will be not for the sake of fashion but rather for 
acknowledging their most important role in the theory that follows. Recall 
that a superalgebra (or a Z&-graded algebra) is a (not necessarily associative) 
algebra A expressible in the form of the direct sum of two of its subspaces 

A=A,@Ai 

- the even and odd parts, such that A?Aj C A- Here, the sum i + j is 
taken modulo 2, for instance Ai& C AG, thus the decomposition of this kind 
is called the Q-graduation. If z E k, then z has parity 1x1 = i. 
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The main example of a superalgebra is a graded algebra A, i.e. an al- 
gebra A representable as the direct sum of its finite-dimensional subspaces 
A = @,“=, A,, such that A,A, & An+m. Naturally, the elements in even 
components A, are even and the elements in the odd components are odd. 
We will study graded algebras, beginning with Section 3 and they will be the 
principal objects of investigations in the present paper. 

Just as for algebras, we will assume without saying that the term “superal- 
gebra” denotes an associative superalgebra with unity, making an exception 
from that rule only for the Lie (super)algebras. We will also assume with- 
out saying that all linear transformations, connected with superalgebras (e.g. 
homomorphisms, derivations etc.) preserve the Z2-graduation i.e. map the 
elements with parity into the elements with parity. Moreover, for homomor- 
phisms, it will be assumed that even elements are mapped into even and odd 
into odd. 

In order to memorize formulas in the super-case, it will be useful to be 
guided by the following mnemonic rule: compared with the ordinary formulas, 
they differ in that they have the sign (-l)‘Z”g’ appearing every time when 
the symbols x and y have reversed their places in the formula. We attempt 
to define a Lie superalgebra, lead by this rule. First of all we define deriva- 
tion of a (not necessarily associative) superalgebra of parity IdI as a linear 
transformation into itself, satisfying the following condition 

d(xy) = (dx)y + (-l)‘d”“‘x(dy) 

for elements x, y with parity. 
A superalgebra with multiplication, defined via brackets [ 1, is called a Lie 

superalgebra if the following identities are satisfied there: 

[xy] + (-l)lZ’h’ [yx] = 0 

[4Y41 = bYl4 + w’“““‘[Y[41 
for the elements with parity. The last identity means that the multiplication 
by an element x with parity is derivation of the corresponding parity. 

The algebra generated by the derivatives on any superalgebra can pro- 
vide an example of a Lie superalgebra. Here, even derivations form the even 
part, odd form the odd part and the multiplication is defined by the graded 
commutator: 

[dldz] = dld2 - (-1)‘d1”%2d,. , 

We see that superalgebras are natural generalizations of ordinary algebras 
(if all elements are even, then we get ordinary algebras and Lie algebras). In 
the main, the theories in the ordinary and the super-case are perfectly paral- 
lel. Super-theory however has not only the advantage that it is more general. 
It turns out that taking signs into account can be seen as the other side of 
the mirror of the ordinary mathematical world. For instance the “behind- 
themirror” analogue of the polynomial algebra of several variables is the 
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exterior algebra (see 1.3). This is confirmed through a connection between 
the super-theory with modern physics (see Lejtes, 1984). On the other hand, 
the super-theory is a striking little bridge, enabling a special kind of induc- 
tion for the proof of important theorems (see Kemer, 1984 and Zelmanov, 
1988). The basic idea here consists of the fact that the role of the inductive 
transition enables the transition from the superalgebra to its even part, that 
is an ordinary algebra. The meaning of this idea is also in that the notion of a 
superalgebra unites into one whole the notions of an algebra and the module 
over it (see 1.5), since the odd part is a module over the even part. 

Nevertheless, the reader may courageously count on the fact that the un- 
familiarity with the super-theory will not cause even the least damage, espe- 
cially if he is accustomed to view the bracket [zy] as the graded commutator 
zy - ( -l)lzllYlyz, in the super-case. 

Remark. In the case of characteristics 2 and 3 the following additions to 
the definition of a Lie superalgebra are necessary: 

(1) [zr] = 0 for even elements. 
(2) [+cz]] = 0 for odd elements. 
(3) the existence of the quadratic operator q : L -+ & satisfying the 

following conditions: 
(a) q(w) = a2q(a); CY E K, a even, 
(b) [ab] = q(a + b) - q(a) - q(b); a, b odd, 
(c) [a[ab]] = [q(a)b]; a, b odd. 

Therefore, in order not to specify similar exceptions, we can restrict ourselves 
to the characteristics of the field different from two and three at least in the 
case when we discuss Lie superalgebras. 

1.2. Ways of Defining InfInitedimensional Algebras. The most comfortable 
way in working directly with an algebra is, after all, by giving a basis and a 
multiplication table on it. For instance this is the way to define the polynomial 
algebra and a free associative algebra (i.e. the algebra of polynomials over the 
non-commuting variables). The basis in both of these algebras is formed by 
the monomials (in the case of free algebras, they are indeed often called 
words), while the multiplication table is given in the natural way since the 
product of monomials is again a monomial. For instance, the product of the 
monomial sy by itself will be the monomial zyzy, but in the first algebra it 
could be written down also in the form x2y2. 

With all its comfort, this method of representation is not used all that 
frequently, because it requires more or less the multiplication rules of the 
same type because of the infinity of the “multiplication table”. In practice, a 
much more frequent@situation is when it is not possible to describe even the 
basis uniformly, not to speak of the multiplication laws. In one case, however, 
this way is used regularly; we have in mind the group and semigroup algebras. 

Sometimes (and in our paper frequently enough) it is more comfortable 
to consider, instead of a group G, its group algebra K[G] over a field K, 
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that may be defined in the following way: the elements of G are declared to 
form its basis and the multiplication law in G (Cayley’s table) is nothing else 
but the multiplication table in K[G]. In order to avoid ambiguity (especially 
when the multiplication law is written additively) we will frequently enough 
use, instead of the elements g, for the basis the; symbols es indexed by the 
elements of the group. 

For instance, for the group Z of integers, the group algebra will have the 
basis ei and the multiplication law eiej = ei+j (i,j E Z). 

All the aforementioned carries over literally from a group to a semigroup 
with the use of the notion of a semigroup algebra. Let us point out that 
isomorphic group algebras may correspond to non-isomorphic groups (for 
example, the group algebras over the complex numbers for the dihedral and 
the quaternion groups (1.3) are isomorphic). 

One usually tries to define algebras descriptively and directly through 
its defining properties. This is the characteristic “physical” definition. For 
example, we can describe the algebra whose elements are all linear operators 
acting on some spaces and preserving their structures. As an example, we 
mention the endomorphism algebra End(A) and the algebra of Lie derivatives 
Der(A) of a fixed algebra A. 

In the majority of the cases such addescription enables us to get a descrip 
tion of the basis and the multiplication table. However, in this process, “the 
physical intuition” is lost and an effort is made not to use this basis until the 
beginning of direct calculations. 

One more approach is a reduction to the classical or almost classical 
objects. For instance many infinite groups arise as matrix groups. Infinite- 
dimensional algebras can also be viewed as matrix algebras, but of infinite 
dimension. For example, if we choose a basis in an infinite-dimensional al- 
gebra, then the endomorphism algebra End(A) is realized through infinite 
matrices in that basis. 

Another way is to introduce new operations on classical objects. Here are 
examples of this kind (that themselves have become classical). 

We can make a Lie algebra AL from an associative algebra A, introducing 
a new multiplication: [ab] = ab - ba. It is easy to see that it will satisfy the 
defining identities for a Lie algebra: 

[ab] = -[ba] (th e anti-commutativity identity) 

[[able] + [[bcla] + [[cu]b] = 0 (the Jacoby identity). 

If A is a superalgebra, then a Lie superalgebra AL can be made by introducing 
the graded commutator: 

[xy] = xy - (-l)‘Z”Y’Yz. 

Jacoby’s identity in the super-case assumes the following form: 

(-l)‘=“=‘[z[yz]] + (-l)“““‘[y[zx]] + (-l)‘=“y’[z[zy]] = 0. 
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1.3. Combinatorial Approach. The most important way of defining algebras 
for us consists of describing them in terms of generators and defining relations. 

The method of generators and relations is similar to the axiomatic method 
in the miniature, where the role of axioms is played by the relations. Let us 
first consider an example and then give an exact definition. 

Let us assume that we are studying an (associative) algebra A defined by 
three generators a, b, c and the three relations: 

2ab - c = 0; 2bc - a = 0; 2ca - b = 0. 

What is this algebra like? This is an algebra that automatically has the three 
given elements and also all the possible products generated by them (for ex- 
ample cba, a3 etc.), usually called words. The products of words are defined 
in the natural way, say ba. ac = baac (or ba2c in the abbreviated form). How- 
ever, some of these words are linearly dependent or moreover equal. Which 
ones? Naturally those that are included in the defining relations, say 2ab = c. 
However, the other relationships derivable from the defining relations are not 
excluded. For instance, if the equality 2ab = c is multiplied by c on the right, 
then we get the equality 2abc = c2. Substituting 2bc by a on the left-hand-side 
we obtain the equality a2 = c 2. We may obtain the equality a2 = b2 analo- 
gously. Both of these equalities follow from the defining relations. Therefore, 
when we write A = (a, b, c I2ab = c, 2bc = a, 2~x4 = b), then we keep in 
mind that, not only these defining relations are fulfilled in A, but also those 
that are their consequences. Thus this property allows the effective use of 
the given method for defining algebras. However the effectiveness in defining 
has its other side too. The fact is that in defining algebras this way, many 
perfectly natural questions turn out to be non-trivial and often unsolvable. 
For instance let us ask the reader to try to give an answer to the following 
question: what is the dimension of the algebra A defined above? It is difficult 
to say even whether A is infinite-dimensional or, on the other hand, non-zero. 

It is even more difficult to answer questions about concrete elements. For 
example, are the elements representing the words ab and ba same or different 
in the algebra A? Nonetheless, in the majority of the important cases it is 
possible to obtain satisfactory answers to fundamental questions and we will 
discuss some standard methods for this later. 

We return to the formal definition of an algebra A defined by the generators 
51,22,..., xg and the defining relations 

fl =O,f2=0 )...) &=O. 

(Both the generating set as well as the set of relations, generally speaking, 
may be infinite, but since there are no principal differences, we will use only 
finite variants for convenience.) 

Thus, let us consider a free algebra U with the set of generators X = 
{Xl, X2,. . . ,x9}. We point out that its elements are polynomials of non- 
commuting variables ZZ~ and the basis consists of the words (monomials). 
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In particular, all fj are elements of this algebra. We can consider the ideal 
I in U generated by these elements (i.e. the smallest ideal containing them). 
The factor algebra U/I is the algebra defined by the generators xi and the 
relations fj. 

Several variants are used for its notation - from the very short A = 

(Xl,. . . ,xg I fl,. ..,f,.)tothemostdetailedA=(zi ,..., x,Ifi=O ,..., fr= 
O).WhenthenotationoftheformA=(x~,...,xg~~~=~~,...,~,=wU,)is 
encountered then it should be formally understood as A = (xl,. . . , xg I ul - 

- 

$ork.wzh. 
u,), but in practice, the former is simply more comfortable to 

Sometimes we will also write A = U/(fj, j E J). 
The defined algebra has the corresponding universal property: for every 

algebra B with the same set of generators for which the same relations are 
satisfied (and possibly some other ones too), there is a unique homomorphism 
from A to B fixing the generators. 

If the set of generators is finite, then the algebra is called finitely generated 
and if, moreover, the set of the defining relations is finite, then the algebra is 
called finitely presented. 

In order to define a superalgebra, it is necessary to assign parity 1x1 to 
every generator x, extending it to words by setting lfgl = IfI + 191 (the 
addition modulo 2). By the same token we define the &-graduation on the 
free algebra. It is then necessary to see that all words participating in one 
relation have the same parity. In this case parity is carried over correctly from 
a free algebra into the factor algebra. 

Examples of defining associative algebras. 
a) Free algebra 

K(X) =a= (x’l,...,xg) 

with empty set of defining relations. 
b) Free commutative algebra (a polynomial algebra) 

K[X] = (Xl,. . . ,XgIXiXj=XjXi;i,j=1,2,...,g)~ 

c) Exterior (Grassman) algebra 

E = AK[X] = (xl,. . . ,XglXiXj = -XjXci;i,j=l,2,...,9). 

d) Free commutative superalgebra 

K[X] = (Xl,. .  .  ,Xg 1 XiXj = (~l)~zi~t~i~XjX~~ i,j z 1,2,. . . ,g). 

It is assumed here that every generator xi is assigned its parity Ixil. 
It is not difficult to see that this example generalizes both of the preceding 

ones: if all the generators are even, then we obtain the commutative algebra, 
if they are odd, then we get the exterior algebra. 

All these examples have the property that all their defining relations are 
quadratic i.e. they are all combinations of words of length two. An algebra 
defined by quadratic relations will also be called quadratic. 
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Up to now, we have considered associative algebras only. The definition 
however carries over analogously to the other objects, for example to Lie 
groups and algebras. The only thing needed in the definition in this case is the 
notion of a free group and a free Lie algebra respectively. In addition, the role 
of an ideal in the group case has to be played naturally by a normal subgroup. 
Both free objects are constructed less trivially then a free associative algebra. 
We can give corresponding definitions starting from associative algebras in 
the following way. 

Let X be the set of generators. Let us consider a free associative algebra 
!J defined by this set X. Let us consider its subset C, generated by the set X 
with respect to the commutator operation: [zyj = sy - yz. As pointed out 
above, C will be a Lie algebra with respect to this operation. This is a he 
Lie algebra with the given generating set X (see also 2.8). 

A free Lie superalgebra is defined in the same way: it is sufficient to in- 
troduce only parities of the generators and the graded commutator [zy] = 
xy - (-1)‘““~‘yx. 

As for a free group we first give a construction of its group algebra. Let, 
as before, X be a generating set. Let us consider another set Y = X U X-l, 
where together with every generator x, a new one, conveniently denoted by 
x-l has been added. We can now consider the following algebra defined by 
its generators and defining relations: 

(Y (xx- l = 1,x-12 = l;z E X). 

This will be the group algebra of the given free group. Naturally, its basis of 
words is the free group itself. Its construction is sufficiently complex, but well 
studied (see Lyndon, Schupp, 1977). 

Let us mention a few examples of defining Lie groups and algebras by their 
generators and relations. 

Example. The Lie algebra L1 is given by its generators ei (i = 1,2,. . . ) 
and relations [eiej] = (i - j)ei+j. It is not difficult to check that in fact the 
ei’s form a basis of ihis algebra. Later in (8.3) we will find out about its more 
economical presentation. 

Example. The quaternion group and the dihedral group of order 8: 

(a, b 1 a2 = b2 = (ab)2) 

(a, b 1 a4 = b2 = (ab)2 = 1). 

1.4. Connections Between Different Ways of Defining by Generators ami 
Relations 

1) Let G = (xl,. . . ,xg ) fl = 1,. . . , fT = 1) be a group, and fi words 
(made up of the letters xj,xy’). How to define K[G]? Almost in the same 
way: 
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-1 K[G] = (XI ,..., x9,x1 ,..., xg -11fl=l,f2=l)..., &=l, 
-1 

XjXj = l,x;lxi = 1;i = 1)“‘) g). 

Here, xf’ are simply new generators. Introducing them as well as introducing 
new relations is conditioned by the fact that in an algebra, in a difference 
from a group, there are no invertible elements. It is specially comfortable to 
define K[G] h w en any generator xj is the first letter of some fk and the last 
letter of some fi, where fk and fi do not contain XT’. (For instance this is 
the case if there is a relation xy = 1.) In this case there is no need for either 
a new generator or a new relation for xj; for instance if XT = 1, then the role 
of the inverse is played by x7-l. If all the generators have this property, then 
the representations of G and K[G] by generators and relations have visually 
indistinguishable representation. For instance this is the case for the dihedral 
group, but not for the quaternion group. 

2) Let L = (xl,. . . , xg I fi = 0,. . . , f,. = 0) be a Lie algebra. Here fi 
are the elements of a free Lie algebra. Each of them is a linear combination 
of the commutators - the elements of the form [xi1 . . . xik] with an arbitrary 
distribution of parentheses inside. Let us assume now that A is an associative 
algebra with the identical set of generators and defining relations, where 
the commutators are thought of as in the ordinary associative sense: [xy] = 
xy - yx. Such an algebra is called the universal enveloping algebra of the 
Lie algebra L and is denoted by U(L). As a rule we assume that A contains 
unity. For instance the universal enveloping algebra of a free Lie algebra will 
be ti free associative algebra while the universal enveloping Lie algebra with 
the zero multiplication will be a free commutative algebra. 

The universal enveloping superalgebm U(L) of a Lie superalgebra L is 
introduced in exactly the same way; only the commutator should be taken in 
the graded sense as usual. 

It is easy to understand that the Lie (super)algebra AL contains L. The 
elements of L are called the Lie elements. They are commutators of the 
generators (of arbitrary length) and their linear combinations. They do not 
however exhaust A. Moreover, knowing a basis of L we can always find a 
basis of A = U(L). 

PoincarbBirkhoff-Witt Theorem. If el, e2,. . . is a basis of L, then the 
basis for U(L) is made up of the products of the fan ei,ec . . . ei,, where 
k > 0 and il’ < i2 < . . . , while in the super-case it is assumed in addition 
that all the basis elements have parity and the inequalities are strict for the 
indices of the odd elements. 

We will prove this theorem in 2.8. 
In other words, the basis of U(L) is the same as for the free commutative 

superalgebra (1.3) with the generators ei. 
The question of zero divisors is also resolved rather easily in U(L). Fol- 

lowing (Aubry, Lemaire, 1985), we will say that there is no torsion in L, if 
[xx] # 0, for every non-zero odd element and that L is absolutely torsion free 
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if there is no torsion in the superalgebra z obtained from L by extending 
the ground field K to an algebraically closed one. The following theorem has 
been proved in (Aubry, Lemaire, 1985): 

Theorem. If L is absolutely torsion free, then U(L) has no zero divisors. 

Corollary. If L is a Lie algebra, then U(L) has no zero divisors. 

Proof. There are no odd elements in L. 0 

We point out that, in the modern literature, the term “Lie superalgebra” 
is very often substituted by “graded Lie algebra” or simply by “Lie algebra”. 

1.5. Modules. Recall that a vector space V is called a module over an 
algebra A (or an A-module) if every element of the algebra acts as a linear 
operator, while the sum and the product of the elements are assigned the 
sum and the product of the corresponding operators. In other words, for 
every a E A and every v E V, their product v * a is defined (and called the 
action of a on v) and all the natural properties of linearity and distributivity 
as well as the characteristic associativity (v * u) * b = v * (ab) for a, b E A are 
satisfied. If A is a superalgebra, then usually it is assumed that the module 
V is also graded: V = V,+ Vi and V’-* A; C VW (the sum i + j is modulo 2). 

Defining a module over a Lie (super)algebra is done in the easiest if seen as 
a module over its universal enveloping algebra. This means in particular that 
a commutator of linear operators corresponds to a commutator: for instance, 
in the case of a Lie algebra, v * [ab] = ( v * u) * b - (v * b) *a. Analogously, the 
G-module for a group G is a K[G]-module. In these cases it is customary to 
talk about group representations. 

We emphasize that modules are assumed to be unitary, i.e. the unity acts 
as an identity. 

The notion of a module is a natural generalization of the notion of a vector 
space: if we take A to be the field K, then a K-module is exactly a vector 
space. 

The definition we‘stated above is the definition of a right A-module, since 
A was acting on the right. Defining a left module is done in exactly the same 
way. Sometimes, two actions are defined simultaneously on V: by an algebra 
A on the right and by an algebra B on the left. In this case we talk about a 
(B, A)-bimodule if these actions are compatible: 

(b*v)*a=b*(v*u) for uEA,bEB,vEV 

TO avoid ambiguity, as a rule, we will talk in the sequel about the right 
modules only. 

The simplest example of an A module is the algebra A itself, where the 
action is given simply by multiplication. 

The notions of a submodule and a factor module are defined in a natural 
way - these are subspaces and factor spaces with the induced action: for 
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instance if W is a submodule of V, then the action on the coset v + W is 
defined by the following rule: 

(v+W)*u=v*u+W. 

The simplest example of a submodule is any right ideal. The direct sum 
VI @ V, (as vector spaces) of two A-modules can be furnished with a natural 
structure of an A-module with an action (~1 @ vz) * a = (VI * u) $ (vz * a). 
This module is called the direct sum of modules VI and Vz. Understandably, 
the direct sums of greater number (not necessarily finite) of modules, are also 
defined. 

The direct sum of several copies of modules isomorphic to A is called 
A free A-module. If the unity of the i-th copy is denoted by xi, then every 
element of the free module is a linear combination of the elements of the form 
C xiui (the asterisks are omitted), where this representation is unique up to 
zero summands. Having the notion of a free module, we introduce naturally 
the notion of a module presented by generators and their relations {Vj = 0}, 
(where vj are arbitrary elements of the free module), as the quotient over 
the smallest submodule containing them. The notation will be the same as in 
the case of algebras: (. . . , xi,. . . / . . . , vj = 0,. . .). It is easy to see that, since 
every module is a factor of a free module, it can be defined by generators and 
relations. 

Example. The polynomial algebra K[x, y] is a module over the free algebra 
K(x, y). Actions are defined by the following rules: 

xnym * x = xn+lym 

xnym * y = xnym+l 

(we note that it is sufficient to determine the action on the generators of 
the algebra K(x, y), extending it to words by associativity). If we wanted to 
define that module via generators and relations, than one generator - call it 
u, would suffice (it corresponds to the unity 1~ K[x, y]), and the number of 
relations will be infinite: 

uxal yb’ . . . xa,, yb.” = uxal+-+an ybl+...b,, . 

Example. If VI, V, are two modules with non-intersecting generating sets 
(and this can always be attained by changing notation),%hen, taking unions 
of its generating sets as well as sets of relations, we obtain a presentation of 
the direct sum of these modules. 

If the algebra A itself is defined via generators and relations, then in or- 
der to make a vector space V into an A-module, it is necessary to introduce 
actions of the algebra generators, extend it with the aid of sssociativity and 
linearity to the free algebra and convince ourselves that every element corre- 
sponding to the relations acts as a zero. 
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Example. If A = (x, 2/ 1 xy = x), then V = (a, b 1 aynx = 0, bynxmy = 
bynzm; m > 0, n 2 0) is an A-module, with a basis {ayn, 6ynzm ] n, m > 0). 

Singly generated module is also called cyclic. Obviously it is isomorphic to 
the factor module of the module A over a right ideal. A module with a finite 
number of generators is called finitely generated. 

1.6. The Tensor Product. Recall that if V and W are two vector spaces with 
basesei,ez ,... andfi,fs ,... respectively, then their tensor product V@W is 
a vector space with the basis denoted by ei @ fj. Here, if v = c aiei E V and 
w  = C @j fj E W, then the linear combination xi j aJ3jei 8 fj is otherwise 
denoted by v @ w, thus the natural properties of linearity and distributivity 
of the following type are valid: CX(V ~3 w) = (IIV @ w  = v 63 aw; (o E K); (vr + 
~2) @ w  = vi 63 w  + 212 ~3 w  and the notation does not depend on the choice 
of a basis. Note that not every element in V @I W is of the form z @ y. 

The tensor product is often introduced differently - as a K-module with 
the generators v @ w  and the linearity and distributivity relations. Although 
this definition is more invariant, it is less obvious here that the dimension of 
the tensor product is equal to the product of the dimensions. 

The tensor product is similar to the ordinary product with its properties, 
the difference is only in the fact that the result is not in the same space as the 
factors. We can correct this however considering, for every vector space V its 
tensor aZgebruT(V) = K@V@(V@V)@(V@VC~V)@. . . , where the product 
of an element of the form vr @ us 63. . . 60 Vk by an element zdi C3 us 63 . . .63 ul 
is equal to 211 @...@Vk @Ui @... @uul. 

It is not difficult to see that the tensor algebra is isomorphic to the free 
algebra where the generating set can be any basis of the space V. 

If A and B are algebras, then their tensor product A ~3 B may also be 
furnished with the structure of an algebra with the following multiplication: 

(a @ b)(a’ @ b’) = aa’ ~3 bb’. 

Analogously, if A and B are superalgebras, then A @ B is a superalgebra 
too: (A@BB)c=Ar@BG@Ai@Bi; (A@B)i=AE@Bi@Ai@Bs; 

(u 8 b)(u’ G3 b’) = (-l)lbl~““(au’ @ bb’) 

for the elements with parity. 
The tensor product of (super)algebras may also be determined in a combi- 

natorial way. If we assume that the generating sets of A and B are disjoint 
(which can always be attained by changing notation), then the generating set 
of A@ B is the union of the generators of A and B and relations are obtained 
as the union of the relations of A and B with the commutativity relations 
[zy] = 0 for the generators z E A, y E B. 
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Example. Let A = (x, y ] xy = 0). Then 

A 8 A = (x,Y,x’,Y’ I XY,X’Y’, lxx’l, by’], IYX’I, [YY’I). 

Dealing with modules is a little bit more tricky. In order for V ~3 W to be 
a right A-module it is sufficient for W to be such; the action is then given by 
the rule (v @ w) * a = v @ (w * u). In particular, V ~3 A is a free A-module. 
Analogously, for a left module V, VC?J W will also be a left A-module. However 
a much more interesting situation is when V is, on the contrary, a right A- 
module and W - a left one. In that case the tensor product V @ W can 
be considered as a K-module and factored out modulo additional relations 
(v * a) @ w  = v @ (a * w). The obtained K-module (or simply speaking - vector 
space) is denoted by V @A W and is called the tensor product of modules. 
It is clear that V 8’~ W = V ~3 W, but, in the general case, for instance 
V @.A W = 0 is not ruled out, even when V, W # 0. 

If we wanted V @A W to be a module too, it would be necessary for either 
V or W to be a bimodule. For example this will always be the case when the 
algebra is commutative. The most important example is a field extension. 
When we want to consider an algebra A not over a ground field K, but 
rather over a bigger field x, then the correct way consists in substituting A by 
A@r = 7i. Here A is identified with the subset a@ 1 and dimK A = dimrx. 

Somewhat later, we will need the notion of a semitensor product of two (su- 
per)algebras A and B. Let xl,. . . , 2, be some generators of the first algebra, 
Yl,***,Ym be generators of the second and let hij (i = 1,. . . n; j = 1,. . . m) 
be arbitrary elements of the first algebra. Then the semitensor product differs 
from the tensor product in that the commutators [xiyj] are equal not to zero 
but to elements hij of the algebra A. 

An additional requirement is that, as a vector space, the semitensor prod- 
uct is isomorphic to A @ B as before, although the multiplication is defined 
differently. This imposes restrictions on hij that are most comfortably checked 
with the aid of the lemma on composition (2.5): The full system of relations 
should be equal to the union of the full systems of relations of A, B together 
with the relations [xiyj] = hij. For instance it is trivially the case if A and B 
are free. Another sufficient condition can be found in (Anick, 198213). 

1.7. Coalgebras. Hopf and Roos Algebras. Let us try to consider the notion 
of an algebra from the tensor viewpoint. It is not difficult to see that multi- 
plication in an algebra A is nothing else but a linear transformation of two 
vector spaces V : A @ A --+ A, defined by the rule a ~3 b + ab. How is then 
the associative law expressed? Precisely by commutativity of the following 
diagram: 

A@A@A -=+ A@A 

l@V 1 1 V 

ABA L A 
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i.e. by the equality V o (V @ 1) =‘V o (18 0). We mention that the tensor 
product of two linear mappings fi : Vi - Wi is defined by the rule fi @ fz : 
Vl@U2 - f (211) @ f(v2). 

Reversing all the arrows leads us to the notion of a coalgebra. Thus, an 
associative coalgebra is a vector space A with a fixed linear mapping A : 
A --+ A @ A, called comultiplication or diagonal multiplication, making the 
following diagram commutative: 

Since we agreed to consider only algebras with the unity, we need to deal 
here with a counity. How should it be introduced? One viewpoint in asserting 
the existence of the unity in an algebra is the existence of the inclusion 
K - A, compatible with multiplication (the reader will easily write down 
the compatibility diagrams). Analogously, counity is a map c : A - K, with 
the property that if A(x) = Cz’ @ z”, then CE(Z’)Z” = C~(z”)x’ = 2. 
We will always consider coalgebras with counities. We point out that it is 
not very pleasant to use notation for comultiplication. For instance, it is not 
convenient to show exactly and explicitly the way the summation goes in 
~x’@x”. 

Example. Let A be a finite-dimensional algebra. Let us define a structure 
of a coalgebra on the dual space A* (recall that it consists of all the linear 
transformations A ---+ K). Let f : A - K. In order to define A(f), recall 
that A* @I A* 2 (A 8 A)* and let (Af)(a @I b) = f (a)f (b). As for the counity, 
let e(f) = f(1). 

It is possible to realize an analogous construction in the case of graded al- 
gebras, using finite dimensionality of its homogeneous components (see 3.10). 
Conversely, if A is a coalgebra, then one introduces a structure of an algebra 
with multiplication on A* defined by the following rule: if A(x) = C x’ 8 x”, 

f,g E A*, then (fg)(x) = Cf(O+“). 
What corresponds to the commutativity of multiplication? If r : A 18 

A - A @J A is a map defined by the rule T(Z 8 y) = (-l)lzllvly @x, then 
supercommutativity denotes the commutativity of the following diagram: 

i.e. VT = V. Reversing the arrows in the diagram, we get a definition of 
commutative comultiplication TA = A. 

The most interesting case is, when both structures are present at the same 
time. 
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Definition. &algebra is a superalgebra equipped at the same time with the 
structure of a coalgebra, with the fulfilment of the following compatibility 
conditions of the two structures: 

a) A(1) = 181 and e(l) = 1. 
b) The maps e : A - K and A : A - A @J A are homomorphisms of 

superalgebras. 

We emphasize that we are talking about superalgebras, in order to take 
into account the sign in the tensor product and in order to ensure that even 
elements go into even and odd into odd (specially E(X) = 0 for all the odd 
elements). 

Example 1. The tensor algebra T(V) has the unique bialgebra structure, 
for which 

A(w)=v~l+l~w; (vEV). 

We point out that, in a bialgebra, it is sufficient to define comultiplication 
on generators only, and further we know that A(ab) = A(a 

Example 2. The group algebra is a bialgebra with the comultiplication 
A(eg) = eg @I e, (all elements are considered to be even). 

Example 3. The universal enveloping algebra U(L) of any Lie superalgebra 
L is a bialgebra with comultiplication, defined on the Lie elements z E L by 
the rule 

A(x)=x@l+l@x. 

All these examples are in fact examples of Hopf algebras. The difference 
between Hopf algebras and bialgebras is in the existence, in the former, of so 
called antipodes (see definition in Manin, 1988). This difference is not essen- 
tial for us since, in the graded case (which we will deal with) the antipodes are 
always present, thus we will consider the terms of bialgebra and Hopf algebra 
synonymous. Moreover, the latter notion will be fundamental for us since all 
Hopf algebras appearing in the sequel will in fact be universal enveloping 
algebras of some Lie superalgebra. The reader, who is prepared to take this 
for granted may consider these two terms synonymous and forget about co- 
multiplication The most important consequence of this approach for us is 
possibility of defining Hopf algebras by generators and’ relations. Specially 
important is the case of quadratic relations (1.3). Following Anick, quadratic 
Hopf algebra will be called Roos algebra. In other words, a Roos algebra is a 
free algebra, factored out by relations that are linear combinations of graded 
commutators zizcj + xjxi of generators (and the squares x: in characteristic 
two). 

The following two theorems will be helpful in understanding the origin of 
Lie superalgebras in Hopf algebras. 
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Theorem 1. The set of primitive elements, i.e. elements x such that A(x) = 
x 8 1 + 1 @ x, of a Hopf algebra is a Lie supemlgebm with respect to the 
multiplication defined by the graded commutator. 

Proof. If x, y are primitive elements, then 

A(xy) = A( = (x @ 1+ 18 x)(y 8 1+ 1 cs y) = 

= xy 63 1+ 163 xy + x 63 y + (-l)‘s”Y’y @ z, 

which implies A([xy]) = A(xy - (-l)lzlIvlyx) = [xy] @ 1 + 1~3 [zy]. Cl 

In the majority of applications, the cocommutative Hopf algebras arise, 
i.e. algebras where comultiplication (but not multiplication!) is commutative. 
Let us remark that if A is a graded Hopf algebra, then A* will also be a 
Hopf algebra, where cocommutativity of A is equivalent to commutativity of 
multiplication on A*. For the cocommutativity it is necessary and sufficient 
that the images of generators x be symmetric, i.e. invariant with respect to 7. 
From this, it follows easily that the examples considered above correspond to 
the cocommutative Hopf algebras. We point out that sometimes some authors 
speak of commutative Hopf algebras, instead of cocommutative. 

Theorem 2 (Milnor, Moore, 1965). Over a field of zem characteristic, a 
graded commutative Hopf algebra is the universal enveloping algebra of the 
Lie supemlgebm of its primitive elements. 

It is assumed that the zero component of the graduation A = $0” A, 
is one-dimensional, hence the group algebra does not satisfy conditions of 
the theorem. Over a field of characteristic greater than zero, the theorem 
is valid in the presence of additional restrictions (such as so called divided 
powers).The corresponding details and definitions may be found in (Andre& 
1971), (Avramov, 1984a), (Sjodin, 1980); we will take it for granted, that in 
all the situations arising in the sequel, those conditions will be fulfilled. 

1.8. Elements of Homological Algebra. Throughout the following sections 
we will appeal to the notions and methods of homological algebra a num- 
ber of times. We advise the reader to get familiar with the book (Gel’fand, 
Manin, 1989), written in this series, in order to get deeper understanding of 
contemporary homological algebra from one stand-point. In this subsection 
we gather necessary technical notions and theorems, that should facilitate 
the reader in understanding of the material and search for the corresponding 
references. We will allow ourselves to use the language of category theory in 
some cases. The reader can familiarize himself with fundamental notions of 
category theory also in (Gel’fand, Manin, 1989). 

Let R be an arbitrary ring. Recall that a free module is a direct sum of 
a some copies of R itself, considered as a module. A free module may be 
represented in another way, namely as the sum of its submodules, and every 
such submodule is called projective. It is obvious that a free module is always 
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projective, but the converse is not always true and when it is true, it is not 
always obvious. 

A module A4 is called a complex if there is a homomorphism d : M -+ M, 
satisfying the condition d2 = 0, while the module is representable in the form 
of the direct sum of its submodules M = &-z it&,, and the differential d 
satisfies the condition d(M,) c M+i. Complexes are usually represented by 
the sequence 

. . . - Mn+l d,+! M, % M,,el.. . (1) 

The sequence (1) is called ezact and the complex acyclic, if Ker d = Im d. The 
degree of the deviation from exactness is measured by the homology factor- 
module H(M) = Ker d/Im d, which can also be considered to be a complex, 
with d = 0. In any case, it is appropriate to single out the n-th component 
in this module too: 

H,, = Ker d,/Im d,+l. 

As a rule, we will be interested only in complexes for which all the components 
M,, are zero for negative values of n. Thus the homologies H,, will be usually 
considered starting with zero. We will also study the complexes, for which all 
the positive parts will be zero. Practically, however, it is more comfortable 
to do differently with those complexes, replacing every negative index -n by 
the opposite n. In that case, in a difference from (l), all the arrows will be 
“reversed”, and in order to distinguish these two cases, the index n will be 
written on top: 

dn+l . . . -Mn+‘+---M”.dn Mn-’ . . 

(it is rather easy to remember: if the index is on top, then the differential 
“lifts” the number, if it is on the bottom, it lowers it). In this case we speak 
of cohomologies: Hn(M) = Ker d,/Imd,-1. In order to explicitly state the 
way a given complex M is going to be considered, we will write M* and M, 
respectively. Thus, H* is the notation for cohomology. 

Every module N defines a O-complex fi, for which #s = N, and the 
other components fin as well as the differential are zero. It is obvious that 
H(R) = fi. A complex P will be called a resolution of the module N, if 
H(P) = fi. Realistically this means that there is an exact sequence 

. . -+P2da.P,%PO-N-4. (2) 

A resolution is called projective, if all the Pi are projective and free, if they 
are all free. 

Before giving further definitions, we make an important remark. The 
reader should clearly understand, that all the notions of this section have 
a general categorical sense, i.e. depend on what additional categorical struc- 
ture the ring R has. For instance, if R is an algebra, then all the modules, after 
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all, are vector spaces; if R is a superalgebra, then the super-structure (i.e. the 
existence of even and odd parts with the corresponding multiplication rules) 
exists in a module too. The existence of graduation on R implies graduation 
of all the considered modules. Even assuming the existence of differentiation 
on R automatically induces the assumption of the existence of differentiation 
on modules. In the same way, same characteristic (such as global dimension 
for instance) may get, generally speaking, different meanings, depending on 
the category the ring R belongs to. Let us describe right away all those cases 
which will have some meaning to us. First of all we will always deal with aug- 
mentation (or completed) rings R. This means that a fixed field K is given as 
well as the augmentation homomorphism of rings c : R - K, whose kernel 
is called the azlgmentation ideal. Such a homomorphism is required only in 
order to equip the field K with the structure of both left as well as right 
module with the natural action: 

f * 1 = 1 *f = E(f). 

Aside a perfectly trivial structure of this module, it plays an extremely valu- 
able role in the sequel. In some sense, it carries the whole homological com- 
plexity of the algebra. The most important examples of rings are the follow- 
ing. 

First of all, the case of a graded algebra, where the role of K is played by 
the ground field and the augmentation homomorphism is defined by singling 
out of the free term, another words, it carries every generator into zero, and 
the unity into unity. If A = @,” A,, then the augmentation ideal consists of 
the positive components: I = @f” A,, since we always assume connectivity 
of a graded algebra (i.e. A0 2 K is satisfied). An important special case - 
a differential graded algebras, will appear starting with the eighth section, 
where we will talk about them in more detail. 

We also remark that, if A is a Hopf algebra, then its counity defines aug- 
mentation. 

The second important type of rings are local rings R, i.e. commutative 
rings having a unique maximal ideal 9X. The quotient K = R/!IJI is a field, 
and the natural homomorphism is the augmentation. The augmentation ideal 
will be of course 9X. 

Finally, the third case we will be interested in is the case of a finite- 
dimensional nilpotent algebra N. In this case it is necessary to complete 
the algebra itself, considering N’ = K @ N instead, where the role of the 
augmentation homomorphism will be played by the natural projection. N 
itself will be the augmentation ideal. 

Let now M be a right module over a ring R and P its projective resolution. 
If L is a left R-module, then we can form the tensor product P @n L, which 
after all looses an R-module structure, but still remains an abelian group (i.e. 
a Z-module) and inherits from P a structure of a complex. The homology 
Z-module Tor f”( M, L) = H, ( P@R L) is called the torsion product of modules 
M and L. This complex (abelian group) does not depend on the choice of a 
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resolution. In case of algebras the structure of a K-module, i.e. of vector space, 
is preserved on Tor ;“. We point out right away that Tor f(M, L) = M @I L. 
The meaning of Tor is as though it extends the tensor product, in rectifying 
the non-exactness carried by the tensor product. For us they will be valuable 
as purely technical means for calculating the inner invariants of the ring R 
as well. 

First of all let us consider the augmentation c : R - K and the torsion 
product Tor fl(K, K). Since K is a K-module, Tor t(K, K) has the structure 
of a vector space. If these spaces are finite-dimensional, then their dimensions 
bn(R) are called the Betti numbers and the series 

pR(t) = gb,(R)t” = gdimK(Torf(K7K))t” 
0 0 

is called the Poincare’ series. In the case of Noetherian local nilpotent rings, 
the Betti numbers and Poincare series are determined. They carry a great 
amount of valuable information about R, which we will start studying be- 
ginning in section eight. Properties of the graded case will be considered 
in 53. Differential algebras are examined in 58. The Poincare series may 
be determined for any module M in an analogous way: Pf (t) = 
C,” dimK(Tor z(M, K))tn. Specially, PR = Pt. 

For modules, the following property is more important to us. 

Definition. Call the number n the length of a resolution P of a module M, 
if n is maximal number satisfying P, # 0. The minimum of lengths of all the 
projective resolutions of a module is called its projective dimension, denoted 
by pd(M) and a maximum of all the projective dimensions of R-modules is 
called its global dimension. 

We emphasize that, depending on the kind of modules (left or right) we are 
considering, the two defined values - the left and the right global dimensions 
l.gl.dim R and r.gl.dim R respectively, are different in general. Nevertheless, 
in our cases (commutative rings and graded augmentation algebras) these 
values will coincide. Moreover the following holds: 

Theorem 1. Let R be a graded algebra or a local ring. Then the following 
conditions are equivalent: 

a) gl.dim R < n. 
b) Tort+,(K, K) = 0. 

Rings with zero global dimension are exactly the classical semisimple rings 
(MacLane, 1963). Those are for instance the group algebras of a finite group. 

Tor p(M, L) may be computed in an analogous way using a projective 
resolution Q for L as well: Tor ff(M, L) = H,(M @R Q), since a more general 
fact holds. Let R”P be the anti-isomorphic ring (i.e. the elements are the same, 
but the multiplication is inverted: z o y = yz). Then the following holds: 

Theorem 2. Torf(M,L) sTorflo’(L,M). 
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This theorem is especially useful for commutative rings, since, in this case 
R = R”P, by definition. 

In parallel, it is possible to apply the same approach for the other functor 
too. Let M, N be right modules, P a projective resolution for M. Then the 
following complex of abelian groups is defined: 

Hom*(P,N): . . . - H~~R(K,N) t HOmR(Pn-l,N) - -aa 

Its cohomologies H* (Horn (P, N)) are called extensions of the module M by 
N and are denoted by Ext k(M, N). Of course, the result does not depend 
on the choice of the resolution. The meaning of the notion “extensions” is 
explained by their other interpretation: we may assume that the elements of 
Ext E( M, N) are the exact sequences 

0 - N - X,, - Xnml - . . . - X1 - M - 0. 

beginning with N and ending in M with suitably chosen equivalence relation 
of such sequences. The details and the meaning of addition of two extensions 
can be found in (MacLane, 1963). 

We point out that in a difference from Tor , the Ext cannot be computed 
through the second argument, using a projective resolution for N. More pre- 
cisely we need the so-called injective resolution & (see MacLane, 1963) and 

Ext k(M, N) = H*(Hom (M, Q)), 

Important to us is also an operation of multiplication of extensions, so 
called the Yoneda product: If 0 - N - X,, - . . . - Xl - M - 
0 E Extn,(M, N); 0 - M - Y, - . . . --+ YI - L - 0 E 
Extg(L, M), then 0 - N --+ X, - . . . - Xr - Y, - Y,-r - 
. . . - Yr - L - 0 is an exact sequence which well defines an element of 
Ext;+n(L, N). 

In the case when L = M = K we come to the conclusion that the set 

Ext ;1( K, K) 

is equipped with the structure of a graded algebra. In addition, if R has 
already been graded, then the algebra Ext k( K, K) will have two graduations. 

A purely technical methods of computing the Yoneda products may be 
found in (Gel’fand, Manin, 1989), (Lofwall, 1975), (MacLane, 1963). 

For our main cases - local rings and graded algebras, the most essen- 
tial property is the fact that in those cases, the spaces Ext %(K, K) and 
Torf(K, K) are dual to each other, thus the Poincare series will be the 
Hilbert series of the algebra Extk(K, K), or in other words 

PR(~) = 2 dim(Ext l(K, K))t“. 
0 

I. Combinatorial and Asymptotic Methods in Algebra 27 

$2. Normal Words and a Griibner Basis 
of an Ideal of a Free Algebra 

2.1. Introduction. In the work with an algebra defined by generators and 
defining relations, we intuitively tend to work in the language of words, i.e. 
the elements of a free algebra. In this section we will discuss why and to 
what extent it is possible to do, introducing the notions of normal words 
and the decomposition of a free algebra into an ideal and its normal com- 
plement. Then we will introduce a rather important notion of a Grijbner 
basis (and its equivalent notion of complete system of relations) and we will 
show the way to construct a Grobner basis for an arbitrary finitely presented 
algebra. 

2.2. Basic Notation. Degree and Order. Let U = K(X) be a free asso- 
ciative algebra with the unity and S the set of all words in the alphabet 
X (including the empty word A, which will be identified with the unity 1). 
In order to abbreviate notation we feel comfortable with generalizing the 
ordinary notion of power. If f, g E S, then we denote by deg fg the num- 
ber of different occurrences of the word f inside the word g. For instance, 
deg,,xxx = 2, deg,,yx = 0. If F C S is some set of words, then we denote 
deg Fg = cf EF degfg. For instance degxg = 191 is the length of g. In order 
to generalize further these definitions, let us assume that the set of words S 
is well ordered (i.e. every two different words are comparable and we have 
a possibility of induction in the order >) and the order > is preserved after 
multiplication: 

f 2 g; h 2 k + fh 2 gk; hf 2 kg. 

The smallest word should always be the unity. 
In all the concrete examples, considered in this section, up to 2.8, the order 

will be as follows: the words are first ordered by their length, and, if the 
lengths are same, then lexicographically. We will call this order homogeneous 
lexicographic. Examples of uses of other orders can be found in the next 
section as well as in (Ufnarovskij, 1980). Now, with every non-zero element 
u E 24 we can associate its leading word (in the order >) 0 and we can extend 
> to a (partial) order on U: ‘1~ > v @ Q > $. Furthermore, if U C r#, then 
fi = (6 : u E V} and if v E U, then we set 

deg uv = deg 06. 

For example, deg xv is the ordinary power and 

deg fza-,,,y-yzlz3Y - z = 3. 

In fact, the main example of the use of the introduced notion of power is the 
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equality deg WV = 0, which is simply a short recording of the fact that neither 
of the leading words of the elements from U is a subword of the leading word 
of the element v. 

2.3. Normal Words. Decomposition of a Free Algebra into an Ideal and 
Its Normal Complement. Let I be an ideal of the free algebra 2l, which will 
be considered fixed in this and in the next section. 

Definition. A word s E S is called normal (modulo ideal I), if s is not 
the leading term of any element in I. The equivalent condition is deg IS = 0. 
Let us denote by N the linear hull of the set of normal words and call it 
the normal complement of the ideal I. The name is justified by the follow- 
ing: 

Theorem. The following direct sum decomposition of vector spaces holds: 
!?i=NCBI. 

Proof. It is obvious that InN = 0. Consequently, it is sufficient to prove by 
induction on > the representability of every word s in the form S + y, where 
z E N, y E I. If s is normal, then 2 = s, otherwise, s is the leading word of 
the element u E I. Let u = (YS + v. Then, by induction, v is representable in 
the form 5 + y, hence s = cr-l(u - v) = -cr-“ii + oY-‘(u - y), which is the 
desired representation. cl 

Definition. For every u E !J, its normal form E is defined to be its image 
by the natural projection 2l + N..Clearly, E = 0 H u E I. 

Corollary. We define a new operation on N by setting s * t = 3. Then, 
N, together with the introduced operation is isomorphic to the factor algebra 
A = %/I. 

Thus we see that, in order to work with A within the framework of the free 
algebra U, it is necessary to be able to find its normal words and know how to 
reduce an arbitrary word to its normal form. Unfortunately, this problem is 
generally speaking, algorithmically unsolvable, as even a simpler problem is 
unsolvable: to construct an algorithm determining whether two given words 
are equal in the factor algebra (or, equivalently, whether they have the same 
normal form). The last problem, called the equality problem for words is 
unsolvable already for the following quite concrete algebra (a, b, c, d, e 1 ac = 
co, ad = da, bc = cb, bd = db, eta = ce, edb = de, cca = ccue) (see Tsejtin, 
1958 and 7.4). 

Nonetheless, we will be coming across solving such a problem, and in the 
majority of important cases it will be possible. One of the most effective 
approaches to this problem, discovered in various forms by the series of au- 
thors (see Bergman, 1978, Buchberger, 1983, Bokut’, 1976, Ufnarovskij, 1980, 
Shirshov, 1962a) is exactly the next object of our attention. 
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2.4. GrSbner Basis. Complete System of Relations 

Definition. A subset G of the ideal I is called a Griibner basis if, for all 
v E I, the following is satisfied: 

degcv > 0. 

The value of Grijbner basis is shown through the following 

Theorem. A word s is normal if and only if 

deg Gs = 0. 

Proof. On one hand, G G I implies deg Gs < deg IS. On the other hand, if 
deg vs > 0, v E I, deg,v > 0, g E G, then obviously also deg Gs >, deg,s > 0. 

0 

There are, generaly speaking, many Grobner bases (for instance the ideal 
itself is one of them), however there is always a minimal one in the sense 
that no subset of it is a Grobner basis. It is not difficult to see that the 
minimality condition is equivalent to the statement that, for every v E G 
degG\,,v = 0 holds (i.e. none of the leading words is a subword of another). 
If, moreover, the stronger condition is fulfilled, namely that every element 
v E G has the form f - 7, where f = + is the leading word, then the basis 
is called reduced. The reduced basis is uniquely determined and it is easy to 
construct it starting with a minimal, by normalizing it (in order to make the 
coefficient with the leading term to be one) and reducing all the non-leading 
words with the aid of the basis itself into the normal form (compare the proof 
of the theorem from 2.3 and subsection 2.5). Thus, our immediate goal is to 
learn how to construct a minimal basis, and after solving that problem, we 
will usually always assume that all the Grobner bases are reduced. 

Working within the language of the factor algebra A = %/I, it is often 
more comfortable to speak of relations, thus we introduce one more synonym, 
calling a set of relations fi = vi complete system of relations on A, if fi are 
words, fi > vi and {fi - vi} is a Grobner basis. 

We point out that a Grijbner basis depends on the choice of generators X 
as well as the order relation > and may cease to be such if one or the other is 
changed. We also point out that a Grijbner basis always generates an ideal. 

2.5. Reduction. Composition. The Composition Lekna. Let us assume 
that the ideal I is generated by a set R. In order to get a Grobner basis, 
starting with R (and consequently a complete system of relations of the 
factor algebra U/I), we need to transform R using three operations-stages. 

I. Normalization. It is the substitution of every element by a proportional, 
of the form f - w, where f is the leading word, f > w. In other words, the 
coefficient with the leading word is made into 1. After all the elements have 
been normalized, we may go to the second stage. 
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II. Reduction. If u and v are normalized elements, such that deg,u > 0, 
then let fi = g6h be the occurrence of the leading word of v in the leading 
word of u. Then by reduction we mean the substitution of ‘11 by the element, 
obtained through normalization of the element u-gvh. Perhaps it looks more 
readable in the language of relations: 

u=f-w f = gkh 

d II II 
v=k-1 1 pqiq 

We note that the reduced element is either zero (in which case we can 
painlessly remove it), or else, it is smaller than the element we started with. 
This guarantees that a series of reductions ends sooner or later. If all the 
reductions have been fulfilled (i.e. Vu E U degU\,,u = 0), we can move on to 
the third stage. 

A possible non-uniqueness of the results of this stage, depending on the 
order and the place of reductions, turns out to be unimportant, after all. An 
analogous remark applies to the third stage also. 

III. Compositions. The composition of a pair u , v of normalized elements is 
a word f, such that G is its begining and 0 its ending, where the occurrences 
of the stated subwords intersect. In other words, f = x . y . z, where xy = 0, 
yz = 6, y # 1. 

The element obtained by normalizing the element xv - uz is called the 
result of composition. For clarity, a diagram in the language of relations: 
u=xy-w;v=yz-1* 

XYZ 
) /I\\ ; 
Iwz = Xl] 

At the third stage, the results of all compositions unaccounted for ear- 
lier should be adjoined to U (we note that even one pair can give several 
compositions) and return to the reduction stage. 

The result of infinite number of repetitions of the second and the third 
stages is a minimal GrGbner basis since the following holds: 

Lemma on Composition. If the set U is such that Vu E U deg u\,,u = 0 (i.e. 
neither of the leading words of the elements u E U is a subword of another) 
and the result of any composition reduces to zero after a few steps, then U is 
a minimal Griibner basis. 

Another name for this lemma is the diamond lemma; its proof in various 
forms may be found in any of the following: (Bokut’, 1976), (Anick, 1986), 
(Bergman, 1978), (Ufparovskij, 1980). 

2.6. Examples 

Example 1. A = (x, y 1 x2 + y2 = 0),x > y. The unique starting element 
u = x2 +y2 allows for the composition with itself, defined by the word X.X.X. 
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The result of composition is the element v = xu-ux = xy2 -y2x and it needs 
to be adjoined to u. The reduction is unnecessary, but a new composition has 
appeared, determined by the pair u, v and the word x . x . y2, and it leads 
to the element xv - uy2 = -(xy2x + y4) = -w. We need to apply reduction 
to w, with the aid of v. We need to apply reduction again to the obtained 
element w  - vx = y2x2 + y4 = t, but now by u : t - y2u = 0. There are no 
more reductions and unaccounted compositions, thus our process is finished 
and we have obtained a Grijbner basis consisting of two elements: u and v. 
The basis of A is the set of normal words: 

yk(xy)t;yk(xy)tx; (k, i! = O,l, 2.. .). 

In the sequel we will denote reduction by an arrow -+ underlying, if nec- 
essary the occurance to which it applies. As a rule, we will perform reduction 
of non-leading terms as well, in order to obtain simultaneously a reduced 
Griibner basis. A chain of obvious reductions will also be denoted by -. 
Finally, the composition f and its normalized result u will be denoted by 
f : u, braking up f by dots into three factors appearing in the definition. 

Example 2. A = (x , y 1 x2 = yx). Set uo = x2 - yx and compute a part of 
the composition: 

x .x. yx : xy2x - yxyx - xy2x - y3x = ‘112. 

. . . 

x.x*y”x:xyn+l x - yxy*x - xy*+lx - y*+2x = t&*+1. 

We prove that the set U = {u,, I n = 0, 1, . . . } is a GrGbner basis. Indeed, it 
is reduced and for every composition xy” . x . y’x : xyk+‘+‘x - y”+‘xy’x - 

Y k+1+2x - y”+ly’+‘x = 0, which, according to the lemma on composition 
proves the desired claim. It is now easy to define normal words as well as a 
multiplication rule: {yt, ySxyf}; (y”xy’) * (ytxy’) = ~~+“+~+‘xy’, and other 
multiplications are like ordinary words. 

Example 3. The semigroup defined by the relations (a, b, c I ab = c, bc = 
a, cu = b) is a group isomorphic to the quaternion group. 

In order to convince himself, the reader may find, by the algorithm, that 
there are not more than 8 normal non-empty words. Consequently, the natural 
homomorphism onto the quaternion group is an isomorphism. 

Example 4. Let L be a Lie algebra with a basis ei. Then its defining 
relations will be [eiej] = xk ij k. ck e As we mentioned earlier (1.4), the defining 
relations for the universal enveloping algebra will be eiej - ejei = Ck c&ek, 
which we will write as eiej = ejei + [eiej], regarding the last bracket as the 
notation for the corresponding element in L. We will prove that, for i > j 
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these elements form a complete system of relations of U(L). Indeed, the 
compositions eiejek, with i > j > k give: 

ejf?iek + [eiej]ek - Bej - Q[f?jek] - ejekei + ej[eiek] + [eiej]ek - ekeiej- 

[wklej- i[ j I e e ek -+ ekejei+[ejek]ei+[ej[eiek]]+[eiej]ek-ek[eiej]-ekejei- 

ei[ejek] = [[ejek]ei]+[ej[%ek]]+[[eiej]ek] = [[ejek]ei]+[[ek%]ej]+[[Qej]ek] = 0. 

According to the lemma on composition, therefore, a basis for U(L) con- 
sists of the words of the form e? et . . . ek , and this is the contents of the 
Poincar&Birkhoff- Witt theorem. An analogous proof goes also in the case 
of a Lie superalgebra (the definition of the latter is in 1.1). The difference 
in that case is in that, for the odd elements ej, the coefficients ij does not 
exceed 1 (since [ejej] = 2eT), and, after all, it is assumed that all ei have 
parity. 

2.7. GrSbner Basis in the Commutative Case. A Griibner basis of a commu- 
tative algebra, in the form as we have defined it above, may also be infinite 
(see 5.10). There is therefore sense in this case to examine all the notions 
considered and to introduce another basis, which we will also call a Grijbner 
basis. First of all, as the starting point, we will consider not a free algebra, 
but the algebra of polynomials K[Q, . . . , z,]. Its basis consists of the ordered 
set of words of the form 5;’ . . . ~2, which will be called monomials. 

The set of monomials is equipped with a linear order >, but the conditions 
on it are not so rigid as in the noncommutative case: the requirements are 
only that the unity is the least element and that the order is preserved after 
multiplication: f > g =S fh > gh. Well ordering is not necessary - instead 
the Hilbert basis theorem is used successfully (Bokut’, L’vov, Kharchenko, 
1988); the use of pure lexicographic order is allowed in the case when, say z 
is greater than every power of y. 

The notion of the degree deg fg is redundant here, and we can fully manage 
with the notion of divisibility. If A = K[X]/I, then a normal monomial is a 
monomial not equal to any of the leading monomials of the elements of I. 
Of course, K[X] = N @ I, where N is the linear hull of the set of normal 
monomials. A subset G of the ideal is called its Grobner basis, if its set F 
of leading monomials has the property that the leading monomial of every 
element from the ideal is divisible at least by one word from F. In a difference 
from the noncommutative case, a minimal Griibner basis is always finite. 
The algorithm of its construction goes along the same scheme, but with some 
simplifications. Normalizing, as earlier, denotes substitution of an element by 
a proportional one, in.which the coefficient with the leading word equals one. 
If the leading word fi of a normalized element 21 is divisible by the leading word 
fi of a normalized element v: 0 = Ch, then the reduction of u by v denotes 
the replacement of u by the element obtained after normalizing u - vh. The 
role of composition f of two normalized elements u and v is played by the 
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least common multiple of the leading words. If f = Gh and f = Sg, then the 
result of composition is obtained by normalizing the difference uh - vg. We 
point out that it is not necessary to consider compositions of elements with 
themselves as well as compositions that are products of leading words, their 
result, at any rate, reduces to zero. 

We will not use either a Grobner basis or the perfectly analogous lemma 
on composition outside of the present section. There are sufficiently many 
papers devoted to the commutative case - the first acquaintance is most 
comfortable to initiate with an article by Buchberger (Buchberger, 1983), 
which is the foundation of this direction. We discuss here however, one of the 
most important applications of Grobner basis in commutative algebra. The 
fact is that nowadays, the process of Grobner basis construction is one of the 
most universal ways of solving non-linear systems of polynomial equations, 
not only by hand, but by computers. We give concrete (and simple examples), 
not going too much into details. 

Example. Let us consider the following system of three equations: 

ab = c2 + c; bc = a2 + a; ac = b2 + b. 

How can we find out whether the number of its solutions over an algebraically 
closed field is finite or infinite? How to describe them? Let us consider the 
corresponding factor algebra A, defined by the given generators and relations. 
If a has only a finite number of possible values, then it is necessarily a root 
of a polynomial with the coefficients in the ground field. By the Hilbert root 
theorem, the corresponding degree of the polynomial is in the ideal, thus, 
a sufficiently large power of a is not a normal word. Analogously for b and 
c. In this way, the finiteness of of the number of solutions is equivalent to 
the finite-dimensionality of A, and this is exactly the question which we can 
clarify with the aid of Griibner basis, in each of the orders. In problems of 
this kind, however, the pure lexicographic order is especially comfortable, 
because in the case of finite number of solutions an equation satisfied by the 
last unknown will necessarily appear. Thus, let us set a > b > c. Singling out 
the leading monomials, we get: 

ab = c2 + c; a2 = -a + bc; ac = b2 + b. 

The first two relations determine the composition, given by the word a2b. Its 
result &+ac- ( -ab+b2c) reduces to bc+~+& and then to bc+b2+b+c2+c, 
and we obtain a new relation: 

b2 = -bc - b - c2 - c. 

It is not difficult to check that all other compositions give trivial reduced 
results, thus the process of constructing a Grijbner basis (more precisely a 
complete system of relations) is finished. We see that the algebra is infinite 
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dimensional. If we vary c as a parameter in an arbitrary fashion, we can find 
by it possible values of b and a. 

Example. Let us change one sign in the system above: 

ab = c2 + c; a2 = a + bc; ac = b2 + b. 

The relation obtained as the composition of the first two relations now as- 
sumes the form: b2 = -bc - b + c2 + c. The result of the composition of the 
second and the third element gives the following result: 

a2c:ac+bc2-dab2ab-g-bc-&-+e+b-bc-c2-c-+--2bc, 

which, in the characteristic different from two, gives the relation bc = 0. 
Analogously, the composition of the first and the third gives: abc : c3 + c? - 
E - b2 - c3 + c2 + & - g - & - c3 + c2, i.e. c3 = -c2. It is easy 
to see that the other compositions do not give non-trivial results. We have 
obtained the following four solutions: (O,O, 0); (1, 0,O); (0, -1,O); (O,O, -1). 
We also note that, over an algebraically closed field the absence of a solution 
is equivalent to the statement A = 0. 

2.8. Regular Words. Basis of a Free Lie Algebra. In order to study the 
structure of Lie algebras, it is appropriate first to clarify the structure of free 
Lie algebras. We will be aided in this by the notions of regular associative 
and nonassociative words, introduced by A. I. Shirshov. Before that, it is 
convenient to introduce another order on the set S of associative words in an 
alphabet X. Let us assume that the lexicographic order > is given. We note 
that this order, in a difference from the agreements at the begining of the 
section, is only a partial order: two words are incomparable, if one of them is 
the begining of the other. There are two possibilities for extending this order. 
We set f > g, if f > g or if f and g are incomparable, but the length of f is 
less that the length of g (we emphasize, just less!). The other extension is as 
follows. Set f D g, if fg > gf. If we also set f N g, when fg = gf, then it is 
not difficult to check that D is a linear order on the equivalence classes, that 
f and g are equivalent if and only if f and g are powers of the same word, 
that f Dg if and only if fk > g*, for some k, n > 0 and, finally, that the order 
D is well defined (Ufnarovskij, 1985; see also 6.3). 

Definition. A non-empty word is called regular (or special), if for every 
representation f = gh in the form of the product of non-empty words, we 
have g D h. 

We note that, by definition, every generator is a regular word and that the 
regularity of f is equivalent to f being lexicographically greater than every 
word obtained from f by cyclic permutations of the letters. For example, the 
word xyxz is regular, whereas xyx is not, since x D xy, if x > y > z. 

It turns out that the orders >> and D coincide on regular words: 
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Theorem 1. If f and g are regular, then f >> g e f D g. In addition, the 
word fg is regular. 

Nevertheless, the order D is more suitable for the proof of the following 
facts. 

Theorem 2. The following conditions are equivalent: 
a) The word f is regular. 
b) For every proper ending h of the word f, f > h holds. 
c) For every proper ending h of the word f, f D h holds. 
d) For every proper beginning g of the word f, f a g holds. 

Theorem 3. Let h be maximal (with respect to length) regular word which 
is a proper ending of the word f; f = gh. Then: 

a) For every proper ending k of the word f, either h N k, or h D k. In 
particular h >> k, for k # h. 

b) The word f is regular ($ g D h. In addition g is regular. 
c) Every regular subword off is either a subword of g, a subword of h or 

a beginning off intersecting h. 
In the latter case, the word f is regular. 

Theorem 4. If the words ab and bc are regular, where b is non-empty, then 
abc is also a regular word. 

Proofs of these theorems may be found in 6.3. 

Theorem 5. Every word f decomposes uniquely into the product f = 
flfz...fk, where fi areregularwordsandfi~f~~fs~...Qfk. 

Proof. If f is regular, then it is itself the desired decomposition and unique- 
ness follows from c) and d) of Theorem 2. Otherwise, consider g and h under 
the conditions of Theorem 3. By’induction g = 9192.. .g,,,, where the con- 
dition gm D h is impossible because of maximality of h and Theorem 1. This 
proves the existence of the decomposition. The uniqueness easily follows from 
c) of Theorem 3 and Theorem 2, by induction. 0 

We introduce now regular non-associative words by induction on the word 
length. 

Definition. Let f be a regular associative word. Set j = f, if f is a letter 
(generator). Otherwise, let f = gh in accordance with theorem 3. Set J = 
[gill. The word fl will be called a regular non-associative word (corresponding 
to the regular associative word f). 

Example. If f = xxzxyzxy, then 

We interpret here the brackets [ ] as the commutators in the free associative 
algebra: [fg] = fg - gf. 
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Theorem 6. If $ is expressed through the associative words, then the leading 
term will be f (the word f is assumed to be regular). 

Proof. By induction. If f is a letter, then there is nothing to prove; other- 
wise f = [gh]. By induction, g and h are the leading terms of the elements 
fi and h respectively. Consequently, the leading term of J is either gh or hg. 
By the definition of a regular associative word, it will be exactly f = gh. Cl 

Theorem 7 (Shirshov, 196213). The regular non-associative words form a 
basis of the free Lie algebra. 

Proof. By Theorem 6, these words are linearly independent and, by Theo- 
rem 5 and PoincarBBirkhoff-Witt theorem, they generate (linearly) the whole 
of the Lie algebra. Cl 

Remark. Using the Mobius inversion formula (Hall, 1967), it is easy to 
obtain a formula, from Theorem 5, expressing the number of regular words 
of length n in m letters (hence also the dimension of the corresponding ho- 
mogeneous component of the Lie algebra 2,): 

dim C, = i c p(d)mnid 

d/n 

(cf. also 5.5). 
The way of practical decomposition of a concrete element is based on the 

following property: 

Theorem 8. Let j and i be regular non-associative words. Then their com- 
mutator [jii] will be a regular word if and only if the following conditions arc 
fulfilled: 

a) gDh. 
b) If j = [G&l, then bq h. 

Let us assume now that either the condition a) or b) is not satisfied. How 
can we express the commutator [$I of two regular words through regular 
words? Suppose we already know how to solve this problem for the commu- 
tators of smaller lengths. Note that equivalent regular words must be equal, 
thus if g N h, then the commutator is simply equal to zero. In the opposite 
case, using anticommutativity, we can immediately assume that the condition 
a) is satisfied. Let us assume now that in addition, we already know how to 
solve the problem for all the words of this composition, with a greater (in the 
sense of D) least factor of h. Then, if b) is not fulfilled, by the Jacobi identity, 

[& FL] = [[iih]EJ] + [li[K]], 

and the least of the factors of each of the two summands will also be greater 
than h in the sense of the order D. 
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Example. G&i = +ky11[Y41 = -+t’Y41[~~11 - ~~[~YI[Y~II 
= I[~Yl@z4 - [~[[4Y4lYll - [+[Y[Y4111 = XGGG - x&G - x&z. 
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Understandably, this is not the unique way of choosing a basis in a free Lie 
algebra. Different analogues of Theorem 8 are possible. We can learn about 
it in more detail in (Shirshov, 1962b, Kukin, 1978). Variations on the notion 
of a regular words are also possible. Using some of them, A.I. Shirshov has 
established the following remarkable fact. 

Theorem 9. A subalgebra of a free Lie algebra is free. 

We point out that an analogous theorem is valid for groups, but not valid 
for associative algebras. A counter-example is already to be found in the 
subalgebra of K [z] generated by the elements z2 and z3. 

We will also need the following: 

Theorem 10. Let f = ab be a regular word, where a is also regular. Let 
b = blb2.. . bk be a decomposition of the word b according to Theorem 5. 
Then, after eliminating the brackets in the commutator [[. . . [?&&I.. .&I, 
the leading associative word will be the word f. 

Proof. Note first of all that, according to Theorem 2 aD f D bk, hence aD bi, 
for every i. On the other hand, note that then the word abl is also regular, 
by Theorem 1, thus, obviously, abl is the leading term in the commutator 
[ii&]. Then the matter is reduced to induction. 0 

We point out that the commutator in Theorem 10 is not necessarily a 
regular non-associative word, but Theorem 6 is a special case of this theorem, 
in case when the first letter is chosen in place of a. 

2.9. A Composition Lemma for Lie Algebras. The question of construction 
of a complete system of relations for Lie algebras would be possible to solve 
in principle on the associative level, with the aid of universal enveloping 
algebras. It makes sense, however, to solve it, not outside the scope of the 
Lie algebras themselves. 

Let u be an element of a free Lie algebra C. If we express it through a ba- 
sis of regular words, we can consider among them the words of the greatest 
length, and among the latter consider the word J with maximum possible 
word f in the lexicographic order. This associative word will be called the 
leading word of the element u and will be denoted by G. Note that this 
notation, according to Theorem 6, is fully compatible with the notation in- 
troduced in 2.2, hence we may use all the other degree notation introduced 
there. 

Definition. A set of relations {u = 0 ] u E V} of a Lie algebra L is called 
its complete system of relations, if the regular non-associative words f such 
that deg u f = 0 form a basis of the Lie algebra L. 
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In this case the term “Grijbner basis” is out of place as it should be more 
appropriate to speak of a Shirshov basis. The algorithm for computing a 
complete system of relations runs under the same scheme as in the associative 
case (2.5). The notion’ of normalizing is obvious - the coefficient with the 
leading term should be made to be one. In the sequel, an element will be 
considered normalized. As for the reduction and composition, we first make 
the following observation. 

Let f be a regular associative word and a its regular subword. An easy 
induction with the use of Theorem 3 c) shows that in the arrangement of the 
brackets in f, one of them will have the following position: . . . [ab] . . . . Let us 
replace the regular word [ab] in f by the commutator, mentioned in Theorem 
10 of 2.8 and let us denote the resulting element by (fa). According to The- 
orem 10, from 2.8, the word f remains the leading word in the commutator 
(fa), although the latter need not be regular any more. In addition, if u is a 
normalized element of the Lie algebra and a = 0 its leading word, set (f,,) to 
be equal to the element for which occurrence of 6 in (fa) is replaced by u. 

Bxawle. f = z’yz, u = by1 - [y4, f = [44~411, Vsv) = [4[~yl41, 
KJ = [4[~Yl41 - ~4[Y441~ 

Let us now define reduction and composition. 

Reduction. If deg,v > 0, i.e. the leading word f = 8 of the element v 
contains the leading word a = ti as a subword, then the reduction consists in 
replacing v by v - (fU) and normalizing. 

Composition. If Q = g, 0 = f, then the composition, as in the associative 
case is defined to be such an associative word F = abc that ab = g, bc = f. By 
Theorem 4, this word is regular, thus the result of composition (FU) - (F,,), 
is well defined and and it is necessary only to normalize it. 

Lemma on Composition If the set of relations {u = 0 1 u E U} is such that 
deg u\,, = 0, Vu E U and the result of every composition of elements from U 
reduces to zero after a finite number of steps, then it is a complete system of 
relations (cf. 2.5). 

Remark. Possible non-uniqueness in the definition of (fu) reflected in the 
presence of few occurrences does not play any role. 

Example. L = (z, y, z 1 [yz] = [[zz]y] = 0). Standard arrangement of brack- 
ets in the composition zzyz is [ [zz] [yz]]. C onsequently, the result of compo- 

-3 sition is = [[[zz)y]z] - [[zz][yz]] = [[[z.z]z]y] = zz y. Repeating this process, 
we arrive at the complete system of relations: 

[yz] = 0; sy = 0 (k 2 1). 

The difference in the supercase consists, first of all in the presence of 
additional regular words of the form f2, where f is a regular word in the 
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old sense, but is an odd element. The details as well as analysis of so called 
colored Lie superalgebras may be found in (Mikhalev, 1989). 

2.10. The Biangle Lemma. It would be possible to continue variations on 
the theme of complete systems of relations further, starting with modules. 
A more detailed exposition of the questions arising there may be found in 
(Latyshev, 1988). We point out that the main problem in all the cases is the 
problem of shortening the sorting, since, we have seen from already considered 
examples that some compositions were dealt with in vain: their result reduced 
to zero anyway. One of the ways of computing optimization is based on the 
so called triangle lemma. We refer the reader to (Latyshev, 1988), for the 
general formulation and demonstrate here its application to the commutative 
and associative cases. 

In the commutative case, the formulation is as follows: The composition 
f of two elements u and v should not be computed if it is divisible by the 
leading word of some third element 2~: its result would anyhow be reduced 
to the results of compositions of the pairs (u,‘w) and (v,20). For example, 
in the last example of 2.7 it would have been possible not to compute the 
composition of the first and the third element, since it is divisible by bc. Its 
result would all the same be obtained (and considerably faster) as the result 
of composition of the first relation with bc = 0. 

In the associative case, the triangle lemma means that it is sufficient to 
calculate results of compositions for 2-chains only (see 3.6), i.e. for those 
compositions f for which degu f = 2. For example, if one of the leading 
words is x3, then it is not necessary to compute composition of z5, since 
deg,3z5 = 3 > 2. One more optimization will be considered in 3.8. 

2.11. Applications and Examples of Complete Systems of Relations 

Theorem 1. For the algebras with a finite complete system of relations the 
equality problem is solvable. 

Proof. Since we have an algorithm of reduction to the normal form, the 
question of equality of two elements reduces to the question of identity of 
their normal forms. cl 

Corollary. For the Lie algebras with one defining relation, the problem of 
equality is solvable. 

Proof. A complete system of relations in this case consists of that very 
element, since a regular word, according to Theorem 2 in 2.8, cannot form 
the composition with itself. cl 

The analogue of this result by A.I. Shirshov for the case of Lie superalge- 
bras as well as for the associative case remains an open problem. 

Theorem 2. Every associative algebra is embeddable into a simple one. 
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Proof. In order for an algebra A to be simple, it is sufficient that every 
equation xay = b with x, y as unknowns has a solution for every a, b E A. 
If this is not the case for some a and b, then let X be the generating set of 
A and R a complete system of relations. Then, according to the lemma on 
composition, for the algebra B = (X U {x, y} ( R; xay = b), the indicated set 
of relations is complete thus A is contained in B. We get the desired result 
by continuing this process of extensions, by transfinite induction. cl 

Developing this result further, its author, L.A. Bokut’ (Bokut’, 1976), has 
proved that a countable associative algebra may be embedded in a simple 
one, with two generators and has also proved the following remarkable fact: 

Theorem 3 (Bokut’, 1976). Every associative algebra over a countable field 
may be embedded into a simple algebra which is the sum of three nilpotent 
subalgebras. 

Note that an algebra that is the sum of two nilpotent algebras is likewise 
nilpotent, as has been proved by Kegel (Kegel, 1963). 

Analogous results may be obtained for Lie algebras too, with the aid of 
the lemma on composition. As an example, we state two theorems by L.A. 
Bokut’. 

Theorem 4. Let L, K1 and K2 be at most countable Lie algebras over a 
countable field K. Then L is embeddable into a simple Lie algebra, which is 
generated by its subalgebms KI and Kz. 

Corollary. Every countable Lie algebra is embeddable into its simple Lie 
algebra with two generators. 

Theorem 5. There are finitely presented Lie algebras with unsolvable equal- 
ity problem. 

Proof. We give here the proof suggested by G.P. Kukin. Let 
r = (Xl,... ,xn 1 flk = Bk,k = l,... , m) be a finitely defined semigroup 
with unsolvable equality problem and non-empty words Ak, Bk (see e.g. 2.3). 
Let us consider the following Lie algebra: L(r) = (a, xi,. . . ,x,, yr, . . . , yn ] 
[xiyj] = 0, [axi] = [ayt], [a&] = [a&]; i,j = 1,. . . , n, k = 1,. . . , m), where 
the distribution of brackets on [a&] and [aBk] is left normalized: if 
Ak = Xile..Xit., then [a,&] = [. . . [oxil]xia] . . . xit]. Then it is possible to 
check (see Kukin, 1977) that for all words A and B in the alphabet {xi}, we 
have [aA] = [aB] in L(r) H A = B in r. cl 

We state one more theorem on embedding, proved by G.P. Kukin (Kukin, 
1980): 

Theorem 6. Every recursively defined Lie algebra L is embeddable into a 
finitely presented algebra (the field K is considered to be finitely generated 
over a simple subfield). 
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An analogue of this theorem for groups has been proved by Higman (Hig- 
man, 1961) and for associative algebras, by V.Ya. Belyaev (Belyaev, 1978). 

We finish this section by giving a few examples of complete systems of 
relations (the process of its computation is sufficiently elaborate). 

1) The general Cliford algebra C(n, m, f). Let f(tl, . . . , tm) be a homo- 
geneous polynomial of degree n in m commuting variables. The algebra 
C(n, m, f) will be defined by m generators er, es, . . . , e, and some relations 
given by one formula 

(eltl +e2t2 +...+e,t,)n = f(tl,...,&), 

which should be interpreted as follows: we eliminate parentheses on the left- 
hand-side, considering ei non-commuting, but commuting with tj. Equating 
the coefficients with equal monomials tfl . . . tk on both sides, we obtain the 
necessary relations. 

Example. f = tltz (eltl + e+J2 = e:tf + (ele2 + ezel)tltz + e;tE = 
t1t2 * C(272,f) = ( el, e2 ) es = O,e162 + 8261 = 1, e$ = 0). 

It turns out (Nesterenko, 1983) that these relations form a complete system 
for C(n, m, f). 

2) The Weyl algebra. The complete system of relations is: 

[XiYj] = Sij; 1 < i, j < n; 

[YiYjl = 0; l<i<j<n; 

[XiXj] = 0; l<i<j<n. 

3) The Steenrod algebra mod p (Anick, 1986). There are infinitely many 
generators and they are all of different degrees degsi = 2(p - 1)i. 

For p > 2, the relations are: y2 = 0; 

x,x, = f$-l)“ti (@ - z”,P - l)xm+nmixi for m < pn; 
i=O 

x,yx, = &l)"+' ((p - l)$;' - '> yx,+,-ixi + 

i=O 

‘E’(sl)m+i( (p - l)(n - i) - 1 

> 
x,+,-iyxi for m < pn. 

i=o m-pi-1 

The relations for p = 2 are: y2 = 0; 

for m < 2n; 
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[I+] 
XmYXn = c( 

2(n - i) - 1 
i=. 2m - 4i - 2 > 

xm+,-iyxi tyz (;~~;!)xm+n--ixi’ 

for m < 2n. 

2.12. Comments. The term “Grbbner basis” has been introduced by Buch- 
berger. The foundational paper connected to the commutative case is his 
however (Buchberger, 1983). For the associative case, the source is a paper 
by L.A. Bokut’ (Bokut’, 1976). The lemma on composition has begun to be 
used more frequently after Bergman has called it “the diamond lemma” in 
(Bergman, 1978) (proving it in a somewhat more generality). As strange as 
it seems, the first lemma on composition appeared in a very hard context - 
Lie algebras - in papers of A.I. Shirshov (Shirshov, 1962a). The earliest ideas 
in this direction though can apparently be considered to be the Gaussian 
methods of solving systems of linear equations. Terminology related to this 
branch is rather expressly colorful: we can come across here the notions such 
as “s-polynomial”, “the fusion lemma”, and many others. The terminology 
used here, after all, pursues the goal of expressing the meaning of the term 
through the name, and on the other hand, it corresponds to the terminology 
adopted in the original papers of Soviet authors. 

Great attention is paid nowadays to the algorithmic questions, from the 
point of view of purely machine approach. The use of a Grijbner basis in 
symbolic algebraic computations has proven to be sufficiently effective. Many 
valuable references along these lines may be found in the book (Comp alg, 
1982) and the papers (Kandri-Rody, Weispfenning, 1987, Mora, 1985). 

The approach of A.I. Shirshov to regular words in Lie algebras was con- 
structed based on other ideas: the brackets there were eliminated in the re- 
verse order, begining from the inner ones. Just as other of his ideas, these 
deserve a separate study (cf. Shirshov, 1984). 

A systematic exposition of ideas connected with the Grtibner basis may 
be found in (Latyshev, 1988). 

$3. Graded Algebras. 
The Golod-Shafarevich Theorem. 

Anick’s Resolution 

3.1. Introduction. Let us assume that an algebra A is defined by homo- 
geneous defining relations, in other words, let all the words included in the 
relations ui = 0 have the same length degui. It is not difficult to see that in 
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this case the elements of a reduced Grijbner basis will also be homogeneous, 
and that the algebra A breaks up into the direct sum of homogeneous com- 
ponents A = @F A,, corresponding to the normal words of the same length, 
where, because of homogeneity, 

AiAj C Ai+j. (1) 

An algebra A (not necessarily associative), decomposable into the direct 
sum of subspaces, satisfying condition (1) is called graded. If all the compo- 
nents of the decomposition A = $0” A, are finite-dimensional (and we will 
always assume this), then we can consider the formal series HA = HA(~) = 
CF(dimA,)t*, which is called the Hilbert series of the algebra. This series 
carries a meaningful information on the character of asymptotic behaviour of 
the algebra A. On the other hand, it allows us to use a sufficiently effective 
method of the generating functions, with the aid of which we will prove an 
important theorem of Golod-Shafarevich on the number of relations required 
for attaining finite-dimensionality as well as obtain formulas for calculations 
of the Hilbert series. For a deeper study of the structure of graded algebras 
we will need a resolution constructed by Anick. With its aid we will learn 
how to calculate the Poincare series, to determine the global dimension as 
well as increase the effectiveness of the algorithm for constructing a Griibner 
basis, considered in the previous section. 

Throughout this section we will be working only with the graded associa- 
tive algebras with unity, assuming that the zero component is one-dimensional 
and is generated by the unity (this condition is usually called the connect- 
edness of A). The connectedness of the graded associative algebra will be 
assumed in the sequel. Nevertheless, many results carry over to the case of 
algebras without unity, after formally adjoining it. 

3.2. Graded Algebras. Let us show that, if we generalize the notion of 
homogeneity, then we can obtain any graded algebra with the aid of homoge- 
neous relations. Indeed, if A = @,” A, is a graded algebra, then after enlarg- 
ing the number of generators, if necessary, we may assume that each one of 
them belongs to some component A,. Define the degree 1x1 of the correspond- 
ing generator as the index of the corresponding component (Ix] = n) and the 
degree of a word f as the sum of degrees of its letters: IfI = CsEX Ixldeg,f. 
We call an element u of a free algebra (generalized) homogeneous if all the 
words participating in its decomposition have the same degree IuI. We remark 
that the condition (1) implies that the image of a homogeneous element is 
fully contained in one of the components A,,, where n = lul. 

In light of uniqueness of decomposition into the corresponding summands 
in A, this means that if u = 0 is a relation in A, then every homogeneous 
summand u, of the element u will also be a relation: u, = 0. Therefore, all 
the defining relations may be considered homogeneous, which was the claim. 

We see that the notion of homogeneity of an element depends on the defi- 
nition of the degrees of the generators 1x1. We will assume that the number of 
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generators of the algebra A of the given degree n is finite and fixed throughout 
this section. Thus the notion of homogeneity is determined and the Hilbert 
series HA is defined. The series Hx = CzEX tlzl = C, d,t”, where d, is the 
number of generators of degree n is also determined. 

The case of natural graduation, where the degree coincides with the length 
of a word and signifies the fineteness d of the number of generators (Is/ = 
1, Hx = dt), is the fundamental one and the reader may fully assume that 
we are discussing only that case. In any case, we will assume in all examples, 
unless otherwise specified, that we have a natural graduation. However in the 
sequel, not only the natural graduation will play fundamental role. 

We point out that in the graded case it is natural to consider a different 
order than that in 2.2: the words are first ordered according to their degree 
and in the case of equality, lexicographically. In this section we adopt exactly 
this ordering (which, nonetheless, coincides with the former in case of natural 
graduation). 

3.3. The Method of Generating Functions. Let V be a vector space, repre- 
sentable as the direct sum of finite-dimensional subspaces: V = @r V, (we 
call such a decomposition a graduation). The formal series 

Hv = Hv(t) = g(dimV,)t”. 
0 

is called the generating function for V. 
The use of the generating functions is one of the most effective ways to 

fight infinity. They are a substitute for ordinary characteristics (the cardi- 
nality of a set, the dimension of a space) and behave in a nice way in many 
cases. The reason for this is that the homogeneity condition provides for 
work with separate homogeneous components independently, and therefore 
for application of finite-dimensional techniques. Following the principle “a 
generating function is a generalized dimension”, it is important to ensure the 
homogeneity of the participating mappings, i.e. if f : V - W is a linear 
transformation of spaces with graduation, then it is required that the image 
f(Vn) is contained in W,. Then, naturally, the spaces Ker f and Im f will be 
graded and, for instance, the following equality will hold: 

Hv = H~erf + HI,f. (2) 

Unless otherwise specified, all the mappings of the graded spaces will be 
assumed to be homogeneous. 

The method of the generating functions assumes that in order to estab- 
lish some relationship between the dimensions of the graded components, it 
is necessary to consider the set-theoretic operations with infinite sets as a 
whole and translate the derived properties into the language of the generat- 
ing functions. The effect is achieved at the expense of direct computations, 
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instead of which we obtain some equations between series, and the necessary 
relationships are found after solving these equations. 

The second effect is based on the fact that in some neighbourhood of zero, 
a formal series may be convergent and equal to a quite concrete analytic 
function, so that studying properties of the latter (for instance its zeros and 
poles), we can also acquire additional information, for example by making 
use of differentiability and integrability. Before we go on to simple proper- 
ties of the generating functions, we will agree that comparison of series will 
be coeficient-wise (Ca,P < Cb,P # Vn a,, < bn), so that it is a par- 
tial order, preserved under multiplication by a positive series (i.e. the one 
with non-negative coefficients) as well as that the infinite sum of formal se- 
ries malces sense if, with every power tn, only finitely many summands are 
different from zero. 

If U = $ U,, and V = $ V,, then we introduce natural graduations on 
the spaces U @ V and U @ V: 

(U a3 V), = un cI3 v,; (U 8 V), = gcu; c3 K-i), 
i=o 

so that the following obviously holds: 

Theorem 1. Hu@v = Hu + Hv; Huev = HuHv. 

A subspace V of a graded algebra A is called homogeneous, if V, = V n A, 
is a graduation in V. Using the mappings u $ v --$ u + v and u 8 v + uv, we 
quickly obtain the following 

Corollary. If U and V are homogeneous spaces, then HU+V < Hu + 
Hv; Huv < HuHv. 

The inequalities become equalities if the representations (either as the sum 
or a linear combination of the products respectively) is unique. 

Let us give two concrete examples of calculating the Hilbert series of al- 
gebras. 

Theorem 2. The Hilbert series of the polynomial algebra K[X] is computed 
by the formula 

HKIxl = n (1 - dz’)+ 
XEX 

The Hilbert series of the exterior algebra AK[X] is calculated by the for- 
mula 

H,,K~xl = n (1 + t’“‘). 
3xX 

In particular, in case of natural graduation and a finite set of generators d, 
we have: 

Hit,] = (1 - t)$ HAKixl = (1 + t)t 
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Proof In the case of one generator, the Hilbert series in the power of 
m = 121 is computed straightforwardly: it is equal to 1 + t’” + tzm + . . . = 
(1 - P)-l in the case of the polynomial ring and 1 + tm in the case of the 
exterior algebra. The case of finite number of generators reduces to this one, 
with the aid of Theorem 1 (see 1.6). Finally, in the case of infinite number of 
generators, the degrees of generators must increase, for if not, we do not get 
finite-dimensionality. Consequently, for every n, the segment of the Hilbert 
series up to the exponent n depends only on finite number of generators with 
the degree not exceeding n, thus everything reduces to the finite case. 0 

If A4 is a set of homogeneous elements, then the formal series HM = 
C d,P, where d,, is the number of elements in A4 of degree n, is called the 
generating fin&ion of the set M. We emphasize that if KM is the linear hull 
of the set M, then HKM < HM, and the equality holds if the elements are 
linearly independent (for instance when M consists of words). Consequently 
we will often use HM instead of HKM, supported by the fact that, as a rule, 
the previous corollary remains valid. 

The series HX introduced above is one example of a generating function 
of a set. Let us exhibit how to calculate the Hilbert series of an associative 
algebra with the aid of the method of the generating functions. 

If the graduation is natural and d is the number of generators, then the 
series is computed straightforwardly: Ha = 1 + dt + d2t2 + . . . = (1 - dt)-l. 
In the case of an arbitrary graduation, where the degrees 121 of the genera- 
tors may differ from 1, the direct computation is more complicated, but the 
method of the generating functions allows for a quick arrival at the result. 
Indeed, XU @ K = a, hence, according to the Corollary, 

HxH%+l=H% (3) 

and consequently Ha = (1 - Hx)-l. 
Homogeneity of an ideal I in a free algebra is equivalent to the statement 

that it is generated by homogeneous elements (as an ideal) and thus the 
factor algebra A = a/I is graded. The normal complement of the ideal (2.3) 
is always a homogeneous subspace, since it is generated by words and the 
decomposition 24 = N $ I quickly implies the following equalities: 

HB=HN+HI, (4 

HA = HN. (5) 

We point out that the formula (5) may be adopted as a definition of the 
Hilbert series of an arbitrary, not necessarily graded algebra, however such a 
definition would depend on the choice of the generators. 

3.4. The Free Product. Exact Sequences. Let A and B be two algebras. 
We can always assume, even if the algebras are isomorphic, that they have 
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non-intersecting sets of generators (after reindexing, if necessary). Under this 
assumption, we define their free product A* B as the algebra whose generating 
set is the union of the generators of A and B, and the defining relations are 
the union of the defining relations of the components. An analogous definition 
is applicable in the case of groups too. For example, the free product of the 
algebra A = (z I z3 + 2~~) by the algebra B = (z, y I 2x2 = y2) is the algebra 
A * B = (x, y, z 1 x3 + 2x2 = 0; 2y2 = z2). By the Lemma on composition, 
GrSbner basis is also the union of GrGbner bases of the components. 

By the use of the method of the generating functions, we can easily prove 
the following 

Theorem 1. If A and B are graded algebras, then 

(HA*B)-~ = Hi1 + Hi’ - 1 

(in the non-graded case, with the presence of the unity, this equality is still 
valid in the sense of formula (5)). 

The notation A,, for graduation may sometimes be confused with index- 
ing. For instance, when we want to consider a family {Ai} of graded spaces, 
then i will be considered to be an index, rather than the indicator of the 
i-th homogeneous component. In this case, the n-th component of the cor- 
responding space will be denoted by Ai,. We mention also another way of 
combating this inconvenience, namely the indicator of the graduation is writ- 
ten as a superscript, enclosed in parentheses, not to confuse it with a power: 
A = @,” Atn). In this section however, we will use only lower indices, count- 
ing on their meaning being always clear from the context. 

On the other hand, in the supercase, the indices are fully in agreement: 
A, is the sum of all even components A, and Ai is the sum of the odd 
ones. Thus we can always (and often will) consider a graded algebra to be 
a superalgebra. The two different notations for 1x1 do not cause ambiguity 
either: they are on equal footing in the expression (-l)lzl. 

We state one more example of manipulation with series. 

Theorem2.Let...A,%A,,-1d”-!...-AkdL.K+Obeanezact 
sequence of graded spaces (i.e. Ker di = Imdi+i). Then Cz”=k(-l)iH~i = 
(-l)“, if the sum makes sense. 

Proof. BY @), 

ff~i = herdi + &n di = h, di+l + HI, di 

Taking the alternating sum of these equalities, we see that all the summands 
on the right-hand-side, except Hr,dk = HK = 1, cancel out. 0 

3.5. The Golod-Shafarevich Theorem. We would like to give an answer now 
to the following question: to what extent can we superimpose homogeneous 
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relations of a given degree, so that the algebra remains infinite-dimensional, 
regardless the form of the relations. Let R be the set of non-linear defining 
relations, and let r, be the number of relations of degree n. Then 

HR = Er,t”. 
n=2 

Let I be the (homogeneous) ideal generated by the set R and let % = K(X) = 
N @ I be the corresponding decomposition of the free algebra (2.3). Then 
I = URU = URUX + UR, hence 

In view of (3-5), we get 

hence 
HA(~ - Hx + HR) 2 1. (6) 

Theorem. vP(t) = (1 - HX + HR)-~ > 1 (i.e., all the terms of the series 
are non-negative), then the algebra A is infinite-dimensional. 

Proof Using the equality P(l + HR) = 1 + PHx, it is relatively easy to 
show that P cannot be a polynomial. On the other hand, (6) implies that 
HA(~) > f(t), thus HA(~) is not a polynomial and the algebra is infinite- 
dimensional. cl 

It is useful to write down the inequality (6) for the case of natural gradu- 
ation: if d is the number of generators, then the inequality is of the form 

1 - dt + f&tn > 1. 
2 

In fact, this was the form the inequality was obtained in the original paper 
by E.S. Golod and I.R. Shafarevich (Golod, Shafarevich, 1964). In case the 
inequality rn 6 (d - 1)2/4 holds for every n, it is not difficult to show that the 
series f(t) has positive coefficients. In particular, for d = 3, thii means that 
choosing not more than one relation of every degree, we ultimately obtain an 
infinite-dimensional algebra. Using this it is easy to construct a non-nilpotent 
finitely generated nil algebra (nil algebra is an algebra whose every element 
is nilpotent, i.e. its s&e power equals zero). 

Let us assume that the ground field K is at most countable. Then all the 
elements of U without the free term can be enumerated. We start raising 
each of these elements to a sufficiently large degree, so large that the words 
occurring in its decomposition would be longer than all the words occurring 
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in the corresponding power of the preceeding elements. Then, on one hand, 
taking all the homogeneous components of all the constructed powers as the 
defining relations, we ensure the nil-conditions (in the factor algebra, every 
element without the free term, raised to the corresponding power will be 
equal to zero), and on the other hand, according to the remark made above, 
the algebra will be infinite-dimensional. Discarding the unity, we arrive at an 
infinite-dimensional and therefore not a nilpotent nil algebra. Moreover, if the 
characteristic of the ground field is equal to p, then the semigroup generated 
by the elements (1 + Q), where zi are generators (i = 1,2,3), turns out to 
be an infinite group, whose every element is of finite order, namely a power 
of the prime p. Indeed, every element of this semigroup is of the form 1 + u 
and since u is a nil-element, (1 + u) p” = 1 + zLpk = 1, for a sufficiently large 
k. Infinity follows from the fact that the group algebra K[G] contains 1 as 
well as all the generators xi = (1 + xi) - 1. 

A series of more refined discussions on this theme may be found in the orig- 
inal paper (Golod, 1964) as well as the books (Andrunakievich, Ryabukhin, 
1979) and (Herstein, 1968), but it is interesting that the other examples of 
infinite-dimensional finitely generated nil algebras have not been constructed, 
without use of the Golod-Shafarevich theorem; this apparently holds down 
solutions of the classical problems connected with nil rings (Kothe’s prob- 
lem whose one of the most tempting formulations is the following: will a 
nil ring of matrices over a nil ring be again a nil ring? The existence prob- 
lem for a simple nil ring; the problem of existence of a finitely presented 
infinite-dimensional nil algebra). On the other hand, stronger results have 
been obtained for groups, on the existence of finitely generated groups where 
all their elements have order p, (Adyan, 1975), (Ol’shanskij, 1982). 

3.6. Obstructions. The n-chains. The Graph of Chains. Let F be the set of 
the leading words of a reduced Grijbner basis and let N be the set of normal 
words (i.e. words s such that deg Fs = 0. We point out that F determines 
uniquely not only N, but conversely, knowing N we can establish F as the 
set of all the words that themselves are not contained in N, but whose every 
subword is normal. We also remark that F is an antichain with respect to 
inclusion, i.e. degF\ff = 0, for every f E F. We will call the elements of 
F obstructions and the algebra B = (X 1 F) the associated algebra for the 
source algebra A (these notions are determined in the ungraduated case too). 
The value of the associated algebra is in that it obviously has the same set of 
normal words as the source algebra, thus its Hilbert series will be the same: 
HB = HA. On the other hand, the algebra B is monomial, i.e. its defining 
relations are given by monomials (f = 0, where f E F), which considerably 
facilitate its study. For example, it is obvious that the set F itself is its 
Grobner basis. 

Let us define the notion of an n-chain and its tail, by induction. 
Naturally, (-1)-chain is the empty word A = 1, which is its own tail. 

Every generator x E X is declared as a O-chain. It also coincides with its tail. 
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Furthermore, an n-chain is a word f of the form gt, where g is an (n - l)- 
chain and t E N is the tail of f, where, if T is the tail of g, then deg art = 1 
and the unique occurrence of the obstruction is as the ending of the word rt. 
For example, l-chains are exactly obstructions, and 2-chains are compositions 
(see 2.5), not all, but only those that do not contain another composition as 
a subword. It is convenient to represent n-chains as in the following diagram: 

I 1 

f- 
I r----l-l 

I 414 
I 
I r I I 
+&-----A t 
Gf! 

In other words, an n-chain is a word formed by linking one after another 
n obstructions, where only neighbouring obstructions are linked, the first 
(n - 1) form an (n - 1)-chain and no proper begining is an n-chain. All the 
indicated obstructions are uniquely determined, however we point out that 
it is not ruled out that deg Ff > n. 

Example. Let F = {x3}. The unique l-chain is z3 = z.z2 and its tail is x2. 
Then the unique 2-chain is 2222 = z3 . I. The word z3 . z2 is not a a-chain, 
since degFx2x2 = 2. The unique S-chain is the word x6 = x4x2. The word 
x5 = x4x is not a S-chain (because deg ~5. x = 0), regardless of the fact that 
it can be represented as a link of three obstructions: xxxxx (the matter is 
that the first one intersects with the last). Thus, for eve=here exists only 
one n-chain. 

For a visual perception of n-chains, it is suitable to use the following 2ruph 
of chains C(F). Let us construct first a somewhat bigger oriented graph C(F), 
whose vertices are all proper endings of obstructions (including the empty 
word A = l), together with the set of generators X. The edges are defined 
as follows: there is’one edge from the empty word, to every generator 1 + x. 
Furthermore f + g if and only if deg F f g = 1 and the unique occurrence of 
the obstruction in the word fg is one of its ends. The graph e(F) consists 
of those vertices to which it is possible to arrive, starting with 1. 

Example. Let F = {x4}, X = {x,y}. Then the graph e(F) is of the 
following form 

C(F) is the component containing 1. 
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From the algorithmic point of view, it is most comfortable to do the con- 
struction “in stages”, starting with 1 and the generators and adding the 
required new endings of the generators to the next stage. 

Example. Let F = {abca, cab} . Then “the stages” of the graph C(F) look 
as follows: 

I/’ !d Bca 
i 
co’ 

It is interesting that there are no Cchains, although it is possible to link 
the 4 obstructions. 

Just as well it is suitable to glue together the constructed vertices of the 
graph, denoting the pasted vortex as the union of the corresponding set of 
words. More exactly: two vertices f and g are pasted into one, if and only if 
for every vortex h the following hold: 

h-+fuh-+g; f-+h-g-+h. 

The graph c(F) obtained after pasting is usually more compact and carries 
all the necessary information. 

Example. Let F = {xynx 1 n = 0, 1, . . . } . The graph C(F) is infinite. 
However, all the vertices yix, for i > 0 may be pasted into one 

As a rule, we will work just with the graph c(F), while at the same time 
the graph C(F) is valued by the fact that there is a bijective correspondence 
between the n-chains and the routes of length n + 1, starting with 1, in the 
graph C(F). 

3.7. Calculating the Hilbert Series. Let us denote by C, the linear hull of 
the set of n-chains. We point out that 

Hc- 1 =HK=~; Hc,=Hx; Hcl =HF. (7) 

If t is the tail of an n-chain f and s is a normal word, then either ts is nor- 
mal and f s E C&-r N, or ts contains an obstruction and it follows easily that 
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fs E C,,+lN. Let us define a map 6, : CJV --t &-IN, setting &(fs) = fs 
in the first case and S,(fs) = 0 in the second. From the aforementioned, it 
is straightforward that the following sequence of vector spaces 

. . . C,N 2 Cn-lN % . . .C-lNAK-O, 

is exact (here ~(1) = 1, c(f) = 0). Consequently, by Theorem 2 of 3.3, we 

get the following equality: 

g(-l)“HciN = (-1). 
-1 

Since no n-chain is a beginning of another n-chain, we may use the corollary 
from 3.3 to get HC,N = Hc,HN, thus, because of (5), we derive the following 
formula: 

HA(Hc~,-Hc,+Hc~--...)=~, 

which, according to (7) may be rewritten in the form 

HA = (1 - Hx + HJT - Hcz + Hcs - . . .)-l, (8) 

and it, is useful to compare it with formula (6). 

Example. Let, A = (x, y ( x2 + y2). The obstructions for A are z2 and zy2, 
according to computations in 2.6. The graph of chains is: 

4 

therefore the n-chains are xny2 and zn+l, for n > 0. Consequently, 

Hi1 = (l’- 2t + (t2 + t3) - (t3 + t4) + . . .) = 1 - 2t + t2. 

Definition. We will call a set R of elements of a free algebra, combinatorially 
free or inert if it does not, allow reduction and composition (2.5). In other 
words, all the leading words of the elements of R are different, they form an 
antichain F with respect to inclusion and no proper beginning of a word in 
F is an ending of a word in F. Understandably, this definition depends on 
the choice of the order relation > . 

For instance, the element xy + y2 forms an inert set by itself, if x > y and 
does not in the opposite case. 

Theorem 1. Let A = (X ( R), where R is a combinatorially free set. Then 
H,-l=l-Hx+HR. 

Proof. By lemma on composition, the set, R is a GrGbner basis, hence F 
is the set of obstructions. Since there are no a-chains, everything reduces to 

(8). cl 

Nonetheless, the formula (8) is insufficiently convenient because of the ne- 
cessity for computations of infinite set of the generating functions. Sometimes 
this work can be simplified. Let c(F) be the pasted graph of n-chains (3.6). 
We can associate to it, a matrix M = M(F) columns and rows of which are 
in the bijective correspondence with the set of vertices of the graph. If G1 
and G2 are two vertices (recall that vertices are the unions of sets of words), 
we set 

( HG,, ifG1 -Gz, 

otherwise. 

Examples. For the two graphs considered in (3.6) we have: 

I ; f Y {Y”Xl 
1 1 t 0 

X 0 0 0 t3 X 0 t 0 s 
0 0 0 0 

f otoo 
0 0 0 0 

{y"xY 0 t 0 s 

where s = H{y7.zln,,-,) = t2 + t3 + . . . = t2/(1 - t). 
It turns out that it is easy to compute the Hilbert series in the case when 

the matrix M is algebraic over the field K(t). It is not, difficult to derive from 
(8) the following: 

Theorem 2. If Ct=, aiMi = 0, we set 

b,, = a0 - al+ u2 - . . .zttak, 

bl = - al+ a2 - . . .*a/$, 

bz = a2 - . . .fak, 
. . . 

bk = fak. 

Then 

boH,-’ = bl - bzHx + b3HF - b4Hc2 + b5Hc3 . . . f h&o-2. 

Example. A = (x, y 1 x4 = 0); 1x1 = 1; IyI = 2. Compared to calcula- 
tions in the previous example, the matrix M changes only in one place. Its 
characteristic polynomial equals 

I-X t t2 01 
0 -A 0 t3 
0 

0 -A 0 
= x4 - pJj2. 

0 t 0 -A 
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Since every matrix is a root of its characteristic polynomial, we have M4 - 
t4M2 = 0, hence be = bi = b2 = 1 - t4; 6s = b4 = 1. Moreover Hx = t + t2, 
HF = t4, Hc2 = t5 (see the graph) and consequently, 

(1 - t4)Hi’ = (1 - t4) - (1 - t4)(t + t2) + t4 - t5 * 

HA = 
1 - t4 1+t+t2+t3 

l-t-P+t6 = 1 _ t2 - p - t4 - t5 * 

We remark that it would have been easier to calculate the series by the 
use of Theorem 1 in 3.4. 

We refer to 5.8 for other ways of calculating the Hilbert series. 

3.8. Anick’s Resolution. The exact sequence constructed in 3.7 has a draw- 
back in that it does not reflect in any way the structure of the starting algebra 
A. Along with this fact, that sequence and the isomorphism of spaces with 
graduations C,,N and C, @ A leads us to think about the existence of a 
corresponding free resolution of the following form: 

. . . C,~AACC~-~~AA...C-~~AAKKO. C-9 

A resolution of this kind was constructed by Anick in (Anick, 1986), for 
any augmentation algebra A (1.8). We restrict ourselves here only to the 
graded case. We will construct the differentials & by induction, together 
with the splitting inverse mappings i, : ker d,+i - C,, 8 A, which, unlike 
d,, will not be homomorphisms of modules. Thus let us set do(x 69 1) = 1 ax; 
i-l(l) = 181; io(l@xi, . . .xik) = zil @ria.. .xirc. Exactness of the sequence 
(9) will follow from the following equalities: 

d,+ld, = 0; &in = id Ikerd,-l, 

which are also proved by induction. We will construct the pair (d,,+l, in) in 
the following way:‘It is enough to define the differential dn+i on the free 
generators f @I 1. Let f = gt be an (n + 1)-chain with the tail t. Set 

d,+l(gt 8 1) = g @ t - &dn(g @tt>, 

and it remains only to define i, for n > 0. To this end, let us note first that, 
thanks to the isomorphism from C,,N to C,, @N, the following partial order 
is defined: f @ t < g @ s ++ ft < gs. In particular, in the definition of d,+l, 
the first term in g @ t will be the leading one and this can also be assumed 
to be satisfied by induction. 

Thus, let u E ker dnml and f @ s be the leading term in u, participating in 
u together with a coefficient (Y # 0. How does d,-l act on f as? Let T be the 
tail of the (n - 1)-chain f = hr. We know by induction that &-I( f @ 1) = 
h@r+... and that h@r is the leading term. d,+l(f 8s) = h@G+..., 
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since d,-1 is a homomorphism of A-modules. The bar over rs is not placed 
accidentally: it denotes reduction to the normal form (cf. 2.3-2.4). If the word 
rs were normal, then h @J rs would remain the leading word and the element 
u could not possibly belong to the kernel. Thus, rs contains an obstruction. 
Choosing its leftmost possible occurrence of the form rs = abc, where b 
is an obstruction, we easily see that g = hab is an n-chain. Consequently 
g 8 c E C, 6~ A. Let us now set in(u) = ag @ c + i,(u - ad,(g @ c)), and the 
matter will be done by one more induction, this time on the order >, since 
the parentheses already contain a smaller element. 

Before starting analysing an example, the reader should observe that in 
practice, it is not necessary to construct all the mappings i,, but rather only 
that needed for computing the differential dn+l. 

Example. A = (2, y 1 z2 = yz). A Grobner basis is known from (2.6); it is 
{xnyx - yn+l x 1 n > 0). We have 

dO:x@s--+llm; d-i:l@s--+c(s); 
if) : 1 @ Xi1 . ..X& -xi1 63x~2...x~k; (10) 

dI:xynx&&--+x~ynx-iod,,(x~yy”x)=x@yynx-i,,(l~xynx)= 

x @I ynx - io(1 @I yn+l x)=x@ynx-y@ynx; 

d2 : xynxymx @ 1 - xynx @ ymx - ildl(xynx CXJ y”x). 

On the other hand 

ildl(xynx @ y”x) = il(x @I ynxymx - y 60 ynxymx) = 

XY n+m+lx @ 1 + il(x @I ~/“+~+‘x - y @ ~~+~+‘x - dI(xyn+“‘+‘x 8 1)) = 

xyn+m+lx gl 1 

=F- d2 : xynxymx @ s - xynx @ ymxs - x~~+~+‘x 8 s; 

d3 : xynxymxykx @ 1 - xynxymx @I ykx - i2(xynx @I ymxykx- 

XY n+m+lx @ ykx) = xynxymx 8 y”x - i2(xynx @I ym+k+lx- 

n+m+lx 8 y”x) = xynxymx @ ykx - xynxym+k+lx @ l- 

i2(x;‘x CTI Y~+~+‘x - x~~+~+‘x @I ykx - d2(xynxym+k+1x 63 1)) = 

xynxymx @3 ykx - xynxym+k+lx 8 1 - i2(-xyn+m+1x @I y”x+ 

XY n+m+k+lx@l) = xynxymx~ykx-xynxym+k+‘x~l+xyn+m+’xykx~l. 

It makes sense to identify C,, @ N with C,N and to look what the differen- 
tials look like in that language. For instance, the mapping d,+l, for f E Cn+l 
looks rather simple: 

&+l(f > = f - indn(f 1. 

Furthermore, if u E ker d,-1, then i, is defined recursively: 

i,(u) = a0 + in(u - a&O), 
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where 6 is the leading term and (y is the coefficient with it. The resolution 
itself looks as follows: 

Ifr?, ‘L 1 +I -2 
. . . C,N++Z,-lN=...C,,NtKN-K-O. (11) 

b& L-1 io i-1 

In order to construct &+I correctly in this language, it is necessary to intro- 
duce an additional mapping R, : C,+rN - C&N, defined in the following 
way: if f = gt E &+I, t is the tail off, s E N, then we set R,(fs) = gts. In 
other words, the mapping R, leaves fixed the n-chain placed at the beginning 
and reduces all others to the normal form. Consequently 

&+1(fs) = &US - wnm4 

In particular, 

do : f - 7; (f E XN); 

io : f - f; (f E N); 
c&:&f-+f-7; (f E Cd; 

dl : fs - &(fs - 7s); (f E Cl, s E N). 

We see that the differential di calculates, by the obstruction, the whole 
element of Grijbner basis, whose leading term is that obstruction. On the 
other hand, we can observe, in the example considered above, some similarity 
in computing ds and computations of results of compositions in the Grobner 
basis construction. This similarity is not accidental. In reality, computation of 
the differentials can substitute computation of compositions. However, let us 
first describe a more practical way to compute dz. Let f be any composition 
(more precisely a 2-chain). Let us consider the following algorithm: 

1) Let us single out all the words in f - &f beginning with an obstruction 
and remember all the coefficients with these words. 

2) Let us replace each of the noted obstructions by its normal form. 
3) Apply Ro to the obtained result (i.e. reduce in every word, to the normal 

form everything, starting with the second letter). 
4) In the so obtained element we again single out all the words starting 

with an obstruction and again remember coefficients with all the singled out 
words. 

5) We go back to the stage 2). Since the leading words decrease all the 
time, the process will sooner or later stabilize, but since we are inside the 
base ideal all the tifne, it will stabilize at zero. 

It turns out (Anick, 1986) that all the words singled out during the process, 
together with its coefficients in fact make up the image of dz! 

This is what the process looks like in the previous example (the singled 
out words are underlined): 
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1) ZynZymZ - 2yn+n+%; 

2) yn+l xymx - yn+m+3.; 

3) 0. 

Consequently, da : xynxymx - xynxymx - x~~+~+lx, as was already 
calculated. 

Let us return now to the process of constructing a reduced Grobner basis 
in the graded case. Let us assume that we have already calculated all the 
elements of a Grobner basis of degree n and that we want to find the elements 
of the (n + 1)-st degree. Let us look at an arbitrary composition which is a 
2-chain of degree n + 1. We can apply to it the above algorithm too and it will 
sooner or later stabilize, not necessarily at zero though. The matter is that at 
the second step, if the obstruction was of length n + 1, we would not be able 
to know that yet, since those obstructions would not have been constructed 
yet. Consequently, we would not be able to reduce it to the normal form. But 
in this case it means then that the given stabilized element should be added 
to the Griibner basis ! In this way, calculating the differential, we obtain all 
the necessary elements of a Grobner basis (although not yet in the reduced 
form). Reducing them to the reduced form, we get finally the possibility of 
calculating the differential. 

Example. 
A=(x,y)x2+2y2). 

The (unique) element of Grobner basis of degree 2 is given. Let us find the 
elements of degree 3. The composition is unique: x3. 

1) 222 + 2xyz; 

2) - 2y2x + 2xy2; 

3) - 2y2x + 2xy? 

Stabilization. Thus we add the given element, normalizing to a GrSbner 
basis: xy2 - y2x, the unique element of degree 3, and, incidentally d2 : x3 - 
x3 + 2xy2. Let us find the elements of degree 4. There is only one composition: 

1) czy2 -zy2x; 

2) - 2y4 - y2x2; 

3) - 2y4 + 2y4 = 0. 

Stabilizing at zero. Consequently, there are no more elements in GrSbner 
basis, as there are no unaccounted compositions. Moreover, 

d2 : x2y2 - x2y2 - xy2x 

(x2y%l -x2@y2--xy2@x). 
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We point out one more useful property. We can see that if we single out only 
obstructions in the image of dz(f), d iscarding the terms of the form gs;g E 
F, s # 1, then we either obtain zero or a linear combination of obstructions 
one of which is the leading word of the reduced result of the compositions. The 
separation of this kind may be done in a more invariant way, returning to the 
language of tensors. Indeed, let us multiply the resolution (9), by the module 
K. Note that A@AK Z K (indeed if f $ N, f # 1, then f@.~l = l&~(f) = 0, 
cf. (1.8)). Consequently C,@A@AK g C,@K Z C,. Thus, after multiplying, 
the resolution (9) gives the following sequence: 

2 an-1 & &I . . . c,-3C,,~I-...CI-C~-K-0. (12) 

The mappings & are already ordinary linear mappings. We will establish the 
value of this sequence from the homological viewpoint somewhat later. Let 
us now establish its value from the point of view of computing a Grijbner 
basis. We conclude from the aforementioned that the image &(f) of the 
composition f contains the leading word of a reduced element of a Grijbner 
basis. Moreover, all the obstructions occuring in this image, correspond to the 
reductions, carried out with the aid of the obstructions of maximal degree, 
arising in computations of results of the composition f. Thus, it is not difficult 
to check that the following is true: If &J(U) = 0 and u E Cz, then one of 
compositions occuring in the decomposition of u may not be calculated: its 
result would anyway reduce to zero through the results of compositions of 
the remaining obstructions as well as obstructions of smaller degrees. 

Prom this viewpoint, the differential & is also valuable: 

Theorem. For every c E Cs, one of the compositions, lying in the image 
&X(C), may not be processed in the course of calculating a Grtibner basis: its 
result will reduce to a result of other compositions occuring in &(c) as well 
as compositions of smaller length. 

Proof. Since the condition d2 = 0 translates into the condition ;i” = 0, we 
have u = as(c) E ker&. 0 

For instance, we may not compute the result of the leading composition 
in z,(c). Having some linearly independent results of &(Q), the number of 
compositions carried out may be reduced still further. 

Example. For the algebra A = (2, y ( z2 = yz), considered above, we know 
that 

&(xynzy%y”x) = -xynxym+k+lx + xyn+m+lxykx. 

Thus the process of calculating the composition zy%y’z, for n > 0, done in 
2.6, turns out to Ifk unnecessary: knowing as, we would have been able to 
guarantee sooner that they would reduce to zero. This example is however 
not sufficiently instructive, since, in constructing ds, we have already used 

the knowledge about all the obstructions, obtained exactly from the Grobner 
basis. 
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In order to attain real economy in calculating a Grijbner basis, we need to 
try to replace calculations of the part of results of compositions by calculating 
ds. Since the process of calculating d2 runs parallel to calculating results of 
the compositions, it is possible to calculate the leading words in the image of 
d3 relatively easily. 

Example. Let us assume that we have only one relation of the form 

x2 = yz + . . . , 

where in place of dots there are smaller words, but it is unknown exactly what. 
It turns out that it is sufficient to calculate all the obstructions. Indeed, we 
know the obstructions of degree 2 and the value of the differential dl for the 
unique such obstruction: dl (x2) = x2 - (yz + . . . ). 

Furthermore, calculating the result of applying d2 to the unique composi- 
tion xxx known now, by the process described above, we get: 

1) g3 - xyz - . . . ; 

2) yzx + . * - - xyz - . . . 

The leading term xyz already does not reduce, hence it will be the leading 
word of the new element in the Griibner basis, i.e. in the new obstruction and 
consequently, also the leading word in d2(x3) (in fact, unique, but we will not 
utilize this). This means that d2(x3) = x3 - xyz + . . . and xyz is the unique 
obstruction of length 3. Before calculating obstructions with the aid of new 
compositions (it is unique: x2yz), let us calculate & for the unique 3-chain 
of degree 4: ds(xzzx) = x4 - 
x4 - 

i2d2(x3x) = x4 - i2(z2zZ - xyzx + . . . ) = 

x2yz - iz(. . . ). We see that the leading word of &(x4) will be x2yz 
and consequently, by the theorem above, it is not necessary to deal with the 
composition, thus there are no other obstructions. 

3.9. Calculating the Poincard Series. The sequence (12) is exceptionally 
important from the homological viewpoint. Noting that the indexing of the 
n-chains in (9) differs for one from the standard indexing in the resolution 
(cf. formula (2) in l.S), we see that the complex of the vector spaces. in (12) 
is, up to the shift in indexing, exactly intended for calculating the following 
homology: 

Hi(A, K) = Torf(K, K) = ker&-r/Im&. 

This way, by the use of Anick’s resolution (just like with any other resolu- 
tion) we can calculate homologies and the Poincare series (see 1.8, where the 
necessary definitions have been collected). 

For instance, we can easily clarify the meaning of the first terms in the 
Poincare series. Let us consider the beginning of the sequence (12): 

. . . C2%KFa’KX%K-0. 
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As all the differentials preserve degree, it is obvious that & = 0. If 2 E Im&, 
then it means that the algebra has a homogeneous relation of the form 2 = u, 
i.e. z is a redundant generator. In particular 2, = 0 _ the number of 
generators is minimal. Thus dim Ho(A, K) = 1 and dim HI (A, K) is exactly 
the minimal number of generators. The image of & contains, as we saw above, 
all the leading words of the results of compositions, non-reducible to zero. 
Consequently, the dimension dimHz(A, K) is the minimal required number 

of the defining relations. By use of the method of generating functions we can 
say more precisely that HTor ;(K,K) is the generating function of the minimal 

required collection of the defining relations of every degree. 

Example. Let us calculate the Poincar6 series of the algebra A = (x, y 1 x2). 
Its unique n-chain is the unique word x n+l, for n > 0 and the generators are 
Z, y, for n = 0. Because of d, : xn+’ @ 1 - xn @ x + in(xn-’ @ x2 = 0), all 
the mappings & are zero and consequently, 

Tort(K,K)gG-1 *PA(t) =1+2t+t2+t3+... 

This situation may be naturally generalized. Recall that a monomial alge- 
bra is an algebra, with all the defining relations of the form f = 0, where f 
is a word. If F is the defining set of words, we may assume it to be an an- 
tichain, i.e. that none of them is a subword of another word. In this case, by 
Lemma on composition, F is the set of obstructions. Since all reductions in 
a monomial algebra mean the replacement of words containing obstructions 
by zero, it is easy to see that &, = 0; (n > 0), hence there is the following 
isomorphism of vector spaces: 

Tori(K, K) ?! C,-I 

In particular, for the Poincarb series of a monomial algebra to exist it is 
necessary and sufficient that both sets of generators and obstructions are 
finite. 

We can see that here too we will turn to the method of generating functions 
and derive the following: 

Definition. The double Poincare’ series of a graded algebra A = @A, is 
the following series in two variables: 

PA(s, t) = 2 dim(Tor $(K, K))sitn 
i,n=O 

c 

Here n denotes the index of the graduation and the series could be written 
down otherwise in the form PA(s, t) = c: HTor:(t)si in full compliance 
with the method of generating functions. 

Returning to the monomial algebras, we derive the following: 
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Theorem 1. If A = (X 1 F) is a monomial algebra, then 

PA(s, t) = 1 + Hc,,(t)s + Hcl (t)s2 + Hcz(t)s3 + . . . , 

gl.dimA<nuC,,=O. 

If A is an arbitrary graded algebra, then knowing its set of obstructions F, 
we can construct its associated monomial algebra A(X 1 F), which inherits 
the same graduation on the generators. The Anick’s resolution allows here to 
estimate from above the Poincar6 series of the graded algebra (comparison 
of the series is coefficient-wise, as usual). 

Theorem 2. PA(s,t) < Pi(s, t). In particular, if there are finitely many 
obstructions as well as generators, then there exists the Poincare’ series, and 
if the n-chains do not exist, then 

gl.dim A 6 n. 

Proof. Because of ker$-1 C Ci-1, we have HTorb(K,K) < Hei-, and it 
remains to reffer to the previous theorem and Theo&m 1 from 1.8. 0 

Examples of another sort come from combinatorially free sets R of the 
defining relations. Recall (3.7) that combinatorial freeness of R denotes, that 
the set of leading words F is an antichain and that there are no linkages 
among the words in F. Then CZ = 0 and we obtain the following result. 

Theorem 3. If the set R is combinatorially free, then 

Tor 3(K, K) = 0; PA(s, t) = 1 + Hxs + HRs2. 

Example. A = (x, y 1 xy = y2), F = {xy}, 
t2s2. 

PA(s, t) = 1 + 2ts + 
, PA(t) = 1 + 2t + t2. 

Besides Anick’s resolution, there are other resolutions suitable for work. 
A rather important is the so called minimal resolution. The construction is 
as follows: Let it4 be an arbitrary right A-module. Understandably, A4 as 
well as A are assumed to be graded. Thus we can choose a minimal set YO 
of homogeneous generators in M. Let VO be the graded space whose basis 
{ei} is in a bijective correspondence with the set Yo, hence HvO = HyO. Let 
us consider the free module PO = Vo @I A and the mapping do : PO - M 
defined on the free generators ei @ 1 by do : ei @ 1 - xi and extended to 
a homomorphism of A-modules. Let Ml be the kernel of the homomorphism 
do. It is also a graded module and it is possible to choose there a minimal set 
Yl of generators and to construct the corresponding free module PI = VI @A 
as well as the mapping dl : PI - Ml c PO. The mapping d, : P,, - P,-l 
may be constructed in exactly the same way and consequently, the following 
sequence: 
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. . . V,@Ad”.V,,-l@A~... -+Vo@AAM-O (13) 

will be exact, by the construction. That is exactly called a minimal resolution 
(more exactly its terms P,, = V, @ A). It turns out that it has an important 
property: 

V, E Tort(M, K) (14 

is an isomorphism of graded spaces. Indeed, if C ei @ ai E ker de is a ho- 
mogeneous element, then, by the construction, Cxiai = 0 thus, by min- 
imality of Ys, all the coefficients of ai are not in Ao = K. Consequently, 
for every u E Imdi = ker de, we have u @A K = 0, thus the mapping 

a1 : PI @,A K - PO @.A K is zero. For exactly the same reason all of 
&, : P, @A K -+ P,-i @A K will be zero. Then, by definition, Tor ,“(K, K) = 
ker&/Im&+i = V, @K G V,. 

We will use this fact for a deduction of the following remarkable formula 
(15): 

Theorem 4. If A is a graded algebra, then 

H;‘(t) = P/,(-l, t). 05) 

Proof. Using Theorem 2 from 3.4, we get the following (in view of (13)): 

-&l)“H&@A = 1. (it! = K). 
i=o 

By (14), with the aid of Theorem 1 from 3.3, we find that 

and the desired equality follows. cl 

A simple application of Theorem 4 is a deduction of formula (8) from 
Theorem 1 and Theorem 1 (from 3.7) from Theorem 3. 

We also point out the following formula, found by V.E. Govorov (Govorov, 
1972, 1973a) aimed at calculating terms of the Poincare series . Let A = %/I, 
where, as usual U is the free algebra and I is a homogeneous ideal. Let us 
denote by T the augmentation ideal of the free algebra itself: T = $y U,. 

Theorem 5. The following are isomorphisms of graded spaces 

Tor &,_,(K, K) g (Tin-’ n I”-lT)/(TIn-lT + I”); 

Tor &(K, K) 2 (TI”-lT fl In)/(TIn + F’T), 

where I” are the powers of the ideal I, in particular I0 = Q, I1 = I, I2 = 
{C xi~j I xi, yj E 0 etc. 
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3.10. Associated Lattices of Subspaces and Algebras with One Relation. 
Algebras with Quadratic Relations. We will not be interested in general ques- 
tions in the lattice theory; we can familiarize ourselves with those in (Birkhoff, 
1967), for example. Thus we will restrict ourselves to the following working 
definition, determining the class of lattices we are interested in. 

Definition. Let V be an arbitrary vector space. A family L of its subspaces 
is called a lattice, if it is closed with respect to intersections and sums of finite 
number of its elements. 

For example, if A = V is an algebra, we may speak of the lattice of ideals, 
of the lattice of submodules etc. 

Definition. A lattice is called distributive, if for every X, Y, 2 E L, (X + 
Y) n 2 = X n 2 + Y n 2 holds. 

Any family of subspaces generates a lattice in an obvious way - the minimal 
lattice containing it. Thus, it makes sense to talk about finitely generated 
lattices. 

Theorem 1. A finitely generated lattice L is distributive if and only if we 

can choose a “‘general” basis B in the space V, i.e. such that B n X is a basis 
in X, for every X E L. Moreover L is finite. 

In applications to graded algebras A we will be primarily interested in the 
following lattice. Let, as above, 

Definition. The lattice associated with A is the lattice L(A) generated in 
U by the subspaces 

TnImTk; (n, m, k 2 0; To = I0 = %) 

(see the end of the previous section). 

Example. Let A(X 1 F) be the monomial algebra. Then choosing in A the 
basis of words, we see that it will be a general basis for L(A) and conse- 
quently L(A) is distributive (the reverse implication to Theorem 1 is valid 
even without the assumption of finite generation). 

The following important result has been proved by V.N. Gerssimov (Gerasi- 
mov, 1976): 

Theorem 2. Let A be defined by one homogeneous defining elation. Then 
L(A) is distributive. 

This theorem was used by Backelin (Backelin, 1975, 1981) in obtaining a 
formula for explicit calculation of the Poincare series of such an algebra and 
the following was proved in particular: 
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CoroIlary. The Poincare’ series PA(s,t) of an algebra with one defining 
relation is a rational function in s, t. In view of (15) we also obtain rationality 
of the Hilbert series. 

Let us show, following Dicks (Dicks, 1985), an explicit. way to calculate 
the Hilbert and the Poincare series. Let b be an element of the free algebra 
!2f = K(X) (at the start, not necessarily homogeneous), and let A = (X ] b) 
be an algebra with the single defining relation. Let S = {f E Q 1 fb E bQ}. 
By definition, b!J is an ideal in S and we can consider the factor algebra 
E = S/b%, which will play the main role in the sequel. 

Example. For every non-zero polynomial f(x), if b = f(zy)x, then S = 
K[xy] + b%; E = K[xy]/(by) =S E g K[x]/(xf); (2l = K(x, y)). 

In particular, for b = xyx - x : E 2 K[x]/(x2 - x) = K @K. 

By a result of Bergman and Cohn, E is commutative, finite-dimensional 
algebra. Moreover, if b is homogeneous, there exists an m, such that E s 

K[YI,. . . , ym]/(yy, yiyj; (i,j) # (1, l)), for some n > 2 (E = K, if n = 0). 
We also note that in the homogeneous case, the natural mapping E - A is 
an embedding. Now we can write down the necessary formulas. The Hilbert 
series of the algebra A is calculated by the following formula: 

Hi1 = Hi1 + tlblH,-l. 

Since E is commutative, its Hilbert series calculates even simpler - it is a 
polynomial. Moreover, if b is not necessarily homogeneous and lin (b) is the 
linear part of b, then it is possible to calculate the Poincare series by the 
following formula: 

PA(t) = 
{ 

1+ t]X] + t2PE - t - t2, if lin(b) # 0 

1+ tpq+ t2PE, if lin(b) = 0. 

Since, in the homogeneous case PE = (1 - mt)-‘, we can also get explicit 
formulas (d = 1x1 e the cardinality of X): 

PA(t) = { 

l-t+dt, here m=O) if lin(b) # 0; 

(1 + dt - mt + t2 - mdt2)(1 - mt)-‘, if lin(b) = 0. 

Finally, for the double series, 

PA(%t) = 
1 + sHx - &lb’, if lin(b) # 0; 

1 + SHX + s2tlblPE(s,t), if lin(b) = 0. 

Example. B = f(xy)x,m = 1,U = K(x, y),d = 2. 

pA = 
1 +t, if f(0) # 0; 

(1 + t - t2)(1 - t)-l, if f(0) = 0. 
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We state now a series of important homological properties of quadratic 
algebras (i.e. those given by the relations of second degree in the natural 
graduation). We will describe explicitly in this case a construction of the dual 
algebra A!. Let A = 2f/I. Then U* is a graded space with !JfE = Horn (U,, K) 
and multiplication (fg)(uv) = f(u)g(w), for f E a:, g E a&, u E x, TJ E !&. 
It is understood that U* is a free algebra with the set of generators XT, . . . , Z; 
dual to the starting generators: sF(xj) = Sij. Let I = %URU, R c 82, R* = 
{f E 8; I f(R) = 0}, I* = M*R*M*. Then A! = !24*/I* is the dual algebra. 

Theorem 3 (Lofwall, 1986). If an algebra A is defined by quadratic rela- 
tions, then 

A) The algebra A! is also quadratic. 
B) A!! Ci A. 
C) A! is isomorphic to the subalgebra [Ext i(K, K)], generated by the sub- 

set Ext i(K, K) of the algebra Ext >(K, K) (cf. 1.8). 

Theorem 4 (Backelin, 1981). Let A be a quadratic algebra. Then the fol- 
lowing conditions are equivalent: 

A) The lattice L(A) is distributive. 
B) For all i, j > 0 the following implication holds: 

Tor$(K,K)#O+i=j. 

C) The Froberg formula holds: 

PA(S, t&(-St) = 1. 

A*), B*), @,I are analogous formulations for the algebra A!. 
D) Ext A(K, K) = [Ext i(K, K)]. This property allows for A to be called 

a homogeneous Koszul algebra. 

As a corollary, we obtain the following formula: if A is a quadratic and 
L(R) is distributive, then 

HA(t) = 1. 

Indeed, in view of the latter parts of Theorems 3 and 4, we have HAI = 
HExt ;( (K, K). On the other hand, by definition, PA = HEAD : (K, K). It re- 
mains to establish a passage from the double Poincare series to the ordinary 
PA(t) = PA(t, 1) and put t = 1, s = -t in Froberg’s formula. 

We finalize this section by a full classification of all algebras, given by two 
quadratic relations. We may assume the field K to be algebraically closed. 
Let us fix the following notation (not coinciding with that introduced at the 
beginning of the section). Let n be the number of generators, and let m be 
a minimal amount of generators (may be different) required for describing 
the relations. More formally, if R is the set of relations (consisting of two 
elements), then let E be a minimal subspace such that R c E2. Then m 
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is the dimension of the space E. Furthermore Ki = & for i = 0,l and 
Ki = UlKi-1 nIs!&-2, for i > 2 are subspaces in the free algebra Q, A = U/I, 
Ki c &. Finally, set r = dim Ks, d = dim &. The case of one relation (i.e. 
two linearly dependent relations) is sufficiently simple. 

Theorem 5. If an algebra A is defined by one quadratic relation, then L(A) 
is distributive, 1 >, T = d = dim Kj 2 0, for j >, 4 and 

rs3t3 
PA(s,t)=1+nst+s2t2+-. 

1 - st 

Moreover, r = 1 if and only if m = 1. 

For two relations, the situation is more complex: 

Theorem 6. If A is defined by two quadratic relations, then the ordered pair 
(r, d) may assume only the following four values: (O,O), (l,O), (1, l), (2,2) and 
d = dim Kj, for j > 4. If L(A) is distributive, then 

s4t4 
PA(s,t)=l+nst+2s2t2+rs3t3+dlVSt, 

and one of the following four alternatives holds: (r,d) = 
a) (0,O) _ gl.dim A = 2 and m 2 3; 
b) (1,0) _ A 2 K(q,. . . , x, 1 21x2, ~2x3) (and this implies m = 3); 
c) (1,1) ++ m > 3 and 3y E !2l1, thus 0 # y2 E IZ, but A is not isomorphic 

to the algebra K(xl, . . . ,zn 1 x;, 21x2 + 13x1). 
d) (2,2) u m = r = d = 2. 
If L(A) is not distributive, then A is isomorphic to one of the following 

10 algebras sorted out in the following table: 

All the algebras are automatons (5.10) 
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Setting s = -1, we can find the corresponding Hilbert series. 

3.11. Comments. The term “Hilbert series” draws its source from classical 
results of Hilbert, related to the commutative case. Sometimes it was also 
called the Poincare series, but nowadays it has been agreed to use exactly 
that term, connecting the name of Poincare only with homological series. 
Besides, as was noted above, the Poincare series is the Hilbert series of the 
algebra Ext 2 (K, K) with the Yoneda multiplication. 

The notions of obstruction and an n-chain have been introduced by Anick, 
although his definitions differ somewhat from those stated here; in (Anick, 
1986) they have been introduced through so called prechains. A graphical 
interpretation of chains was introduced in (Ufnarovskij, 1989a). The remark, 
representing the content of the theorem in 3.8, has been made by the author 
as well as the translation of the resolution into the language of normal words. 
All the points with contents in this section belong to Anick. Construction 
of the Anick resolutions for path algebras may be found in (Anick, Green, 
1987). 

The content of section 3.10 has been basically taken from Backelin’s pa- 
per (Backelin, 1981). The classification of algebras defined by two quadratic 
relations was done in (Ufnarovskij, 1984), however only the Hilbert series 
were discussed there, hence Theorem 6 contains considerably more valuable 
information. 

The reader is also recommended to use a paper by ES. Golod (Golod, 
1988), where he will familiarize himself with a homological interpretation of 
the lemma on composition as well as with the so called Shafarevich complex. 

Let us point out a sharp notation: if A is an algebra, then A(t) is its Hilbert 
series. 

$4. Generic Algebras. Diophantine Equations 

4.1. Introduction. In order to introduce the objects we will be interested in, 
in this section, we will give, as an example, a classification of all the algebras 
of Hilbert series, defined by one relation of the third degree (Ufnarovskij, 
1980). It turns out that either 

HA = (1 - Hx + t3)-‘, 

or A is isomorphic to one of the following monomial algebras: 

(x1,...,xm 1 x; = O), (Xl,. . . ,xm 1 21x221 = 0). 

We can see that if we discard algebras exceptional in some sense, then 
the rest will have the same Hilbert series (cf. also Theorem 5 from 3.10). 
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Let us try to give this statement a more precise meaning. Let us assume 
that the set of generators is fixed as well as the number of (homogeneous) 
defining relations together with their degrees. Following Anick, we fix this 
data in the vector of degrees d = (g; 1~~1,. . . , I~l/r; ml,. . . , m,), where g is 
the number of generators, 1211,. . . , IQ,/ are their degrees and r is the number 
of relations with their degrees ml,. . . ,m,. We would like to understand the 
way the whole set Gd of the algebras with such generators and relations 
is built up. It turns out that the set of Hilbert series is well ordered with 
respect to the lexicographic ordering of the series. The infimum of those series 
is called the generic Hilbert series (for a given vector d). Correspondingly, 
an algebra with the generic Hilbert series is called generic. This section is 
devoted exactly to the study of generic series and algebras. For the majority 
of the cases it is possible to describe them quite satisfactorily. A great part of 
the section is devoted to investigating their properties. The remaining part is 
dedicated to describing properties of the set of Hilbert series and sufficiently 
unexpected connection between graded algebras and diophantine equations. 
A consequence of this connection is establishing the algorithmic insolubility 
of the problems of determining whether an algebra is standard as well as that 
of calculating its global dimension. 

4.2. Order Properties for Series. Let us introduce the lexicographic 
ordering on the set of formal power series, besides the ordinary ordering: 
Cantn <,, Cbnt” if and only if the first non-zero coefficient of the differ- 
ence C(bn - an)tn is positive. For instance, 1 + t >A (1 + t)-‘. It is obvious 
that Cantn > Cb,P =+ Ca,tn >A Cb,P, but the reverse implication is 
not valid. 

For every natural number n we index, in some way, all the words of de- 
gree 12: S, = {sin, szn,. . . , ~l,,~}. That is a basis for U, for an appropriate 
gradation of the free algebra 24. For a fixed vector of degrees d, every of T 
relations is of the form fij = xi cijsimj = 0, (lpjl = mj), where cij are some 
elements in the field K. Every such collection of scalars c = {cij} determines 
uniquely the algebra AC = (X ) PI,. . . , p,.) (although it is not ruled out that 
isomorphic algebras correspond to different collections). We have established 
a special parametrization of the algebras in Gd by the points in KNo, where 

NC, = -&i. 
j=l 

Theorem 1. For an arbitrary formal series H = C antn, the sets {c I 
HAG 2 H}, {c 1 HA” &, H}, {c I dim(AC), > a,} are afine varieties in KNO 
(i.e. they can be defined by systems of polynomial equations). 

Proof. It is sufficient to see that the sets {c 1 dim(A”), > a,} are affine, 
and the remaining would follow from the Hilbert basis theorem. In order to 
prove the affine property, let us consider an ideal I and its n-th homogeneous 
component 1,. Using the coefficients cij, the elements of 1, may be expressed 
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through the words in S,. But the condition dim(AC), 2 a, is equivalent to 
the condition dim& < B, = dim8, - a, + 1, and the latter means that all 
the minors of the corresponding order are equal to zero. This is what gives 
the necessary polynomial equations. cl 

Corollary 1. The set of all Hilbert series of the algebras from Gd is well 
ordered (in the increasing order), in other words, the following infinite in- 
creasing chain cannot exist: 

HAM <A HAM <A HAM <,-, . . . ; Ai E Gd. 

Corollary 2. For every d there exist numbers no = no(d) and ni = nr(d), 
such that A E Gd is finite-dimensional if and only if all the homogeneous 
components A,, are equal to zero, for no < n 6 ni. If the graduation is 
natural &-cil = l), then we may assume that no = ni. 

Proof. For the sake of simplicity, we consider only the case of natural 
graduation. In that case the affine varieties V, = {c I dim(A”), 2 1) are 
embedded in each other: Vo 2 VI 2 . . . , and, by the Hilbert basis theorem, 
they start stabilizing from some index on. This index is obviously the desired 
one. cl 

We point out that the proofs of both corollaries as well as of the the- 
orem apply not only to the associative algebras (also, for instance, to Lie 
(super)algebras). 

Let us temporarily consider the coefficients qj introduced above, not as 
elements of the field K, but rather as some generators of the polynomial 
ring K[. . . cij . . . ] of NO variables. Then we have right to consider the field 
K(. . . cij . . . ) of rational functions and consider Gj to be elements of that 
field. We can also consider the algebra A = d(d) = (X I Cicijsi,,i = 0;j = 
1 7”’ r) over that field and its Hilbert series HA. 

Theorem 2. For every algebra A in Gd we have HA >, HA. In particular, if 
A is infinite-dimensional, then all the algebras in Gd are infinite-dimensional. 

Proof. Repeating the reasoning carried out in the proof of Theorem 1, we 
see that the equality dim& = a, is guaranteed by the condition that all the 
minors of order b, are equal to zero (as well as that one of the minors of order 
b, - 1 does not equal to zero). Every algebra in Gd is obtainable from A by 
specializing i.e. by substituting Gj by a concrete values from the field K. In 
specializing, all the minors equal to zero remain equal to zero, while non-zero 
ones may become zero. Consequently, the equality dim A, = a,, translates 
into the inequality dim A,, > a,, , which was required to prove. 0 

Definition. The Hilbert series of the algebra A E Gd will be called standard 
and an algebra A for which HA = HA will be called a standard aZ.qebra 
A E Gd. 
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By Theorem 2, the standard series is a lower bound of all the Hilbert 
series x(d), however it is an open question whether this bound is exact. This 
is why, following Anick, we introduce one more definition. 

Definition. The infimum of all the series from ‘H(d), i.e. the series cr c,#‘, 
where c, = min{a, 1 Cant” E ‘H(d)} is called the generic series and the 
algebra A E Gd, for which HA = Cr ktn is called the generic algebra (for 
a given vector of degrees d). 

It is obvious that if there exists a standard algebra that it will be generic 
too in which case the standard series coincides with the generic. However it 
is not obvious whether generic algebras exist. On the other hand, if there 
are sufficiently many elements of the field K, algebraically independent over 
a simple subfield, then we can substitute them in place of cij and obtain a 
standard algebra. The meaning of the notion “generic” is sufficiently clear: 
by Theorem 1, the condition a, > c, defines an affine subvariety. This means 
that the condition of not being generic for an algebra A” E Gd means mem- 
bership in one of the varieties of smaller dimension. Unfortunately, the union 
of all these varieties may not be a variety in general and it is an open question 
whether it is contained in some variety smaller than KNo. 

Nevertheless, we will see in the sequel that, for a sufficiently large spectrum 
of degree vectors, it will be possible to get generic algebras even with the 
additional structure of either a Hopf algebra or a monomial algebra. 

If the degrees vector d is fixed and A = (X 1 R) is an arbitrary algebra in 
Gd, then the series (1 - Hx + HR)-~ depends only on d and does not depend 
on the choice of the set R. We will denote it by Pd = Pd(t). 

Theorem 3. If there exists an algebra A E Gd such that HA = Pd, then 
that algebra as well as the series Pd are standard. 

Proof. It is not difficult to derive the inequality HA 2~ Pd from formula 
(6) of 3.5 (we point out that it is valid only for the lexicographic ordering of 
series, but not for the ordinary ordering 2). This inequality, together with 
the inequality of Theorem 2, ensures A to be standard. 0 

4.3. Algebras of Global Dimension Two. We call a set R strongly free, if 
for the algebra A = (X ) R) the equality HA = (1 - Hx + HR)-~ occuring in 
the previous theorem holds. The following has been proved in (Anick, 1982c): 

Theorem 1. If R is strongly free, then the algebra A is of global dimension 
two. Conversely, if the algebra A has global dimension two and the elements 
of R define a minimal set of defining relations, then they fom a strongly free 
set (see the definit$ of dimension in 1.8). 

We also point out that, for an algebra of global dimension two, it is possible 
to calculate the Poincark series at the same time (see 3.9): 

PA(s, t) = 1 + Hx(t)s + HR(t)s2. 
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Thus, if for a given degrees vector d there exist algebras of global dimension 
two, with r independent relations, then the standard algebras will be just like 
that. If the number T is sufficiently small, then such algebras indeed exist and 
the following holds: 

Theorem 2. If R is a combinatorially free set, then it is strongly free. 

The proof and the definition are contained in 3.7. 

Example. Let d = (2m; 1,. . . , l/r; 2,. . . ,2) be the case of a quadratic al- 
gebra, where T < m2. Let us denote the generators by xl,. . . ,x,, ~1,. . . , ym 
and choose R to be the set of of the elements of the form xiyj. This set 
will obviously be combinatorially free and consequently the algebra will be 
standard and the standard Hilbert series will be equal to (1 - 2mt + rt2)-l. 
All the standard algebras for this vector have global dimension two. 

Theorem 3. Let us consider the following six statements, formulated for a 
given degrees vector d: 

(A) There exist two polynomials F(t) and G(t) with non-negative integer 
coeficients, such that 

(1 - F)(l - G) 2 1 - Hx + HR = Pi? 

(B) There exists a monomial algebra A E Gd such that HA = Pd. 
(C) There exist a Hopf algebra A = (xl,...,xg 1 yl,...,y,.) E Gd (yi are 

the Lie elements), such that HA = Pd. 
(D) There exist algebras A E Gd for which HA = Pd (in other words, there 

exists a strongly free set). 
(E) pd > 0. 
(F) (Pd)-’ has a real root in the interval [0, 11. 
Then the following implications hold: 

and there exist counterexamples showing that 

A proof of the theorem has been carried out in (Anick, LSvall, 1986) and 
(Anick, 1988a). We will quote from them only the corresponding counterex- 
amples. 

(F) + (E). Let d = (4; 1, 1, 1,4/3; 2,2,2). Then Pi’(l) = 0, but Pd = 
(1 - 3t - t4 + 3t2)-’ = 1 + 3t + 6t2 + 9t3 + lot4 + 6t5 - 6t6.. . 

We point out that if we restrict to the natural graduation, the condition 
(E) is equivalent to the condition (F). 

(E) + (D). Let d = (3; 2,3,3/l; 4). Then Pd = (1 - t2 - 2t3 + t4)-l > 0, 
but the unique possible relation x: = 0 leads to the algebra of infinite global 
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dimension (cf. 3.9). For the natural graduation, the implication remains an 
open question. 

(D) + (C). A counterexample t,o the implication is given by the vector 
(2; 1,1/2; 3,8). The details are in (Anick, 1988a). 

We indicate only that the standard algebra is the algebra 

(x, y, z ( xy - y2 = 2, xz = 2x, z2yzy = 0)) 

which can obviously also be considered as an algebra from Gd and that, the 
set of its obstructions is the set, 

{xz,xy} U {z2ynzy 1 n = 1,2,. . . }. 

The implication (C) =+ (B) remains open even for the case of the natural 
graduation. 

Example. Because of the inequality (1 - t)(l - t - t2) > 1 - 2t + t3, the 
standard Hilbert series for the vector (2; 1,1/l; 3) is of the form (1 -2t+t3)-l 
and the standard algebras have the global dimension two. On the other hand, 
since 1 - 2t + 2t3 = 0 does not have roots in the interval [0, 11, Gd does not 
contain algebras of global dimension two with linearly independent set of 
relations, if d = (2; 1,1/2; 3,3). 

Let us give now several numeric estimates, guaranteeing the conditions 
(A) and (F), for the case of the natural graduation. 

Theorem 4. Let d = (2; 1, l/r;n, n, . . . n). If T < 1 + (2n/4fi), where 
e = 2.7182.. . , then the condition (A) holds. If T < 2”/e(n - l), then the 
condition (F) holds. For T = 4, n = 6, the implication (0) =+ (A) does not 
hold. 

A proof is in the same papers. A counterexample to the implication is 
the algebra (z, y 1 ~~yzy~,~~y~zy,z~y~, z2y4 - zyzyzy). According to the 
composition lemma, only the element z2yzyzy is missing for a GrZjbner basis. 
The Hilbert series is calculated by the formula (8) of 3.7: 

(1 - 2t + (4t6 + t7) - t’)-1 = Pd(t). 

Theorem 5. Let d = (g; 1, 1, . . . , l/r; 2,. . . ,2) (i.e. the algebras A E Gd are 

quadratic - cf. 1.7). Conditions (A)-(F) of Th eorem 3 are mutually equivalent 
and are equivalent to the condition 

4T < g2. 

Proof. The condition (F) implies non-negativity of the discriminant of the 
quadratic equation, i.e. 4~ < g2. On the other hand, the last condition implies 
the condition (B), according to the example considered after Theorem 2 (in 
the case of even g). For the case of odd g we have 
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(1-q) (1-y) 

which is the condition (A). 

1 2 1 - gt + Tt2, 
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Cl 

4.4. Conditions of Finite-dimensionality. In the case when the series Pd(t) 
has negative coefficients, it after all, cannot be a standard series. On the 
other hand, another lower bound may be taken to be the polynomial IPd(t)l 
obtained from Pd(t) by discarding all the summands beginning with the first 
negative one. For instance 

I(1 - 3t + 3t2)-‘1 = 1 + 3t + 6t2 + 9t3 + 9t4. 

Theorem 1. If d is the degrees vector, then, for every algebra in Gd, the 
inequality HA > lpdj holds. 

Proof. It is sufficient to multiply formula (6) from 3.5 by the polynomial 
I Pd I with non-negative coefficients. Cl 

Thus, if there is an algebra in Gd, for which HA = [Pdl, then that, series 
will be standard. If there are sufficiently many relations, this is exactly the 
case. 

Theorem 2. Let d = (g; 1, 1,. . . , l/r; 2,2,. . . ,2). If T > g2/2, then the 
standard algebras exist and the standard series (which is also generic) is 
equal to 

lpdl = 1 + gt + Tt2. 

Proof. It is sufficient to give explicitly an algebra with such a series. We 
confine ourselves to a more simple case of even g = 2m, for which the algebra 
is of the form 

(Xl,... ,Gn,Yl,.*., Ym 1 XiYj; XiXj - YiYj I 1 < i,j < m)- 

It is not difficult to check, by constructing a GrGbner basis that all the words 
of length 3 are equal to zero. The odd variant, can be found in (Anick, 1988a). 

Cl 

We can find, at the same place, a proof of the fact, that for the vector 
(2; 1,1/2; 2, n), th e inequality of Theorem 1 does not became equality for any 
n 2 7, although it is not difficult to check that the standard algebras exist, 
and that they are finite-dimensional. 

The interval g2/4 < T < g2/2 for the algebras defined by quadratic rela- 
tions remains still uninvestigated, and at least the following two questions 
remain open: 

Is it true that a standard (generic) algebra is either finite-dimensional or 
is of glob4 dimension two? In other words, is it true that, for T > g2/4, there 
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always exists a quadratic finite-dimensional algebra with g generators and T 
relations? It is true in case g 6 4. 

If not, then starting with what T = r(g) does such an algebra exist? An 
analogous question may be made for the Lie algebras. Here an asymptotic 
estimate is known (Wisliceny, 1979): 

lim r(s> - ’ 
g-03 g2 

- -. 
4 

4.5. Properties of the Set of Hilbert Series. We would like to investigate in 
this section the way the set of Hilbert series of finitely presented algebras is 
set up. First of all, it is obvious that after field extension, nether the Hilbert 
series nor the degrees vector defining a given algebra change. Thus, in many 
questions we may consider the base field K sufficiently large. It is useful not 
only because, according to 4.2 we get the standard algebras, but also because 
of the following fact: 

Theorem 1. If K is an algebraically closed uncountable field, then the set 
N(d) of the Hilbert series is closed with respect to the corresponding topology. 

Proof. Let H be the limit of the Hilbert series Hi of algebras A”i E G(d) 
(i.e. for every coefficient of the series H, all, except possibly finitely many, the 
series Hi have the same coefficient). It is necessary to prove that H E ‘H(d). 
By Corollary 1 from 4.2, after discarding a finite number of series, we may 
assume that all the series in our sequence are lexicographically not less than 
H. Thus, for every n there is an index i such that H Ih Hi <,, H + tn. Let 
W = {c 1 HA= 2-, H} and V, = {c 1 HAC >A H + t”}, n = O,l,. . . ==s 
v, c vn+1. Then, according to Theorem 1 of 4.2, V = {c 1 HAM >,-, H} is 
a countable union of embedded afhne varieties V,, non of which equals W, 
thus ci E W \ V,. Over an uncountable field this is sufficient for W not to be 
contained in V. For c E W \ V, we have HAC = H. cl 

Theorem 2. The set 1-I of all Hilbert series of finitely presented algebras is 
countable. 

The set ‘If and its subset iii corresponding to the Hilbert series of finitely 
presented algebras with natural graduation are closed with respect to some 
natural operations. Recall that the Hadamard product of two series H = 
c antn and G = C b,tn is the series H o G = C(anbn)tn. 

Theorem 3. The sets 31 and ‘HI are closed with respect to the operations 
of addition, multiplication and the operation H * G = (H-’ + G-l - 1)-l. 
Moreover, the set 7-i; is closed with respect to Hadamard multiplication as 
well as taking derivatives with a shift: H(t) - (tH(t))l. 

Proof. The first claim may be easily derived from claims in 3.3, 3.4 and 1.6. 
The Hadamard multiplication is realized through the so called Segre product 
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, 
of two graded algebras A = @ A,, B = @ B,, , defined as a subset of their 
tensor product, with graduation A,, 8 Bn. Finally, the derivative with a shift 
is the Hadamard product of a Hilbert series and the polynomial ring 

HKls,vl = 1 + 2t + 3t2 + . . . Cl 

Considerably more complex is the following theorem (Anick, Liifwall, 1986): 

Theorem 4. Let H = Cant” E 7-t. Then the following series are also in ‘H: 

(A) (1 - t2)-‘(1 - t)-‘H2 fi(1 + tnH). 
I 

(B) (1 - t2)-‘(1 - t)-‘H2 fi(1 - tnH)-‘. 
I 

If HX is a generating function of the set of generators X, then set F = 
(1 - HX - t-‘Hg)-l(l - t - Hx)-l. Then the following series also belong 
to 7-t: 

(C) F . fi(1 - t*)-+*, if char K = 2; 
1 

F . fi(1 + t2+l)%-l/( 1 _ t2n)‘h, char K # 2. 
1 

Finally, if H E 3-11, then the following series are also in ‘Hi 

(D) (H o H)(t2)H(t) fi(1+ ant”+‘). 
0 

(E) (Ho H)(t2)H(t) fi(1 - ant”+‘)-‘. 
0 

The following theorem, showing how close the classes 7-i and ‘Hi are has 
been also proved in the same paper. 

Theorem 5. For every finitely defined algebra A, there exists a finitely 
defined algebra B with natural graduation and there exist polynomials PI, P2 
with non-negative integer coeficients such that HB = PI HA + Pa. In addition, 
for every finitely defined algebra B with natural graduation, there exists an 
algebra C defined by quadratic relations such that HB < HC < PHB, for 
some polynomial P with non-negative integer coeficients. 

We will now hold on to the set of radii of convergence of the series in 1-I. It 
is natural to restrict only to infinite-dimensional algebras since the generating 
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function of a finite-dimensional algebra is a polynomial. Let R be the set of 
all the radii of convergence of infinite series in ‘H. By Theorem 5, we may 
in fact restrict to the set ?fr and even only to the Hilbert series of algebras 
defined by quadratic relations. 

Theorem 6. The set R is a divisible semigroup with respect to multiplication 
and is a dense subset of the segment [0, 1) in the usual topology. 

Proof. Closeness with respect to products follows from the fact that the 
radius of convergence of the Hadamard product of two series equals the prod- 
uct of their radii of convergence. Furthermore, for every r E R and a natural 
number m, it is necessary to prove that rlirn E 77,. Let r be the radius of 
convergence of the series H = C a# (r-l = i&6). If A is the corre- 
sponding algebra for which HA = H, then we can consider its graduation to 
be natural. Let us consider now the algebra B with the same relations and 
generators, but where the degree of every generator equals m. Then, as is 
easily seen, HB(t) = HA(P), and the radius of convergence of this series is 
rllm. Since all the coefficients are integers, we have 0 < (a,)-ii” < 1 and 
consequently, R is a subset of the segment [0, 11. We know from the example 
of the series 1 + t + t2 + ..a = HKlzl that 1 E R. On the other hand, the 
radius of convergence of a free n-generated algebra in the natural gradua- 
tion equals l/n. Since it is sufficient to restrict to natural graduation and 
since the Hilbert series of any algebra does not exceed the Hilbert series of 
the corresponding free algebra, the radius of convergence is not smaller than 
l/n > 0. It remains to prove denseness. For any natural m, n, we can choose 
a graduation on some set X so that Hx = 2”‘P. Then, according to formula 
(3) in 3.3, for the free algebra K(X), the Hilbert series is equal to (1- Hx)-l 
and the radius of convergence equals 2-mln. 0 

We point out that for every T E R, there exists an algebra defined by 
quadratic relations, such that r is an irremovable singularity of its Hilbert 
series (Anick, 1985a). 

We finish this se&ion by describing bounds for the radius of convergence 
when the number g of generators in the natural graduation is fixed (Anick, 
1988a). 

Theorem 7. Assume that the vector d = (g; 1, 1, . . . , l/r; ml,. . . , m,) sat- 
isfies condition (F) in Theorem 3, 4.3. Then, for every series H E X(d), its 
radius of convergence p satisfyes the inequality i < p < f . Moreover, for 

r = 2, either H-l = (1 - t)2 or f 6 p < 0.7. 

4.6. Action of a Ree Algebra. Diophantine Equations. In this section we 
assume that K has characteristic zero. 

Let us assume that we are given action of a free algebra in a finite- 
dimensional vector space. Let us describe the situation in more detail. Assume 
that a natural numbers m and n are fixed. Let !2f = K(xl, . . . , x,) be the 
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free algebra in the corresponding graduation and let V be a finite-dimensional 
vector space with a basis ui, ~2, . . . ‘II,, which is a U-module. 

Let us fix a vector ue E V and let J be the set of all words among the 
generators annihilating uo, in other words, 

J = {xilxiz . . . xik 1 u,, * xi1 . . . xik = 0). 

Theorem 1. There exists a Roos algebra A defined by g = 2m + n + 1 
generators and r = m(m + n + 1) + 1 relations for which 

Hi1 = 1 - gt + rt2 - t2HJ(t)(l - mt). 

In addition, the global dimension of A equals 3, except in the unique case 
when J is empty, and then it equals two. 

Proof. Recall (1.7) that a Roos algebra is an algebra defined by quadratic 
relations of a special form, namely by linear combinations of graded commu- 
tators [xixj] = zixj +xjxi. In our case it will be defined as follows: Its genera- 
torswillbethesetxi ,... xm;ur ,..., u,;‘ur ,..., v,;w(+uo=~a~u~EA), 
and the relations will be the following commutators: 

[WXj] = 0; 

[ViXj] = 0; (1 < i, j < m); 

[UiXj] = [Ui * Zj,Vj]; 

[uow]=O; (j=l,..., m;i=l,..., n). 

If we do not consider the last relation, then we obtain the semitensor prod- 
uct of the algebra U and the algebra E - the free algebra K(ul, . . . , un, vl, . . . , 
v,, w) (cf 1.6). The given algebra is also a semitensor product of the alge- 
bra U and the algebra E/I, where I is the ideal generated by the graded 
commutators of the form [[[. . . [UO * xi1 . . . xi,, , vj,,]uj,,-,] . . . vjl]w]. In order to 
see this, it is enough to use the composition lemma to convince oneself that 
the given commutators are the necessary complement to a Griibner basis (al- 
though in a non-trivial ordering). It is not difficult to check that the set of 
non-zero commutators is combinatorially free, therefore the algebra E/I has 
global dimension not greater than two (cf. 4.3) and the Hilbert series 

(1-(m+n+l)t+t2(H~-H~))-1 (cf3.7). 

The rest follows from the fact that the Hilbert series of a semitensor product 
(just like the ordinary tensor product) is equal to the product of series and 
that the global dimension is equal to the sum of the global dimensions (Anick, 
1985a). cl 

We will need a more convenient analogue of this theorem. Let us assume 
that the action and ue have been chosen in a way that J is empty, i.e. ue * f # 
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0, for every word f E Q. Let us assume that some linear mapping 4 
into some h-dimensional vector space is given. Let 

:v-w 

M = {Xi’ . . . xi,, 1 qqug * Xj’ . . . Xi,,) = 0). 

Theorem 2. There exists a Roos algebra A with g = 2m+n+h+3 generators 
and r = (m + l)(m + n + h + 2) + 1 relations, such that 

In addition, 

H;i = 1 - gt + rt2 - HMt3. (1) 

HM = 2 dim(Tor $3+j(K, IT))@, 

j=O 

thus the global dimension of A does not exceed three and equals two if and 
only if M is empty. 

Let us now go to the diophantine equations. In reality we will be con- 
sidering even more general systems of exponential-polynomial diophantine 
equations 

B(Z1,22,. . . z,) = 0, 

where B is a finite sum of expressions of the form 

c; ’ cf . . .CZP(Zl,. . . ,zm), 

where cl, cp, . . . , c, are non-zero complex numbers and P is a polynomial 
with complex coefficients. 

If S is such a system of equations, then we will be interested in the solutions 
given by the collections z = (~1, . . . , zm) of non-negative integers. If d,, is the 
number of solutions for which IzI = zl + . . . + z,,, = n, then the series Hs = 
c,” d,t” will be called the generating function of the system of equations. 

Example. 2=(2x +-1) + (i)Y = 0 is the system of one equation. Its solutions 
are z = 0, y = 4k + 2, therefore, 

Hs = t2 + t6 + tl’ + . . . = t2/(1 - t4). 

Every system of this kind has a numeric characteristic, called the com- 
plexity and it will be defined somewhat later. 

Theorem 3. Let S(z) = 0 be the system of h exponential-polynomial equa- 
tions of m variables tith complexity d. Then there exists a Roos algebm A 
over a field of zero characteristic, with g = 3m + d + h + 6 generators and 
r = (m + 1)(2m + d + h + 5) + 1 relations, such that 

Hi1 = 1 - gt + rt2 - Hs. t3, 
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where Hs is the generating function of the system of equations. The global 
dimension of the algebra A does not exceed three and equals two if and only 
if the system does not have solutions. 

We will not prove the theorem here in its full generality, but rather in its 
rather special case m = h = 1 along with the comments which will clarify 
more the “ticking coils” behind the proof. 

Thus, let us consider the case of one esponential-polynomial equation of 
one variable. For the start, we consider a rather simple concrete example. Let 
us assume that we are studying the quadratic equation z2 - 52 + 6 = 0. Its 
Hilbert series is obviously equal to t2 + t3. For V we take a three-dimensional 
vector space with a basis denoted by [l], [z], [z”]. We use the vector [l] as [ml. 
The role of the free algebra will be played by the algebra K[x] of polynomials 
of one variable. The first idea consists of making x act in a way that, for every 
z, uo * 5% = l[l] + z[z] + z”[z”]. It is not difficult to achieve after choosing 
the action matrix for 5 to be 

M=(i 4 n). ThenMn=(i2 2: n) 

and ug *xn = l[l] + n[z] + n2[z2]. N ow choose an one-dimensional space for 
W and define a homomorphism C$ in the following way: $([l]) = 6, $J([z]) = 
-5,f$([z2]) = 1. 

In this way, r$(u,-, *xZ) = z2 - 52 + 6 and the set M from Theorem 2 exactly 
corresponds to the roots of the quadratic equation. 

If we now return to an arbitrary exponential-polynomial expression B of 
one variable, then we first write down B in the form Cl(~)‘Pi(z), where Pi is 
a polynomial of degree mi. We set n = C(rni + 1) and call n the complexicity 
of the given expression. Let us consider a vector space V of dimension n 
and let us choose its basis which we will symbolically denote by [c$z”] (i = 
1 ,..., r, k=O ,... , mi). Note that cf+‘(z + 1)” may be expressed as a linear 
combination 

k 

j=O 

We define an action of a free generator x on V as follows: 

ni 

[cfzk] * 2 = c&j[ctz’]. 

j=k 

(We emphasize that the matrix (&) is transposed.) 
Now, a not-so-complicated induction shows that 

(CKI) * x= = c cfz”[c:z”]. 
i,k 
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(if the ambiguity of z interferes, we can write down xn, the same way as 
above). It remains to define the mapping 4 : V - K, setting 

Pi(Z) = Fb&zI’; qi([c;z”]) = bik. 
k=O 

Then 4 KLkll) *x2 = xi cfPi(z)) an we can successfully use Theorem 2 d 
by setting uc = C[<]. 

Let us comment on the general case. In that case the basis will be the set 
of elements of the form [cZzk], where c, z, k are multi-indices (for instance, 
Zk = Zkl kz 

1 ,3 7. . . 9 z, km). Let us say that cfzkl divides c?jzka, if cl = cs, whereas 
the monomial zkn, as a polynomial in commuting variables, is fully divisible 
by zkl. The complexity of a system will be called the number of different 
expressions of the form cZzk which divide at least one of the summands 
occuring in the system with non-zero coefficients. The corresponding element 
[cZzk] will be in the basis of V. For instance, a basis for the system 

{ 

2”(a2 - b2 - 1) + 6ab(5ab2 - b3 - 3~) = 0 

3. 2a(ab) + (7~ - 8b3) = 0 

will be the set [2”u2], [2”u], [2O], [2”b2], [2ab], [6”bub2], [sabb3], [6abb2], [6”bub], 
[6”bu], [sabb], [sab], [2”ub], [a], [b3], [b2], [b], [l] and its complexity is 18. Since, 
in every expression cZzk, we can increase by 1, one of m variables zi, we can 
introduce m actions xi for which u * zizj = u * zjzi, where u E V and, in 
particular us * 2* = Cc~z”[cfz”]. Since we have h equations, we need to 
consider an h-dimensional vector space W, where the coefficients of every 
equation determine the corresponding coordinate of the mapping 4. This is 
not all since, because of the noted commutativity, we have obtained not the 
wanted series but one with multiplicities. In order to correct this drawback 
we need to generalize the mapping more, making sure that the non-zero value 
is obtained only on the words of the form xi’x;a . . . xc (cf. Anick, 1985a). 
(On the other hand,. at the level of the existence of solutions (for instance 
for the last Fermat’s problem) we may restrict to the variant of a series with 
multiplicities.) 

Theorem 4. Let B be an exponential-polynomial ezpression such that 
B(z) > ]z], for every z = (zl,.. . , zn). Then there exists a Roos algebra 
whose Hilbert series is mtionuly expressed through the series H = C, tBcZ). 

Proof. Let us consider the expression B’(zo, z) = B(z) - ]z] - zc. Then 
(zo, a,. . . , zm) is a solution of B’ = 0 x=+ zc = B(z) - ]z], consequently 
the series in the statement of the theorem is exactly the Hilbert series of the 
equation B’ = 0: 

c 
p+zl+-+z”, _ 

-Et 
B(z)-lzl+z~+...zm = H cl 

B(to,z)=O z 
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Example. m = 1, B(Z) = 2’ > z. 

H = t + t2 + t4 + tS + t16 + . . . 

This series is remarkable in that it is transcendental and does not satisfy any 
algebraic differential equation (Anick, 1985a), (Mahler, 1930). Therefore, the 
same is valid for some Hilbert series. 

Theorem 5. Let d = (g; 1,. . . , l/r; 2,. . . ,2). Then there are g and r with 
the property that there is no algorithm allowing, for every algebra A in Gd 
(over a field of characteristic zero), an answer in terms of its generators and 
relations and in finite number of steps, to any of the following questions: 

1) Is it true that the algebra A is standard? 
2) Is it true that global dimension of the algebra equals two? 
3) Same questions, with the additional assumptions that A is a Roos ulge- 

bra and its global dimension does not exceed three. 
In other words, all the mentioned questions are algorithmically insoluble. 

Proof. If the question number two were algorithmically solvable, then, 
according to Theorem 3, where a Roos algebra is built up constructively, 
there would be an algorithm determining, whether any system of diophantine 
equations has a solution. However it has been proved by Yu.V. Matiyasevich 
that such an algorithm does not exist even for one diophantine equation. 
The equality of the first question to the second has been discussed in 4.2 and 
4.3. cl 

A simple consequence of this theorem is infinity of the set of Hilbert series 
for a given vector d. We may also state concrete values g = 7, r = 11, for 
which infinity is easily derived from Theorem 1 (Anick, 1988a). We may, after 
all also use Theorem 4. Theorem 5 means for instance that, over Q, the set 
of all c for which A” is standard is not recursive (although it is recursively 
enumerable). 

We end this section by giving applications to the theory of diophantine 
equations. 

Theorem 6. Let S,, be a sequence of exponential-polynomial systems of 
equations in m van’ables, of limited complexity and of limited number of equa- 
tions in eve y system. If RI E 02 C . . . is un increasing sequence of sets of 
solutions of those systems, then it stabilizes. 

Proof. In the opposite case, by Theorem 3, we would get an infinite increas- 
ing sequence of Hilbert series, corresponding to the same vector of degrees 
and this would contradict Corollary 1 of 4.2. Cl 

4.7. Comments. In stating the results of the present section, we basically 
followed two papers by Anick (Anick, 1985a), (Anick, 1988a) and the paper 
(Anick, Lofwall, 1986) by Anick and Lofwall. 
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The paper (Anick, 1982c), mentioned in the course of presentation, also 
deserves separate attention since it offers a sufficiently reasonable analogue 
of a regular sequence in the non-commutative case as well as more general 
facts than the ones we have used here. 

The study of actions of a free algebra was conducted simultaneously on the 
both sides of the Atlantic. Other constructions, connecting finitely presented 
algebras with diophantine equations have been obtained through the efforts 
of Swedish mathematicians - cf. (Anick, 1988b), (FrGberg, Gull&en, Ltifwall, 
1986). The series of the type HM in 4.6 (we will call them the M-series) have 
found one more application. It turned out the problem of calculating the co- 
efficients of an M-series was #P-complete (the specialists in the theory of 
complexity of computation will understand what this means). In particular, 
this says that a computer calculation of an arbitrary Hilbert series is a prob- 
lem that takes the maximum of computational resources. On the other hand, 
a connection with complexity theory allowed for establishment of a series of 
positive results. For instance, if f(n) can be computed in O(n6) time and 
with O(ne) memory, where e + 6 < 1, then there exists either a local ring R 
or a Roos algebra A such that HA N PR N C,” f(n)P (cf. 8.3). For example 
a series in prime powers may be obtained: 

PR N t2 + t3 + t5 + t7 + t” + . . . 

More details about this may be found in (Anick, 1989) and (Anick, 1988b). 

$5. Growth of Algebras and Graphs 

5.1. Introduction. We have already indicated (3.3), that if we attempt to 
introduce the notion of a Hilbert series in the non-graded case, then we will 
be faced with non-invariance, namely the dependence of the series on the 
choice of a generating set. Nonetheless, there is something all these series, 
obtained for different choices of the generators have in common, and this 
commonality is reflected through the notion of growth. 

The notion of growth is defined for every monotonous function and is an 
invariant notion for algebras and groups. In this section, we will introduce its 
simple properties, introduce types of growth such as polynomial, exponential, 
alternative (one of the two preceeding ones), as well as introduce notions of 
the Gel’fand-Kirillov dimension and superdimension. 

It is useful to &fine the notion of growth for a graph too, defining it 
as the growth of the number of pathes. It turns out that the growth of a 
finite graph is alternative and there is a suitable criterion of determining the 
growth. Several ways of matching an algebra with a graph of the same growth 
are considered at the end of the section. 
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5.2. The Growth. Gel’fand-Kiiillov Dimension. Superdimension. Let us 
start with the definition of the growth of a function. First of all, note that, 
instead of considering the function g(n) = dim Vn, it is more suitable to 
consider the function f(n) = dim(V + V2 + . . . + Vn), which turns out to 
be monotonous. Hence, we will be considering only monotonous functions 
f : N - W+. Let us define relations of (pre)order and equivalence on a set 
of such functions: f < g if and only if there exist natural numbers m and 
c > 0 such that f(n) < cg(mn), for all n E N; 

The equivalence class of f will be called the growth off and will be denoted 

by [fl- 
Natural operations of addition and multiplication and an order relation 

are introduced among the equivalence classes: 

ifI + I91 = if +91; ifI * bl = IfsI; 
IfI G k71 * f G 9. 

For example, [a*] = [P] > [no] > [no], for all a, b > 1, (Y > p 2 0. All the 
polynomials of the same degree d obviously have equal growth [&I, which 
we call polynomial of degree d. If [f] < [&I, for some d, then the growth 
of f is considered to be polynomial. The growth [2n] is called exponential. 
The growth which is either polynomial or exponential is called alternative. 
Non-alternative growth is also called intermediate. 

Example. The growth [m] is polynomial and the growth [efi] is in- 
termediate. 

In order to simplify manipulations with growth functions, the following 
simple claim will be used: 

Lemma. Let g(n) = hf(an + b) + c, for n 2 No, where a, h > 0. Then 

[fl = [d 
In order to introduce a uniform notion of growth for different algebraic 

objects, it is suitable to define it through an abstract formulation. 
Let A be a vector space and let K(A) b e a family of its finite-dimensional 

subspaces. We will say that a calibration is given on A, if for every V E K(A) 
there is an inclusion sequence of finite-dimensional subspaces 

v(l) 2 vt2) 5 W3) E . . . , Vcn) E K(A), 

satisfying the following condition: Vtk) C W(m) =S Vn E N V(kn) C IJV(~“). 
A calibrated space is called finitely generated if there exists a V E K(A) 
such that A = UT Vtn). In th’ 1s case, the set V will be called a generating 
set and its basis - the generators. We may associate the growth fvnction 
dv(n) = dim Vtn) with every V E K(A). 
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Theorem 1. The equivalence class [d”(n)] does not depend on the choice of 
the generating set; it is called the growth of the finitely generated calibrated 
space A and is denoted by r(A). 

Proof. If V, W are two generating sets, then, for some m, V(l) C Wtrn) 
holds, consequently 

Vln) c Wlrnn) + dv(n) < dw(mn) =S [dv(n)] 6 [dw(n)]. 

Analogously, [dw] 6 [dv] =S [dv] = [dw]. Cl 

Example 1. Let A be a finitely generated associative algebra. Set Vtn) = 
V + V2 +. . . + Vn, for every finite-dimensional space V (if A is an algebra with 
the unity, then set V cn) = K + V + V2 + . . . + Vn). Such a calibration defines 
the growth of the algebra. The notion of finite generation in a calibrated space 
has the natural meaning, i.e. coincides with the natural one, in this as well 
as in the following three examples. 

Example 2. Let L be a finitely generated Lie (super)algebra. The cali- 
bration V(l) = V, V(“+l) = Vtn) + [V(n),V] defines the growth of the Lie 
(super)algebra L. 

Example 3. Let M be a finitely generated right module, over a finitely 
generated algebra A. The calibration Vtn) = V* (KX)tn) (where X is the set 
of generators of A) defines the growth of the module. Obviously, the growth of 
a module does not depend on the choice of a generating set of the algebra X. 

Example 4. The growth of a finitely generated (semi)group is defined as 
the growth of its (semi)group algebra. 

Example 5. Let A be a space with graduation, for instance a graded alge- 
bra. Defining a calibration by the graduation V(“) = C;” Ak, independently 
of V, we define the growth of a graded space. If A is a finitely generated graded 
algebra, then it is not difficult to check that it coincides with the ordinary 
growth and, in particular, does not depend on the choice of a graduation. 

Growth is a cruder construction than the Hilbert series, but it is defined 
in a wider spectrum and, in many cases, exactly the growth influences the 
structure of an object. For instance, a particularly essential requirement is 
that of polynomial growth and we will find confirmation of this in the se- 
quel. Nevertheless, restricting to finitely generated objects turns out to be 
fairly unsuitable in some cases and in that case numerical characteristics, 
that turn out to be even cruder are introduced: The Gel’fand-Kirillov dimen- 
sion and superdimension. Let us define them first on the growth functions. 
Roughly speaking, the Gel’fand-Kirillov dimension is the degree of the poly- 
nomial growth whereas the superdimension is the degree of exponentiality 
(the superdimension of [en”] is CY). 

Definition. The Gel ‘fand-Kirillov dimension of the equivalence class [f] is 
defined to be 

I. Combinatorial and Asymptotic Methods in Algebra 85 

Dim [f] = n@a!$$ = inf{d ] [f] < [d]}. 

The superdimension of [f] is defined as 

DIM [f] = nFm ln;fn’ = inf{cl! ] [f] < [2n”]}. 

It is not difficult to see that these definitions do not depend on the choice 
off. 

The Gel ‘fand-Kirillov dimension of a calibrated space A is defined as 

Dim A = sup Dim [dv]. 
V&(A) 

(Another notation is GK-dim A.) 
Its superdimension is defined analogously: 

DIM A = sup DIM [dv]. 
VEIC(A) 

Taking infimums instead of supremums, the quantities Dim A DIM A can be ,- 
introduced. For instance, 

If A is a finitely generated calibrated space, then it is not difficult to see 
that Dim A = Dim r(A) and DIM A = DIM r(A). 

Example 1. The growth of a polynomial algebra in d generators is polyno- 
mial of degree d, hence 

Dim K(X] = d, DIM K[X] = 0. 

Example 2. The growth of a free algebra with d > 1 generators is expo- 
nential, 

r(K(X)) = [l + . . . + d”] = 
,jn+l - 1 [ 1 d-l 

= (27 =F- 

Dim K(X) = 00, DIM K(X) = 1. 

Theorem 2. Let A be either a finitely-generated associative or a Lie algebra, 
I its ideal and B its subalgebm. Then 

A) r(A/I) 6 r(A) and the equality holds for I # A andfinite-dimensional I. 
B) If B is finitely-generated, then r(A) > r(B) and the equality holds, if 

A is a finite6y generated B-module. 
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C) Previous inequalities and equalities are preserved for the superdimen- 
sion and the Gel’fand-Kirillov dimension even if we relinquish the condi- 
tion of finite generation of A and B. For instance Dim B < Dim A and 
Dim A = Dim B, if A is finitely generated as a B-module. 

Proof. The equalities are the only non-obvious part. If I is finite-dimen- 
sional, V E K(A), and v is the image under the natural homomorphism, 

then dim Vtn) < dirnVcn) + dim I and we can use the lemma. 
Assume now that A = x1 B + . . . + xpB, V E X(A). We can choose a U E 

K(B) such that V C CxiU, B = (V). For some k, we have Vx:j C cxjU(“), 
Vj = 1,2 ,..., p. Consequently, we can easily prove by induction that 

and consequently, 
b(n) < pdu(kn + (I- k)). 

It remains only to refer to the lemma. Cl 

corollary. 1) If an algebra contains a free two-generated subalgebm, then 
the growth of the algebra is exponential. 

2) The growth of an algebra equals to the growth of any of its subalgebms 
of finite index. 

3) The growth of a group equals to the growth of any of its subgroups of 
finite index. 

4) The growth of a free group with more than two generators is exponential 
(since the subalgebra generated by those generators is fwe). Thus an analogue 
of claim 1) holds for groups. 

For other properties of growth and dimensions Dim, DIM, see section 7. 

5.3. The Exponential Growth. Note that the exponential growth does not 
imply the existence of a free subalgebra or a subgroup. For groups, a coun- 
terexample is the Burnside group B(2,p), defined by two generators and the 
identity x* 3 1. For sufficiently large p its growth will be exponential (cf. 
Adyan, 1975), however, it is obvious that none of its subgroups is free. 

For algebras such an example may be found in 

Theorem. There exist nilalgebms of exponential growth. 

Proof. Let us prove, first of all, that every graded algebra with three gen- 
erators and one relation of every degree d 3 2 has exponential growth. In- 
deed, by Golod-Shafarevich theorem (3.5), its Hilbert series is not less than 
(1 - Hx + HR)-~, where HR = t2 + t3 + t4 + . . . is the generating func- 
tion of the set of generators. One of examples of such algebras is the algebra 
A = (x, y,z 1 xynz = 0; (n = O,l,. . . )). However, its set of defining re- 
lations is given by a combinatorially free set, thus, by Theorem 1 in 3.7, 
HA = (1 - Hx + HR)-~. Hence, in order to prove that all the algebras of 
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that class have the exponential growth, it suffices to convince ourselves that 
the algebra A has exponential growth. On the other hand, the algebra A 
contains a free subalgebra, generated by the elements y, z, since the algebra 
A/(x) is free (its G ro “b ner basis consists of one element x). 

It remains now to use the example of a nilalgebra, constructed in 3.6. I7 

It would be interesting to construct examples of infinite-dimensional nilal- 
gebras of the polynomial growth (if such exist). 

5.4. The Growth of a Series. Since the Hilbert series carries all the infor- 
mation on asymptotic behaviour of an algebra, it would be useful to know 
how are the properties of growth exactly reflected in the nature of properties 
of the sum H(t) of the series. It is useful not only for Hilbert and Poincare 
series, but also for the non-invariant Hilbert series of an arbitrary finitely 
presented algebra (recall that it can be defined as the generating function of 
the set of normal words) and for a given function of growth dv it is calculated 
as 

&dv(n) - dv(n - 1))t”. 
0 

Thus, let H = C a,tn be an arbitrary series with non-negative integer 
coefficients and let R = R(H) be its radius of convergence: 

R-l = lim 6. 
n-co 

The growth of the series will be called the equivalence class r(H) = [dH], 
where dH(n) = ao + . . . + a,. 

As we already pointed out, the growth of a finitely generated algebra is 
equal to the growth of its Hilbert series. We can analogously define the growth 
of a local ring and the growth of a finite-dimensional algebra as the growth 
of their Poincare series (cf. 1.8). In the latter case though, it would be more 
correct to speak of the growth of homology, in order not to confuse that 
growth with its growth as an algebra (which is obviously the identity), but 
since in this case we will be interested in the growth of the homology, we 
will allow ourselves this inaccuracy. It is not difficult to obtain the following 
simple criterion. 

Theorem 1. The growth H is exponential w 0 < R(H) < 1. The growth 
H is polynomial ++ either R > 1 and H(t) is a polynomial or R = 1 and 
the point t = 1 is a pole of finite order of the finction H(t). 

Corollary. If H(t) is a rational finction, then the growth r(H) is alterna- 
tive. 

Remark. If H is a rational function and has a pole of the k-th order for 
t = 1, then Dim [r(H)] = k. In the general case this is not so, since the 
Gel’fand-Kirillov dimension is not necessarily always an integer (cf. 7.4). 
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Let us state now an important example of an intermediate growth. 

Theorem 2. Let P(n) be a partition function, defined as the number of 
different representations of the number n in the form of naturul summands. 
Its generating function Hp = 1 +CT P(n)t” is equal to ny(l- ti)-l and its 
superdimension equals l/2, thus the growth r(Hp) is intermediate (cf. 7.8). 

Proof. Both the formula and the asymptotics 

may be found in (Hall, 1967). Cl 

5.5. The Growth of the Universal Enveloping Algebra. Let us assume first 
of all that a Lie superalgebra L is graded and that HL = c a,tn is its Hilbert 
series (recall that if L = @r L,, then a, = dim Ln). 

Theorem 1. The Hilbert series of of the universal enveloping superalgebra 
A = U(L) is calculated by the formula 

HA(t) = fi (1+ t2i-1)a2i-1 
1 (1 _ pip . 

Proof. Let {ej} be a basis of the even part and {fk} a basis of the odd 
part. By the PoincarBBirkhoff-Witt theorem, U(L) is isomorphic to a free 
commutative superalgebra, as a graded space (cf. 1.4, 1.3). The latter in turn 
is isomorphic to the tensor product of the polynomial algebra K[. . . ej . . .] 
and the exterior algebra AK[. . . fk . . . ] with the corresponding gradation. It 
remains to refer to both theorems in 3.3. cl 

Remark. If L is an ordinary Lie algebra (without superstructure), then the 
Hilbert series for U(L) is found by the following formula: 

00 

HA(t) = n(l - ti)-Y 

It is easy to derive this formula from the previous, by simply doubling all the 
powers of the generators. 

We note also that the formulas are valid also in the non-graded case, for 
a non-invariantly defined Hilbert series. .I 

Theorem 2. If L is finite-dimensional, then r(A) = [&I, where the degree 
of polynomiality d of the growth equals the dimension of the even part. If the 
even part & is infinite-dimensional, then DIM A >, B. The algebra L has the 
exponential growth if and only if A = U(L) has the exponential growth. 
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Proof. The finite-dimensional case immediately follows from the previous 
theorem and the remark in 5.4. By Theorem 2 in 5.4 and the formula for a 
Lie algebra, we have DIM U(M) > l/2, if L = & is an infinite-dimensional 
Lie algebra in the natural graduation. In the general case, not so complicated 
arguments connected with the use of the lemma in 5.2 are needed. Somewhat 
more complex is the claim on the exponentiality of the growth and the cor- 
responding calculations may be found in (Ufnarovskij, 1978) and (Babenko, 
1980). q 

Remark. It is possible to establish a stronger inequality for infinite-dimen- 
sional Lie algebras: DIM L 2 (Y + DIMA > y (Ufnarovskij, 1978). An 
interesting question is whether the equality always holds. In any case, this is 
so in the following example. 

Example. Let L1 be a Lie algebra with a basis ei (i = 1,2,. . . ) and multi- 
plication [eiej] = (i - j)ei+j. Then Hu(L1) is the generating function of the 
partition number (5.4), therefore 

DIM U(L1) = l/2. 

Theorem 3. Let A be an (associative) superalgebra, generated by a finite 
set X U Y and let B and C be its subalgebras generated by the sets X and Y 
respectively. If [X,Y] C B, then r(A) < r(B)r(C) (Ufnarovskij, 1978). 

Corollary. Let L be a finitely generated solvable Lie superalgebra. If for 
every commutator z of a suficiently large length the derivation adz : x --f [zx] 
is algebraic, then L is finite-dimensional. 

Proof. Recall that commutative superalgebras are solvable of degree 1 and 
that L is solvable of degree m + 1 w [L, L] is solvable of degree m. Let 
A be the universal enveloping algebra for L. If x is any generator, and Y 
the rest of the generators, then let B be the subalgebra generated by the 
set lJg(ad z)~(Y). Th en, for a sufficiently large T, we have [B,x] c B. Doing 
exactly the same with other generators we fall into the commutator [L, L] 
and we can prove that A has the polynomial growth by induction on the 
degree of solvability. L is finite-dimensional, by Theorem 2. cl 

5.6. The Growth of Graphs. By a graph we will mean an oriented graph 
where the loops are allowed (a vertex can be joined with itself by an edge) 
as well as multiple edges (several edges may go from one vertex to another). 
A path of length n in a graph is a sequence of vertices vi and the edges cj: 
VO, el, 211, e2,. . . , v, such that, for every edge ej, its ending is the vertex Vj 
and its beginning is the vertex vj-1. A path is called cyclic if its last vertex 
v, coincides with the first. If, in addition, all the edges, except the first and 
the last, are mutually different, then we can consider a subgraph made up of 
the vertices vi and the edges ej, called a cycle. A path is called a chain, if all 
the vertices vi are different. 
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If G is a finite graph, then the growth of the graph G is the equivalence 
chss r(G) = [&I, h w ere dG(n) is equal to the number of different paths in 
the graph, of lengths not greater that n. 

Theorem 1. The growth of every finite graph is alternative. It is exponential 
if and only if there are two different cycles in the graph with a common vertex. 
Otherwise it is polynomial of degree d, where d is the maximal possible number 
of cycles, through which one path can pass (in other words it is the maximal 
possible number of cycles embedded in a subgmph of the fom 0 -+ 0 - 
. . . - () - 0, where the circles denote cycles and arrows denote chains). 

Proof. If there are two intersecting cycles, then, to every of 2m collections 
ala2.. . a, of zeros and ones, we can associate a path obtained as the union 
of the paths C,;, where Ce is a cyclical path along the first cycle and Ci 
- along the second. Thus the total number of paths grows exponentially. If 
there are no such intersecting cycles, then the matter reduces to induction 
on the number of edges for the following reason: if there exist two edges ei 
and e2 such that none of the paths pass through both of them, then r(G) = 
r(G \ 4 + r(G \ 4. F or more details cf. (Ufnarovskij, 1982). Rationality of 
the generating function of the number of paths has been also proved there. 

cl 

Example. 

The growth of the graph is exponential. If the edge b is removed, then the 
growth will become polynomial of degree 2, and if a is removed, then the 
degree will be 1. 

Calculating the growth of a finite graph is easy to be made algorithmic 
(5.9). We note that exactly the same term of the growth of a graph is used in 
a perfectly different situation, which will be considered later, in connection 
with the growth of groups (6.7). 

5.7. Graphs for Normal Words. Let F be the set of obstructions of an 
algebra A, generated by a finite set X (3.6); for instance we may assume that 
A = (X 1 F) is a monomial algebra. Recall that a basis of A is the set N of 
normal words (in a difference from section 2, it will be suitable now to denote 
in this way the set of words itself, rather than its linear hull), i.e. words with 
the property that they do not contain elements from F as a subword. Let 
us also introduce the following notation: If f and g are words, then f 4 g 
denotes that f is a proper beginning of g and 

f1g - (f 4g)V(f =g). 
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Let V be an arbitrary set of non-empty normal words. Let us construct a 
graph G(V) whose vertices are words from V and the edge f - g is placed 
if and only if fg E N and there is no v E V such that f 4 VA fg. 

Example. F = (a3, ab2,a2bF, V = {a, b,a”, b21. . _ 

u-8 
71 . 

w= Y t 
2’ \‘2 0-O 

v 

Theorem 1. Let the set V contains X and satisfies the property that for 
every path ve ---t vi t . . . + v, the word f = vevi . . . v,, is normal and if 
vl f, v E V, then v~vo. Then there exists a bijective correspondence between 
the paths in the graph (counting every vertex as a path of length 0) and the 
set of normal words. In particular, if V is finite, then r(A) = r(G(V)). 

The main example is given by 

Theorem 2. Let V be the set of all proper endings of obstructions, united 
with the set of generators X. Then V satisfies the conditions of Theorem 1. 

Proof. Assume that the word f = vsvi . , . v, is not normal. Then it con- 
tains an obstruction. Taking Ic to be the minimal index such that vevr . . . vk 
contains an obstruction and using the fact that every ending of the obstruc- 
tion lies in V, we obtain that vk-1 --f vk is impossible. The second condition 
of Theorem 1 is proved analogously. 0 

Examvle. F = {x3. ux2J. X = fx, ul =S 

X--G 
v  = hY,X2h 9(V) = “2 . 

XL 

The growth is exponential. The example considered above shows applicability 
of Theorem 1 to other cases too. The growth there is polynomial of degree 2. 
The graph from Theorem 2 would, in this case, have 5 vertices. 

In the case of finite set of words we can also construct another graph. Let 
m + 1 be the maximum of lengths of words in F and let W be the set of 
normal words of length m. Let us construct a graph G whose vertices are the 
elements of W and the edge f -+ g is placed if and only if there exist words 
x, y E X, such that 

fx = yg E N. 

Theorem 3. There is a bijective correspondence between the set of normal 
words of length 2 m and the paths in the graph. In particular, r(A) = r(G). 

Proof. To the normal word f = xi1 . . . xit, t 2 m, we assign the path cor- 
responding to the vertices xilxia . . . xi,, , xizxig . . . xi,+, , xi3xi4.. . xi,+a,. . . , 
Xi,-n,+l . * *Xi*- Cl 
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A = b,Y I XYX,Y2, YX2). 

s-l 

&(A) = 
x2. xy 

/” 
YX 

Corollary. Growth of an algebra with a finite Grtibner basis is alternative. 

We will generalize this corollary somewhat later, introducing one more 
type of graph (5.10). 

5.8. Transformations of Graphs. Formulas for Normal Words. Calculation 
of the Hilbert Series. Let G be one of the graphs considered above. We have 
already seen in 3.6 that for graphs, an operation of pasting of vertices is 
suitable. We will call two vertices to be similar, if for every vertex v, the 
following holds: the number of edges going out from the first vertex to v 
equals to the number of edges going out from the second vertex to v and the 
same holds for the incoming edges. All the similar vertices may be pasted 
into one. The newly formed vertex will have the same connections with other 
vertices as each of the similar ones and it will be joined with itself by the 
number of edges equal to the number of edges each of the similar vertices 
is connected with itself (or equivalently, with another vertex similar to it). 
It makes sense to mark the new vertex by the union of the sets of markings 
placed at the pasted vertices, so that in the new graph - the pasted graph c, 
not only words are placed by the vertices, but possibly also a set of words. 
We have seen an example of pasting in 3.6. Let us call a vertex of a graph 
last, if there is no edge coming out of it and the-last-but-one vertex if all the 
edges coming out of it terminate in last vertices. A rather useful operation 
of eliminating the-last-but-one vertices is as follows: if H is such a vertex and 
H - Hi are all the edges beginning with it, then the operation consists of 
elimination of all these edges and replacement of the mark for that vertex 
by H U (Ui HHi). After this, the vertex will itself become last. In reality 
this operation may be reduced to pasting and the operation of removal of an 
edge. For the latter, we need a new operation *, defined on the set of words. 
If H is a set of words, set H* = UT Hn. For instance, f * consists of all the 
powers of f and X* is the whole set of non-empty words. First, let us define 
an operation of removing a loop in a vertex denoted by H. It simply consists 
of erasing that loop and replacing the mark of the vertex by H*. In order 
to remove the edge HI - Hz we need to erase that edge and, at the same 
time add a new vertex. This vertex is marked by (HI Hz)*, if Hz - HI 
and HI Hz, in the opposite case. Edges from any vertex H come into the new 
vertex if and only if they come into HI. Analogously, an edge comes into H 
from the new vertex, if and only if H2 - H. 

If after several transformations we arrive at a finite graph, we then may 
use the following theorem. 
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Theorem 1. Let G be a finite graph obtained from G(V) by the aforemen- 
tioned transformations. Then there exists a formula expressing the whole set 
of normal words N through the sets marking the vertices of the graph by the 
operations of union, multiplication and *. 

Proof. First we get rid of the loops, then we get rid of the cycles by re- 
moving the edges from the longest cycles. Removing the-last-but-one vertices 
we leave only the isolated vertices. Pasting them into one we get the desired 
formula. 0 

Example. Let X = {x, y}; F = {y2, yz2}. The original graph constructed 
according to Theorem 2 from 5.7 is as follows: 

After transforming it we obtain 

Consequently, the formula for normal words turns into the following for- 
mula after several transformations (taking into account 1) 

(1 u y u (x2)* u (x2)*y)(l u x u (xy)* u (xy)*z). 

The graph obtained after several transformations, does not necessarily 
have the same growth as the algebra. Nevertheless, it carries all the informa- 
tion both about the growth as well as the Hilbert series. 

Let us introduce, just like in 3.7, a matrix M, enumerated by the vertices 
of the graph. If p is the number of edges from the vertex Gi, into the vertex 
Gj, then we set mGiGi = ~HG,, where HG,~ is the generating function of the 
set placed at the vertex Gj. 

Let vc be the row-vector of generating functions, corresponding to the sets 
at the vertices of the graph and placed in the same order as in the matrix M. 
Let v, = vgMn and let H, be the sum of all the coordinates of the vector 
v,. An easy induction shows that H, is the generating function of the set of 
normal,words, corresponding to the paths of length n in the original graph 
(constructed according to Theorem 1). Therefore 
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(camp. with formula (8) from 3.7). An analogue of Theorem 2 of the same 
section holds too: 

Theorem 2. Let the matrix M be algebraic over K(t) (it is always the case 
if the graph is finite): C,” aiMi = 0. Set 

bo = ao+al+az + . . .+ak, 

bI = al+a2 + . . .+ak, 

. . . . . . . . . . . . . . . . . . . . . . . . . . 

bk = ale. 

Then 

Example. X = {x, y}, Ix] = 2, ]y] = 1, F = {xynx I n 2 0). 

if7 =;- {y”x 1 n > 0). 

M= fl 

, since 

t2 
H{,,,z)=t2+t3+...=-. 

1-t 

M2 - tM = 0 =+ a0 = 0, al = -t, a2 = 1. 

bo=bI=l-t, b2=1; Ho=t+A 
t 

=Gt’ 

q=voM= (,,.&,O) =+HI=t2+&=A. 

(1 - t)HA = (1 - t) + (1 - t)& + 1. A +- HA = ‘(~~~)~. 

There is a much easier way: HA is the sum of 1 and all the coordinates of 
vo(E - M)-l. 

5.9. An Algorithm for Calculating the Growth of an Algebra. In this sec- 
tion we give a machine realizable algorithm for computation of the growth of 
an algebra by any of its graphs (taking into account possible pastings of the 
vertices); it resembles the process of graph transformation. We will assume 
that only the incidence matrix T is given, where T(i,j) = k _ there are 
exactly k edges going from vertex i into the vertex j. In addition, we will 

I. Combinatorial and Asymptotic Methods in Algebra 95 

assume that, to every vertex, its growth r(i) has been assigned. For technical 
reasons, it will be suitable to single out the identity growth (11, in the case 
when there is only one word at the vertex, as well as a constant growth [cl, 
when the vertex has finitely many words, greater than 1. The operations of 
multiplication and addition are obvious, we note only that [l] + [l] = [c]. 

It is not difficult now to construct an algorithm for computation of the 
growth, by complying with the following rules: 

1) If T = 0, then the growth of the algebra equals CT(~). 
2) If T(i, i) > 1 or T(i, i) = 1 and r(i) > [l], then the growth of the algebra 

is exponential. 
3) If T(i, i) = 1 and r(i) = [l], then let T(i, i) = 0 and r(i) = [n] (polyno- 

mial, of the first degree). 
4) If the vertex i is the-last-but-one ( _ the i-th row is non-zero, but 

the i-th row in the matrix T2 is zero), then the i-th row is replaced by the 
zero row and the growth r(i) is replaced by r(i) Cj T(i, j)r(j). 

5) If there are no the-last-but-one vertices, but T # 0, then there must 
exist a cycle ii --f is + . .. ---) il, --f ii and we may replace the row ir by 
the sum of all k, setting all other (k - 1) rows to be equal to zero. Then an 
analogous process should be applied to the columns and taking away (k - 1) 
from T(il, ir), immediately go to 2) with ii = i, setting r(i) = nj r(ij). As a 
matter of fact, this is contraction of a cycle into a point with the replacement 
of the growth of the latter. 

It is clear that it is more effective to look at once for a cycle, transforming 
along the way the-last-but-one vertices coming across into the last vertices. 

Example. 

5.10. Regular Languages. Automaton Algebras. Let us call a set of words 
in a finite alphabet X a regular set (or a language) if it has been obtained 
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with the aid of finite number of operations of union, multiplication and * 
(recall that G* = UT Gn, for every set of words G), from a finite collection 
of words. According to Theorem 1 from 5.8, if there are regular sets at the 
vertices of a finite graph obtained by pastings in a graph of normal words, 
then the set of normal words will be regular too. For instance, it is trivially 
going to be the case when the set of obstructions F is finite. We would like 
to generalize this fact. To this end, we turn to the theory of automata. 

Definition. A finite automaton is an oriented graph (see 5.6) where two 
sets of vertices (possibly intersecting), called beginning and ending, have been 
singled out, and every edge has been marked by a letter from a finite alphabet 
X. An automaton is called a determined automaton, if there is only one 
beginning vertex and, at every vertex, for every letter, there exists a unique 
edge beginning with that vertex and marked by that letter. The language 
defined by an automaton consists of the set of all the words formed by reading 
through a path from any beginning vertex to any final vertex. 

Example. Both of the represented automatons 
y_ 

-o- 

Yt Ii 
&O 

Y 
o-o- Jy Y = Y 

03s 
0 
Y 

define the same language: x U z(yz)*, and in addition, the second automaton 
is determined, but the first is not. The initial vertices are denoted by the 
symbol - and in the ending vertices, the circles have been shaded. 

In the automata theory the following is a well known 

Theorem 1. The language defined by an automaton is regular. Every regular 
language may be defined by a determined automaton (Salomaa, 1981). 

This theorem (also called Kleene’s theorem) is a powerful instrument in 
proving regularity. Let us introduce the following notation before we start 
giving examples of its applications. For every set of words F, we define its 
subset L(F) consisting of exactly those words of F having no proper be- 
ginning as a word in F. It is not difficult to see that, for every word in F, 
there exists a unique word in L(F) which is its beginning. If we analogously 
consider the endings of F, then we can consider the set R(F). 

Lemma. If the set F is regular, then the following sets will be regular too: 

a> L(F), R(F), 
b) the complement S \ F to the whole set of words S, 
c) the intersection F n G with every regular set G. 

Proof. Let I’ be a determined automaton, defining F. If we declare all its 
final vertices non-final, and conversely, non-final to be final, then the resulting 
automaton will define the complement of F. If, on the other hand, we remove 

all the edges coming out of the final vertices, then the resulting automaton 
will obviously define L(F). The claim about R(F) follows from the fact that 
the language obtained from a regular language by inverting all the words in 
the opposite order will obviously likewise be regular. Finally, the intersection 
is not difficult to get using complements and unions. q 

Definition. An algebra A with the regular set of normal words will be 
called an automaton algebra. The main source of such algebras is 

Theorem 2. An algebra is automaton if and only if the set of its obstruc- 
tions is regular. 

Proof If F is the set of obstructions, then the set of normal words is 
determined by the formula N = S \ SFS. Conversely, knowing the set of 
normal words, it is not difficult to find the set of obstructions F by the 
formula F = R(L(S \ N)) (cf. 3.6). It remains to use the lemma and the 
obvious fact that the set of all words is regular. q 

Theorem 3. To every automaton algebra A there corresponds a graph - 
automaton G(A) with a unique initial vertex and all the others -final vertices, 
such that there is a bijective correspondence between the set of normal words 
and the paths in the graph, starting from the initial vertex. In particular, 
r(A) = r(G(A)) and the Hilbert series of the algebra A is rational. 

Proof. Let us consider the determined automaton defining the set of normal 
words. The desired graph is obtained after discarding all the non-final vertices 
(excluding the initial). Cl 

Example. N = {z*y* U yz* U x* U y*}. The automaton defining the set of 
normal words is obtained from the determined automaton: 

Corollary. An automaton algebra has exponential growth if and only if it 
contains a free subalgebra with two generators. 

Proof. A free subalgebra is generated by normal words, formed by the 
intersecting cycles. q 

We point out that not every algebra of polynomial growth of the first 
degree is an automaton. The following algebra is a simple example: 

(x,y)x2,yxy,xy2“x;(n=0,1 ,... )). 

It is much more plausible that it is the case for a finitely presented algebra 
of the polynomial growth of the first degree. However, it is an open question, 

Examples of automaton algebras are given by the following 



98 V. A. Ufnarovskij 

Theorem 4. The following finitely generated algebras are automatons (Uf- 
narovskij, 1989a) 

A) commutative algebras; 
B) algebras defined by not more than two quadratic relations; 
C) algebras for which all the defining relations have the form [xixj] = 0 

for some pairs of generators. 

Corollary. The Gel ‘fand-Kirillov dimension of a commutative finitely gen- 
erated algebra is an integer (coinciding with its Krull dimension), and the 
Hilbert series is a rational function. 

5.11. Comments. The notion of growth was introduced by Milnor (Mil- 
nor, 1968b), who assumed that the growth of a group was always alternative. 
Although it turned out not to be the case (6.6), the question nevertheless 
remains open for finitely presented groups. We note that often enough the 
growth is defined somewhat differently, by f < g _ f(n) < g(mn), for 
some m and every n. In essence the difference is only that in this case all 
the finite-dimensional algebras have a different growth. The Gel’fand-Kirillov 
dimension was introduced in (Gelfand, Kirillov, 1966) and superdimension 
appeared in (Borho, Kraft, 1976) and we will present its principal moments 
in 7.7. In questions connected with graphs, we have followed (Ufnarovskij, 
1989a). The theory of formal languages, apart from its specific methods is 
at present very actively using purely algebraic constructions. A specially in- 
teresting way of defining languages is as the solutions of equations in for- 
mal series in non-commuting variables. The details of this approach may be 
found in (Arbib, 1968) and for the initial familiarity with the theory of for- 
mal languages it would be best to consult the already cited book by Salomaa 
(Salomaa, 1981). A book by I. Cannon, D. Epstein, D. Holt, M. Pterson, W. 
Thurston: Word Processing and Group Theory. Math. Inst. Univ. Warwick, 
Coventry, England 1991, provides a deep study in the direction of automatic 
groups. The concept of a path algebra should also be mentioned (Green, 
1983); it appears that it plays an important role in representation theory. 

$6. Combinatorial Lemmas and 
Their Applications to Questions of Nilpotency. 

The Growth of Groups 

6.1. Introduction. Studying the combinatorics of words is a problem that 
arises in various branches of mathematics: these are algebra, as well as dy- 
namical systems, the coding theory as well as the theory of formal languages, 
we hardly touched upon in the previous section. Not having a possibility of 
dwelling upon a sufficiently detailed spectrum of various methods and devices 
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in this section, we will put before us a rather more modest goal: to gather 
in one place a number of sufficiently subtle combinatorial facts on properties 
of words, that were successfully applied to the algebraic problems (the cor- 
responding results on nilpotency will also be stated in this or in one of the 
sections that follow). 

Thus, the main object of our attention will be a set of all nonempty words 
S in a finite alphabet X. We may view S as a free semigroup (together with 
the unity 1) as well as a basis of the free algebra K(X). 

It will be also convenient for us to deal with infinite words. In addition, 
we may consider words infinite on both sides, as well as the one-sided ones, 
expanding only to the right. In order to differentiate between these two cases, 
the former will be exactly called infinite words, and latter will be called 
sequences. A formal definition is as follows: infinite words are the mappings 
f : Z --t X and the sequences of letters are the mappings f : M - X. For 
instance, . . . xyzxyzxyzx . . . is an infinite word. If we cut it at any place, then 
the right half will be a sequence. A tipical example of an infinite word is the 
word f”, where f is an ordinary word. For instance, the infinite word above 
may be written down as (xyz)“. In the majority of the cases, the infinite 
words will be used for replacing a formulation of the type “ . . . there exists an 
iV such that, for every word of length greater than N . . . ” by an equivalent, 
shorter one: “ . . . for every infinite word . . . “. In all the concrete cases, the 
reader will be able to translate by himself a corresponding formulation from 
one form to another and vice versa. Let us point out again that even the 
infinite words depend only on a finite number of letters. We will also tacitly 
assume that the term “subword” means a non-empty finite subword, even 
when we talk about infinite words. The length of the word f will always be 
denoted by 1 f I. 

We will also discuss problems on the growth of groups, at the end of the 
section. 

6.2. The Avoidable Words. We will show in the first place that many 
questions about the subwords of finite words may be translated into the 
language of infinite words. The following is obvious: 

Theorem 1. For every infinite set F of words, there exists an infinite word, 
such that its every subword is a subword of one of the words in F. 

This theorem can be considerably strengthened. Following (Furstenberg, 
1981), we will call an infinite word w uniformly recurrent, if, for every of its 
subwords u, there exists a number 1 = 1(u), such that u is contained in every 
subword of w of length 1. The following is an easy consequence derived from 
(Furstenberg, 1981): 

Theorem 2. For every infinite word f, there exists a uniformly recurrent 
(infinite) word w, all of whose subwords are subwords off. 
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Such a uniform improvement of words allows for simplifications of some of 
the combinatorial arguments. 

Definition. The value of a word f is any word obtained from f by substi- 
tution of its letters by arbitrary words (we emphasize: non-empty). In other 
words, the value off is the image of f under a homomorphism of a free semi- 
group 5’ into another arbitrary semigroup. The word f is called avoidable if 
there exists an infinite word none of whose subwords is a value of f. 

An example of an avoidable word is the word x3. The corresponding infinite 
word has been constructed independently by several authors: Thue, Arshon, 
Morse. Its simplest definition is as follows: Let fl = z and f,,+l = fnTn, 
where f, is obtained from fn by substituting z by y and y by 2. For example, 
f2 = zy, f3 = zyys, f4 = xyyxyxxy etc. The corresponding infinite word 
from Theorem 1 will be exactly the desired one. The limiting sequence 

foe = xyyx yx xy yxxy xyyxy . . . 

is called the Thue sequence (it is sometimes called the Arshon sequence and 
sometimes the Morse sequence). It has even a stronger property: it does not 
contain subwords of the form g2z, where z is the first letter of g. 

An example of a non-avoidable word is xyx, since, in every infinite word, 
there are recurring subwords (for instance letters). Actually, even a stronger 
statement holds: 

Theorem 3 (Dejean, 1972). Every word of length 2 39 of three letters 
contains a subword of the form fgf, such that 191 < 41 f I. On the other hand, 
there exists an infinite word in three letters, such that for every of its subwords 
of the form fgf the inequality 191 2 4 If) holds. 

The criterion of avoidability of a word issufficiently simple. We define by 
induction the following word in n letters: Br = al, &+r = &x,2,,. 

Theorem 4. The word f of n letters is avoidable if and only if none of its 
values is a subword -of the word Z,. 

This theorem has been borrowed from the paper of A.I. Zimin (Zimin, 
1982), where another criterion of avoidability can be found too. 

Example. The word yxzyx is non-avoidable. The corresponding value in 
Z3 = ~1~2~1~3~1~2~1 is ~1~2(~1~3)~1~2. On the contrary, the word x2 is 
avoidable. 

It is easy to obtain the corresponding sequence from the Thue sequence 
(Salomaa, 1981). 

The essence of the following famous van-der-Waerden theorem is in un- 
avoidability of a finite arithmetic sequence of same letters. 

Theorem 5. For every natural n, in every infinite word, there exist n equal 
letters spaced equally apart from each other. 
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6.3. Comparison and Equivalency of Words. Periodic and Regular Words. 
This section is closely connected with 2.8, where the reader should find all the 
necessary definitions. First of all, we discuss the commutativity questions. 

Theorem 1. Let f and g be non-empty words. The following conditions are 
equivalent: 

(i) f and g are equivalent (recall f N g u fg = gf). 
(ii) fk = gn for some powers k, n > 0. 

(iii) f and g are powers of the same element. 
(iv) The subalgebra generated by f and g in the free algebra K(X) is not 

isomorphic to the free algebra of two variables K(x, y) (an analogous 
statement is clearly valid for semigroups too). 

The proof goes by induction on the sum of the lengths If 1 + 191, without 
special complications. The item (iv) is somewhat more difficult, but all the 
details may be found in (Cohn, 1971), applicable also to a more general 
situation. 

Recall that, in 2.8 we have considered an extension of the partial lexico- 
graphic order > to the order D: f D g u fk > gn, for some k, n > 0. Let 
us define the symbol (f, g) by setting 

(f,g) = 

0, iff “9, 

1, iff Dg, 
-1, iffag. 

Let a and b be two non-equivalent words. By Theorem 1, they generate a 
free subsemigroup in S. Assume that a new lexicographic order >’ has been 
defined on this semigroup, such that a >’ b. This order may be extended in 
exactly the same way to the order D’. How are the orders D and D’ related? 
We introduce the corresponding symbol: 

0, if f N g or a N b, 

1, if f D’g, 

-1, if f a’g. 

It turns out that the following theorem of invariance holds. 

Theorem 2. Let f and g be the elements of the semigroup generated by a 
and b. Then 

(f,g) = (2) (a,b). 
> 

Example. Since ab >’ ba, then (ab, ba) = (9) . (a, b) = (a, b), which 

permitted another definition of D in 2.8. 

As another example we state the following 
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Corollary. The word fg is always between the words f and g in the sense 
of the order D. 

Proof. We may assume that f and g are not equivalent. Then 

(fS,fHfS,S) = 
w e> 

. (f,9>2 = (-NW) = -1, 

and this implies the desired claim. cl 

Theorems l-4 in 2.8 have been proved exactly on the basis of the Invari- 
ance theorem. Its another application may be found in (Ufnarovskij, 1985), 
where the following Independence theorem has been proved: 

Theorem 3. Let V be a module over a free algebra U. Let v E V be a 
non-zero vector and let f = xilxia . . . xi,, be a word such that v * f # 0, but 
v * h = 0, for every h > f. If all the subwords off act as nilpotent operators 
in V, then the vectors v, v * xi,, v * xi1 xia, . . . , v * f arc linearly independent. 
(The non-trivial moment consists in the fact that if we do not choose the very 
last word, then the linear independence may be lost.) In case V = A = U/I, 
v = 1, we can say more: all subwords off are independent (as elements of 

3. 

We now go on to the properties of periodicity. The following is easily 
proven by induction: 

Theorem 4. Let f = gh be a word such that the word h is at the same time 
its beginning. If 191 < t, then f = 9”s. 

Theorem 5. If f is a non-periodic word, then there is a uniquely defined 
representation f = ab, where b is non-empty and ba is a regular word. 

Proof. If f is regular, then f = b and the uniqueness follows from Theorem 
2 in 2.8. Otherwise f = gh, according to Theorem 3 from 2.8, where either 
gahorg- h. The latter case is impossible because of non-periodicity of 
f. Thus, by definition, f < hg and the case is closed after induction on the 
order < from above. cl 

Corollary. If f is a periodic word of period n (i.e. f = g*, for some word 
g), then f contains a subword of the form u”-l, where u is a regular word. 

Theorem 6. For all natural N and n, every infinite word contains either 
a regular subword of length greater than N, or contains the n-th power of a 
regular word. 

Proof. Let us assume that all the subwords of length greater than N are 
not regular. Then there are only finitely many different regular subwords, say 
L in number. Let f be any subword of length greater than nLN. According 
to Theorem 5 in 2.8, f = fi f2.. . fk, where fi$f29.. .gfk and fi are regular. 
Consequently, k > nL and there are n equal fi’s, thus there is a subword of 
the form fr. Cl 
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A further development of that theorem is the following 
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Theorem 7. For every natural n and k, every infinite word contains either 
an n-th power of a regular word or a subword of the form u~vluava . . . ukv+, 
where ui arc regular words and ur > us > a. ’ > Uk (some of the words vi 
may be empty). 

Recall that a word f is called n-decomposable if f can be represented in the 
form f = fif2...fn, where, for every non-identity permutation x we have 
f > f?r(l)f?r(2)* * * f+.). It is not difficult to check that in order to have that, 
it is necessary and sufficient that the condition fi D fa D . . . D fn is satisfied. 

Corollary. Every infinite word contains either an n-th degree of a regular 
word or a k-decomposable subword. 

A proof of Theorem 7 may be found in the original paper by E.I. Zel’manov, 
who generalized the corresponding proof of the Corollary by A.I. Shirshov (cf. 
(Shirshov, 1957) and (Zel’manov, 1989) respectively). The following result of 
Higman (Higman, 1957) can be proved by a variation of this technique. 

Theorem 8. Let f be a sequence, composed of the letters x1, x2,. . . ,xr-l 
(where p is a prime number). Then there exists either a beginning or a regular 
subword of the form xilxiz . . . xik, with the sum of the indices Cj ij divisible 

by P. 

Definition. Let us call a word a semiregular, if any of its ends is either 
lexicographically less than a or is the beginning of a. 

It is easy to see that the beginning of a semiregular word is also semiregu- 
lar. It is possible to verify the following fact too: a semiregular word, different 
from a power of the least letter, is the beginning of some regular word. 

Lemma. Every infinite word contains either the square of a semiregular 
word, or a subword of the form fgf, where g is regular and f is a semiregular 
word. 

Proof. Let us assume the opposite and let F be the corresponding coun- 
terexample. By Theorem 2 from 6.2, the word F may be assumed to be uni- 
formly recurrent. We will be led to a contradiction by the following elegant 
reasoning of Backelin. 

Since every subword in F appears infinitely many times, we can construct, 
by induction on n, an infinite sequence P such that its first n letters form a 
word a,, which is lexicographically greatest among all the subwords of F of 
length n. Note that, since all the subwords of P are also subwords of F, F 
is also uniformly recurrent and also does not contain subwords of the form 
f 2 and fgf, where g is regular and f is semiregular. In addition, by the 
construction, every beginning - the word a,, is a semiregular word, thus, 
in particular, P does not start with a square. This, by Theorem 4, means 
that no proper ending of p coincides with P and we can correctly assign to 
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every letter ti of the word F a number n = n(i) such that P is of the form 
F = ai-ltian.. . and such that n is maximal with this property (for the sake 
of definiteness, we assume that ac is an empty word). For example 

p = a b e c d b c a b e d b a c . . . 
n = 0 0 0 0 0 0 3 0 0 0 0 10 . . . . 

The numbers n(i) are unbounded because of uniform recurrence, therefore, 
if we underline all the letters ti, such that n(j) < n(i), for all j < i, then 
infinitely many letters ti will be underlined, with arbitrarily large values n(i). 
Since there are finitely many letters in the alphabet, one of the letters, say t, 
would be underlined infinitely many times, thus there would exist subwords 
ta,, with arbitrarily large number n. This means that all the subwords of 
the sequence G 4 tp are also subwords of F and, in particular, there are no 
subwords of the form fgf among them, where g is regular and f semiregular. 
Let t = ti be any underlined occurrence of t in p. Then G = tai-rta,(i) . . . . 
Since the letter t is regular, thus also a semiregular word, the word ai- 
cannot be regular. But we noted above that ai- was a semiregular word and 
therefore some of its proper endings b is also its beginning, i.e. b = aj, for 
some j < i. Since ti is underlined, j is smaller than n(i), thus anti) begins 
with aj = b. We have arrived at the subword btb and it remains to recall that 
b = aj is a semiregular word. This contradiction finishes the proof. 0 

Theorem 9. Every infinite word contains either the square of a regular word 
or a word of the form fgf, where f and g are regular words, as a subword. 

Proof. According to the lemma, there is a subword either of the form f 2 or 
of the form fgf, where f is semiregular and g is regular. If f is not regular, 
then some of its endings f’ coincides with its beginning, thus is semiregular 
too. But then ( f’)2 (respectively f’gf’) is a subword and induction on the 
length of f finishes the proof. 

6.4. Theorem on Height. Let V be a set of words in a finite alphabet X. We 
will say that the letter f has height k relative to V, if f = v:‘vz . . . VP, for 
some vi E V and k is the minimal number with that property. For instance, 
the word aabaabaab is of height 6 relative to the set {a, b} and of height 1 
with respect to the set {a2b} and does not have height relative to {a}. q 

Definition. The algebra A generated by the set X has a limited height 
over V, if every word f in A may be represented as a linear combination of 
words fi of the same composition with respect to the generators (i.e. Vx E 
X deg,f = deg,fJ, h w ere the heights of all the words fi, with respect to 
V, are bound by a constant h, which does not depend either on fi or on f. 

For instance, a finitely generated commutative algebra obviously has a 
bounded height over its generating set. A far reaching generalization of this 
fact is the following theorem of Shirshov on height (see the necessary defini- 
tions in 7.2). 
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Theorem 1. If an algebra A satisfies an identity of degree n, then it has a 
bounded height over the set of all the words of length less than n. 

The proof decomposes into several simple ideas. First of all, the identity 
may be considered multilinear, i.e. of the form 

where the sumation goes over all the non-identity permutations ?r (cf. 7.2). 
Thus every word containing an n-decomposable subword (see the previous 
section), may be expressed through lexicographically smaller ones. Therefore 
the problem reduces to showing that every word of sufficiently large height 
contains an n-decomposable subword. There are two ideas here. First of all, 
if u is a regular word of length greater than n, then u2n contains an n- 
decomposable subword (arbr) . . . (anbn), where every ai is obtained from u 
by a cyclic permutation of the letters. Secondly, if u and v are words of length 
smaller than n, where Iv1 < lu), but v is not a beginning of u, then one of the 
following two words 

(unvaiu)(un-lva2u2). . . (uvu,), 

(va1un-1)(uva2un-2)(u2va&m3). . . (un-hz,) 

is n-decomposable (depending on what is greater: u or v). 
It remains now to gather all these ideas into one with the aid of the corol- 

lary to Theorem 7 in 6.3, setting there k + n, n + 2n. For more details see 
the original paper by A.I. Shirshov (Shirshov, 1957), where the variants for 
the nonassociative algebras may be found. 

Corollary 1. A finitely generated PI-algebra (i.e. an algebra with a non- 
trivial identity) has a polynomial growth. 

Corollary 2. An algebraic PI-algebra with a finite number of generators is 
finite-dimensional (recall that “algebraic” means that every element is alge- 
braic, i.e. a root of an equation of one variable). 

We point out that without the identity, this is already not valid (3.5). A 
semigroup with the identity z2 E 0 (6.2) will not be finite either. Nevertheless, 
in the presence of the identity, the algebraic condition is necessary only for 
the words of the length less than n. Is it possible to replace n by a better 
estimate? I.P. Shestakov raised a hypothesis that, instead of the degree n of 
the identity in the conditions of Theorem 1, we may use the complexity of 
the algebra A (cf. 7.2). Since the latter does not exceed [$I, this estimate is 
more effective and the best one. The hypothesis turned out to be correct, and 
the reader may familiarize himself with three independent approaches to the 
proof through the papers (Belov, 1988), (Ufnarovskij, 1985) and (Chekanu, 
1988). For example, for nilalgebras, we may use the Independence theorem 
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from (6.3). As far as the theorem on height, we note one more result from 
(Belov, 1988): 

Theorem 2. Let A be a finitely-generated, graded associative algebra of 
complexity n and let M be its finite subset of elements homogeneous in every 
variable. If M generates A and if the factor-algebra A/I, mod an ideal I 
generated by the n-th degrees of elements of M, is nilpotent, then A is of 
bounded height over M (the definition of height is analogous to the one given 
earlier). 

It has been also shown there, that an alternative or a Jordan PI-algebra, 
with an identity of degree n has a bounded height over the set of all the words 
of length not greater than n2. 

6.5. Nilpotency. Sandwiches. Recall that a (not necessarily associative su- 
per)algebra is called nilpotent of index n, if every product of any n of its 
elements equals to zero. In the case of a Lie (super)algebra, it is sufficient 
that the left normalized commutators [[. . . [~i~z~~]zi~] . . . zi,], which we will 
shortly denote by [zil, ziz,. . . xi,], equal to zero. We note that the regular 
non-associative words (2.8) are not left normalized. 

Since we will be often interested in questions on nilpotency of ideals, which 
rarely turn out to be finitely generated as algebras, it will be suitable to 
introduce the following 

Definition. A (super)algebra A (not necessarily associative) is called locally 
nilpotent, if its every finitely generated subalgebra is nilpotent. In order to 
graduate this notion, we will call a nilpotent algebra globally nilpotent. 

If A is an associative nilalgebra (1.2), then we have seen in 3.5, that it 
does not have to be locally nilpotent, although local nilpotence holds from 
the theorem on height (6.4), in the presence of the identity. Global nilpotency 
may not hold as the example of an exterior algebra with countable number of 
variables shows. Nilpotency may be ensured by a very unexpected conditions 
(cf. for instance Theorem 3 in 7.4 and the following result of Higman (Higman, 
1957), based on a combinatorial Theorem 8 from 6.3): 

Theorem 1. Let A be an associative or a Lie algebra, with an automorphism 
q5, such that it does not leave j?ced any non-zero elements (automorphisms of 
this kind are called regular). If the order of 4 is a prime number p, then A 
is nilpotent (with the index 6 p - 1, in the associative case). 

The question of estimating above the nilpotency index of a Lie algebra is 
interesting. The exponential estimate above has been proved in a paper by 
V.A. Kreknin and AI. Kostrikin (Kreknin, Kostrikin, 1963). The hypothesis, 
that has been checked for p < 7, consists in the claim that the estimate equals 
to the lower estimate 9 , proved by Higman. They also proved in the same 
paper (Kreknin, Kostrikin, 1963) that, if a finite-dimensional Lie algebra L 
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over a field of characteristic p, has a regular automorphism 4, with the period 
q* < p (q is prime), then L is solvable. 

In a Lie (super)algebra the ordinary nil conditions are meaningless, there- 
fore, to every x E L, we associate a mapping ad x : L + L, defined by the 
rule y - [yx]. 

Definition. An element x E L is called ad-nilpotent, if (ad z)n = 0, for 
some n. A Lie algebra L where, for every x E L, (ad x)~ = 0 holds is called 
an Engel algebra (or an n-Engel algebra, if we want to specify the index n). 

One of the most important results, obtained in the recent time, is the 
following theorem proved by E.I. Zel’manov. 

Theorem 2. An Engel Lie algebra is locally nilpotent. 

Local nilpotency for the n-Engel Lie algebras of characteristic either greater 
than n or zero was first proved by Kostrikin,. who developed the method of 
sandwiches (cf. Kostrikin, 1986). 

We note that, for a characteristic not equal to two, the condition (ad x)~ = 
0 implies the condition (ad z)(ad y)(ad z) = 0, for all y E L. 

Definition. An element z in a Lie (super)algebra L is called a sandwich, if 
the following conditions are satisfied: (adz)2 = 0 and (adx)(ad y)(adz) = 0, 
for all y E L. 

It is easy to see that the commutator of two sandwiches is again a sand- 
wich. A considerably less trivial is the following fact, proved at first by 
A.I. Kostrikin for Engel Lie algebras and generalized by E.I. Zel’manov (cf. 
Zel’manov, Kostrikin, 1990): 

Theorem 3. A Lie (super)algebra generated by sanduriches is locally nilpo- 
tent. 

Proof. Let yi, . . . , yn be a finite set of sandwiches. It is necessary to prove 
that the associative algebra generated by the mapings xi = ad yi is nilpotent. 
By Theorem 9 in 6.3, there exists an N, such that every associative word of 
length N in the alphabet of n letters contains either a square of a regular 
word or a subword of the form f gf, where f and g are regular words. Let us 
prove that our associative algebra has the nilpotency index not greater than 
N. Indeed, in the opposite case there would exist a minimal word (in the 
lexicographic sense) F of length N, which is not equal to zero. Let fgf be a 
corresponding subword, where f is regular and g is either empty or regular. 
Then let us consider the regular nonassociative words f and 6. By Theorem 
6 in 2.8, because of minimality, 

F=...fgf--=...jijj . . . . 

On the other hand, since the commutators of sandwiches are also sandwiches, 
j is a sandwich and jgf = 0, thus F = 0. 0 
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An attempt to prove local nilpotency of an Engel algebra by the same 
means would require a hypothesis that, in Theorem 7 from 6.2, all the vi 
may be considered to be empty. This hypothesis is refuted however by fol- 
lowing example of A.D. Chanyshev. Let fn be an infinite set of words, where 
fr = a and fn+r is obtained from fn by substituting a by a2b and b by ab. For 
instance fz = a2b, fs = a2ba2bab. Then the infinite word, constructed accord- 
ing to Theorem 1 from 6.2 has the property that it does not contain cubes 
and subwords of the form ~1~2~3, where ur b u2 b us are regular words. It also 
does not contain the subwords of the form vrvzvsv4, where vrD2)z@s~v4 are 
regular. It is interesting however, that every infinite word contains a subword 
of the form ~1~2~3, where ~1~~2~~3 are regular. 

Nevertheless, the proof of Theorem 2 is based on combinatorial lemmas, 
although more virtuous. Roughly speaking, the main ideas of the proof of local 
nilpotency are the following. First of all, after factoring out mod maximal 
locally nilpotent ideal, we may assume that there are no locally nilpotent 
ideals. In particular, there is no center and we may go to the associative 
algebra of multiplications, generated by all the ad z and considering L to be 
embedded in it. For example, the fact that z E L is a sandwich is written 
down as x2 = 0 and xya: = 0 for z E L. This already simplifies the technical 
work and allows for the use of combinatorial reasoning. 

Secondly, if it is possible to find a homogeneous Lie polynomial, for in- 
stance a commutator, such that it is not identically equal to zero on L and 
such that each of its values is a sandwich, then in an algebraically closed field, 
everything reduces to Theorem 3, for the following holds: 

Theorem 4. Let f(x1,. . . ,xk) be a homogeneous Lie polynomial. If the 
ground field K is infinite, then the linear hull of the set of its values is an 
ideal in L. 

Proof. Let us consider, for the simplicity’s sake, the case of the (left normal- 
ized) commutator f = [xil, xiz, . . . , xit]. On one hand, since multiplication 
by an element is a differentiation, we have 

[f (al,. . . , ak), b] = f ([alb], aa,. . . ,ak) + . . . + f (al, a2,. . . , [a&]). 

On the other hand, for every X E K, the image of f contains the element 
f(ai+~alb,az+~a26,. . . ,aki-XC&b) = f(Ul,. . . ,ak)+X(f([alb],az,. . . ,ak)+ 
*. . + xf (al, aa,. . . , [akb])) + x2.. . The arguments connected with the Van 
der Monde’s determinant show that the hull of the image also contains the 
required linear part equal to [f (al, . . . , ok), b]. cl 

This scheme works indeed for the Engel index smaller than the character- 
istic of the field as well as for the zero characteristic; the construction of the 
corresponding polynomial may be found in (Kostrikin, 1986). In the general 
case, when the characteristic is greater than three, it is possible to construct 
a superpolynomial for which the entire associative algebra of multiplications 
is embeddable into the superalgebra by tensoring by an exterior algebra. 
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This super-trick, however, does not work for small characteristics, thus E.I. 
Zel’manov, the author of this approach, had considered another extension of 
the signature, at the expense of so called divided powers. 

The Engel identity (ad x)~ = 0 implies the linearized Engel identity 

C7&,,[YJ?T(l)r * *. x,(,)] = 0. The reverse implication does not hold for the 
characteristics less than n. Nevertheless, the following holds: 

Theorem 5. Assume that, in a Lie algebra L, the linearized Engel identity 
of degree n holds as well as that, for every commutator x of the generators, 
(adz)m = 0, for a fixed number m. Then L is locally nilpotent. 

The proof is based on reduction to Theorem 2. The basic idea is again 
in tensoring the associative envelope A, this time by the algebra E = (ti ] 
tf, titj -tjti) with an even number of variables. This tensoring also “improves 
the quality” of the algebra since the already present non-linearized Engel 
identity appears. An essential role is played here by Theorem 7 from 6.2. If 
f is a minimal word in the lexicographic sense, and 

. . . ‘,412117.‘2’,,2. . . uk . . . 

its subword fitting the conditions of that theorem, then let us consider the 
element a = C iii @I ti, where Gi are regular nonassociative words. Then a 
is not equal to zero and . . . avravza . . . a... # 0. On the other hand, it is 
possible to show that (aA)k = 0, for a sufficiently large k. This sketch is 
deciphered in more detail in (Zel’manov, 1989). 

Let us now discuss the problem of global nilpotency, in somewhat more 
detail. The situation is clear in the associative case. The example of truncated 
polynomials over Z,: (xi ] xy = O,zizj = zjzi) shows that global nilpotency 
may not exist even in the presence of the identity x” G 0. It turned out, 
however, that the question depends intrinsically on characteristics. 

Theorem 6. An associative algebra over a field of characteristic greater 
than n (or zero), satisfying the identity x” E 0, is nilpotent. 

This theorem has been proved first by Ya.S. Dubnov and V.K. Ivanov 
(Dubnov, Ivanov, 1943) and then independently reproved by Nagata and 
Higman. As for the nilpotency index, Yu.P. Razmyslov has shown that it 
does not exceed n2. On the other hand, E.N. Kuz’min has shown that, for a 
relatively-free algebra with the identity xn G 0 over the field.of characteristic 
zero, the nilpotency index is not smaller than 9 (Razmyslov, 1978), 
(Kuz’min, 1975). 

The picture for Lie algebras is similar, but more complicated. Over the 
field Z,, Yu.P. Razmyslov has constructed a non-nilpotent Lie algebra with 
the identity (ad x)P-” = 0, p 2 5 (cf. Razmyslov, 1971). On the other hand, 
for a field of characteristic zero, therefore also for characteristics much greater 
than n, the following non-trivial result of E.I. Zel’manov (Zel’manov, 1988) 
holds: 



110 V. A. Ufnarovskij 

Theorem 7. An n-Engel Lie algebra over a field of zero characteristic is 
globally nilpotent. 

Here too, the main moment turned out to be the use of the language of 
superalgebras. The reader is recommended to consult the paper (Zel’manov, 
1988), where he will also find results related to nonassociative algebras. 

At the end, we state one more result of A.D. Chanyshev, related to asso- 
ciative algebras. Let r be an arbitrary semigroup and let an algebra A be 
representable in the form of the sum (not necessarily direct) of its subspaces 

A = CgEr A,, where A,Ah C A+ In this situation we speak of graduation 
of A by the semigroup r. We have already used such graduations when the 
role of r was played by Zs, Z, Z+. Let us call the elements A, homogeneous. 

Theorem 8. Let a r-graded associative algebra A satisfy the following con- 
ditions: 

a) a non-trivial identity of degree n holds in A, 
b) for every homogeneous element a, am = 0 holds, 
c) the algebra A is generated by a finite number 1 of its components A,, 
d) the characteristic of the ground field is zero. 

Then A is globally nilpotent, where the nilpotency index is bounded above 
by a function depending on n, m and 1, but is not dependent on the form of 
the algebra A. 

6.6. Nilpotency and Growth in Groups. Recall that the commutator [g, h] 
of the elements g and h is defined by the equality [g, h] = g-l h-‘gh. If H 
and K are subgroups of G, then their mutual commutator [H, K] is defined 
as the smallest subgroup in G that contains all of the commutators [h, k], 
where h E H, k E K. If we denote y-l zy by zu, then the following identities 
are satisfied: [x, y] = x-izv, [x, y]-l = [y,x], [zy,z] = [x, z]“[y, z], [z, z]v = 
P> -+I, [[T y-l], +‘[[Y, ~-‘],x]z[[~,x-l]Y]z = 1. 

In particular, the mutual commutator of normal subgroups is itself normal. 
To every group G we associate two series of normal subgroups: 

G = G(l); Gt2) = [G, G(l)]; Gc3) = [G, Gt2)], . . . ; 

G’ = [G, G]; G” = [G’, G’]; G”’ = [G”, G”], . . . 

The first of them is called the lower central series. If it terminates, i.e. if 
Gtn) = e, for some n, then the group is called nilpotent and the minimal such 
n is called the nilpotency index (or degree). In case when the second series 
terminates, we speak of a solvable group and of level (degree) of solvability. 

Let KI = G 2 K2 2 KS.. . be an arbitrary series of normal subgroups in 
G, satisfying the condition [Ki, Kj] c Ki+j. Let us assume that either all the 
factors KJKi+l are torsion free, or to the contrary, all of them have the same 
period n. Since all of them are abelian groups by the assumption, we may 
consider their direct sum L(G) = @ KJK. ,+I, introducing the additive nota- 
tion for multiplication in every summand: aKi+l + bKi+l = abKi+l. It turns 
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, 
out that we can introduce multiplication too, by setting [aKi+l, bKi+l] = 
[a, bIKi+j+l and extending it by additivity. As a result we obtain a Lie alge- 
bra (admittedly, over the ring Z or Z,, depending on the torsion), as follows 
from the identities written out earlier. 

Let us assume that G is a group with the identity zn z 1. 
We have said earlier (3.5) that this group in general need not be finite. The 

groups defined by m generators and by this identity are denoted by B(m, n). 
A proof of the infinity of the group B(m, n), for sufficiently large prime n, 
given by S.I. Adyan and P.S. Novikov (cf. Novikov, Adyan, 1968), gave a 
negative solution to the so called Burnside problem. We point out however, 
that the questions of finiteness of the groups B(2,5) and B(2,8) are still open. 
On the other hand, we pose the following question. Let us assume that G is 
finite and satisfies the identity x” = 1. Is it true that the order is bounded 
above by a function f (m, n) which does not depend on the groups? 

This is the so called restricted Burnside problem. It has a positive solution. 

Theorem 1. For all m, n, there is a “2miversal” finite group Bo(m, n), such 
that every other finite group with m generators, satisfying the identity x” s 1 
is its homomorphic image (for even n, the theorem utilizes the class$cation 
of finite simple groups). 

Proof. Let us first consider the case when n = p is a prime number. Let G 
is a finite group of period p. Than it is nilpotent and the Lie algebra L(G) 
constructed by its lower central series is nilpotent of the same index. Magnus 
has shown (Magnus, 1950) that the Engel identity (ad z)P-’ E 0 holds in 
L(G). Consequently, by Theorem 2 of 6.5, its nilpotency index is bounded 
by some function, depending only on the number of generators, i.e. by the 
nilpotency index of a free Engel algebra. Then it is obvious that the order 
of G is bounded too, since the order of every factor G(i)/G(i+l) is bounded. 
The case of arbitrary n is somewhat more complicated. First of all a Hall- 
Higman Theorem (Hall, Higman, 1956) reduces the matter to a prime power 
pk, under the condition that there is only a finite number of simple groups 
of period n (the classification of simple groups is used exactly in this place). 
Secondly, already taking into account that n = pk, in passing to L(G), we 
obtain an algebra over the ring Z, k not over a field. In addition, it already , 
does not have an Engel identity, thus we cannot use Theorem 2 from 6.5. 
Everything works out however, since E.I. Zel’manov has shown (Zel’manov, 
1989) that, by the use of results of I.N. Sanov and Higman (Sanov, 1951), 
(Higman, 1960), it is possible to pass to Theorem 5 in 6.5. q 

We point out that the nilpotency index of Bo(m,n) is bounded below 
exponentially (Adyan, 1975), (Adyan, Razborov, 1987), (Adyan, Razborov, 
1986). Using the construction of L(G), Higman proved the following theorem, 
by the use of Theorem 1 of 6.5: 

Theorem 2. Let G be a locally nilpotent or a finite solvable group hawing an 
automorphism of prime orderp such that it does not leave jixed any non-unity 
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element. Then the group G is nilpotent and the nilpotency index is bounded 
by a constant dependent only on p. 

Let us now go to discussion of the problem of growth in groups. We say 
that a group is almost nilpotent if it contains a nilpotent subgroup of finite 
index. 

Theorem 3. A finitely generated group has a polynomial growth if and only 
if it is almost nilpotent. 

The growth of a nilpotent group equals [&I, where 

d = c dimz(G(k)/G(“+l)) 
k 

(Bass, 1972). Since the growth does not change after passing to a subgroup of 
finite index, the nontrivial part is the reverse implication, proved by Gromov 
(Gromov, 1981). It is sufficient to derive solvability from the polynomial 
growth, since the following holds: 

Theorem 4. The growth of a solvable group is alternative. If it is not ex- 
ponential, then G is almost nilpotent. 

The proof is contained in the papers of Milnor (Milnor, 1968a) and Wolf 
(Wolf, 1968). A n analogous result has been proved by Tits (Tits, 1972), for 
linear groups. 

Theorem 5. The growth of a finitely generated subgroup of a connected Lie 
group is alternative. 

We note also the following important result of S.I. Adyan (Adyan, 1975): 

Theorem 6. The growth of the burnside group B(m,p), for p >, 661 is 
exponential. 

This makes examples of groups of nonalternative intermediate growth, 
thought out by R.I. Grigorchuk (Grigorchuk, 1980,1983,1984a, 1984b, 1985) 
even more astonishing. 

Theorem 7. Let R be the set of all the forms of the growths r(G) of all 
finitely generated groups G. Then 

a) R contains a chain of continuum cardinality as well as an antichain (i.e. 
mutually incomparable foms of growth) of the same cardinality. 

b) For every r E R such that r < [2n], there exists an r’ E R, such that 
r < r’ < [2n]. 

A continuum of groups of intermediate growth may be chosen in one of 
the following classes of groups: 

1) Torsion free groups. 
2) Groups without infinite factor groups. 
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3) With a continuum of non-isomorphic factor groups. 
4) Finitely-approximable p-groups. 
5) Groups with the unsolvable equality problem. 
6) Amenable p-groups. 

Immediate unions of several properties are possible also. On the other 
hand, Grigorchuk proved the following result: 

Theorem 8 (Grigorchuk, 1989). Let G be a finitely generated group approx- 
imable by finite p-groups. If the growth r(G) is smaller than [2fi], then G is 
almost nilpotent. 

(We recall the definition of approximation. Let K be an arbitrary class 
of groups. It is said that a group G is approximable by the groups in K, 
if G contains a family Gi of normal subgroups such that G/Gi E K and 
nGi = e. For instance, the finitely approximable groups are those that are 
approximated by finite groups.) 

For the specified class of groups, this theorem is an extension of Gromov’s 
theorem (Theorem 3). 

Another interesting theorem has been proved in the same paper and we 
will need the following definitions in order to be able to discuss it. 

Let G be a group, p - a prime number, let Z,[G] be the group algebra and 
let A be its fundamental ideal, generated by the elements of the form g - 1, 
where g E G. The Zassenhaus filtration is the sequence of groups 

G,={gEG]g-lEAn}. 

The series {Gn} is also called a lower p-central series and it has the fol- 
lowing properties: 

[Gn, G,n] C Gn+n; Gp, C G,,; 

G, = n (f$j))Pi 

jpi )n 

If we construct the Lie algebra L(G) by this series in the above-described 
fashion, then we will get the so-called Lie palgebra (Kostrikin, 1986). We will 
be interested in its p-enveloping algebra A (definitions cf. in (Passi, 1979)). 
By Quillen’s theorem (cf. (Passi, 1979)), th is algebra may be written down 
explicitly as: 

A = gAn = &P,A-+~) 
0 0 

with multiplication defined in a natural way through the representatives of 
conjugacy classes. The Hilbert series of the algebra A is equal to 

jy (E)““, 

where a, = dim L, (compare with the formula in 5.5, for the ordinary uni- 
versal enveloping algebra U(L)). 
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Since the intersection nG, does not have any influence on the construction 
of the algebra A, we may assume that n?G, = e. This condition, together 
with the natural requirement dim Ai < 00 is equivalent to the condition 

IGIG = IG/[G,G,-I]G~I < 00 

and implies approximability of G by finite p-groups (Passi, 1979). Under these 
assumptions, the following holds: 

Theorem 9. The following conditions are equivalent: 

a) The growth of algebra A is polynomial. 
b) G is an almost solvable group, representable by matrices over the ring of 

integer p-adic numbers. 
c) The Lie algebra L, constructed by the series G, is finite-dimensional. 
d) The Hilbert series of the algebra A is a rational function of the form 

for some natural 1, s, r-i, cj . 
e) The growth of the indexes (G : G,) is polynomial. 

We point out that, when the conditions of the theorem are not fulfilled, the 
growth of A is not smaller than [2&l, by Theorem 1, however the superdi- 
mension l/2 is attainable even in the class of finitely generated p-groups. We 
also point out that the commutator of a group which satisfies the conditions 
of Theorem 9, may not satisfy these same conditions (for all these details cf. 
also (Grigorchuk, 1989)). 

6.7. Comments. We have seen that it is simply impossible to gather a com- 
plete list of all the combinatorial lemmas, thus we have restricted ourselves 
here to a portion related to questions of nilpotency. The Height theorem has 
analogues in other classes of algebras, near the associative ones (Bakhturin, 
Slin’ko, Shestakov, 1981), (Belov, 1988). A passage to superalgebras is rather 
interesting from a purely philosophical point of view. Apparently A.R. Ke- 
mer was the first to find out that tensoring by an exterior algebra not only 
transforms the starting algebra into a superalgebra, but also considerably 
improves its properties. Evidently, the same effect is produced here as in ex- 
tending a field to an algebraically closed one, incidentally also with the aid 
of the tensor product (1.6). 

The growth of groups is important also from the point of view of ap- 
plications. For instance in geometry, the growth of the fundamental group is 
connected with the curvature (Milnor, 1968c), and, in probability theory, it is 
important that the probability of a turn of a random walk in a group is also 
connected to the growth of the latter (Grigorchuk, 1978). Gromov’s paper 
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(Gromov, 1981) is a source of many deep ideas and deserves a special atten- 
tion. We also point out a series of papers by V.I. Trofimov (Trofimov, 1983, 
1984a, 1984b, 1985, 1986). They also discuss the growth of graphs, but the 
meaning of that definition is different: it is more of the growth of the group 
G of automorphisms acting transitively on the set of vertices of a connected, 
non-oriented graph r. More precisely, if d(x, y) is a metric on r, defined by 
the minimal number of edges between x and y and if x0 is a fixed vortex, then 
we can introduce the growth function cd, for every automorphism g E G. Set 
&9(n) = m=4d(y,dy)) I d(m,y) G n). F or an arbitrary function f, the set 
of those g E G for which cd is O(f), f orms a normal subgroup of the group 
G. The series of papers (Trofimov, 1983,1984a, 198413,1985,1986) is exactly 
devoted to the construction of these groups, description of possible growth 
functions &, relations of the make-up of the graph with the behaviour of the 
group G, study of the growth of the number of vertices in the sphere of radius 
n and other questions. 

$7. The Algebras of Polynomial Growth. 
The Monomial Algebras 

7.1. Introduction. We have already seen in 6.6 that the polynomial growth 
imposes essential restrictions on the structure of a group. We will discuss in 
this section the role of the polynomial growth for algebras. We have shown 
in 6.4 that the polynomial growth is implied by the presence of an identity. 
Thus it is appropriate to study the structure of PI-algebras exactly in this 
section. Without taking on a task of duplicating a wonderful survey (Bakh- 
turin, Ol’shanskij, 1988), we will refer to this paper in everything concerning 
the notions and methods, giving only a short list of necessary definitions, no- 
tation and facts. Moreover, we will restrict ourselves only to characteristics 
zero and we will leave in force the ordinary convention about the presence 
of unity in an algebra, although, for the PI-algebras, this is a sufficiently 
fundamental question. Besides the questions of asymptotic behavior we are 
interested in, we will state several new results, not included in (Bakhturin, 
Ol’shanskij, 1988), in the first place the results of A.R. Kemer. 

We will also pay some attention to identities in semigroups, although the 
polynomial growth may not exist here. Finally, a considerable part of the 
section will be occupied by monomial algebras. We will demonstrate the full 
wealth in possibilities for the growth allowed in associative algebras, on their 
example. Study of the monomial algebras is also appropriate because the 
questions on Hilbert series of associative algebras reduce exactly to them 
(3.6). 
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The remaining part of the section will be devoted to the algebras with finite 
Griibner basis as well as to classification of simple Lie algebras of polynomial 
growth. 

7.2. PI-algebras. Basic Definitions and J?acts. Thus, let the field have char- 
acteristic 0. Let 3 = K(X) be a free associative algebra with countable 
number of variables. The element f(xl,. . . , z,) E F is called an identity in 
an algebra A, if it turns into zero after substituting arbitrary m elements of 
A: f(a~,...,a,) =0, Vai E A. An algebra A with a non-trivial identity is 
called a PI-algebra. A class of algebras ?Bl satisfying a given system of iden- 
tities {fi(zi,. . . ,xm;) = 0, i E I} is called a variety of algebras defined by 
that system of identities. The set T(M) of all the identities of a given variety 
forms an ideal in 3, invariant with respect to all the endomorphisms of 3. 
Such ideals are called T-ideals. The set of all the identities of an algebra A is 
denoted by T(A). The variety defined by the set T(A) is denoted by Var A 
and is called the variety generated by the algebra A. Standard examples of 
varieties and their notations are as follows: 

1) The variety !2f of commutative algebras is defined by the identity 
[xi, 221 E 0 and is generated by the ground field K. 

2) The variety of nilpotent algebras with the nilpotency index not 
higher than c (see 6.5) is denoted by 3, and is defined by the identity 
2122 . . . x, z 0. 

3) The variety Cd corresponding to the left Lie nilpotency and defined by 
the identity [xi, x2,. . . , zd+i] = 0 (a left-normalized commutator). 

Note that % = Ci and that Cz contains the exterior Grassmann algebra 
E of countable number of generators, which plays a distinguished role in the 
theory of PI-algebras. 

4) The variety U, generated by the algebra of upper triangular matrices of 
order c, is defined by the identity 

[x1x2] [x324] . . . [x2c-lz2c] = 0. 

If M is a variety, then the quotient algebra 3(M) = 7/T(M) is called 
a (relatively) free algebra of the variety 9Jl. We may view it as an algebra 
defined by an infinite number of relations. A necessity arises, sometimes, to 
work with finitely generated free algebras 3m(?JJl) c 3(m), which are ob- 
tained from 3(!JJl) with the aid of additional relations xi = 0, for i > m. This 
notation may cause confusion with graduation. Thus, in a difference from pre- 
vious sections, we will write the indices of the graduation on top as well as in 
parentheses. For instance 3m(9Jl) = @,“==, 3c’(?YJl). A more detailed gradu- 

ation 3m(!M) = C,, ,,,,, n, 3c1t..+m) (?B?.) , where the polyhomogeneous com- 
ponent J3nlt...,nm~) is the linear hull of all the words f such that degSif = ni, 
has been considered in the theory of PI-algebras. Clearly, some of those words 
may turn out to be linearly dependent in 3m(9R), however the definition re- 
mains correct since, in characteristic zero, every variety, and consequently 
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any T-ideal, is defined by its multilinear identities i.e. by the identities of 
the form COeS, (Y,z+) . . .x+) = 0. If we denote by P, the set of all the 
multilinear elements of degree n in 3, then it is well known that every variety 
is defined by its vector spaces T(M) fl P,,, n = 1,2,. . . . However, it is more 
suitable to study the quotient spaces P,(DI) = P,JT(9JI) n P,. The generat- 
ing function of their dimensions c(!JJl, t) = C, UP, c, = dim P,(!IfZ) is 
called the series of codimension 9JZ. This series, together with the generalized 
Hilbert series 

H(M,t1,...,t,)= c &mJY$l,...*‘bk) (tJJt)tyl . . . t”,- 

n1,...rn, 

carries a valuable information about the free algebra of a variety, therefore 
about the variety itself too. We point out that the ordinary Hilbert series is 
obtained from the generalized one in, an obvious way: 

fk,,(t) = W’JC 4 . . . , t), 

thus we will call both of these series simply Hilbert series (sometimes they 
are also called Hilbert-Poincark series). 

Dependence of the series H(DI, tl, . . . , &+I) on the series H(?Bl, tl, . . . , t,), 
for sufficiently large m turns out to be fairly simple, since the following fun- 
damental theorem is satisfied: 

Theorem 1. Every variety may be defined by a finite number of identities. 

This result by Kemer represents a solution of a famous problem of Specht 
(Kemer, 1987). An essential role in it was played by another theorem of 
Kemer (Kemer , 1984) : 

Theorem 2. For every variety trJ1, there exists a finitely generated supeml- 
gebra A = Ao + AI such that 

I 

(We point out that the notion of superalgebra is somewhat wider here, since 
the possibility of a non-trivial intersection of the even and odd parts is al- 
lowed.) 

It is not difficult to derive from it the following 

Corollary. For every variety 9JI, there exists a positive integer n such that 
!Bl c Var (M,(E)). Here Mn(E) = A&(K) @E is the matria: algebra. 

Definition. Complexity or the PI-degree of a variety 9Jl is a maximal integer 
m such that T(M) c T(M,(K)). In other words, m is the maximal dimension 
of the matrix algebra IL&(K), lying in 9JI. The completity of the algebra A 
is the complexity of the variety it generates: 
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PIDEG(A) = PIDEG(Var A). 

For instance PIDEGM,(E)) = n. 
Complexity is defined for all varieties. The varieties of complexity 1, i.e. 

those that have an identity not satisfied in Ms(K), are called non-mutti. An 
example of such a variety is CZ = Var E. 

We can check (it is not trivial!) that the tensor product of PI-algebras is 
also a PI-algebra, and this defines the notion of the tensor product of varieties 

It turns out that the following estimate holds (Gateva-Ivanova, 1983): 

Theorem 3. For every two varieties ?lX and ‘Jz, the following inequalities 
hold: 

PIDEG !JJl @ ?X 

’ ’ (PIDEG !Yl)(PIDEG 92) ’ 2’ 

On the other hand, since no identity of degree smaller than 2n holds in 
the matrix algebra M,(K), the complexity of every variety with an identity 
of degree d, does not exceed [$I . 

We will note one more result by A.R. Kemer. Recall that a stand& iden- 
tity of degree n is 

c c-l)Sgno&(l) * * *“+)* 

@s%& 

Theorem 4. A standard identity holds in a variety 9X if and only if 9X = 
Var(A), for some finite-dimensional algebra A (Kemer, 1988). 

We finish by giving a definition of the product of varieties ?7X and 9l as 
the class of all the algebras A such that they have an ideal I satisfying all 
the identities in !?X and such that the quotient mod I is in 9l (we cannot 
say that I E 9X, since we assumed the presence of the unity). For example, 
LI, = ‘Z&U, since the T-ideal Z’(m) is generated by all the elements of the 
form f(hl,. . . , hm), where f E T(m), hi E T(9l). 

Corresponding definitions may also be introduced for Lie algebras, groups, 
Jordan algebras etc. (Bakhturin, Ol’shanskij, 1988). 

7.3. Calculation of Hilbert Series and Series of Codimensions in Varieties 
of Algebras. The problem stated in this title is fairly non-trivial since it is 
difficult to explicitly give a basis in a free algebra of varieties. Here, one of 
the principal ideas is the use of representation theory of the symmetric group 
S,,. Recall that, to every partition X = (Xi,. . . , X,) of the number n, with the 
property that Xi 2 X2 2 . . . 2 Xk 2 0, C Xi = n, Xi E Z, there corresponds 
a uniquely defined &-module M(X), defined by the Young diagram [Xl, and 
that all the irreducible &-modules are exhausted by these. The group S,, 
acts on P,, by the rule (of)(q,. . . ,z,) = f (z,(l), . . . , z,(,)), where f E P,,, 
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0 E S,,. The module P, is isomorphic to the group algebra K[&] and, for 
every T-ideal T(M), the subspace P, n T(m) is invariant with respect to 
this action, therefore the quotient space P,(1IJz) = P,/P, n T(m) inherits 
a structure of an &-module and can be decomposed into the sum of the 
irreducible ones: 

P,(iJJl) = Ck(X)M(X), k(X) E z. 
x 

It is obvious then that k(m) = C It(X) dim M(X) and we have a possibil- 
ity of calculating codimensions with the aid of representation theory. Instead 
of considering representations of the symmetric group, we may consider rep- 
resentations of the general linear group GL, too. Since the free algebra Fm 
with m generators is isomorphic to a tensor algebra (1.6), an action of GL, is 
defined on it via the rule g(f (21,. . . ,x,)) = f (g(q), . . . ,g(z,,,)), (f E 2%). 
This action in turn, carries over to the relatively free algebra Fm(m) = 
Fm/F,,, flT(!?R). Irreducible polynomial representations of GL, are also con- 
nected with partitions. We will denote by N,(X) the irreducible GL,-module 
corresponding to the partition X and we will denote by Sx(tl, . . . , tm) the 
Schur function. 

Theorem 1. If P,(9Jl) = C k(X)M(X), then F?)(?lJJl) = c k(X)N,(X) and 
the Hilbeti series is calculated by the formula 

fqm,t1,..., tm> = c qqSx(tl,. . . , tm). 

n,k 

In reality, it is more suitable to work with the set of characteristic or 
commutator identities. Let 

&I = 
{ 

f E ~m(!JJ-O I g =O,i=1,2 ,..., m ; 
I > 

and rm(!XX) = B,(m) n Pm(?3Jl); r,,,(!XX) = rm/rm n T(m). Note that 
B, is generated by the products of the commutators [xi1 . . . ] . . . [. . . xi,,, . . . ], 
which explains the name “commutator identities”. If m(9JZ) = dim m(?Xrl), 
then the generating function r(m, t) = C m(?JR)P is called the series of 
characteristic codimensions. Let us also denote 

m%z(~>,tl, . . . , tm) = c dim B~1y.-9nm)t~’ . . . tkm. 

Theorem 2. The GL,-modules F,,,(n) and B,(m) @ K[zi, . . . , z,] are 
isomorphic. In particular, the following formulas hold: 
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CnPJu = 2 ($#J% .9=1 
c(?m,t) = &Y m& ; ( -> 

H(W t1 ,...,t,> =fJ l -H(B,(~>, t1, * * *, La). 
i=l 1 - ti 

IfP,(CJ.R) = C k(X)M(X) and~,(27l) = CZ(p)M(p), then k(X1,. . . , A,) = 
C~(cLl,~~ . , pm), where the summation goes over all the partitions ~1 such that 

Xl b p1 a x2 a 112 a . * * 2 X, > pm (Dicks, 1985). 

These technical theorems allow for calculations of necessary characteris- 
tics in smaller dimensions. We point out that, for every variety ?)X, there 
exist numbers r and s such that all the Young diagrams participating in the 
decomposition of Pn(lM) turn out to be enclosed in the following block: 

IAl 

Lil 
/- 

S 

A sufficiently large number of concrete results has been obtained through the 
use of the technique for calculation of possible sets with the aid of Young 
diagrams as well as through the use of special graphs (Drenski, 1974, 1981a, 
1981b), (Drensky, 1984a, 1984b, 1985) (Drensky, Popov, 1987); we state a 
portion of them: 

(i) Let us start with a simple case of the variety U of commutative alge- 
bras. In this case, the decomposition of P,(a) is trivial: Pn(U) = M(n), 
therefore +(a) = 1 and &(U) = K + 

H(% tl ,...,&) =p. 
i=l 1 - ti 

(ii) The variety C2 = Var E. In this case, rsn+i(Cs) = 0 and rsn(Cs) = 
M(12n) (we will denote repeating numbers in a decomposition of 
X by powers, thus (12”) = (l,l,. . . ,l)). Furthermore, P,(Cs) = 
x:=1 M(kJ+k), Cn(C2) = 2n-1. It is interesting that the growth of 
codimensions in every subvariety of CZ is polynomial and that the rela- 
tively free algebra F(C 2 is embeddable in a free commutative superal- ) 
gebra - a result of I.B. Volichenko. 

(iii) The matrix variety Ms = Var (Adz(K)) is defined by two identities 
(this is fairly non-trivial - cf. (Drenski, 1981b), (Razmyslov, 1973a)): the 
standard one Sd(zi, ~2~23, zq) z 0 and the identity [[~izs]~si] 3 0. 
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In this case, m(!?JZs) = c M(Xi, AZ, x3), where xi+&+& = 12, x2 # 0 

and (xl, x2, x3) # (1~1~1). 

Furthermore, P,(!&) = E Ic(X)M(X), where 

k(n) = 1; 

k(X~,h) = (Xl - X2 + 1)X2, for X2 > 0; 

k(Xl,l, 1, X4) = (Xl + 1)(2 - X4) - 1 

and, for the other cases: 

k(h, x2, x3, X4) = (Xl - x2 + 1)(X2, - x3 + 1)(X, - x4 + 1). 

Finally 

t2 1 
c(9JJ2,t)=&(1-2t-&X+- ---. 

(1 - t)4 + 1 y t 1 -c)+’ 

WJJW&,tdd = 
1 - t1t2tft4 -- 

nL,(l - ti)q-I,<,(l - titjr 

All the diagrams for Pn(!&) contain not more than four rows, which 
fully determines the Hilbert series in all cases. The exact formula is in 
(Le Bruyn, 1985). 

(iv) If ?YX is defined by the standard identity &(2i,z2,23,24) = 0, then 
cn(~> = cn(~2) + 5(3 + 5(i). 

(v) If 9JZ is defined by the Hall identity [[~1~2]~~3] EZ 0, then I = 
2n-1+~(!7X2)-1-(~)+14(~)+33(~)+14(~), therefore, thesevarieties 
are sufficiently close to !X$r. 

(vi) Let 6 = Var (E @ E). Then 6 is defined by the following two identi- 
ties: [[a,x2], [23,541,x51 = 0, [[xi, z212, zr] E 0. Furthermore G(6) = 
C M(p, 29, lz), where the summation goes over all the decompositions of 
the form indicated, except (n) and (12”+l). Finally 

1 /%I\ 

cn(@> = 
- \.-/ 

L 

=- JJ +n+l-2n, 

so that 

4% t) 1 
1 t 1 1 

= 2 + - - 2Jiy--& + (1 q2 + -. _ 1-t 1 - 2t 

If 9X is defined only by the first of the two identities, then 
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CnP-v = cn(@) + 5 
(1) f5($ 

(vii) Let us describe a non-matrix variety with an identity of the fourth degree. 
Since r4 = M(3,l) + M(22) + M(2, 12) + M(14), every characteristic 
identity of four variables is equivalent to one of the following: 
a) [~2,a,m,a] = 0; 

b) [zi~z]~ - 0; 
c) [ [xlz2] [x3x4]] - 0; 

4 S4h,x2,Z3rZ4) = 0. 

The first three of them are non-matrix. The corresponding codimensions 
in every of the three cases are: 

a) c,(m) = 2*-l + 2 
(3 +5(i) +4(i); 

b) cn(!XX) = 2’+ - 1) + I - 
(l) +3(i) +4(i); 

c) c,(!m) = 2n-l(n - 1) + 1 - 
(I) +2(I). 

We formulate now a few general results. 

Theorem 3. The growth of codimensions is not greater than the exponential 
growth (Regev, 1971) (which, gene&y speaking is not obvious, and for Lie 
algebras is not correct). It is interesting that for Lie algebras, the growth is 
smaller than exponential - it is polynomial (S.P. Mishchenko). 

Theorem 4. Let 9Jl be a subvariety in UC. Then the Hilbert series H(?.?Jl, 

t1,. . . , tm) is a rational function. 

Corollary. Rationality of the Hilbert series is guaranteed by one of the 
following conditions: 

a) The variety ?lX is non-matrix; 
b) The codimensions k(!Yl) have the polynomial growth. 

We point out that an analogue of this theorem as well as of its corollary 
are valid for Lie algebras. Much of it carries over to Jordan algebras too (cf. 
Drensky, 198413). 

For the variety Cd, the theorem may be refined by showing that its Hilbert 
series is of the form H,(Cd, t) = &, where f(t) is a polynomial. 

Many open and interesting questions remain in this subject and we may 
familiarize ourselves through (Drensky, Popov, 1987); we have followed the 
presentation in this paper which contains numerous references to the results 
mentioned here. 

7.4. PI-algebras. Representability. T-primary and Non-matrix Varieties. 
The Equality Problem. A structure theory of T-ideals in the classical spirit 
has been constructed in (Kemer, 1984). 
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DeStion. A T-ideal I is called T-primary if, for every two T-ideals not 
contained in I, their product is not contained in I either. A T-ideal is called T- 
semiprimary if, for every T-ideal J, the inclusion Jn C I implies the inclusion 
J c I. A variety !?Jl is called T-primary if its T-ideal T(9X) is T-primary. A 
T-semiprimary variety is defined similarly. 

Theorem 1. (i) Every variety M may be represented in the fawn ?2R = 9l&n 
9Jl, where U is the greatest T-semiprimary subvariety of !Yt. Equivalently, the 
free algebra 3(?XR) has a maximal nilpotent T-ideal. 

(ii) The complexity of a variety is determined by its T-semiprimary part: 
PIDEG (?+Vl) =PIDEG (U). In addition, if !?JV = %,l n!lR’ is a decomposition 
of another variety, then 

PIDEG (m @ 92’) = PIDEG (U @ U’). 

The structure of T-semiprimary varieties may be described explicitly. We 
mention that the union of varieties is the smallest variety containing both of 
them. 

Let us define an algebra Mp,p as a subalgebra of the matrix algebra over 
the exterior algebra Mr,+q (E) of the special form 

/ A A, 

where the elements of the blocks a ii, azz are in Q and the elements of the 
blocks aiz, a21 are in %. 

Theorem 2. A variety U is T-semiprimary if and only if it is the union of 
a finite number of T-primary varieties: 

A non-trivial variety is T-primary if and only if it is generated by one of 
the following algebras: 

a) M,(K), n 2 1; 
b) M,(E), n 2 1; 
c> %w P>Q>l. 

We point out that T(E @ E) = T(Ml,l); T(M,,, @ E) = T(~~c&+~(E)); 

W%r @ Mm) = WWcq+wp+d 

We see that, according to Theorem 1, every algebra of the variety m 
has a nilpotent ideal such that the quotient mod that ideal lies in the T- 
semiprimary part of %V. From this point of view, we cannot fail to mention a 
fundamental Kemer-Razmyslov theorem (Kemer, 1980b), (Razmyslov, 1974). 

Theorem 3. A finitely generated PI-algebra has nilpotent Jacobson radical 
J(R) C a d fi t’ e ni zon of the latter is in (Bokut’, L’vov, Kharchenko, 1988)). 

Note that Braun generalized this theorem to the case of an arbitrary com- 
mutative Noetherian ring (Braun, 1982). 
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For finitely generated algebras, the question of their representability is also 
important. 

Definition. An algebra A is called representable if it embeds isomorphically 
into the matrix algebra M,(C), over a commutative algebra C. If J(A) = 0 
and if A is finitely generated or if it satisfies a standard identity, then A is 
representable (Bejdar, Latyshev, Markov, Mikhalev, Skornyakov, Tuganbaev, 
1984). 

Finitely generated right Noetherian PI-algebras (Anan’in, 1987) and rela- 
tively free algebras (Kemer, 1988) are representable. The following result has 
been proved by V.T. Markov (Markov, 1988). 

Theorem 4. A finitely generated representable algebra has integer Gel’fand- 
Kirillov dimension. 

If %Jl is a non-matrix variety, then we can define the non-matrix complexity 
to be the maximal n with the property that the algebra of upper triangular 
matrices T,(K) lies in 9Jl. 

From this point of view, the following result, from the same paper, is 
important. 7i = A/J(A) will be the quotient mod the radical. 

Theorem 5. Let ?.lR be a non-matrix variety. Then the following conditions 
are equivalent, for every 12: 

a) %+1(K) E m. 
b) For every finitely generated algebra A E ?JX the following inequality holds: 

Dim A < n Dim A. 

Corollary 1. Dim Fm(Im) = me max{n 1 T,(K) E ?JJ?} (m > 2). 

Corollary 2. The following conditions are equivalent: 

a> TdK> @hf. 
b) If A is a finitely generated algebra in 9Jl, then 

Dim A = Dim z. 

Corollary 3. The following conditions are equivalent for a non-matrix va- 
riety !?X: 

a) Ts(K) E M. 
b) Every finitely generated algebra in M has integer Gel’fand-Kirillov di- 

mension. 

We also note that for a right Noetherian PI-algebra A, Dim A = Dim 2. 
We part with the PI-algebras, after formulating one more fresh result of 

M.V. Sapir (Sapir, 1989), related to the equality problem. 
Since the equality problem is solvable in every finitely presented finitely 

approximable algebra, it follows from the results of A.Z. Anan’in (Anan’in, 
1977), that the equality problem is solvable in the varieties satisfying the 
identities of the form 

I. Combinatorial and Asymptotic Methods in Algebra 

[x1,. . . ,GIl[Yl,. . . ,Yml = 0. 
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Examples of finitely presented algebras with unsolvable equality problem al- 
ready exist in the varieties with the identity [~1~2][~s~t.4][~~5~61[2758] = 0 
(Kukin, 1983). Let 5’ = (a, b,c,d 1 bz = za = c2 = cdc = [c,d, d] = 0, where 
z is any generator. 

Theorem 6. The equality problem is unsolvable in every variety containing 
the variety Var S and is solvable in any proper subvariety of this variety. 

Thus, we have the following scheme: 

\ Unsolvability / 
VarS 

/ Solvability \ 

A basis of identities of the variety Var S has been explicitly given in (Sapir, 
1989). The following result has been obtained as a consequence: the equality 
problem is solvable in every variety satisfying the equality 

[x1,..*, 35,l[Y1Y2][~1,...,~ml-~, 

but is not solvable if the middle commutator is replaced by a commutator of 
length 3: for all m and n the variety falls in the cone of “unsolvability”. 

The picture for Lie algebras is far more complicated (cf. the paper by 
Kharlampovich, 1989). 

7.5. Varieties of Semigroups. We will state here the results of one of papers 
of M.V. Sapir (Sapir, 1987) who substantially used the series of combinatorial 
lemmas from 6.2. These results are related to varieties of semigroups. The 
majority of definitions here carry over from the theory of PI-algebras, hence 
we will formulate only the characteristic ones. 

A semigroup is called torsion if its every singly generated subsemigroup is 
finite. A semigroup is called locally finite if its every finite subset generates a 
finite subsemigroup. A variety of semigroups is called torsion, if it consists of 
torsion semigroups and, locally finite, if it consists of locally finite semigroups. 
The main difficulty is in studying finitely generated infinite groups satisfying 
the identity zn z 1, for instance the groups B(m,n) (6.6). We will call such 
groups the groups of Novikov-Adyan type. 

We will also need the following definition. Let f be a word in the alphabet 
X and let 4 be any homomorphism of free semigroups (without the unity). 
The value 4(f) is obtained simply by substitution of every letter z E X in f 
by the word 4(z) (cf. 6.2). A word w is called an isoterm for the identity f = g 
if, for every 4, if 4(f) is a subword in w then 4(f) = 4(g). For instance, the 
word x:x:2 is an isoterm for xyxy = yxyx, since, every homomorphism q5 such 
that ~$(xY)~ is a subword of x:x2, must satisfy the condition &zy) = xt, so 
that +(xyxy) = 4(yxyz) = z1 . 2rc TO the contrary, the word w = xlx2~1~2~3 is 
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not an isoterm, since we can use for C$ the mapping sending x to x1 and y to 
x2. Then ~$(xyxy) = 21x25122 is a subword in w, but #(yxyx) = ~22122x1 # 

@YXY>. 
We will call a word w an isoterm for the system of identities E if, for every 

identity f = g in C, the word w  is an isoterm both for f = g as well ss for 
9 = f* 

Finally, recall that &+I = &.x,2,, 2, = x1. 

Theorem 1. Let !7R be a vatiety of semigroups defined by a set of identities 
C in n variables, where ?JR is either not a torsion variety or it does not contain 
groups of Novikov-Adyan type. Then the following conditions are equivalent: 

a) All torsion semigroups in m am locally finite. 
b) All the nilsemigmups in m are locally finite. 
c) For every m and k, all the semigroups with the identity 5”’ = x”‘+~ 

(k > 0) are locally finite. 
d) The word 2, is not an isoterm for C. 

Theorem 2. Let n be a variety of semigroups defined by a set of identities 
C of n variables. Then the following conditions are equivalent: 

a) All the nilsemigmups from 9Jl are locally finite. 
b) All the semigroups from !7X with the identity x2 = 0 are locally finite. 
c) The word 2, is not an isoterm for 22. 

Since the last condition in both theorems is algorithmic, we have effective 
algorithms for solutions of other questions. For instance, in the variety defined 
by identities x3 = y3 and xyxz = xzxy, every nilsemigroup is locally finite 
since, although no image 4(x) 3 is a subword in 2’3 = ~1~2~1~3~1~2~1 and 
consequently it is an isoterm for the first identity, for the second identity, 
there exists the corresponding homomorphism x 2 xlsz; y 2 21x3; z 2 x1, 
where ~(XYXZ) is a subword in 23, but the image $(xzxy) is not equal to it. 
At the same time, non-nilpotent finitely generated semigroups exist in the 
variety defined only.by the first identity. (cf. also 6.2). 

We state a series of corollaries. A paper of A.I. Zimin has been used in the 
first one (Zimin, 1980). 

Corollary 1. There exists an algorithm that determines, by an arbitrary 
finite collection of identities defining a non-torsion variety of semigmups !.V& 
whether every finitely generated semigmup in 9Jt is finitely presented. 

Corollary 2. Assume that in a variety of semigroups ?3X, all the semigroups 
with the identity x2 E 0 are locally finite and that, for every n, the word Z,, 
is an isoterm for the identities of the variety ?Dt. Then 9R does not have a 
finite basis of identities. 

This corollary shows that there is no analogue of Theorem 1 in 7.2. 
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Corollary 3. Let all the subvarieties of the variety m be with finite bases. 
Then all the nilsemigroups in m are locally finite. If ?Dt is not torsion or 
if it does not contain groups of Novikov-Adyan type, then all the torsion 
semigroups are also locally finite. 

Corollary 4. A nilpotent group has a finite basis for semigroup identities 
if and only if it is either abelian or if it has a finite period. 

Corollary 5. The word 2, is an isoterm for the identities of a finite semi- 
group S, for all n, if and only ii every locally finite variety containing 5’ has 
an infinite basis. 

7.6. The Automaton Monomial Algebras. We are beginning a study of 
monomial algebras. Let F be a set of words in a finite alphabet X, such that 
none of the words is a subword of another. The main object of our attention 
in 7.6 and 7.7 will be the algebra A = (X 1 F). Its defming relations are given 
by the conditions of the monomials (words) in F being equal to zero, which 
explains the term “monomial”. It is most natural to start from the case when 
the set F is finite. It is however useful to consider questions, studied further 
in a wider context of automaton algebras (5.10), and we will constantly keep 
this in mind. 

Thus, let F be a finite set and let &(A) be a graph constructed in accor- 
dance with Theorem 3, 5.7. 

Theorem 1. The following conditions are equivalent: 

a) The algebra A has the polynomial growth. 
b) The algebra A is a PI-algebra. 
c) The algebra A is representable. 
d) The graph &‘(A) d oes not have intersecting cycles (Borisenko, 1985), (Uf- 

narovskij, 1982). 

As a corollary we infer that the theorem is valid for other graphs of normal 
words too (5.7), (5.10). A n analogue for the automaton monomial algebras 
also holds. We single out one special case. Let f be a non-periodic word of 
length n. Let us consider the infinite word f” (6.1) as well as the algebra 
A, where all the normal words are all the subwords of f” and only those, 
whereas all the other words are equal to zero. It is easy to see that this algebra 
is defined by relations of degree not greater than n as well as that the graph 
&‘(Af ) consists of a unique cycle of length n. A less obvious is the following 
result of A.Ya. Belov (Belov, 1988). 

Theorem 2. The identities of the algebra Af are exactly the identities of 
the matrix algebra: Var (Af) =Var (&(K)) (this is true not only in chamc- 
teristic 0, but for every infinite field). 

Thanks to this property, the algebras Af may serve as main building blocks 
of “combinatorial” structure theory of algebras, fulfilling the role the matrix 
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algebras have in the ordinary structure theory. Radical properties of the al- 
gebra A have been also described in the language of the graph &‘(A) in 
the papers of T. Gateva-Ivanova and V.N. Latyshev (GatevaJvanova, 1987), 
(Gateva-Ivanova, Latyshev, 1988). Let us call a word cyclic, if either its cor- 
responding path is a part of some cycle of the graph, or when the length of 
the word is smaller than m (m + 1 is the maximum of the lengths of words 
in F), then it is an end of some cyclic word of greater length. 

Theorem 3. (i) The Jacobson radical J(A) of the algebra A is nilpotent and 
it is the linear hull of all the non-cyclic words. As an ideal, it is generated by 
non-cyclic words of length, not greater than m. 

(ii) The algebra A is semiprimary if and only if it is semisimple (and this 
is, because of (i), equivalent to the condition that every edge of the graph is 
a part of some cycle). 

(iii) The algebra A is primary if and only if we may get from any vertex 
of the graph to any other and every normal word of length smaller than m is 
the ending of a normal word of greater length. 

The reader will find in (Gateva-Ivanova, 1987), (Gateva-Ivanova, Latyshev, 
1988), not only all the definitions and proofs but also the algorithms. 

Example. The graph of the algebra A = (x, y, z 1 xy, xz, yx, zx) is 

G(A) =;&z. 

It is semisimple, but not primary, it has the exponential growth and is not a 
PI-algebra. 

It is not difficult to formulate some analogues of the above theorem for 
the case of an arbitrary graph of normal words as well as for the automaton 
algebras, but in the general case, it is not possible to achieve such clarity, 

The questions on Noetherian property are also easily solvable in monomial 
algebras. 

Theorem 4. A right Noetherian monomial algebra is an automaton. Its 
growth is polynomial, of degree not greater than one. If G(A) is the graph 
constructed according to Theorem 3 in 5.10, then no edges come out of any 
cycle of its graph G(A). Conversely, every automaton algebra with such a 
graph is Noetherian. (The left Noetherian pmperty gives a symmetrical con- 
dition: there are no edges coming into a cycle (Okniriski, 1987), (Ufnarovskij, 
1989a). 

,&ample. The algebra A = (5, y 1 x2, yz) is Noetherian from the right, but 
not from the left. 
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7.7. Finite Global Dimension. Radical and PI-properties of the Monomial 
Algebras. The following theorem is attributed to Anick (Anick, 1985b). 

Theorem 1. Let A = (X ) F) b e a monomial algebra of finite global dimen- 
sion n. If A does not contain a free subalgebra of two generators, then A is 
finitely presented and has the polynomial growth of degree n and its Hilbert 
series is of the form HA(t) = fly=,<1 -Pi)-‘, for some rni E M. 

ExampZe.A= (z,y 1 z2y,zy2).TheHilbertseriesis Hi1 = (1-t)2(1-t2). 

By the use of this theorem, T. Gateva-Ivanova proved (Gateva-Ivanova, 
198913) the following: 

Corollary. Let A be an arbitrary graded algebra such that its associated 
monomial algebra A (3.6) has finite global dimension n and the polynomial 
growth. Then 

a) gl. dim A = n = the degree of the polynomial growth of A. 
b) The Griibner basis of the algebra A is finite. 
c) The Hilbert series of HA equals to ny(l - Pi)-‘, for some rni E N. 

We note that all of the conditions of the corollary can be easily checked, 
by the use of the corresponding graphs (3.6), (5.7). Note also that there exist 
algebras of polynomial growth and finite global dimension whose associated 
algebras have infinite global dimension. An example of such an algebra is 
at the beginning of (2.6). It has a finite Griibner basis and xn+r is an n- 
chain for every n, thus gl. dim A = 00. On the other hand, by a linear 
transformation of the basis, the relation may be reduced to the form x/y’+. . . , 
thus, gl. dimA = 2, by the corollary. 

We go on to the properties of monomial algebras connected with its var- 
ious radicals (corresponding definitions are in (Andrunakievich, Ryabukhin, 
1979)).We start with the following simple fact: 

Theorem 2. Let u E A be a homogeneous element of a monomial algebra. 
IfzP= 0, then the subalgebra of A generated by the words occuring in the 
decomposition of u with non-zero coeficients is nilpotent of index n. 

Proof. The subalgebra of the free algebra K(X) generated by those words 
is also free, because of homogeneity. This means that no products of n words 
in u cancel out and they are all equal to zero in A. 0 

Corollary. A monomial nilalgebra is nilpotent. 

Proof. Take u to be the sum of all the generators. Cl 

We point out that the theorem does not hold, without the homogeneity 
condition, which is shown by the example of the element (a + bc - ab + c), 
whose cube equals zero in the algebra Aabc (7.6). 

Let now S be a basis of normal words in A, which we will also consider as 
a semigroup (cf. 2.3). Our goal is to study how the radical properties of S and 
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A are connected. Let us denote by N(S) the greatest nilideal of S. Let .C, 23 
and g denote the locally nilpotent Levitsky radical, the Baer radical and the 
Jacobson radical respectively, where we will apply the first two to semigroups 
as well. The following theorem is attributed to Oknidski (Okniriski, 1987): 

Theorem 3. The following relations hold: 

a> WI = W(s)l; 
b) WA) = K[W31; 
c) J(A) C K[N(S)] (the question about the equality is open); 
d) S is (semi-)primay u A is (semi-)primay. 

We say that a semigroup T has the permutation property P,, if, for any 
n elements al,. . . ,a, there exists a non-identity permutation 1~~ such that 
ala2.. . an = a,(l) . . . a,(,). For instance, if K[T] is a PI-algebra, then it 
satisfies some standard identity S,, and thus P, is satisfied in T. The reverse 
implication is not true, however. Nonetheless, it is true in the monomial case, 
which was proved in the same paper (Okniriski, 1987). 

Theorem 4. An algebra A is a PI-algebm if and only if the semigroup S 
has the permutation property. In addition, N(S) = B(S); J(A) = K[N(S)] 
and the Gel’fand-Kirillov dimension Dim A/J(A) < 1. In particular, the 
dimension Dim A does not exceed the nilpotency index of N(S). 

We single out one more characterization of PI-algebras (oral communica- 
tion of A.Ya. Belov); it is equivalent to the Height Theorem. 

He also announced that there exist presentable monomial algebras with a 
transcendental Hilbert series (however, cf. 7.4 and 7.6) as well as that the 
following holds: 

Theorem 5. Let A be a monomial PI-algebra. Then 

i) A is primary w A = Af, for some word f. 
ii) A is semiprimciy ++ A = Aflrj2 ,..., jk, where Aj, ,..., fk = (X 1 F), and 

the set F consists of all the words that are not subwords of any of the 
infinite words f,?. 

7.8. Examples of Growth of Algebras. Properties of the Gel’fand-Kirillov 
Dimension. We will give here examples of algebras of practically every growth. 
It is most suitable to demonstrate this on monomial algebras. Moreover, we 
will briefly discuss simple properties of the Gel’fand-Kirillov dimension. These 
properties are described deeper and in more detail in a monograph by Krause 
and Lenagan (Krause, Lenagan, 1985). We will also follow the presentation of 
a paper by Borho and Kraft (Borho, Kraft, 1976). At the beginning however, 
we give two examples by V.T. Markov, refuting some natural hypotheses 
(Markov, 1988). 

I. Combinatorial and Asymptotic Methods in Algebra 131 

Example. The algebra A = (x, y 1 xymxynx; (m # n 2 0), (x~~)~+l; (n 2 
1)) has a finite Gel’fand-Kirillov dimension (Dim A = 3), but its primary 
ideal is not nilpotent. 

Example. The algebra A with the generators x,y and the relations 
yzmyzny = 0, for all m,n 2 0; yxny = 0, for a non-square n > 1, and 
yxny = x2=y2x2” ) fo r n square, is weakly Noetherian, but Dim A = 4 is not 
an integer (cf. 7.4). 

We go on now to study growth. 

Theorem 1. Assume that the third derivative of a &n&ion f satisfies the 
condition 0 < f”‘(x) < 1, for x > 0. We assume also that its growth is 
greater than [n2] and that the function $-$ is monotonous. Then there exists 
a monomial algebra A such that r(A) = [f]. 

Proof. Let h(x) be the function inverse to x - f”(x). Taking its integer 
part, we easily see that we get a monotonous function g(n). The required 
algebra is defined in the following way: 

A = (x, y 1 (AYA)~ = 0, y~~(~)-‘y = 0, (m = 1,2,. . . )). Cl 

The details are in (Borho, Kraft, 1976). 

Corollary. There exists an algebra A for which mA # Dim A. For every 
d > 2, there exists an algebra with the growth equal to [nd], thus the Gel ‘fand- 
Kirillov dimension can be any real number greater than two. 

Proof. For the first claim, it suffices to construct the corresponding func- 
tion. The second is guaranteed by the following: 

Theorem 2. The growth of the tensor product of two finitely generated 
algebras equals to the product of the growths of the two algebras. The Gel’fand- 
Kirillov dimension has the following properties: 

a) max(DimA, DimB) < DimA @ B < DimA + DimB. 
b) Dim(A$B) = &x(DimA, Dim B). 
c) DimA[x] = DimA + 1. 
d) DimC < Dim A, for every subalgebm or a quotient algebra C of the 

algebra A. 
e) Dirn(A/IlnIzfl... n Ip) = mmj Dim A/Ij, for some ideals Ij . 
f) Dim,!?-‘A = DimA, for localization at a multiplicatively closed central 

subset without nilpotent elements. 

Proof. If A = (U), B = (V), thenA@B = (W), where W = U@l+l@V 
and U(“) @ Vcn) C W(2n) s Ut2”) @I Vt2”) + r(A @ B) = r(A)r(B). Then, a) 
- d) are obvious and e) is their consequence, since the inclusion A/I1 n 12 C 
A/II @ A/I2 holds. Finally, if V is a finite-dimensional subspace generating 
S-lA, then SV C U(“), for some k E N, s E S, thus Vtn) c s+17@~) =+ 
[&I < [&I. Cl 
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We point out that it would be erroneous to make a conclusion that the 
equality holds in the right-hand part in a) (although this error occurred 
in (Borho, Kraft, 1976)). The equality holds however, if DimA = DimA, 
Dim B = UB (this and other interesting facts on the tensor product may 
be found in the paper by Krempa and Okninski (Krempa, Okninski, 1987)). 

How small can the Gel’fand-Kirillov dimension be? It is zero for a finite- 
dimensional algebra and for a finitely generated, infinite-dimensional algebra 
it is not smaller than 1. Thus, it cannot be between zero and one. It is 
surprising that it cannot fall into the interval between 1 and 2 either. It 
follows from the following simple lemma of Bergman (cf. Krause, Lenagan, 
1985): 

Lemma. If A is a monomial algebra in the natural graduation and 
dim A, < m, for some m, then r(A) < [n]. 

The simplest way to carry out the proof is with the aid of 5.6, considering 
the graph from Theorem 3 in 5.7. Another approach is to show explicitly 
that, for Ic > m, the number of normal words is not greater than m2. 

If, on the other hand, dim A, > m, for all m, then the growth is already 

not smaller than [l + 2 + . . . + n] = 
[ I 
9 = [n2]. 

Reasoning as in 4.2, we may conclude that, for a fixed number of genera- 
tors and relations and their powers, the question whether an algebra has the 
polynomial growth of the first degree is algorithmically solvable. A rather in- 
teresting is the question on the existence of a similar algorithm for answering 
the question on the polynomial or the exponential growth. 

We go on to superdimension now. 

Lemma. Let CJJI be an infinite set of natural numbers 1 = ml < m2 < 
m3 < . . . Let us denote by P&n) the number of solutions of the equation 
x1+... +x, = m, where s E N, xi E 9R, x1 < x2 < . . . < x,; m < n. Let the 
limit limk,, w = t exist. Then DIM [Pm] = &. 

Example. If 9X =.{[P]}, then DIM Pm = &-, (CX 3 1). 

Theorem 3. For every p < i, there exists a monomial algebra A, such that 
DimA=p. 

Proof. Define 9X as in the example and consider a = p-l - 1, A = (x, y ] 
i ‘-‘xi, yixi-‘yi (i > l), xymx, yxmy, (m 4 m)). Then it is not difficult to 

zhzck that [Pm] < r(A) 6 [m2P$,J. cl 

We state a number of other results from (Borho, Kraft, 1976). 

Theorem 4. Let A be a commutative algebra. Then: 

a) If A is finitely generated, then the dimension Dim A is an integer, coin- 
ciding with the Krull dimension, if A is finitely generated. 

b) If I is a nilideal, then Dim =Dim A/I. 

I. Combinatorial and Asymptotic Methods in Algebra 133 

Without commutativity both claims are false. The first is refuted by the 
Weyl algebra IV, (2.11). Its Krull dimension equals n and its Gel’fand-Kirillov 
dimension equals 2n. A counterexample for the second one is the algebra A 
from Theorem 1, with the ideal I, generated by y. 

Theorem 5. Let I contain an element that is neither left nor right zero 
divisor. Then Dim A/I <Dim A - 1. 

corollary. Let IrJ * = 11 5 12 2j . -. 5 I,. be an ascending chain of non- 
primary ideals in a left Noetherian algebra. Then 

DimA 2 r. 

Theorem 6. Let L be a finite-dimensional Lie algebra and let A be its 
universal enveloping algebra, with an ideal I of A. Then n =Dim A/I is an 
integer. Moreover, if L is a semisimple algebra over an algebraically closed 
field of characteristic zero and if I is primitive, then n is an even number 
(cf. Borho, Kraft, 1976, for all the necessary definitions). 

7.9. Finite Griibner Basis and Strictly Ordered Algebras. We have already 
seen that the presence of a finite Grobner basis implies many important 
properties. For instance we automatically know how to solve the equality 
problem, we know that the algebra has alternative growth and its Hilbert 
series (if the algebra is graded) is a rational function. How can one find out 
whether a given algebra have a finite Grijbner basis (algebras of this kind 
are sometimes called standard finitely presented)? As a matter of fact, even 
for fixed generators and relations, we do not know whether the process of 
constructing a Grobner basis terminates or not. And what about if we are 
allowed to change the generators. ? We have already seen in the examples 
considered earlier (for instance A = (x, y 1 xy = y2) 2 (x, y ( z2 = yx)) that 
one algebra can have a finite Grijbner basis in one set of generators and not in 
another and besides, much depends on the choice of the order >. IS it possible 
that changing generators does not affect the automaton property (which is 
however unlikely, although the author does not know counterexamples)? 

Nevertheless, let us assume, finally, that a finite Grijbner basis is given 
from the very beginning. Are there algorithms solving the question on the 
existence of zero divisors, on the Noetherian algebras or on other of its purely 
algebraic properties? 

Finally, is it possible to introduce a notion of a Grijbner basis, for ideal I 
of an arbitrary algebra A, such as a commutative algebra, rather than only 
for the free algebra as we have done? If it is possible, then how and when is 
it finite? 

This is only a small list of questions which could be extended substantially. 
We will give some partial answers in the sequel, some others may be found in 
(Golod, 1988), (Kandri-Rody, Weispfenning, 1987), (Mora, 1988, 1989), but 
on the whole, all of this subject is still at the formative level. 
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Let us discuss at the beginning, the question on a Grobner basis of an 
ideal I in an arbitrary (not necessarily free) algebra A. Let N be a basis of 
normal words of the algebra A, that has been presented as a homomorphic 
image of a free algebra. For an arbitrary element u in the free algebra Q, 
such that A = %1/J, its normal form z modulo the ideal I has been defined 
in (2.3). Recall that we may assume that multiplication in A is given by the 
rule f * g = fs, for f, g E N. We may carry over to A the order > from the 
free algebra U, since it is defined on the basis N of normal words. Thus, the 
notion of the leading word is defined in A and, as before it will be denoted 
by G. Sometimes it will be suitable to represent the elements of A not only as 
linear combinations of normal words. In this case, we will use the operation *; 

for instance f j g = j?j. 
In order to be able to talk about a Grijbner basis, starting from A, we need 

some restrictions on >, that are satisfied automatically in a free algebra. 

Definition. We will call an algebra A strictly ordered, if the total order >, 
defined on its set of normal words N, satisfies the following conditions: 

a) O<l<f; (VfEN\l); 
b) f <g=+f*h<g*h, h*f <h*g; (f,g,hcN); 
c> deg(f*g)=degf+degg; (f,gEn). 

Note that these conditions imply that A has no zero divisors. (Indeed, if 
f, g are normal words, then f > 1 + fg > g > 0.) 

The Weyl algebra, all the universal enveloping algebras (in particular the 
polynomial algebra K[X] and the free algebra K(X)) are examples of strictly 
ordered algebras. 

Latyshev called these algebras algebras of the polynomial type in (Laty- 
shev, 1982), which is justified by the following result of his: 

Theorem 1. Let A be a strictly ordered PI-algebra, where the order > in 
A is inherited from the homogeneous lexicographic order in %. Then A is 
commutative. 

Now we can almost literally repeat the definition from 2.3. 

Definition. Let I be an ideal in a strictly ordered algebra A. A set B c I 
is called its Grobner basis if, for every u E I, there exists a g E G, such that 
deggu > 0 (i.e. the leading word of u contains the leading word of g as a 
subword). 

Algorithms for construction and use of Grobner basis in strictly ordered 
algebras may be found in (Kandri-Rody, Weispfenning, 1987), (Mora, 1988, 
1989). Sufficient conditions for the Noetherian property are obtained there 
too. The main condition imposed on algebras is the requirement of the exis- 
tence of finite Grobner basis of the form xjxi - oijxixj - pij (fij < Zixj; i < 
j), for the algebra A (algebras of this type, with the condition oij # 0, 
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have been called the algebras of solvable type in (Kandrl-Rody, Weispfenning, 
1987)). It is obvious that they are strictly ordered. 

Let A be a strictly ordered algebra whose order has been inherited from the 
homogeneous lexicographic order. Let us introduce the notion of equivalence 
on A: f N g @ the leading words coincide f = 4. For example, in an 
algebra of solvable type, xjxi N xixj, for any generators xi,. . . ,x,,, i.e. it 
is almost commutative. Let us assume that the generators are ordered like 
this: xn > x,+1 > . . . > 51. Under these conditions, the following non-trivial 
result of Gateva-Ivanova (Gate-Ivanova, 1989a) holds: 

Theorem 2. The following conditions arc equivalent: 

a) The word x,x+1 is not normal. 
b) The algebra A is almost commutative. 

Corollary. Let A = Q/I be a strictly ordered algebra, where the ideal I is 
homogeneous and has a finite Griibner basis. Then the following conditions 
are equivalent: 

a) The algebra A is almost commutative. 
b) The algebra A is left Noetherian. 
c) The algebm A is right Noetherian. 
d) The algebra A has the polynomial growth. 

When these conditions are satisfied, every two-sided ideal in A has a finite 
Gr6bner basis. 

Recall that the Noetherian property means that every ideal (left or right 
respectively) is finitely generated as a module. If every two-sided ideal is gen- 
erated by a finite number of elements, then we speak of the Weak’Noetherian 
property. 

7.10. Lie Algebras of Polynomial Growth. The growth of a Lie algebra 
shows rather substantially through its properties. See for instance a series of 
papers by A.A. Kirillov and his colleagues, where the properties of growth 
of Lie algebras of vector fields have been studied (Kirillov, 1989), (Kirillov, 
Kontsovich, Molev, 1983), (Kirillov, Ovsienko, Udalova, 1984) and others. 
It is interesting that, for instance, two vector fields on a line in a “general 
position” generate a Lie algebra of intermediate growth, i.e. for such algebras, 
the intermediate growth is not an exception, but rather a rule. 

We would like to state without a proof (and even not in a very strict for- 
mulation), a result of Kac that shows how rigid the structure of a Lie algebra 
becomes under the requirement of the polynomial growth. The main object 
of our attention will be the Z-graded Lie algebras, i.e. those of the form 
L = @ym L,, where, as usual, (Li, Lj] C Li+j and Li are finite-dimensional. 
Firstly, we will be interested in simple Z-graded Lie algebras, i.e. algebras 
without homogeneous ideals different from L and the algebra itself. Exam- 
ples of such algebras are four Cartan series of Lie algebras of vector fields: 



136 V. A. Ufnarovskij 

W,, S,,, &, K, (cf. definition in (Kac, 1968)). Note that all of them have the 
polynomial growth. There are also other examples. 

De6nition. Let A = (oij) be the generalized Cartan mat& of dimension 
n, i.e. CY~+, = 2,c~ij < 0 and aij < 0 ++ aji < 0 (i # j). The Kac-Moody 
algebra g’(A) is a complex Lie algebra with 3n generators ei, fi, hi and the 
following relations: 

[hihj] = 0, [eifi] = hi [eifj] = 0; (i # j), 

[hiej] = aijej, [hifj] = -aijfj; (i, j = 1,. . . ,n), 

ej(ad ei)lbai’ = 0, fj(ad fi)lea”’ = 0; (i # j). 

The Kac-Moody algebras are divided into three non-intersecting classes. In 
order to describe them, it is suitable to assume that the matrix A is indecom- 
posable, i.e. that it is impossible to break up the set {1,2,. . . , n} into two 
non-intersecting subsets I and J, such that aij = 0, for every i E I, j E J. 
Under this assumption, there are three mutually exclusive possibilities: 

a) There exists a column vector w with natural (i.e. positive integer) entries, 
such that all the entries of the vector Av are also positive. In this case, 
the Lie algebra g’(A) is finite-dimensional and is isomorphic to one of 
the classical algebras A, - Es. 

b) There exists a vector v with natural entries, such that Av = 0. In this 
case, the Lie algebra g’(A) is infinite-dimensional, but of the polynomial 
growth. The algebras in this class are called afine. 

c) There exists a vector w with natural entries, such that all the entries of 
Aw are negative. In this case, the growth of g’(A) is exponential. 

Theorem 1. Under certain technical restrictions, every simple Z-graded Lie 
algebra of the polynomial growth is isomorphic either to one of Lie algebras 
in the Cartan series W,, S,, W,, K,, or to a quotient over the center of an 
afine algebra. 

A strict formulation and proof are in (Kac, 1968); for more details on 
Kac-Moody algebras cf. (Kac, 1983) whose presentation in its introduction 
we followed. 

7.11. Comments. We have discussed the questions about PI-algebras only 
in a rather limited scope. The details for Lie algebras may be found in the 
monograph (Bakhturin, 1985). We have touched upon semigroups only frag- 
mentarily. The question about the equality J(A) = K[N(S)] for monomial 
algebras is still open and it is not even clear whether it is always possible to 
choose a basis of letters in J(A). The algebras of small growth are of special 
interest (cf. for instance a result by A.T. Kolotov (Kolotov, 1981)). The Kac- 
Moody algebras are defined not only for complex numbers, but are mainly 
studied over algebraically closed fields of zero characteristic. 
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8.1. Introduction. One of the most powerful stimuli that contributed to 
the development of the theory connected with the Hilbert and Poincare series 
had been posing the problems on rationality of the corresponding series. We 
formulate some of them. 

1. The Kostrikin-Shafarevich problem (Kostrikin, Shafarevich, 1957). Is it 
true that the Poincare series of a finite-dimensional nilpotent associative 
algebra (cf. 1.8) is always rational? 

2. The Kaplansky-Serre problem (cf. Gulliksen, Levin, 1969 and Serre, 1965). 
Is it true that the Poincard series of a commutative local Noetherian ring 
is always rational? 

3. The Serre problem. Let X be a finite singly connected CW-complex. Is 
it true that its Poincare series (cf. definitions in the sequel, 9.5) is always 
rational (Serre, 1965)? 

4. The Govorov problem (Govorov, 1972). Is it true that the Hilbert series 
of a finitely presented graded algebra is always rational? 

It turned out that these problems of rationality and others closely related 
to them are closely related with each other and that the series defined by each 
of the four classes of objects, are rationally expressible by the corresponding 
series of another class. In particular, since we have already seen that there 
exist finitely presented graded algebras with non-rational Hilbert series (cf. 
for instance 4.6; we will give simpler examples later, cf. 8.3), all of these 
problems are answered negatively. This and the following section will be 
devoted to establishing those relations. The next section is devoted to the 
series indicated in the first three problems, whereas in this section we consider 
other connections. 

8.2. Rational Dependence. Formulation of the Fundamehtal Theorem 

Definition. We call two series Hi(t) and Hz(t) rationally dependent if there 
are four polynomials Pi(t), 1 < i < 4, such that 

p49 # p2p3 

and 
H 

1 
= P1H2+P2 

p3H2 + fi 

Rational dependence is obviously an equivalence relation and we will de- 
note it by HI N Hz. Let A and i3 be two sets of formal series. We will say 
that A rationally depends on a (and denote it by A --) S), if every series in 
A is rationally dependent on some series in t3. 

For example, it follows from Theorem 3 in 4.6 that, the set of the Hilbert 
series of a system of Diophantine equations rationally depends on the set of 
Hilbert series of the Roes algebras. 
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We have already considered several different types of series and their sets. 
In the first place these were the Hilbert and the Poincare series. We will now 
considerably widen possible types of series, by introducing a number of new 
objects and their series. All of them have been enumerated in Fig. 1, which 
we have borrowed from (Anick, Gulliksen, 1985), with minor changes. All 
those objects will be discussed in the course of this and the next section, 
thus we will not give their definitions now, but rather only decipher the 
abbreviations: 

g.a. - graded algebra 
f.p. - finitely presented 
f.g. - finitely generated 
d.g.a. - differential graded algebra 
c.d.g.a. - commutative d.g.a. (commutativity is meant in the graduated 
sense: ab = (-l)l”llblba). 

Fbdamental Theorem. All of the 18 sets of series in Fig. 1 rationally 
depend on each other, if the ground field is prime. For an arbitrary field, the 
14 sets of series, not related to the complexes X are rationally dependent, i.e. 
all except Lx. 

A scheme of a proof is depicted in the diagram on the following page. 
Every arrow denotes rational dependence of one set on the other. References 
over and under an arrow indicate where the corresponding dependence had 
been proved and where it will be discussed. Obvious and undepicted arrows 
are dependencies of every small rectangle on all the small rectangles, placed 
above, that are a part of the same greater rectangle - it is simply the de- 
pendence of a subset on the whole set. For instance, it is obvious that the 
set of Hilbert series of quadratic algebras rationally depends on the set of all 
Hilbert series of f.p. graded algebras. 

It is obvious from the diagram that this theorem is the result of work of 
vast number of mathematicians from different countries. The value of tran- 
sition arrows is not only in the presence of exact formulas expressing one 
series through the other, but is also in the fact that many of the constructed 
correspondences have functorial character, thanks to which it was possible 
to connect many questions from perfectly different areas of mathematics and 
conversely, to carry over the results obtained, for instance for local rings, to 
finite complexes. It is clear that the size of this book does not allow us to have 
detailed proofs, but we will at least state the most important constructions 
and relations among the series, whereas the reader may use the references to 
study deeper any of the classes he is interested in. Throughout this and the 
next section we will be at the stage of proving the fundamental theorem, and 
in the course of discussion, many other results of independent value will be 
obtained. 

Lx, when 
K=Q. 
x1 (X)=0, 
H*(X,Q) is 
a tg. 
Q-algebra 

HA, where 
A is a f.p.g.a. 
in contiguous 
relations 

j) 

8.4 

j) 

Pe, where 
(B.6) is a 
negative 
d.g.a. 
dim EC- 

1 relations I 1 P,, where 

8.5 

7 
r,, where 
CC, d) is a 
f.p. positive 

0 PR, where R is an artinian, 
local algebra, m3 = 0 I 

Fig. 1. a) (Halperin, Levin, 1986), b) (Adams, Hilton, 1955), c) (Lemaire, 1971), d) (An- 
ick, 1984), e) (Roes, 1979), f) (Lofwall, 1979) g) (J ace b son, 1985), h) (Anick, 1982b), i) 
(Lemaire, 1982), j) (Anick, Gulliksen, 1985), k) (Anick, Lafwall, 1986) 

8.3. Examples of Non-rational Series. Before we begin the proof of the 
fundamental theorem, we state the main consequences, the more so as exactly 
they were the main stimulus for its proof. 

Theorem 1. All the 18 sets of series enumerated in Fig. 1 contain series 
that are not rational finctions (i.e. not representable in the fonn of a ratio 
of two polynomials). 

hoof. It is sufficient to give examples of non-rational series in one of those 
classes. We have already seen such examples in 4.6 (Theorem 4). It is useful 
however, to give also more explicit examples. The simplest of them is the 
universal enveloping algebra of a Lie algebra with the basis er, e2,. . . and 
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the multiplication [eiej] = (i - j)ei+j. W e h ave seen at the end of 5.5, that 
its superdimension equals 1/2,‘hence, by the corollary in 5.4, its Hilbert series 
cannot be rational; moreover we know its exact form: fly(l- ti)-’ - cf. 5.5. 
Thus, the only thing that remains to be done is to prove that the given Lie 
algebra is finitely presented, and thus the same will be true for its universal 
enveloping algebra. It turns out that the given Lie algebra is defined with 
only two relations. Its generators are er and ez (we point out that ]ez] = 2, 
hence the graduation is not natural). If we now define ek by induction as 
ek+r = &[ekei] and impose two relations [eaez] = es, [eaez] = 3e7, then it 
is not difficult to prove the equality [eiej] = (i - j)ei+j by induction. 0 

Remark. The counterexample to problems in 7.1, constructed in the course 
of the proof, works only in characteristic zero, but there are other more 
complicated examples that do not depend on this premise, first of all an 
example by Shearer (Shearer, 1980), given by semigroup relations of second 
degree; historically, it was the first example of non-rationality of a Hilbert 
series of a finitely presented algebra. The first example of a finitely presented 
Hopf algebra was constructed by Anick (Anick, 1982b) and it deserves a 
separate study. We can also obtain examples of this kind by Theorem 4 in 
4.5. Finally, in characteristic zero, we can construct infinitely many examples 
with the aid of universal enveloping algebras. For instance, the following 
holds: 

Theorem 2. Let C = @yl 2, be one of Lie algebras of the Cartan se- 

ries W,, H,, S,, I& (cf. Kac, 1968), and let 3 = $r C, be its “nilpotent” 
part. Then C and 3 are finitely presented Lie algebras. In particular, since 
they have the polynomial growth, their universal enveloping algebras have the 
intermediate growth (Fejgin, Fuks, 1988), (Ufnarovskij, 1987). 

Theorem 3. For each of the 18 classes of objects, enumerated in Fig. 1, 
there is no algorithm that would give an answer to the following question (in 
a finite number of steps), for every object of that class and any series H: Is 
it true that the series corresponding to the given object (the Hilbert series, 
the Poincare’ series etc.) equals to H. 

Proof. Since all the interrelationships among the series in the fundamental 
theorem are constructive, everything follows from Theorem 5 in 4.6. 0 

Understandably, we may strengthen this theorem, using the specifics of 
every class and make it more precise. For instance, for the case of local rings 
R with 9J13 = 0, edimR = g, dimm2 = r, the problem of equality of the 
Poincare series to the series (1 - gt + rt2)-l is algorithmically unsolvable 
and, as a corollary, the question whether it is true that Ext i(K,K) gen- 
erates Ext ;Z (K, K) is unsolvable (cf. 9.4). For CW-complexes X and their 
loop space flX, this leads to algorithmic insolubility of the question about 
the equality of their rational homotopic types, even if the complexes con- 
sist only of two-dimensional and four-dimensional cells. Finally, for the four- 
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dimensional CW-complexes, it has been proved that there exists a recursive 
sequence c, such that establishing the isomorphism 7rn(X) @Q g w, for all 
n, is an algorithmically undecidable problem. All these details may be found 
in the foundational paper (Anick, 1985a). 

8.4. Contiguous Sets. Quadratic Algebras. Relation with Hopf Algebras. 
Let us start a voyage along the figure 1. We will descend through the stories 
of rectangles corresponding to Hilbert series of finitely presented algebras 
and show how we can go down from an arbitrary algebra to a quadratic 
one and then we will establish connections with the rectangle of the Hopf 
algebra. 

It would be possible to realize the descent from the highest story of an 
arbitrary graduation to the natural one, with the aid of Theorem 5 in 4.5, 
but since we have not given an explicit construction there, we will give a 
simpler, but less accurate way which does not preserve growth. 

Lemma. Let the algebra A have a generator x of degree d > 1. Let us 
consider the algebra B, where the generator x is replaced by d generators 
t1,. . . , td of degree 1, and in every relation, every occurrence of x is replaced 
by the word tlta . . . td. Then 

Hi1 = Hi1 + td - dt. 

Proof. The algebra B is obtained from A by introducing new generators as 
well as an additional relation t i t2 . . . td = Z. On the other hand, if we consider 
an order such that tlt2 . . . td > z, then according to the Composition Lemma, 
the set of normal words is same as with the relation titz . . . td = 0. In this 
case, however, we have the ordinary free product of the algebra A and the 
algebra (tl, . . . ,td ] tlt2 . . . td). Now use 3.4 and 3.7. cl 

So called contiguous relations will have an auxiliary role in further descent 
to quadratic algebras. 

Before going to the next story we first give a definition. Let U be a free 
algebra with the set of generators X, in the natural graduation, let R be a 
set of homogeneous elements of degree 2 2, let R, denote those among them 
that are of degree n, let ]&I denote their number, let d denote a maximal 
number for which ]Rd] # 0 and let I be the ideal generated by R. 

Definition. We call a set R contiguous if, for every 2 < m < d the following 
equality holds: 

(1) 

Example. The set vx - xw, xy, uxw is contiguous for X = {u, W, W, X, y}. 

Since d = 3, it is sufficient to check (1) for m = 2. Indeed, (RsU) n &I = 
(uxwlu) n .5X21 = ux(wU n I) = uxwI = C; RsI. 
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With the same set of generators, the set ox - xw,xy,uvx will not be 
contiguous any more, since (RsU) n !&I 3 UVXY, but C; R3I = uvxl does 
not contain non-zero elements of degree 4. We point out that contiguity of 
relations of an algebra (X ( R) is not its invariant, since for the two indicated 
sets, the corresponding algebras are isomorphic. 

Every set of elements of second degree in the natural graduation is a 
contiguous set in an obvious way, since the possible m simply do not exist. 
By the same token, the lower story - the quadratic algebras are justifyably 
placed below the algebras defined by contiguous relations, i.e. the former 
rationally depend on the latter, as a subset. We will now make the reverse 
descent. 

Theorem 1. Let A = (X 1 R) b e an algebra defined by a contiguous set 
of relations and g generators in the natural graduation. Then there exists a 
quadratic algebra B such that 

d 

HE = &Li[1+(g2+g3+ * *. + gd-l)t - c IRnl(t2 + t3 + *. . + P’)]. 
n=3 

Proof. Let X = {xi, . . . , xg}. For every m, denote by S,,, the set of all the 
words of length m in the alphabet X. Set S = uk’ S,,., and consider the set 
of symbols UJ enumerated by words in S. The new set of generators will be 
the union 

bf If~wJXU~V~> 

where the graduation is assumed to be natural, so that Iv) = lurl = 1. Let us 
first construct a somewhat larger algebra C defined by that set of generators 
and the following set of defining relations: 

ufuh = 0; (f, h E S); xuf = 0; (x E X,f E S); 

vx = 0; (x E X); 
vuq = xy; (X,YEX=-YES21 

vu/,, = uhx; (h E S,, 2 < m < d - 1, x E X rj hx E Sm+l). 

It is not difficult to prove, with the aid of the Composition Lemma, that 
this is a complete set of relations, so that the set of normal words will consist 
of the words of the form fd and u,, fd and that, as a graded space, C is 
isomorphic to (K@U)@M@K[v], where U is the space generated by all uf. It is 
easy to prove that, for every word f E S,,,, f = vrn-~uf, for 2 < m < d holds. 
Thus we can assign an element y* E Cz, to every y E !&, for 2 < m < d, such 
that y = vrnm2 * y (we give the exact formula: (fx)* = ufx, if f E Sm-1, x E X 
and we must extend * further by linearity). 

We can also define the algebra B now: it is obtained from C by imposing 
additional conditions y* = 0 (y E R). B is a quadratic algebra since y* E C2 
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and it remains only to convince ourselves in regularity of computation of its 
Hilbert series. The details of this computation will be left to the reader (for 
references we can turn to (Anick, Gulliksen, 1985)) and we only note that we 
can easily compute the Hilbert series for C with the aid of Theorem 1 in 3.3, 
and that the main idea is in showing (using contiguity of the relations) that 
A embeds into B the same way as the free algebra M embeds into C. Cl 

The only step that remains to be done is the descent from stage of finitely 
presented algebras with the natural graduation, to the algebras with contigu- 
ous relations. 

Theorem 2. Let A be a finitely presented algebra with the natural gradua- 
tion. Then there exists an algebra B, defined by a contiguous set of relations, 
such that 

HB = (1 - gt)-2(2 - HA)-~, 

where g = dim(Tor :’ (K, K)) is the minimal number of genemtors of A. 

Proof. Let A = (X 1 R). Let us consider two copies of the set X: X’ 
and X”, as well as two copies of the free algebra: K(X’) and K(X”). Let 
V = @y A,. Let us consider the tensor graded algebra T(V) (cf. 1.6). Recall 
that T(V) is essentially a free algebra whose generators are words in the 
alphabet X, with the corresponding graduation. 

As a graded vector space, the algebra B represents the tensor product 
K(X’) @ T(V) @ X(X”), but the multiplication is defined differently: (a’ @ 

(fl)(f2>...(fn)~b”).(d~(gl)(g2)...(grn)~d”)=a’~(fl)(f2)...(f,c)(bgl) 

(92) . . . (gm) @d”, f or n,m # 0. In addition, for n = 0, we set (a’@l@b”)(c’@ 
(gr) . . . (gm) ad)” = a’c’ @ (bgl)(g2) . . . ad” and analogously for m = 0. It is 
not too complicated to check the validity of the formula for the Hilbert series 
Hg, using computations in 3.3. 

It turns out that the algebra B is finitely presented: its generators are the 
union of the three sets of generators: X’ U X U X” (naturally identified in B), 
and the relations are the following: 

xy' = $'y; x'y" = y"x'; (5, y E X, 2’ is a copy of x etc. ); 

4(r) = 0; (r E R), 

where 4 is the linear map 4 : K(X) - K(X’,X,X”), defined by the rule 

+i, * * * Xi,‘) = xi1 xi2 . . . xi,, . 
It is purely a technical matter to check this as well as contiguity of the 

relations; if desired we may familiarize ourselves about it in (Anick, Gulliksen, 
1985). Cl 

We point out that passage to the second Hilbert series in both theorems 
was accompanied by the loss of growth, but, while in Theorem 1, the polyno- 
mial growth turns into polynomial, in Theorem 2, the growth of B is always 
exponential, since B contains a free subalgebra. 
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We now establish dependencies among the Hilbert series of a Hopf algebra. 
The fact that the set of Hilbert series of a finitely presented Hopf algebras 
rationally depends on the set of the Hilbert series of finitely presented graded 
algebras is clear. Much less trivial and more important is the reverse depen- 
dence. 

Theorem 3. Let A = (X 1 R) be a finitely presented graded algebra with 
g generators and r relations. Then there exists a finitely presented Lie su- 
pemlgebm L = L(A), such that gl.dimU(L) < 3 (and the strict inequality is 
possible only for r = 0), and the Hilbert series of the universal enveloping 
algebra U(L) equals 

&I(L) = (1 - Hx)-~(~ - Hil). 

If the algebra A has the natural graduation, then L and U(L) also have natu- 
ral graduations and the correspondence A - U(L(A)) is a covariant jknctor 
from the category of finitely genemted algebras graded in the natural gradua- 
tion into the category of Hopf algebras. 

Proof. After noting that, in the natural graduation, the formula for the 
Hilbert series does not differ from the analogous formula in Theorem 2, we do 
not find it surprising that the construction too is made perfectly analogously. 

Thus, let us make two copies X’ and X” of the set of generators. The 
set of generators of L as well as its universal enveloping algebra U(L) will 
be the union X’ U X U X”; as for generating relations, we consider the fol- 
lowing: [z’y”] = 0; [z’, y] = [zy”] (z, y E X,x’, y’, y” are their copies); 
c$(r) = O(r E R), where $I is a linear mapping defined by +(zil . . . xi,&) = 
[xL1 [. . . [x6xi7&] . . . I]. We emph asize that, since we are talking about Lie su- 
peralgebras, the commutators are assumed to be graded (cf. 1.1). Thus, there 
are exactly 2g2 + r relations. 

In principle, it is possible to repeat further the proof of Theorem 2. 
The reader may try to do this by himself, however it should be noted that, 

in the original paper (Jacobson, 1985), the rest of the proof had been carried 
out in the spirit of homoiogical algebra, with the aid of so-called Hochschild- 
Serre spectral sequence. El 

Theorem 3 finalizes the dependencies between the rectangle of finitely 
presented algebras and the rectangle of Hopf algebras, both over the upper 
as well as the lower stories. 

8.5. Differential Algebras. We will consider here all the dependencies in 
Fig. 1 related to the differential algebras, excluding their connections with 
local rings and complexes. 

Definition. We will say that differentiation of degree (dl = m is defined on 
a graded superalgebra A, if a linear map d : A - A is defined, such that it 
maps every A, into A,+, and satisfies the condition 
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d(xy) = (dx)y + (-l)‘+‘z(dy), 
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for all the homogeneous elements (Leibniz rule). 

An example of typical differentiation is the map adu, adu : x ---f [ux], 
in a Lie superalgebra, for every element u. However, we will be interested 
primarily in the associative case. 

Definition. A graded algebra A, together with a differentiation d (i.e. the 
ordered pair (A, d)) will be called difierential, if d2 = 0 (due to this, differ- 
entiation is often called a differential) and if the degree IdI equals to fl. We 
will speak of a positive d.g.a., in the case Id] = 1 and of a negative one, in 
the case Id] = -1. In both cases we speak of commutative d.g.a. if, for all 
the homogeneous elements, the equality zy = (-l)‘Z”g’yx holds (the graded 
commutator equals to zero). 

Example. Let the algebra A consist of differential forms of the first degree, 
i.e. of the expressions of the form f (z)dx, where f(z) is a polynomial of one 
variable x, as well as of the forms of the zero degree, i.e. of polynomials f(z) 
respectively. This algebra becomes commutative (both in the ordinary and 
in the graded case), if we set (dx)2 = 0. 

Defining the differential d by the natural rule d : z + dx and d2x = 0, we 
arrive at the familiar rules of differentiation 

d : f(x) --t f’(x)dx; d : f (x)dx + 0 

and the structure of a (negative) differential algebra. 

Example. The tensor product of two differential algebras (Al, dl) and 
(A2, d2) becomes a differential algebra, if the structure of the differential 
is defined by the following rule: 

d(x 8 y) = dx @I y + (-l)‘Z”v’x @I dy. 

Applying this to the previous example, we get the structure of a differential 
algebra on the set of differential forms in several variables. We emphasize that 
we have in mind here the graded tensor product of algebras, i.e. we assume 
that (x 18 y)(x’ @ y’) = (-1) ‘Y”s”(xx’ 8 yy’), so that we can view that set 
also as the tensor product of the polynomial algebra K[xi, . . . ,xm] with the 
exterior algebra &C[dxr, . . . , dx,], where the differential is defined according 
to the following rules: 

d(f (xl,. . . ,x,&N)=~~@dx;; d(1 8 dri) = 0. 
t 

Since the differential d displaces graduation, we will often suitably change 
graduation, for the homogeneity reasons; to this end, we introduce the fol- 
lowing 
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Notation. If V is a graded vector space, then tV will denote the same 
space, but with a different graduation: (tV)s = 0; (tV),+l = V,. Obviously 
Htv = tHv. 

We return to the study of differential algebras (A, d). Imd C Ker d, since 
d2 = 0 and, since both of the spaces are graded, we may consider the graded 
quotient space H(A) = Ker d/Im d and its generating function r~(t), obvi- 
ously equal to ~~~~~ - HI,,,~, which we will call the homologiml series of the 
differential algebra (A,d). The meaning of the notion will be clarified, if we 
see a differential algebra as an algebra which is a complex at the same time: 

0 * A0 2f- A1 &- A2.. . 

(we have presented the case IdI = -1 here). Then, rA is simply a generating 
function of the dimensions of the homologies H, of this complex (cf. 1.8). 
We may consider one more point of view. The Leibniz rule shows that, since 
Ker d . Ker d c Ker d, Im d . Ker d s Im d, the operation of multiplication, 
induced by multiplication on A is correctly defined on the set of homologies 
H(A). The Hilbert series of the algebra H(A) is exactly the homological 
series. Let us now establish some dependencies among different series. 

Lemma. Let (A,d) be a diffeerential algebra. Then: 

for IdI = 1 and 

for Id\ = -1. 

HImd = &(Ha - FA), 

Proof, Let us for instance consider the case IdI = - 1. By using the notation 
tImd, we may assume that the mappings d : A -+ tImd are homogeneous, 
and then, accordingto 3.3, we have 

HA = H~erd + %nd. 

Subtracting from this equality, the equality r’ = ~~~~~ - HIGH, we get the 
desired result. cl 

Let us show now how to go from negative d.g.a. to the positive ones. 

Theorem 1. Let (A,6) be a negative d.g.u. Then there exists a positive 
d.g.u., such that its Hilbert series is calculated by the fomulu 

fk=$, . 
and the homologiccd series by the jomuh 
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HA l-c = - 
1+t 

-b 
+1-t2 A 
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(in particular, for rational HA, we have rc N rA). Finite presentability of A 
is equivalent to finite presentability of C and the correspondence (A, 6) --t 
(C, d) is functorial. 

Proof. Define C to be A@K[y], stipulating the degree of y to be two. Then 
the formula Hc = HA(~ - t2)-l immediately follows from the two theorems 
in 3.3. After defining the differential d by the rule d(ay”) = G(a)yn+‘, for 
a E A, we easily see that C becomes a positive differential algebra and we 
find that the image Im d is generated by the elements of the form uym, where 
u E Im 6, m 2 1. Consequently, according to 3.3, 

HImd = &&&,~,3 ,... 1 = &ma 
t2 

.- 1 _ t2. 

After substituting both of the formulas from the lemma into the equality (l- 
t2)HI,d = t2HI, 6 and using the already calculated value for Hc, we easily 
obtain the desired equality for rc. Functoriality is checked straightforwardly, 
after extending the homomorphism to y in the identity manner. cl 

Let us show now how to go from a positive d.g.a. of the homological series 
of a finitely presented algebra to the Hilbert series of a finitely presented 
algebra. 

Theorem 2. For every positive diffemztiul ulgebm (A,d), there exists a 
graded algebra A, such that 

HA = (l+t)HA+ 
t(1 + t)Hi 

(1 + t)2 - tHA - t2rA ’ 

In addition, A finitely presented is equivalent to A being finitely presented, 
just as A quadratic is equivalent to A being quadratic. The correspondence 
(A, d) --) 2 is functorial. 

Proof. We take the set X of generators of the algebra A, together with 
two new generators, denoted by a and b, to be the generators of the algebra 
A. For the relations, we will take the whole set of relations R of the algebra 
A, together with the following relations: 

a2 = ab = bu = b2 = 0 and [uz] = d(x); (x E X) 

Graduation of A is ensured by the fact that d(x) E AZ, for x E X, and A 
quadratic is ensured by A being quadratic, if we set Ial = lb1 = 1. Note that 
A may be seen as the free product of the algebras A and K(a, b), factored out 
by the new relations (cf. 3.4), which easily establishes the functoriality of the 
mapping (A, 4 + A. We emphasize, that the commutator [ax] is assumed to 



148 V. A. Ufnarovskij 

be graded, as usual, thus the mapping D : c -+ [ac] - d(c) is a differentiation 
and therefore, the property [a, c] = d(c), for c E A holds in the whole of the 
algebra A. 

It remains to calculate the Hilbert series. To this end, we introduce some 
notation. Set V = A/K $ Im d and consider the vector space 

where, as usual, T symbolises the tensor algebra. The main idea is to intro- 
duce an action of A on M, turning the latter into a left module and then 
showing that it is cyclic and establishing its isomorphism with A (as a graded 
space). We will leave the technical realization of this plan to the reader, di- 
recting him to (Anick, Gulliksen, 1985) for help. 

Computation of the Hilbert series reduces to 3.3 and to the lemma. Cl 

It remains to pass from finite-dimensional negative differential graded al- 
gebra and its Poincare series to the homological series of a positive algebra. 

Theorem 3. For every finite-dimensional diflerential algebra (A, S), there 
exists a finitely generated free positive d.g.a. (C, d), such that PA = rc. 

Proof. In fact, this is rather a question of defining of the Poincare series 
of a differential algebra (it should be defined through the resolution in the 
corresponding category: all the modules should also have differentiation). 
Without going into details, let us say that the required resolution, in this case, 
will be a slightly modified bar resolution. For exact formulas and definitions, 
see (Anick, Gulliksen, 1985). 0 

We have not discussed only one connection: from the Hilbert series of 
graded algebras to the homological series of the negative differential algebras. 
Those who wish to see this connection explicitly, should turn to (Anick, 
1982b) or to (Lemaire, 1982). 

8.6. Comments. The fundamental theorem is a result of a colective effort 
of many mathematicians from different countries of the world. This can be 
seen already in the diagram, although the central organizational role of J.E. 
Roos should be emphasized; mainly thanks to his efforts a collective attack 
was organized, after it became clear that the problems of rationality were 
closely connected with each other. We can read about this also in (Anick, 
Halperin, 1985). 

Note that there are no connections between growths. For instance, for the 
local rings, the growth is always alternative, whereas for the graded algebras 
and topological series, the growth is not alternative. 

The aforementioned four problems have stimulated an immense number 
of investigations. It is practically impossible to encompass many sufficient 
conditions of rationality in one picture. Nevertheless, for the graded algebras, 
a greater portion of results has essentially been proved only for the automaton 
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algebras. The unique large class, that is interesting from that point of view 
is the class of algebras with one relation, as long as it is not clear whether it 
is an automaton class of algebras. 

A sufficiently large list of known results on rationality for local rings is 
given in 9.2. 

$9. Local Rings. CW-complexes 

9.1. Introduction. Recall that a commutative ring R is called local if it has 
a proper ideal 9Jl, containing all other proper ideals of R. The quotient ring 
K = R/!7Jl is a field. As a rule, we will consider only Noetherian local rings, 
thus R will be tacitly assumed to be Noetherian everywhere in the sequel. 
Our approach to the local rings will be based on studying their Poincare 
series PR. It turns out that, given the context, it is most suitably studied 
through the functor Ext , since it is possible to introduce a structure of an 
algebra on the set Ext (K, K). Moreover, in reality it has the structure of 
a Hopf algebra that could be associated with the corresponding structure 
of a Lie superalgebra. The presence of the differential makes it possible to 
see this Hopf algebra as a differential algebra as well. Thanks to this fact, 
we can establish connections among various series that were discussed in the 
previous section. Finally, the case !7.J13 = 0 will play a specific role, since it 
will enable us to relate the Poincare series of local rings, nilpotent algebras 
and topological series. 

9.2. Regularity. Complete Intersection. Rationality. Let K = R/!,?J&. Note 
that, for every n 3 0, the quotient !XY/tmn+r is a vestor space over K. The 
dimension edim R = dimK 9Jl/?JJ12 is called the embedding dimension and 
equals to the minimal number of generators of the ideal ??Jl (as a module 
over R). The dimension dim R is a number n minimal with the property that 
there are n elements in 9X such that the ideal generated by them contains 
some power 9.@ of the ideal ?JJl. It is obvious that dim R < edim R, but if 
these two dimensions coincide, the ring is called regular. 

The multiplication in R induces a natural structure of an algebra in 
the associated ring gr R = @r ?BY/?YJ?l. The Hilbert series Hgr~ = 
CF dimK(!XV/Dln+r)tn of this algebra is naturally also called the Hilbert 
series of the ring R and is denoted by HR. We point out that the ring R 
itself, generaly speaking, may not be an algebra over K. Since gr R is a com- 
mutative algebra, its Hilbert series is of the form HR = f(t)/(l - t)d, where 
f(t) is a polynomial with integer coefficients. The number d coincides with 
the dimension dim R of the ring R. Note that R regular u gr R ~2 K[X]. 

Example 1. The ring of formal power series K[[z]] is local and regular. Its 
ideal 9X is formed by the series without the constant term (since all the other 
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series are invertible). The ring associated to it is the polynomial algebra of 
one variable, thus its Hilbert series is HR = 1 + t + t2 + . . . = (1 - t)-l. 

Example 2. Let A be a commutative ring and let P be its prime ideal 
(i.e. the quotient over it does not have zero divisors). Let us consider the 
set of ordered pairs (f,g) where f,g E A, g $ P, as well as the equivalence 
relation: (f, g) N (f’, 9’) ++ 3h 4 P with h(fg’ - f’g) = 0. After denoting 
the equivalence classes by the symbols f/g, we may well define addition and 
multiplication on them: 

f/9 + f79’ = f9’+ f’919St; (f/9>(f’/9’) = ff’l99’. 

In this way we obtain a local ring Ap called the localization at P. For our 
purposees, it is important to note that if A is Noetherian, then Ap is also 
Noetherian. This example plays a rather important role in algebraic geometry. 
Let, for instance, X be an affine variety and let A be the ring of regular 
functions over it (cf. definition in Shafarevich, 1972). If P consists of all those 
functions which equal zero at the point z E X, then P is a prime ideal and 
Ap is denoted by 0, and is called the local ring of the point z. The variety 
will be smooth if and only if all the local rings of its points are regular. 

Regularity may be defined in a different way. Recall that the sequence 
of elements zr, . . . 2, E m is called regular, if zi is not a zero divisor in 
R/(x1,... ,xi-l)R, for i = 1,2,. . . , n (assume Xs = 0; (51,. . . ,zi-r)R is the 
ideal generated by xj, j < i). It turns out that a ring is regular if and only if 
its maximal ideal !Dl may be generated by a regular sequence. 

Local rings have yet another structure. The fact is that the powers mk 
define the structure of a topological space on them: these powers are taken 
to be a base of the open neighbourhoods of zero. We may naturally consider 
completeness and completions in this topology. A deep statement holds: ev- 
ery complete local ring is a homomorphic image of a regular one; for details 
see (Zariski, Samuel, 1958, 1960). We emphasize that the passage to com- 
pletion does not change basic characteristics of a ring: (non-)regularity, the 
dimension, the PoincarC series. Thus a standard beginning of many proofs is: 
“without loss of generality we may assume R to be complete”. 

The following definition singles out one more important class. 

Definition. The ring R is called a (local) complete intersection, if its com- 
pletion is a quotient of a regular ring, mod the ideal generated by some regular 
sequence. 

These rings have originated in algebraic geometry (where they acquired 
the name, under geometric considerations). However, they turned out to be 
exceptionally important in homological algebra too, which will be seen some- 
what later. 

In general, if (S,!Y&) is a regular ring such that, for some ideal I, the 
quotient ring S/I is isomorphic to the completion of R, then the number 
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d(R) = dimK(1/9U) - (dim S - dim R) is called the defect of the complete 
intersection of the ring R. It is not difficult to prove that d(R) 2 0, where 
the equality holds if and only if the ring is a complete intersection ring. 

It turns out that these properties are fully characterized by the Poincare 
series (Avramov, 1984a). Recall that the growth of R is the growth of the 
Series PR. 

Theorem 1. The growth of a local ring R is alternative. It is polynomial if 
and only if R is a complete intersection. In addition, R will be a regular ring 
if and only if PR is a polynomial. 

Note that L. Avramov has proved even a little more: the Betti numbers are 
either given by polynomials or they are bounded below and above by powers, 
so that the radius of convergence of the Poincare series is always positive. 

It would appear that this theorem would allow for hope for rationality 
of the Poincare series, but this is not the case, as we have already noted. 
Nonetheless it is appropriate to list a summary of results on rationality. Let 
us denote by depth R the maximal length of a regular sequence in the ideal m. 

Rationality holds if one of the following conditions holds: 

1) R is a complete intersection (Tate, 1957); 
2) edim R - dim R < 1 (Shamash, 1969); 
3) edim R - depth R < 3 (a series of authors who studied these rings, cf. 

(Avramov, Kustin, Miller, 1988); the last word was (Weiman, 1985)); 
4) edim R - depth R = 4 and R is Gorenstein (Jacobson, Ku&in, Miller, 

1985). 
A more complete list is in (Avramov, Kustin, Miller, 1988). 

In fact, more has been proved in (Avramov, Kustin, Miller, 1988). Let 
M be a finitely generated R-module. The series Pg(t) = Cz”=, bi(M)ti was 
called the Poincare’ series of it4 (cf. 1.8). 

Theorem 2. Let R be any of the rings l)-4) listed above and let M be any 
finitely generated R-module. Then, its Poincare’ series P:(t) is rational. 

9.3. Koszul Complex. Let R be a local ring and let xl, 22, . . . , z,,, be a min- 
imal generating set of 9Jl, so that edim R = m; let L = LR = AR[Xl, . . . , Xm] 
be the exterior algebra over R of m generators Xi, . . . , X, (more precisely, it 
is a free R-module). Let us define the differential d on words by the following 
rule: 

d(Xi, . . . Xi,) = ~(-l)jXi,iX~l . . . rZ,j * a *Xi,, 
j=l 

where the little hat denotes that the marked factor is omitted; for instance 

d(X2X3) = -x2X3 +x3X2. 

It is easy to see that d2 = 0. Thus L becomes a complex, called the Koszul 
complex (1.8). In fact, L is a negative differential graded algebra (cf. 8.5), 
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not over the field K, but over R. On the other hand, the homology algebra 
H,(L) is the already existing graded algebra over K. 

It turns out that many properties of the ring R may be characterized in 
terms of the Koszul complex. Let ci = dimK Hi(L), so that Cc&” is the 
Hilbert series of the algebra H,(L). 

Theorem 1. i) The ring R is regular if and only if cl = 0. In this case, 
L is a minimal R-free resolution (3.g), hence Tor c(K, K) = H(K @)R L) = 
K @R L = AK[Tor f(K, K)]. 

ii) The ring R is a complete intersection if and only if Hz(L) = [H1(L)12. 
iii) Let R = S/I, where (S, n) is a regular ring and dim S = n. Then cl > 

n-dim R, where the equality holds if and only if R is a complete intersection. 
Note that R is called an almost complete intersection, if cl = n - dim R + 1. 

iv) The defect d(R) of the complete intersection equals 
cl -edimR+dimA 

((Tate, 1957), (A us an 1 d er, Buchsbaum, 1957, 1958), (Babenko, 1986a)). 

Theorem 2 (Serre, 1965). Let R be a local ring and n = edim R. Then the 
following inequality for the series holds: 

(1 + t)” 
PR(t) G 1 _ cy=, %ti+l. 

The rings, where the equality holds are called the Golod rings (he proved that 
the equality holds if and only if H,(L) h as a zero multiplication and the so- 
called ternary Massey operations equal to zero too (Golod, 1962)). 

This theorem enables us to estimate the radius of convergence of the series 
PR, when necessary. 

Another similar condition was obtained in (Avramov, Lescot, 1982). The 
following dimensions are called the Bass numbers of a local ring R: 

pi(R) = dimK Extk(K, R). 

Let 

be the corresponding generating function. 

Theorem 3. The following inequality holds, for every non-regular ring R 
of embedding dimension n = edim R: 

The equality holds if and only if R is a non-regular Golod ring. 

Lescot’s paper (Lescot, 1985) is devoted to the asymptotic behavior of 
the Bass numbers pi(M) = dimK Ext k(K, M), for an arbitrary module M. 
Another of his papers (Lescot, 1986) is devoted to the syzygy module. 
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Another application of the Baas numbers is the following. A ring R is 
called a Gorenstein ring, if it has a finite injective resolution. It is a natural 
generalization of the notion of complete intersection. It is interesting that the 
rationality of the Poincarb series fails already in the class of the Gorenstein 
rings. However, the following holds: 

Theorem 4. The ring R is Gorenstein _ IR(t) = tn. 

9.4. Nilpotent Algebras and Rings with the Condition !lX3 = 0. Let N be 
a finite-dimensional nilpotent algebra of index < 3. Our goal is to study its 
Poincare series PN and to learn better the structure of its Yoneda algebra 
E = Ext >(K, K) (cf. definitions in 1.8). 

If N2 = 0, it is easy to see that E is a free associative algebra, generated 
by the set W = Ext X(K, K), while the converse is true too. In general, the 
subalgebra E’, generated in E by W, does not necessarily coincide with E 
(more details about this, somewhat later). Thus, let N3 = 0. 

Multiplication in N defines a mapping 4 : V @ V - N2, where V = 
N/N2, by the rule (a + N2) @ (b + N2) --f ab. Let us consider the conjugate 
mapping q : (N2)* - (V 63 v>* = v* c3 v* and let A(N) be the alge- 
bra obtained from the tensor (thus also the free) algebra, factoring out by 
the ideal generated by the image $*( (N2)*). It is a quadratic algebra, since 
Im $* c V* @ V*. The mapping indicated is invertible. 

Let A be a quadratic algebra. Then it may be represented in the form 
A = W)/(J’), h w ere F c V @ V. Set &’ = {f E V* 8 V* 1 f(F) = 0) and 
V* = Horn (V, K). Then N(A) = T(V*)/(p $ V* 8 V* 8 V*). 

Theorem 1 (Lcfwail, 1979). The mappings A -+ N(A) and N + A(N) are 
mutually inverse and they map isomorphic algebras into isomorphic ones. 
Moreover, the following relation, between the Hilbert series of the quadratic 
algebra A and the Poincare’ series of the corresponding nilpotent algebra N, 
holds: 

Pi’(t) = (1+ t-‘)H;‘(t) - t-lH&t). 

Example. Let N = (z, y j x2 = y2, zy = 2ys, y2z = y3 = 0). It can be 
checked by the Composition Lemma that this is a complete system of rela- 
tions, thus N3 = 0. We define the mapping 4 as follows: let {z, y} (we use 
same symbols) be a basis in V = N/N2. Then 4 is defined by the correspon- 
dence: 

( 28x+ y2; 

4: 

I 

x c3 y -+ 2yx; 

yc3x+yx; 

Y@Y --+ Y2. 

If we use an asterisk for the dual elements, then 
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Consequently A(N) 2 (a, b 1 a2 + b2, ab + (1/2)ba). 

Since the Hilbert series of a finite-dimensional algebra N is a polynomial, 
we have established one of the connections indicated in Fig. 1. 

What do we get in application to the local rings with %@ = 0 - an- 
other rectangle in our picture? First of all, Levin has shown that PR = PgrR 
and Lofwall has shown that the subalgebras generated by Ext k(K, K) and 
Ext & R(K, K) in Ext k(K, K) and Ext & R(K, K) respectively are isomor- 
phic. Hence we may use the previous theorem. Even a stronger result holds 
(Lofwall, 1986): 

Theorem 2. Let R be a local ring with m3 = 0 and let El be a subalgebra 
of the Yoneda algebra E = Ext k(K, K), generated by Ext k(K, K). Then 

(i) In the correspondence R -+gr R -+ A(gr R), from the previous theorem, 
the Roos algebras correspond to the commutative nilpotent algebras, so 
that the following formula holds: 

P&t) = (1 + t-‘)&‘(t) - t-%R(-t). 

(ii) E = El if and only the ISberg formula holds: PR(t)HR(-t) = 1. 

Note that the Roes algebras are a special case of the Hopf algebras (1.7) 
and that we have established one more connection in Fig. 1. 

Example. Let R be a local ring defined by the relations (~r,zz, x3,24, z5 1 
z;, &$, & zlz2,~3~5,51~3 + z2z4 + 54x5, m3>* 

The corresponding Roos algebra will be the universal enveloping algebra 
for the following Lie superalgebra: 

L = (Tl,TZ,T3,T4,TS 1 T& [W2] - [T4T5lr [T’Tzl - [W-31, 

[T&1, P”T51, PYGI, FZ4Ir [T,T5]); (tTil = 1). 

We can check that the Hilbert series Hu(~) is not rational, and then the same 
is true for PR (Llifwall, Roos, 1980) 

We point out that from the point of view of questions on rationality, ev- 
erything reduces to nilpotent rings, since the following holds: 

Theorem 3 (Levin, 1975). For every local ring R, there exists an integer 
n, such that, for all k 2 n: 

P;‘(t) = P;,&,(t) + (-l)kt2-kHR(-t)l,&, 

where 
HR(t)l,& = ~dim&@/rm’+‘)t”. 

i>k 
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9.5. Hopf Algebras, Di&re&~ Algebras and CW-complexes. We ham 
seen in 9.4, that it was possible to relate naturally a Lie superalgebra with a 
local ring with !JJ13 = 0. This connection is not accidental. It turns out that, 
for a local ring R, its Yoneda algebra Extk(K, K) may be equipped with 
the structure of a Hopf algebra (Gulliksen, Levin, 1969) with divided powers, 
thus Theorem 2 from 1.7 holds as well as its analogue for finite characteristic, 
and the following holds: 

Theorem 1. For a local ring R, the Yoneda algebra Ext k(K, K) is a uni- 
versal enveloping algebra of the uniquely determined Lie superalgebra a,(R). 

We will call this Lie superalgebra the algebra of homotopic groups of a 
local ring. This term is dictated by considerations in differential geometry 
and topology (we will not introduce the corresponding notions and notation 
that will be used in the sequel). For all the information about the content 
of this part we refer the reader to (Babenko, 1986a), where the necessary 
references can be found too. 

An analogy with topology is the following. For every complex X, the linear 
space 7r$(X) = z*+r(X) @Q is a Lie superalgebra with respect to Whitehead 
multiplication. If X is a singly connected complex, then the Pontryagin ring 
H,(RX) and the Whitehead superalgebra n:(X) are related by the equality 
H*(flX) = U(?r$(X)). 

The corresponding generating function is also introduced. The series Lx = 
C dimK Hi(&?X, Qt” is called the Poincare’ series of the loop space of the 
given space. After all, it equals to the Hilbert series of the Pontryagin alge- 
bra H,(RX), however note that, even for finite singly connected complexes, 
the latter may not be finitely generated. We refer the reader to the papers 
indicated in Fig. 1, in relation to different questions of rational dependence. It 
is important to emphasize that the connection between the local rings and the 
CW-complexes, that we only hinted at, has a rather deep, categorical content. 
A connection between two classes of objects is realized through the differen- 
tial algebras according to the Quillen principle: “Differential graded algebras 
should be used not only as an instrument of calculating (co)homologies. In 
reality, an appropriate category of differential graded algebras will carry a 
“homotopic theory” and a series of other invariants with it”. A marvelous r~ 
alization of the Quillen principle may be found in (Avramov, Halperin, 1986). 
Unfortunately, the volume of this book does not allow us to go deeper in that 
direction, but the reader may familiarize himself with this theory through an 
expository paper (Babenko, 1986a). 
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§ 10. Other Combinatorial Questions 

10.1. Introduction. In this short section we consider briefly two important 
new directions of research that, in our opinion, should not be passed by in 
silence. We have in mind hyperbolic and quantum groups. 

10.2. Hyperbolic Groups. We will consider here, from a purely philosoph- 
ical point of view, an important notion introduced by Gromov (Gromov, 
1987). We begin by a somewhat ill-posed problem. Let us assume that we 
would like to obtain an algebra of sufficiently general position, with some 
imposed condition that cannot be guaranteed by a finite number of defining 
relations or we simply do not know how to do it. For instance we may need 
an infinite nilalgebra. Going back to Golod’s example (3.5), we recall how 
it was achieved: every succeeding relation was simply taken to be of con- 
siderably greater degree than the preceeding. In addition, the infinity was 
ensured by the Golod-Shafarevich theorem. The question is, however, what 
to do if the relations are not homogeneous, such as when we want to con- 
struct a simple nilalgebra. In principle, it is perfectly unclear that it will be 
possible to add even one relation at some stage - it is enough to recall that 
the Kac-Moody algebras (7.10) turned out to be simple, up to the center, 
although finitely presented, thus no relations can be added to them. On the 
other hand, note that we are dealing here with the polynomial growth, which 
obviously does not correspond to a “general position”. On the other hand, 
it is purely intuitively clear, that if the relations are chosen fairly randomly, 
then the infinite-dimensionality should not be altered. What are the means 
to express this intuitive “clarity”. We would like to have some wide class of 
finitely presented algebras of the exponential growth from which we would 
not exit after imposing one more relation of a sufficiently general form. An 
example of such a class were graded algebras with three generators and not 
more than one relation in every degree (5.3). Unfortunately, such an effective 
description of a class of algebras, in the non-homogeneous case, has not been 
found yet. A similar ‘problem for groups has been solved however - Gromov 
investigated hyperbolic groups in (Gromov, 1987). Let X be a finite set of 
generators of the group G and, for every g E G, let the symbol 191 denote 
the length of the shortest presentation of g through the generators and their 
inverses. If dx(n) is the number of the elements g E G, such that 191 < n, 
then it is not difficult to understand that the equivalence class [dx] is exactly 
the growth of the group G. For z, y E G set 

(z. Y> = Hal + IYI - WIYI). 
L 

Definition. A group G is called hyperbolic, if there exists a constant 6 2 0, 
such that, for all 2, y, z E G: 

(z . y) >/ min((z . z), (ye z)) - 6. 
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It turns out that this definition does not depend on the choice of generators 
(only the constant 6 changes) and that all the groups whose defining relations 
do not link more than l/6 of their lengths are hyperbolic, but represent only 
a small fraction of the hyperbolic groups. 

It is more striking however that the hyperbolic groups are always finitely 
presented. As every finitely presented group, a hyperbolic group may be real- 
ized as a fundamental group of the corresponding smoothly bounded region 
V. The hyperbolicity of the fundamental group is equivalent to the follow- 
ing purely geometrical property: there exists a constant C such that every 
smooth closed curve S contractible in V and enclosing a smoothly embedded 
disk D, satisfies the inequality: 

the area of D < C. length of S. 

This allows for a study of hyperbolic groups by geometrical methods: In 
reality, it turns out that the hyperbolic groups are exactly fundamental groups 
of spaces of negative curvature. We may view them as the groups of isometries 
of the spaces of negative curvature. Let F = F(X) be a free group, W C X 
and let N(W) be the normal subgroup of F generated by W; let also f E 
N(W), let L(f) be the length of minimal representation of f through the 
generators and let S(f) be the minimal number A with the property that 

f  = Pl4'P?w% P2 
bz -1 . . . w>p,‘, 

for some pi E F, wi E W, where 

cL(pi) < A, c IbilL2(Wi) < A. 

Theorem 1. Let G be a hyperbolic group and let d > 8(6 + 2) (6 comes from 
the definition of a hyperbolic group). Let W be the set of all the words in G 
of length not greater than 3d that are equal to the unity. Then: 

a) G = F/N(W). 
b) For every f E N(W), S(f) < 27d2L(f). 

Corollary. The equality problem is decidable in G. 

The converse holds too. 

Theorem 3. If G = (X I W) and if there exists a constant C > 0 such 
that, for every f E N(W), S(f) < CL(f), then G is a hyperbolic group. 

If all the words in W have the length not greater than three (and it is al- 
ways possible to achieve), then in reality, it is sufficient to check the condition 
of Theorem 3 only for a finite number of words. By the same token, there 
exists (at least theoretically) an algorithm for checking whether a group is 
hyperbolic. 

Theorem 4. The generating function (cf. 3.3 for non-invariantly defined 
Hilbert series) 
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c dx(W’ 
for a hyperbolic group is a rational function. The growth of a hyperbolic group 
is either constant (in case the group is finite) or exponential. Moreover, it as 
an automatic group. 

This is derived from the fact that the set of normal words is a Markov set. 
For details and definitions see (Gromov, 1987). A few other rational generat- 
ing functions for the corresponding interesting sets may be found in the same 
paper, and most importantly, some deep geometric and combinatorial ideas 
that deserve thorough investigation. 

10.3. Quantum Groups and Quadratic Algebras. This part has an almost 
advertising goal: to attract attention of the specialists in the area of combi- 
natorial algebra to some new questions and problems that were born in areas 
fairly remote from them. Thus the content of thii part will consist of several 
examples that should arise the readers curiosity. 

What is the meaning of the word “quantum”? “Quantizing is something 
similar to replacing commutative algebras by non-commutative” (Drinfel’d, 
1986). Let us try to illustrate this claim. We start with a quantum plane. 
To this end, let us at the beginning adopt the point of view of algebraic 
geometry, namely that the properties of objects are given by the properties 
of its coordinate ring. For instance, the ordinary affine plane may be uniquely 
established by its ring K[z, y]. A further development of this point of view 
is an assumption that every algebra A is a coordinate ring, i.e. the ring of 
functions on some imaginary “quantum” space Spec A. 

Let now q be an element of the base field, such that q2 # 0, -1. The 
quantum plane SpecAo(2)0) is defined by the ring 

A,CW) = (X,Y I XY = q-‘w). (1) 
There is also a “behind-the-mirror” analogue - the second quantum plane 
defined by 

A,$$4 = (Lrl I t2 = 01~ = o,tv = -wO. (2) 
And now we want to define quantum matrices. Again, we define instead the 

coordinate ring of the variety of all quantum matrices They form 

the quadratic algebra: 

M,(2) =(a, b, c, d 1 ab = q-‘ba, ac = q-lcn, cd = q-l&, 

bd = q-l, bc = cb, ad - da = (q-l - q)bc). 
(3) 

A justification of these definitions is the following 

Theorem 1. Let (x; y) and ([, q) satisfy (1) and (2) respectively. Let a, b, c, d 
commute with x, y, c, q. Set 
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(;J=(: i)(;)y (;::)=(i ii)(;)9 ($)=(: ii)(:). 
Then the following conditions am equivalent: 

a) (z’, y’) and (x”, y”) satisfy the relations in (1). 
b) (x’, y’) satisfy (1) and (<‘,q’) satisfy (2). 
c) (a, b, c, d) satisfy relations in (3). 

Corobry. If the quadruples (a, b, c, d) and (a’, b’, c’, d’) satisfy (3) and if 
their elements mutually commute, then the matrix entries of the product 

(: i) ($ $) also satisfy (3). 

Both the theorem and the corollary are easily checked by direct computa- 
tions. The next stage is to introduce the determinant. Let (a,b,c,d) satisfy 
(3). Then set 

=ad-q -‘bc = da - qcb, 

and it is not difficult to check that the determinant of the product equals 
to the product of the determinants of the factors. And now let us reach the 
quantum groups. For instance, setting DET, = 1, we obtain the quantum 

grow f34A2) ( more precisely, its coordinate ring). What corresponds to the 
quantum group GL,(2)? And, generally, what is a quantum group? Let us 
again try to get onto a more general point of view and to define not the 
notion we have singled out, but rather to describe all the family of quantum 
groups. 

Let us return to groups. Let G be a group and let A = Fun(G) be the 
algebra of functions on G that are assumed to be smooth, if G is a Lie group, 
regular, if G is an algebraic group etc. Since Fun (G x G) = A 8 A, if the 
tensor product is interpreted in the corresponding sense (for instance, as a 
topological tensor product in the case of Lie groups), the multiplication in 
the group induces a comultiplication A : A --+ A @ A. As a result, A turns 
into a commutative Hopf algebra. Thus, the category of groups is dual to the 
category of commutative Hopf algebras. 

And let us now “unroll” our point of view and define at the first place the 
category of quantum spaces as the category dual to the category of associative 
algebras, of course not necessarily commutative, whenever we mentioned the 
word “quantum”. Let us denote by Spec A the quantum space corresponding 
to the algebra A, and call it the spectrum of A. From this point of view, 
all our previous examples are examples of quantum spaces. What is specific 
about SpecM,(2)? It is the presence of multiplication. It translates, with the 
aid of Theorem 1 and its corollary, as follows: the comultiplication 
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turns A&(2) into a bialgebra. It is now clear how to define quantum semi- 
groups: they are spectra of bialgebras. Finally, the quantum groups are spec- 
tra of the Hopf algebras. Now the reader can independently define the latter 
notion, introducing antipodes as the reflection of the property of having the 
inverse element. Here is one of the necessary diagrams: (s is an antipode): 

In addition, we need to take into account that, in the non-commutative case, 
the existence of a “skew” antipode s’ is required; it is in fact an antipode 
for the opposite multiplication and the same comultiplication. More details 
about this cf. (Drinfel’d, 1986) and (Manin, 1988). 

Thus, the notions of a quantum group and a Hopf algebra are in fact 
equivalent. Let us emphasize that, generally speaking, a quantum group is 
not a group in the ordinary sense. 

Let us turn our attention to the following aspect of our examples: all of 
them were examples of quadratic algebras. Recall that they are not appearing 
for the first time - cf. 3.10 and 8.4. Let us try to consider quadratic algebras 
from the categorical point of view. First of all let us represent a quadratic 
algebra A as a quotient of the tensor algebra T(A1) mod an ideal generated 
by R(A) c Al @I Al. Such a pair {Al,R(A)} uniquely determines A. For 

instance, 4(W) = {Kt @ Krl, WC 8 0 + WV 8 rl) + K(t 8 v - qv 8 01, 
whereas the dual algebra A! (cf. 3.10) is defined by the pair {AT, R(A)I}. 

Quadratic algebras form a category. It is interesting that, besides the ten- 
sor product, this category is also closed under two other operations. Let 
A, B be quadratic algebras, defined by the relations R(A) c Al @ Al and 
R(B) C Bi @ Bi respectively. Let T be the mapping that carries 

al 8 a2 8 bl 8 b2, to al 8 bl @ a2 8 bz. 

Let us define the algebras A o B and A l B by the following pairs: 

A 0 B = {AI 8 BI, T(R(A) @ Bl@ Bl + AI 8 AI 8 R(B)}, 
A l B = {Al @ Bl,T(R(A) 8 R(B)}. 

The following isomorphisms hold: 

(AoB)oCZAO(BOC), (AoB)oCSAo(BoC), 
(A.B)!rA!oB!, (AoB)!=A!.B!. 

We point out that if A is a Hopf algebra (thus, also a Roos algebra), then 
the comultiplication leads to a natural morphism A + A o A. 

Theorem 2. The following factorial isomorphism holds: 

Horn (A l B, C) E Horn (A, B! o C). 
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If we introduce an inner Horn by the rule Horn (B, C) = B! o C and dually 
horn (B, C) = B! l C, then horn (A, A) = end (A) is provided by a structure of 
a Hopf algebra. These properties open up the way to generalizing examples 
discussed at the begining of this part (cf. Manin, 1987). 

Let us consider our quantum examples from one more viewpoint. Their 
defining relations form a complete system of relations and, by the same token, 
their Hilbert series are same as in the corresponding polynomial algebras. 
These algebras are called the Poincare-Birkhoff-Witt algebras (PBW in a 
short form), thus extending this definition to non-graded algebras with non- 
invariantly defined Hilbert series. Thus, if A is a graded PBW algebra (with 
the natural gradation), and if d = dim Ai is the number of generators, then 
dim A, = ( n+td-l). 

We are interested in the quadratic PBW algebras. First of all, they are 
homogeneous Koszul algebras (cf. 3.10) and, in particular, Ext i(K, K) 2 A! 
(Priddy). In an unexpected way, the PBW property is essentially defined in 
the third component: the generic algebras (in the sense analogous to that 

considered in section 4), for which dim A2 = w, dim A3 = (di2) are all 
PBW algebras (this is a result of V.G. Drinfel’d, cf. (Vershik, 1984) where 
other interesting properties of quadratic algebras can be found too). 

10.4. Comments. In our presentation we have followed (Gromov, 1987), 
(Manin, 1988) and (Drinfel’d, 1986), not at all pretending that we have shed 
light on the most meaningful moments of these works. In (Vershik, 1984) 
we can also find discussions on Sklyanin’s algebras, for which the defining 
relations have the form of equality of a commutator to an anticommutator. 
The contents of the last part is connected to the classical methods of the 
inverse problem and this connection after all deserves a special attention, 
however this discussion and many other interesting questions will remain 
beyond the scope of this work. 

$11. Appendix 

11.1. Computer Algebra. Although the main subject of the preceeding 
chapters consisted of non-commutative algebras, a significant progress in the 
commutative case should be mentioned before everything else. 

The major part of this progress stems from a new era of Computer Algebra. 
There has been an emergence of a number of powerful software packages for 
hardest calculations in algebra. The concept of a Grijbner basis is certainly 
very useful by itself, but with the help of a computer, it really becomes a 
diamond. 

We are nowadays offered a possibility of a selection among the many first 
class Computer Algebra systems. One can use both very convenient univer- 
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sal packages such as MAPLE and MATHEMATICA, or the more specialized 
(and more effective) ones such as MACAULAY, COCOA (commutative alge- 
bra), GROEBNER ( non-commutative, especially path algebras), BERGMAN 
(both commutative and non-commutative case), GAP (group theory) and so 
on. The full list is too long to give here (the author mentions only those 
that he is familiar with); one of the ways to get a more complete and up 
to-date information on the variety and availability is by anonymous ftp from 
math.berkeley.edu, where it is in the directory: pub/Symbolic- Soft. 

Let us now assume that we have one of these remarkable instruments 
available in our computer and that we want to use them for our routine 
calculations. What are our new possibilities to prove purely mathematical 
results? 

11.2. Commutative GrSbner Basis. First of all we have a possibility to 
calculate a Grobner basis. In fact, it gives much more than it can be hoped 
for. Here is a short list of questions that can be easily dealt with in the 
commutative case. As usual, K denotes the ground field. Assume that we are 
given an algebra A = (X ] R) (always finite in the commutative case), and, 
in the following five items, let I be an ideal of K[X], generated by R. 

1. Ideal membership. Using the Grobner basis of the given algebra A, we 
can find a basis of A, consisting of normal words as well as find out whether 
a given element u belongs to the ideal I. More importantly we can find the 
exact expression for u, if this is the case! 

Example. A = (z, y ] zy = y,y2 = z). If z > y, then the set {fr = 
zy - y, fz = y2 - z, fs = z2 - z} is the (commutative) Grijbner basis. Note, 
that f3 = yfl + (1 - z)f2 (b ecause it was obtained as a result of a reduction 
of the composition fi y - fzz by f2.) 

Suppose we test the element u = -z3 + zy2 + z2 - zy - y2 + y. Applying 
reductions we get 

u -2f3 zY2 -xy-y2+y%-xy+y=-fl. 

So, u = -zf3 + yfi - fi, and u = (-zy + y - 1)fi + (z2 - z)fz. 

2. Ideal equality. Two ideals are equal iff their reduced Grobner bases are 
equal. 

3. Inverses. An element f has an inverse iff the ideal, generated by I and 
f in K[X] contains 1. On the other hand, we know already how to solve 
the problem of membership and how to express 1 = af + C aifi, whenever 
possible. The element a will be the inverse. 

4. Radical membership. Let y be an additional variable. Then f belongs 
to the radical of I (i.e. it is a nil-element in the factor algebra) iff the ideal, 
generated by I and 1 - yf in K[X, y], contains 1. 

5. Lexicographic ordering. We have already mentioned that, in the com- 
mutative case the pure lexicographic ordering is possible as well as useful 
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(although it is hardest from the computational point of view). The following 
fundamental fact is valid only in the pure lexicographic ordering: 

Theorem. Let x1 < x2 < . . . < x, be the pure lexicographic ordering and 
m 5 n. If G is the Griibner basis for the ideal I, then G n K[xl, x2,. . . , xm] 
is the Griibner basisforInK[x1,x2,... ,x,,,]. 

6. Intersection. In the remaining two items we assume that I, J are arbi- 
trary ideals in K[X]. Let y be an additional variable, such that X < y (in 
the pure lexicographic ordering). Then, in order to find the Griibner basis for 
the intersection, it is sufficient to use the following fact 

Theorem. I f~ J = (~1, (1 - y) J) fl K[X]. 

Example. Let I = (x2 - y2), J = (y) and x > y. Introducing a new variable 
.Z,Z > x, we need to calculate the GrSbner basis for the ideal, generated by 
2(x2 - y2) and (1 - z)y. In addition to these elements it contains one more: 
x2y - y3. Exactly this element generates I n J. 

Of course the answer here was evident from the beginning, for we have 

(f) n (9) = lm (A 9). 
7. Homomorphism. 

Theorem. Let 4 : K[Y]/J - K[X]/I be a homomorphism, such that 
$yi=ui(x),i=l,... m. Let Y < X be a pure lexiwgruphic ordering. Then 

ker 4 = ((I, yi - ui (i = 1,. . . , m)) n K[Y])/J. 

Thus, it is easy to find for example the subalgebras, generated by the given 
set of elements (by considering them as an image of K[Y] .) 

The list can be (and should be) continued for long, but even this list is 
sufficient for understanding the role of computer applications today. More 
over, these basic constructions are already included in the modern computer 
algebra systems and we need only one line to call them. More importantly, 
the procedures following GrSbner basis calculations, such as syzygies, have 
become an important part of Computer Algebra and it is sufficient to refer to 
the corresponding manuals for completing the calculations (for example the 
manual for GAP contains more than 1000 pages and has procedures for al- 
most all necessary calculations in finite groups). As to publications, there are 
many and the following are only a few among them: (Becker, Weispfenning, 
1993), (Davenport, Siret, Tournier, 1988), (Mora, 1986), (Robbiano, 1989), 
(Almkvist, 1990), (Sturmfels, 1993) (the last two authors are concerned with 
invariant theory - a subject we have reluctantly omitted). 

11.3. n-cyclic Systems of Equations. Let us discuss a nice example of a 
modern application of computers, where several different ideas come together. 
For a given natural number n the n-cyclic system is of the following form: 



164 V. A. Ufnarovskij 

Xl+X2+X3+...+Xn-1+Xn =o 

21X2 + X2X3 + X3X4 + . .* + Xn-1x71 + X&l = 0 
. . . 

X1X2 . ..X.-l+X2X3...Xn+.‘.+XnXl...Xn-2=0 

5122”.2, = 1 

Note, that only the last equation has a non-zero right-hand side and that all 
other equations have exactly n summands (as well as that they are not all 
elementary symmetric functions). 

This system represents a good test for computer algebra programs and 
it has appeared independently in a rather different areas such as orthogo- 
nal decompositions of Lie algebras (Kostrikin, Kostrikin, Ufnarovskij, 1981) 
and Fourier transforms (Bjorck, 1985). The program’s rating is the last n, 
for which it is able to find all solutions; rating increases with increasing n. 
The highest rating is achieved when men and computers cooperate (BjGrck, 
Froberg, 1991), (Bjbrck, Froberg, 1994), (Backelin, Froberg, 1991). 

Here we give the main idea of their approach: 

Theorem. Let 

I 

fl(Xl,X2,X3,..* ,xn) = 0 

f2(Xl,X2,X3,*** ,&I) =o 
. . . 

fm(Xl,X2,X3,... ,%)= 0 

be any (non-homogeneous) system of polynomial equations. 

Let gi(xl,x2,xg,... ,x,,z) = z degfifi(x,/z,... ,x,/z) be homogeniza- 
tions and let I be an ideal, generated by 91, . . . , gm in A = K[xl, x2, x3 . . . x,,, z]. 
Let B = A/I and B, = A/(I, zm). Then 

I. The sequence of power series H,,,(t) = (HB - HB,)/P first strictly de- 
creases (coeficient-wise) with increasing m, then stabilizes, after some index 
mo, to a series H(t). 

2. The original syitem has finitely many solutions iff H(t) = p(t)/(l - t), 
for some polynomial p. If this is the case, the number of solutions does not 
exceed p( 1) (the equality holds over an algebraically closed field, if multiplicity 
is counted). 

This theorem allows us to decide, even for very complicated systems, 
whether we have found all the solutions or at least to estimate how many 
we have not found. All we need to do is calculate the Hilbert series for some 
commutative algebras. Computers do it perfectly well. For example, the 7- 
cyclic system has 924 solutions (Backelin, Froberg, 1991). The &cyclic system 
has infinitely many solutions (this is the case for arbitrary square multiples of 
n, (Backelin, 1989)), and one can find them all in (Bjorck, Frbberg, 1994). For 
a prime p, Friiberg communicated to the author a nice formula as a conjecture 
for the number of roots of p-cyclic system, namely (‘$1”). 
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11.4. Commutative Algebras with the Quadratic Relations. The powerful 
computer programs have opened a new era of investigations in commutative 
ring theory. The best way to get to appreciate these new possibilities would 
be through reading a paper by Jan-Eric Roes (Roos, 1994). It contains not 
only mathematical theorems, but programs as well as typical computer sci- 
ence arguments. For example, one can find there a computer investigation 
of commutative algebras with 3 quadratic relations in four variables. Based 
on 22 different cases of 2 relations (see Jordan, 1906), we can consider 255 
different variants for the third relation with the coefficients 0 or 1. Of course, 
this does not exhaust all the cases, however there are sufficiently many for 
understanding the general case. The whole picture of 5610 rings consists of 6 
classes; the possible Hilbert series are as follows: 

(1 + t)/(l - t)3 - the largest class; example: (x2, y2, z2); 
(1 + 2t - t3)/(1 - t)2 - about 600 cases; example: (xy, y2, z2); 
(1 + 2t - 2t3)/(1 - t)2 - about 200 cases; example: (xy + z2, y2,xz); 
(1 + 2t)/(l - t)2 - about 50 cases; example: (zy, y2, xz); 
(1 + 2t - 2t3 + t4)/(1 - t)2 - 18 cases; example: (x2, y2, xz + yu); 
(1 + 2t - 2t2 + t3)/(1 - t)2 - 6 cases; example: (xy, y2, yz). 

Especially interesting are the Poincare series calculations. Although it is 
impossible to calculate infinite number of Betti numbers, there are some ways 
to predict the remaining infinite part (once again, using computers!) - refer 
to (Roos, 1994). Some other ideas about possible prediction of Hilbert series 
in the non-commutative case can be found in (Ufnarovskij, 1993). Neverthe- 
less it should be noted that these kinds of predictions are rather restricted 
even for sufficiently nice classes of algebras. One of these classes is that of 
the (homogeneous) Koszul algebras. One can define them as commutative 
quadratic algebras for which the double Poincare series can be obtained from 
the Hilbert series: 

I=;+, t) = HA(-st) (*). 

Other equivalent definitions and examples can be found in the sequel. 
Since we always know the Hilbert series in the commutative case, we know 

its Poincare series too. The problem is that we cannot predict whether our 
algebra is Koszul, even if we know a sufficiently large part of its Poincare 
series, and even in the case when the algebra is finite-dimensional: 

Theorem @OS, 1993). Let 

A= (x,y,z,u,v,w (x2,xy,yz,z2,zu,u2,uv,vw,w2, 

y2, 212, xz + crzw - uw, zw + xu + (a - 2)uw) 

be a commutative quadratic algebra over a field K of characteristic 0, where 
o E K. Then HA(~) = 1 + 6t + 8t2, but 

HA(-st) - Pj&,t) = (st)“+‘(t + st). 
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11.5. Koszul Algebras and Veronese Subalgebras. A (homogeneous) Koszul 
algebra A (also called the Froberg algebra, or the Priddy algebra, or even 
a “wonderful algebra”) can be defined by one of the following equivalent 
properties; see (Backelin, Froberg, 1985a), (Lofwall, 1986), (Priddy, 1970), 
(Backelin, 1982), (Kempf, 1992): 

P&)H,&4) = 1; 
PA(s, ~)HA(-st) = 1 (this was used in (*), above); 
Ext :(K, K) generates Ext > (K, K) as an algebra with the Yoneda mul- 
tiplication; 
ExtPAq(K,K) =Oforp#q; 
Tort,(K,K)=Oforp#q; 
A is quadratic and its associated lattice L(A) is distributive (see 3.10); 
A is quadratic and A! is a Koszul algebra. 

The main difference from Theorem 4 in 3.10 is that we do not assume in 
the first three cases the algebra to be quadratic; this property is rather a 
consequence of any of the above equivalent properties. 

We list here some examples of Koszul algebras: 

Monomial quadratic algebras; 
Monomial commutative quadratic algebras; 
Algebras defined by some special classes of monomial and binomial qua- 
dratic relations (Kobayashi, 1978) 
Generic algebras where the number of relations is not large (both for 
commutative and non-commutative cases), such as quadratic algebras of 
global dimension 2, in the non-commutative case. This does not neces- 
sarily provide an example, if the number of relations is large. 

Some other examples and the following result can be found in (Backelin, 
Froberg, 1985a). 

Theorem. Let A, B be graded augmented algebras. Then: 

1. The following conditions are equivalent: 
Both A and B are Koszul algebras; 
A * B is a Koszul algebra; 
A 8 B is a Koszul algebra 

If the conditions are satisfied, the Segre product (see (4.4)) A o B is a 
Koszul algebra too. 

2. Assume that B = A/(f ), where f is a quadratic element, not a zem- 
divisor, in the commutative case, and strongly free in the non-commutative 
case. Then B is a Koszul algebra if and only if A is. 

3. If A - B is a small homomorphism and B is a Koszul algebra, then A 
is also a Koszul algebra. 

4. If A is a Koszul algebra then all its Vemnese subalgebms Atd) are also 
Koszul algebms. 

The following two definitions will clarify the last two statements: 
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Definition. Following (Avramov, 1978), we say that an epimorphism f : 
A - B is a small homomorphism if either of the following two equivalent 
conditions is satisfied: 

the induced homomorphism f* = Tor ;f (K, K) is injmtive; 
the induced homomorphism f * = Ext j(K, K) is surjective; 

An ideal I is called small, if the natural epimorphism A + A/I is small. 

Thus, in order for a homomorphism to be small it should be surjective 
and both algebras should be augmented. It is natural that subideals of small 
ideals are small. Note that an algebra is a Koszul algebra iff the square of its 
augmented ideal is small (Lzifwall, 1986). 

Definition. Let A = $A, be a graded algebra; then, for any d, its d-th 
Veronese subalgebra (or subring) is defined by 

Acd) = Cl&oAkd. 

These algebras are important, for they are related to the Veronese embed- 
dings in algebraic geometry. 

An important and nontrivial fact is the following 

Theorem (Backelin, 1986). If A is a graded commutative algebra and d is 
suficiently large, then A td) is a homogeneous Koszul algebra. 

According to the previous theorem this is the case for all d, if A itself is 
a Koszul algebra. Note that, as a corollary, we get the result of Mumford 
(Mumford, 1970) that for sufficiently large d, the Veronese subalgebra Atd) 
is quadratic. 

More information about this topic can be found in (Avramov, 1992), 
(Bakelin, Froberg, 1985b), (Backelin, 1992), (Priddy, 1970), (Kempf, 1992), 
(Friiberg, L&all, 1991), (Stanley, 1978). 

11.6. Lie Algebras and Rationality. The following interesting results show 
that the growth in Lie algebras is rather unexpected: 

Theorem (Kobayashi, Sanami, 1990). Let L be a solvable Lie algebra of 
degree 2. Then its growth is polynomial. 

Theorem (Lichtman, Ufnarovskij, to appear). Let L be a free solvable Lie 
algebra of degree d, and let A = U(L) be its universal enveloping algebra. If 
d > 2 then the growth of L as well as of A is almost exponential (this means, 
that it is less than the exponential growth [2m] but more than the growth [2”‘-1 
for any a < 1). 

More exactly, this theorem is a straightforward consequence of the follow- 
ing two results: 
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Theorem. Let L be an arbitrary Lie algebra with a growth r(L) > [2m’X] 
for some LY > 0. Then DIM U(L) = 1. 

This shows that, the hypothesis in 5.5 fails. 

Theorem. Let Ld be a free solvable Lie algebra of degree d and let Ad = 
U(Ld) be its universal enveloping algebra. If d > 1 then the growth of Ld is 
equal to the growth of Ad-1 (the number of the generators n > 1 is fied); see 
also (Lichtman, 1984a,b), (Shmel’kin, 1973) on this topic. 

It is interesting to compare this result with, in a sense, an opposite case, 
when a free subalgebra exists. Note that a consequence of the last theorem 
is that the universal enveloping algebra of a solvable Lie algebra has no free 
subalgebras of rank 2. On the other hand the following holds: 

Theorem (Avramov, 1994). Let R be a commutative noetherian local ring 
and let L be its homotopy Lie superalgebm (see (9.5)). If L contains a Lie 
subsupemlgebra of finite codimension, then there exists a polynomial D(t) 
with integer coefficients such that, for any finitely generated R-module M, 
the series D(t)PE(t) is a polynomial with integer coeficients. 

The following theorem looks especially simple for the graded case. 

Theorem. Let R be a graded commutative noetherian local ring. A neces- 
sary condition for all finitely generated R-modules to have eventually poly- 
nomial Betti functions is for R to be a complete intersection with at most 
one non-quadratic relation, and a suficient condition is that it be a complete 
intersection of quadrics. 

The reader can also find the nongraded version of the last theorem in 
(Avramov, 1994) as well as many other interesting results and references. 
Some additional useful information on Lie algebras may be found in some of 
the new books as well as in the references they contain as follows: (Vaughan- 
Lee, 1993) gives a nice discussion on the topic of the Burnside problem; 
(Reutenauer, 1993) treats free Lie algebras and related topics; (Bokut’, Kukin, 
1993) gives advanced applications of the theory of non-commutative Grbbner 
bases as well as many other nice combinatorial results in Lie and associative 
algebras; (Bahturin, Mikhalev, Petrogradsky, Zaicev, 1992) discuss infinite- 
dimensional Lie superalgebras; (Mathieu, 1992) treats classification of simple 
graded Lie algebras of polynomial growth. This has already led us into a new 
topic. 

11.7. Gelfand-Kiriiov Dimension, Growth and monomial algebras. Among 
the many new results, that could be placed in this section, we mention only 
a few. Perhaps the most elegant of them are the following two, connecting 
different notions discussed earlier. 

Theorem (Felix, Halperin, Thomas, 1989). Let A be a graded Hopf w- 
commutative algebra of polynomial growth (we mean here the growth of its 
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Hilbert series). If ExtA(K, A) # 0, then A is a finitely generated nilpotent 
Hopf algebra. 

Theorem (Small, Staford, Warfield, 1985). Finitely generated algebras of 
linear growth are PI. 

Algebras with linear growth were investigated using graphs; they were also 
described in 5.6. Here we give some new applications. First of all there is an 
exact bound for the Bergman theorem (see the first Lemma in 7.8): 

Theorem. Let A be a graded algebra such that dim A, 5 m for some m 
(in the natural grading). Then 
1. dim Am+h < v, if m is even, - 

2. dim &+h 5 9, if m is odd. 

This result was proved in (Kobayashi, Kobayashi, 1993), where one can 
find some other results and examples of algebras of Gelfand-Kirillov dimen- 
sion 1. Another approach to those algebras and the following result can be 
found in (Ellingsen, 1993): 

Theorem. Let A be a finitely presented monomial algebra (in the natural 
grading). If dim Am-l < m + d - 2, for some m greater than or equal to the 
mazimal length of the defining words, then the growth of the algebra is either 
exponential or bounded by a polynomial of degree d. 

The reader, interested in C*-algebras, can find out how the property of 
linear growth is reflected in their structure (Kirchberg, Vaillant, 1992). 

As to the monomial algebras we mention the following uniqueness theorem: 

Theorem (Shirayanagi, 1991). Every finite-dimensional monomial algebra 
has a unique irredundant presentation up to permutations of the generators. 

See also (Gateva-Ivanova, 1994), (FrGberg, 1985), (Frtiberg, Hoa, 1992), 
(Green, Kirkman, Kuzmanovich, 1991), (Chiswell, 1994), (Shneerson, 1993). 

11.8. The Burnside Problem and Semigroups. This section could be easily 
skipped, for the most recent results are covered perfectly well by the following 
references (Ivanov, 1994), (Vaughan-Lee, 1993), (Vaughan-Lee, Zelmanov, 
1993), (Okniriski, 1990), (Kharlampovich, Sapir); we especially recommend 
the last one since it contains many ideas and methods. 

At least one result, once again relating different notions in this book, 
should be mentioned. 

Let us define words 2, in a free group by induction: 

21 = Xl, G&+1 = (zl, %+1, Gl>; 

where (z, y, z) = ((z, y), z) and (x, y) = ~-~y-‘xy (compare this with 6.2!) 
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Theorem (Zel’manov, 1993). For every prime numberp them exists a nat- 
ural number n such that a group of exponent p is locally finite if and only if 
it satisfies the identity Z,, = 1. 

11.9. The Generatingfunctionology. The name of this section as well as 
most of its content have been borrowed from (Wilf, 1990). We think it is 
appropriate to exhibit in this book some methods for manipulating gener- 
ating functions. Let us start from the list of the most important generating 
functions. An underlined quantity is defined by the expression on the other 
side of the equality sign. We emphasize that these are only abbreviation for 
the most commonly used series, not the corresponding functions as they are 
known in analysis. For example, the expression e@+l) has no meaning for 
the formal series, because the composition f(g(t)) is defined only in the case 
when f is a polynomial or g is a constant or has a zero free term. 

The classical series: 

-log (1 - t) = c f 
n>l 

et= 
c 

tn 

nl0 
2 

& = C(4)” ,,“,‘;;;,, 
n?O 

& = x(-ly& 

n>O 
n. 

etsint = C 
242 sin yip 

n_>l (4 

(l+t)“=q;)t” 

n>O 

arctan t = C(-l)“g 
n>O 

1 t3 1*3ts 1*3*5t7 -- -- arcsint=t+;iy+2.45 +2.4.67 +... 

The series with binomial coefficients: 

(1 -‘,,k,l = I& (“; “)t” 
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2n $Tt = n,O n cc > tn 
l-JiXE 

2t = g&(::)tn 

The series with the Bernoulli numbers. 

t -= 
et - 1 c B,C 

n>O 
-n! 

t cot t = x+&g 
n>O 

tant = c(-1)“-‘2 2n 
(2(2n), 

2n - 1)&n pn-1 

n21 

The series with the Stirling numbers of the first kind. 

$(‘% &lk = c $s(n,k) 
n 

The hypergeometric series: 

pFq ii ab; : : : 
ap t cc 
b, II 

(al)n(az)n . * * (ap)n tn 

n,O (bl)n(b)n . *. (bq)n 2’ 
- 

where 
(a), = a(a + l)(a + 2). . . (a + n - 1) 

for n > 1 and (a)0 = 1. One can easily check whether a given series C fk 
can be represented in a hypergeometric form: the ratio of consecutive 
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terms fn+l/fn should be a rational function of the summation index n. 
If this is the case, then the ratio can be expressed in the form 

f n+l -= 
(n + ul)(n + a2) +. . (n + up)t 

fn (n + bl)(n + b2) a.. (n + bq)(n + 1) 

(here t is an expression, that, does not depend on n, and the presence of 
the factor (n + 1) is traditional). Then 

II t . 
Example. Does the Bessel function 

J*(x) = 2 (-vw2”+* 
n=O nib + PN 

have a hypergeometric form? The ratio of the consecutive terms is 

49 
(n+p+ l)(n+ 1)’ 

Taking into the account that the first, term is not equal to 1, we can rewrite 
the Bessel function as follows: 

(3” 
J*(x) = (POFI . 1 P+l I - f . 1 

Note that most series above can be expressed in the hypergeometric form, 
e.g. 

r 1 i 

et=oFo t , 
III 
L I J 

t2 
sint = OFI 3,2 - 4 , [I 1 

One can also easily recognize the hypergeometric series by “Mathematics’s” 
Algebra “SymbolicSum” package, or “Maple’s” “convert/hypergeom”. 

In addition, the following list, contains the rules for some elementary opera- 
tions with generating functions. Let u(t) = C,“=, a#, b(t) = Cr=, b,t”; p E 
K; h - a natural number, P - a polynomial. Then we have: 
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Linearity: 
00 

b(t) = CPantn, 
n=O 

a(t) + b(t) = g(un + b&n, 
n=O 

Products and summation: 

a(@) = g a#tn, 
n=O 

a(t) m -= 
1-t C( a0 + al + . . . + un)tn, 

n=O 

a(t)b(t) = e(aob, + alb,+l + azbn-2 + . . . + anbO)tn, 
n=O 

Shift: 
a(t) - a0 - alt - . . . - ah-l&l O” 

th 
= c 

n 
%+ht , 

n=O 

Differential: 

D(a(t)) = g(n + l)an+ltn, 
n=O 

P(tD)(a(t)) = g P(n)a#. 
n=O 

Example. Suppose, we have arrived at, the following recurrent, inequality: 

a,+1 I a, + n2. 

How can we estimate the coefficients a,? Let, u(t) = Cz=, a,$ be the gen- 
erating function. Then, according to our rules we have: 

a($- ao 5 u(t) + (q2($-). 
or 

t + t2 
a(t)(l - t) I a0 + t- 

(1 - tp. 

We can multiply both sides of the inequality by the series (1 - t)-’ (with 
positive coefficients) and conclude that the generating function series has 
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at most polynomial growth of degree 4 and its coefficients a,, are growing 
polynomially by degree at most 3. 

We now give some methods; we start with some rather simple but useful 
cases. The first is the method of translating the “at least” information into 
the “exact” one. By this, we mean the following: 

Suppose that we are given a finite set of objects and a set P of properties 
that any of these objects may or may not satisfy. We would like to know the 
exact number ek of objects, which satisfy exactly k properties from the set 
P. The main assumption made here is that, for any subset S & P, we can 
calculate sufficiently easily the number N(S) of objects which have at least 
these S properties. The question is whether we can find the exact numbers 
ek? The answer is as follows: 

The Sieve Method. Let 

lk = c N(S) 
ScP,IS(=k 

(note that in this sum some objects may be calculated more than once). Let 
l(t) = c &“, e(t) = c e.I&” be the corresponding generating functions. Then 

e(t) = l(t - 1). 

Example. Another question usually posed is: How many objects have none 
of the given properties? The answer is clear (and well-known; we usually see 
it as the method of inclusion-exclusion): 

eo = 1(-l) = x(-l)klk. 

Example. How many of the n! permutations of n symbols have exactly k 
llxed points? This is easy to answer if we replace the word “exact” by the 
phrase “at least”: there are (L) possibilities to select k symbols among n, 
and, for every of these possibilities there are (n - k)! different permutations 
with at least those k symbols fixed. Thus the sieve formula produces, 

lk = (n - k)! ; 
0 . 

= ; 

and 

The latter series looks like an exponential series, thus after introducing no- 
tation for “truncated” exponential series: 
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exp+dt) = C ?, 
k<n Ic! 

we obtain the following generating function as an answer to our question: 

e(t) = n!exps,(t - 1). 

We now give a simple, but highly effective method of summing series. 
It combines two familiar procedures frequently used in mathematics. The 
first procedure embeds the object in question into a more intricate structure, 
such as seeing the real numbers as part of the larger structure of complex 
numbers or embedding a (single) summation or a definite integral into the 
double ones. Once in a wider structure one can view the original object with 
more freedom, from different angles, so that real numbers for instance can be 
identified with any line through the origin, in the complex plane, whereas the 
order in the double summation or integration may be interchanged (just as in 
Fubini’s theorem). This extend-and-interchange method is called the “snake 
oil method” in (Wilf, 1990). We leave it up to the reader’s imagination to 
decide as to why this name was chosen. 

A Method for Series S ummation. Suppose that we need to do some sum- 
mation and that the result will depend on some variable n. The method is 
to multiply the sum by tn or by f and then sum over n. In other words, 
we first create a generating function, thus arriving at a double sum. In the 
final step we interchange the order of summation and use our lists to get the 
answer! 

Example. Let 

a, = c S(n, k)&. 

Thus, we have 

k 

(see the list of series!) 

= c +uk, 
where u = log &. After using the list one more time, we get 

a@> = -& 
1% & 1-t 1 

=1 
i=i- 1 = tlog-~ 1-t 
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After writing the first fraction in the last expression as t - 1, we get the sum 
of the two series, then we look into the lists for the last time and finally get 
the result: 

an 1 1 -=--- 
1 n. n+1 12’ 

therefore 

c s(n, k)BI, = -9. 
k 

The Wilf-Zeilberger Method. Let us assume that we want to prove an 
identity of the form xk . . * = . .. . The Wilf-Zeilberger method is a powerful 
procedure that produces proofs with a stencil-like ease. We start from two 
examples of such proofs and give some explanations of these wonderful proofs 
later. 

&ample. The following Dixon’s identity holds: 

Proof. Dividing both sides of the equation by the right-hand side and 
denoting every new summand on the left-hand side by F(a, Ic), we arrive at 
a new form of the identity we would like to prove: 

1 F(a, k) = 1 (*> 
k 

Let 
(c + 1 - k)(b + 1 - Ic) 

R(a’ k, = 2((a + lc)(a + b + c + 1)) 

and G(a, k) = R(a, k)F(a, k - 1). It is easy to check that 

F(a + 1, k) - F(a, Ic) = G(a, k + 1) - G(a, k) 

and that 

Consequently, we have 

k liI=m G(a, k) = 0 
-t 

zc ( Fa+l,k)-F(a,k))=O, 
k=-m 

thus, the sum on the left-hand side of (*) has a constant value. It is easy to 
check that for a = 0 it equals 1, hence the identity has been proved. 0 
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Example. The following identity holds: 

p-ilk(;) (y)4n-k = (“n”) 

Proof. Dividing both sides of the equation by the right-hand side and 
denoting every new summand on the left-hand side by F(n, k), we arrive at 
a new form of the identity we would like to prove: 

c F(n, k) = 1 (*I 
k 

Let 

R(n, k) = E 

and G(n, k) = R(n, k)F(n, Ic - 1). It is easy to check that 

F(n + 1, k) - F(n, k) = G(n, k + 1) - G(n, k) 

and that 
k liyo G(n, k) = 0 
+ 

(1) 

(2) 

Consequently, we have 

Et ( F n + 1, k) - F(n, k)) = 0, 
k-s-cm 

thus, the sum on the left-hand side of (*) has a constant value. It is easy to 
check that for n = 0 it equals 1, hence the identity has been proved. El 

Comparing these two examples we can conclude that they are almost iden- 
tical: if we replace a by n in the first example the difference will be only in the 
identities in question and the definitions of functions R(n, k). Thus the key of 
the method is to choose a function R(n, k) (called a “WZ certificate”) in such 
a way that it reflects the identity we are proving and satisfies the equalities 
(1) and (2) above. Usually it can be done only with the aid of a computer 
program. We will discuss this procedure in more detail in the sequel; first, we 
list some examples of identities and their WZ certificates. 

The following identity holds: 

k (:) _ a 
(“:“) - - n+a 
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WZ certificate: 

Wn, k) = & 
The following identity holds: 

p-q”-” (g2 = (“n”) 

WZ certificate: 

R(n, k) = - 
10n2-6kn+17n+k2-5k+7 

2(2n - k + 2)2 

If b is a nonpositive integer or c - a - b has a positive real part, then the 
following Gauss’s zFi-identity holds: 

a b 
23’1 c 1 II 1 = r(c - a - W(c) 

r(c - a)r(c - b) ’ 

WZ certificate: 
R(n, k) = tk + l>(’ + ‘1 

n(n-c+ 1) ’ 

If a - b + c = 1 and real part of a is less than 1, then the following 
Kummer’s 2Fl -identity holds: 

a b 
2Fl c 

1 II 

_ 1 = r(!j + l)r(b - a + 1) 

T(b + l)r( 4 - a + 1) ’ 

If a + b + c + 1 = d + e and c is a negative integer then the following 
Saalschiitz’s sFz-identity holds: 

a b c 
3F2 d e ‘[ II 1 = (d - ahcdd - %I 

(dhl(d - a - bh * 

Ifa+b+c=d+~,e=a+b+~,a+~=b+g=d+landifdisa 
non-positive integer then the following Clausen’s 4Fs-identity holds: 

Now let us return to the crucial problem of choosing WZ certificate. The 
reader can find a remarkable algorithm in (Gosper, 1978) that takes hyper- 
geometric series c fk as input and either gives a hypergeometric series c gk 
such that fk = gk+i - gk as output or informs us that such a g does not 
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exist. Of course, this algorithm solves our problem in the hypergeometric 
case. Much more importantly, this algorithm is already implemented in the 
modern computer algebra programs! An important by-product of the use of 
these programs, is a possibility to create our own examples of proofs without 
any knowledge of Gosper’s algorithm. 

Let us illustrate this through the following trivial identity: 

We want to find the function G(n, k) by computer calculations. We list a 
program for use in “Mathematics” (the comments come after the code and 
the actual verbatim listing may differ for different implementations of “Math- 
ematica”): 

InCll := <<DiscreteMath’RSolve’ 

In121 := rhs=Binomial[n+l,k]/2^(n+l)-Binomial[n,k]/2*(n) 

Binomial [n, k] Binomial Cl+n, kl 
Out[2-J= -(-------) + ---------------- 

n -(-l-n) 
2 2 

In131 := eqn=g Ck+ll ==g Ckl +rhs 

Binomial Cn, kl Binomial Ci+n, kl 
Out [33 = g[l+k] == - (---------) + ---------------- + g[k] 

n -(-l-n> 
2 2 

InC43 := RSolveCeqn,g[k] ,k] 

Out C41= ((gCk1 -> 

Binomial C-2+k-n, -l+kl 
If[n <= -1, ----------------------, BinomialEn, -l+k]] 

-(-l+k) 
(-1) 

gco1 - ----------------------------------------------------- )} 

n 
22 
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We now. give some comments about the listing above: 
1) In the first line, we include the library containing the programs needed. 
2) In the second line we define our function F(n + 1, k) - F(n, k). But 

what is “rhs?” It is simply an abbreviation for the right-hand side we will 
use later. Out[2] in the third line is the result, though in an unusual (but 
correct) form. 

3) In line four, we have defined the kind of function g we need: it should 
be a solution to the equation. Note that in the equation we use == instead 
of = and “eqn” is a new abbreviation (this time for the equation). In the 
“Out” part, we see the equation itself. 

4) We arrive to the central point in the sixth line. We ask “Mathematics” 
to find the solution to our recurrence equation. Note that we have specified k 
to be the main parameter. Now what do we have in Out[4]? We have expected 
something else.. . This means only that “Mathematics” has investigated the 
problem slightly deeper than we expected. First of all, it has taken into 
account that the result should depend on g(O), so our formula starts with 
g(O), instead of “If[. . . “, as one might expect. The rest is a big (and strange) 
fraction. The second thing we learn is that there are two different cases: 
n < 0 and n 2 0. “Mathematics” presents both of them and has written 
it in a rather understandable way: first the condition (If n 5 -l), then the 
solution if the condition is valid (we do not need it) and at last the case when 
the condition is not satisfied. Aha, the last case is needed! What is it? After 
translating from “Mathematics’s” language we can write it down as 

g(o)-g; 
this is O.K. with the computer! 

To learn more about the WZ-method and the Gosper’s algorithm, which 
is the core of this approach, the reader is recommended to begin from (Wilf, 
1990), (Wilf, Zeilberger, 1992), (G OS p er, 1978). It will be especially useful to 
look into The Electronic Journal of Combinatorics and The World Combina- 
torics Exchange via information retrieval tools such as Gopher, WAIS (Wide 
Area Information Servers) or WWW (World Wide Web) - accessible through 
“Mosaic” . 

Let us end the section and the book by giving example of an advanced, 
up-to-date short proof of a classical result; it is taken from (Andrews, Ekhad, 
Zeilberger, 1993). 

Theorem. Eve y positive integer can be represented as a sum of four per- 
fect squares of integers (Lagrange). Moreover, the number of ways (counting 
different oiler of summands as different representations) to represent a pos- 
itive integer in this fashion equals eight times the sum of its divisors which 
are not multiples of 4 (Jacobi). 

Proof. Clearly it is sufficient to prove Jacobi’s claim, because any number 
has at least one divisor (namely l), not divisible by 4. 

Let 
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1+ qn H, = H,(q) = 2s . . . -, 
1 - qn 

According to the WZ-method the following two identities hold: 

n 4(--9)” 
,g (1 + 9”12 H$L+dG-k = 1, 

with the WZ certificate: 

and 

Cl n-k+2(1+ qZn+2)(1+ qk-y(l + qn+“) 

(1 - qn+1)3( 1 - qn+“) (1 + qn+‘) 
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(3) 

(4) 

with the WZ certificate (for the left-hand part): 

(-q”+i)(l + qk-1) 
1+qn+l . 

Dividing both sides of the identity (3) by Hi and letting n + 00 in both 
identities (3) and (4) gives the following two identities: 

M (-9)” 
1 + “2 (1 + qk)2 = H’4’ 

2 (-4)” = H&l, 
k=-ca 

where, of course, 

O” l+qn 
H,=~~ooH,=~-. 

1 1-P 

Now it is sufficient to combine the two new identities and to change -q to t 
to prove another nice identity: 

k=-ca 

The rest of the proof of the theorem is simply a pleasure. 
It is important to note that we count the number of vectors (not sets) 

(a, b, c, d), where the components a, b, c, d are integers, such that a2 + b2 + 
c? + d2 = n. Therefore, the number of representations of number n is equal 
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exactly to the coefficient of t” on the left-hand side of our identity (5). Let 
us now calculate the right-hand side of the identity. With a little help of our 
list of series, we can deduce the following equality: 

& = f&+‘mam. 
m=l 

Setting z = -t” we get 

(-1)ktk 

(1 + w>k)2 
= 2 (-l)m+‘m(-q”mtkm 

m=l 

and after trivial tricks with the signs, we can rewrite the C on the right-hand 
side of identity (5) as follows: 

Thus, the desired coefficient oft” is a weighted sum of divisors m of n, where 
the weight of m equals 1, if at least one of m, n/m is odd, and it equals (-l), 
if both of them are even. On the other hand, -1 = 1 - 2 (this identity is the 
central point!), hence we can find our coefficient as the following difference: 

This finishes the proof of Jacobi’s claim. cl 
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Both mathematics of the 20th century and theoretical physics include the 
methods of non-associative algebras in their arsenals more and more actively. 
It suffices to mention the Jordan algebras that had grown as an apparatus of 
quantum mechanics. On the other hand, Lie algebras, being non-associative, 
reflect fundamental properties of such associative objects as Lie groups. The 
present survey includes basic classes of non-associative algebras, close to a 
certain degree to the associative algebras: alternative, Jordan and Malcev 
algebras. We tried, as much as possible, to point out their applications in 
different areas of mathematics. A separate section is devoted to the survey 
of the theory of quasigroups and loops. Sections l-4 have been written by 
I.P. Shestakov, whereas Sect. 5 and 6 have been written by E.N. Kuz’min. 
The authors are genuinely grateful to V.D. Belousov who has given them 
essential assistance in the work on Sect. 6. The authors are also grateful to 
A.I. Kostrikin and to I.R. Shafarevich for their constructive remarks directed 
towards the improvement of the manuscript of this survey. 

Enumeration of formulas in different sections is independent; when refering 
to a formula from a different section, the section number is added in front of 
the formula number. 

Note that the references cited with the results are not necessarily pointing 
to the first authors of those results. 
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5 1. Introduction to Non-Associative Algebras 

1.1. The Main Classes of Non-Associative Algebras. Let A be a vector 
space over a field F. Let us assume that a bilinear multiplication of vectors 
is defined on A, i.e. the mapping (u, w) H uu from A x A into A is given, 
with the following conditions: 

(au + pv>w = a(uw) + P(ww); u(av + Pw) = (Y(w) + kquw), (1) 

for all (Y, ,0 E F; u, U, w  E A. In this case, the vector space A, together with 
the multiplication defined on it is called an algebra over the field F. 

An algebra over an associative-commutative ring @, with unity is defined 
analogously. It is a left unitary G-module A with the product uv E A, satis- 
fying conditions (l), for (-Y, /3 E G. One of the advantages of the notion of an 
algebra over Cp (or a G-algebra) is that it allows for a study of algebras over 
fields and rings at the same time; the latter are obtained from a Q-algebra 
when Q, = Z is the ring of integers. We will be primarily interested in algebras 
over fields. 

Every finite-dimensional algebra A over the field F may be defined by a 
“multiplication table” eiej = Et!, $ek, where ei, . . . , e, is an arbitrary 
basis of A and r,“j E F are the so-called structural constants of the algebra, 

corresponding to the given basis. Every collection +y$ defines an algebra. 
The just introduced notion of an algebra is too general to lead to inter- 

esting structural results (cf. examples in 1.2). In order to get such results, 
we need to impose some additional conditions on the operation of multipli- 
cation. Depending on the form of the imposed restrictions, different classes 
of algebras are obtained. 

One of the most natural restrictions is that of ussociativity of multiplication 

(ZY>Z = dYZ> (2) 

This is obviously satisfied when the elements of the algebra A are mappings 
of a set into itself and when the composition of mappings is taken as mul- 
tiplication. One can show that every associative algebra is isomorphic to an 
algebra of linear transformations of an appropriate vector space. Thus, the 
condition of associativity of multiplication characterizes the algebras of linear 
transformations (with composition as multiplication). 

The class of associative algebras assumes an important place in the theory 
of algebras and it is most thoroughly studied. In mathematics and its appli- 
cations, however, other classes of algebras where condition (2) is not satisfied 
arise often. Such algebras are called non-associative. 

The first class of non-associative algebras that was subject to serious and 
systematic study, was that of Lie algebras, that first arising in the theory of 
Lie groups. An algebra-L is called a Lie algebm, if its operation of multipli- 
cation is anticommutative, i.e. 
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x2 = 0 

and if it satisfies the Jacobi identity 

(3) 

J(z, y, z) G (xy)z + (yz)x + (zx)y = 0. (4) 

If A is an associative algebra, then the algebra A(-) obtained by introduc- 
ing a new multiplication on the vector space A, with the aid of the commu- 
tator 

1x7 Yl = XY - YX, 

satisfies conditions (3) and (4) and consequently is a Lie algebra. This exam- 
ple is quite general, since the Poincare-Birkhoff-Witt theorem implies that 
every Lie algebra over a field is isomorphic to a subalgebra of the algebra 
A(-), for a suitable associative algebra A. 

Lie algebras have a rather developed theory, finding applications in dif- 
ferent areas of mathematics. An extensive literature is devoted to them, and 
among them a sequence of surveys in this series. In our paper they will play a 
secondary role, appearing only marginally, basically as algebras of derivations 
of other algebras. 

In analogy with the commutator or the Lie multiplication [z, y] in an 
associative algebra A, we may introduce a symmetric (Jordan) multiplication 

xoy=xy+yx. 

Over the fields of characteristic # 2, however, it is more suitable to consider 
the operation 

x.y = ;(xy+Yx), 

since in this case, the powers of an element z in the algebra A coincide 
with its powers with respect to the operation (a). The algebra obtained after 
introducing the multiplication 2. y on the vector space A is denoted by A(+). 
We note that the mapping x H ix establishes an isomorphism between the 
algebra A(+) with the corresponding algebra and the multiplication operation 
x 0 y. 

The algebra A(+) is commutative i.e. satisfies the equality 

XY = YX:, (5) 

and generally speaking is not associative, although it satisfies the following 
weak associativity law 

x2(yx) = (x2y)x. (6) 

The algebras satisfying identities (5) and (6) are called Jordan algebras. 
Jordan algebras appeared first in 1934 in the joint paper by Jordan, von 

Neumann and Wigner (1934). In the ordinary interpretation of quantum me- 
chanics the observables are Hermitian matrices or the Hermitian operators 
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on a Hilbert space. The linear space of Hermitian matrices is not closed with 
respect to the ordinary product xy, but it is closed with respect to the sym- 
metrized product x . y. The program suggested by Jordan, consisted in at 
first singling out basic algebraic properties of Hermitian matrices in terms 
of the operation IC. y, and then in studying all the algebraic systems satisfy- 
ing those properties. The authors hoped that in this process, new algebraic 
systems would be found, that would give a more suitable interpretation of 
quantum mechanics. They had chosen identities (5) and (6), satisfied by the 
operation x. y, to be the basic properties. Although this path did not give 
any intrinsic generalizations of the matrix formalism of quantum mechanics, 
the class of algebras introduced by these authors had attracted attention of 
algebraists. The theory of Jordan algebras had started developing fast and 
soon thereafter its interesting applications in real and complex analysis, in 
the theory of symmetric spaces, in Lie groups and algebras had been found. 
In recent times the Jordan algebras again attract physicists in searching for 
models for explanations of properties of elementary particles. In relation to 
the physical theory of supersymmetry, Jordan superalgebras have appeared 
and studies have begun on them. 

For an associative algebra A, the algebras of the form A(+) and their sub- 
algebras are called special Jordan algebras. They are already not as such uni- 
versal examples of Jordan algebras as the algebras A(-) and their subalgebras 
in the case of Lie algebras. There exist Jordan algebras, not isomorphic to 
subalgebras of the algebra A (+), for any associative algebra A. Such algebras 
are called exceptional. 

The study of exceptional Jordan algebras intrinsically relies on the knowl- 
edge of properties of algebras of another class which is somewhat wider than 
the class of associative algebras. These are so-called alternative algebras de- 
fined by the identities 

X2Y = X(XY>, 

YX2 = (YX)X, 

first of which is called the identity of left alternativity and the second - the 
identity of right alternativity. It is clear that every associative algebra is 
alternative. On the other hand, according to Artin’s theorem (see 2.3 in the 
sequel), every two elements in an alternative algebra generate an associative 
subalgebra, thus alternative algebras are sufficiently close to the associative 
ones. A classical example of an alternative non-associative algebra is the 
famous algebra of Cayley numbers, that was constructed as far back as in 
1845 by A. Cayley. This algebra and its generalizations - so-called Cayley- 
Dickson algebras - play an important role in the theory of alternative algebras 
and their applications in algebra and geometry. 

If A is an alternative non-associative algebra, then the commutator algebra 
A(-) is not a Lie algebra. However, it is not difficult to show that, in this 
case, the algebra A(-) satisfies the following Malcev identity: 
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where J(z, y, z) = (xy)z + (yz)s + (zs)y is the Jacobian of the elements 
z, y, z. An anticommutative algebra satisfying identity (9), is called a M&XV 
algebra. This class of algebras was first introduced by A. I. Malcev in 1955 
(under the name of “Moufang-Lie algebras”) in studies on analytic Moufang 
loops; the Malcev algebras are related to them in approximately the same way 
as the Lie algebras are to Lie groups. Every Lie algebra is a Malcev algebra; 
on the other hand, every two-generated Malcev algebra is a Lie algebra. The 
latter condition defines the class of binary Lie algebras, wider than the class 
of Malcev algebras. If the characteristic is not equal to 2, this class may be 
defined by the following identities 

x2 = 0, J(xy, 5, y) = 0. 

Alternative algebras, Jordan algebras as well as Malcev algebras, along 
with Lie algebras are the main and the best researched classes of non-associa- 
tive algebras. All of them are in one or another way closely related to asso- 
ciative algebras (the Malcev algebras, through the alternative algebras), and 
for this reason they are sometimes united under the general name of “almost 
associative algebras”. The main portion of this survey is exactly devoted to 
these classes of algebras (except of Lie algebras). There are, after all, other 
classes of non-associative algebras with quite satisfactory structure theories. 
We will consider some of them in Sect. 4. Nonetheless, the almost associative 
algebras that arose on the meeting of ring theory with other mathematical 
areas remain still the richest, from the point of view of applications and re- 
lations. Besides, the methods of their research are fairly universal and may 
be applied (and are being applied successfully) in the studies of other classes 
of algebras. 

1.2. General Properties of Non-Associative Algebras. Numerous notions 
and results in the theory of associative algebras in fact do not use the associa- 
tivity property and carry over without changes to arbitrary algebras. Some 
notions of this kind are definitions of subalgebras, one- and twosided ideals, 
simple algebras, direct sums of algebras, homomorphisms, quotient algebras 
etc. The fundamental homomorphism theorems remain valid for arbitrary 
algebras too. 

At the same time, there is a series of important notions, whose definitions 
intrinsically use the associativity property, thus not allowing for automatic 
expansion to arbitrary algebras. For instance, the power an of an element a 
and the power A” of an algebra A is not, in general, a uniquely definable 
notion because, in a non-associative algebra, the result of multiplication of n 
elements depends on the arrangement of the brackets in the product. In par- 
ticular, this product may equal to zero with one arrangement of the brackets 
and non-zero with another (even if all the elements are equal). Thus there 
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are several analogues of nilpotency in the theory of non-associative algebras. 
The most important of them all are solvability and nilpotency. 

Let A be an arbitrary algebra. If B and C are subspaces of A, then BC 
will denote the linear subspace generated by all the products bc, where b E B, 
c E C. We set A1 = Alo) = A, and further by induction 

A - n+l - 
c 

Ai.@, A(n+l) = A(“) . A@). 

i+j=n+l 

An algebra A is called nilpotent, if there is an n such that A” = 0 and is 
called solvable, if Atrn) = 0, for some m. The smallest numbers n and m with 
these properties are respectively called the nilpotency index and the solvability 
index of the algebra A. It is easy to see that the algebra A is nilpotent of index 
n, if and only if the product of any n of its elements, with any arrangement 
of the brackets equals zero and if there exists a non-zero product of n - 1 
elements. Every nilpotent algebra is solvable, but the converse is not generally 
true. 

Proposition. The sum of two solvable (two-sided) ideals of the algebra A is 
again a solvable ideal. If A is finite-dimensional, then A contains the greatest 
solvable ideal S = S(A). Moreover, the factor algebra A/S does not contain 
non-zero solvable ideals. 

The ideal S(A) defined in the proposition, is called the solvable radical of 
the finite-dimensional algebra A. In general, an ideal I of a (not necessarily 
finite-dimensional) algebra A, with certain property R, is called an R-radical 
of the algebra A and is denoted by I = R(A), if I contains all the ideals of 
the algebra A with the property R and the quotient algebra A/I does not 
contain such non-zero ideals (i.e. R(A/I) = 0). In addition, it is assumed that 
the property R is preserved under homomorphisms (the class of Ralgebras 
is homomorphically closed). 

The notion of a radical is one of fundamental instruments in constructing 
the structure theory of various classes of algebras. After a successful choice 
of a radical, everything reduces to description of the radical algebras (i.e. 
algebras A for which A = R(A)) and the semisimple algebras (i.e. algebras 
A for which R(A) = 0); arbitrary algebras are then described as extensions 
of the semisimple ones, by the radical ones. At first this method was used 
by Molien and Wedderburn, the founders of the structure theory of finite- 
dimensional associative algebras. They have considered a maximal nilpotent 
ideal of an algebra A as the radical R(A); the semisimple algebras were 
described as the direct sums of the full matrix algebras over division rings. 

In the non-associative case, the class of nilpotent algebras, unlike the solv- 
able case, is not closed under extensions (i.e. an algebra A may contain a 
nilpotent ideal I with a nilpotent quotient algebra A/I, but not be nilpotent 
itself.). Hence, the nilpotent radical does not exist in all the finite-dimensional 
algebras (for instance it does not exist in Lie algebras). Moreover, a finite- 
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dimensional algebra may in general contain several different maximal nilpo- 
tent ideals. In those cases, the solvable radical S(A) comes out to play the 
major role. It lies in the essence of the structure theories of finite-dimensional 
Lie algebras and finite-dimensional Malcev algebras of zero characteristic; on 
the other hand, in the cases of finite-dimensional alternative and Jordan al- 
gebras, where the nilpotent radical exists, S(A) coincides with this radical. 

Let us consider a few examples showing that in general it is difficult to 
count on a satisfactory structure theory of finite-dimensional algebras. 

Example 1. Let A be an algebra over a field F, with a basis ei, e2, a, b and 
the following non-zero products of basis elements: aei = eeia = es, be2 = 
eezb = ei, where 0 # c E F. Then 11 = Fe1 + Fez + Fa, 12 = Fe1 + Fez + Fb 
are different maximal nilpotent ideals in A. By choosing E = 1 or E = -1 we 
obtain a commutative or anticommutative algebra A. 

Example 2. Let AI,. . . , Al, be simple algebras over a field F with bases 

{up 1 i E II}, 1.. , {?p 1 i E Ik}. L e t us consider the algebra A = Fe + A1 + 
. . . + Ak with multiplication, defined by the following conditions: a) Ai are 

subalgebras of A; b) AiAj = 0, for i # j; c) eul!j) = v!j)e = e, for all i, j; 
d) e2 = e. Then I = Fe is the unique minimal ideal in A, and I2 = I. In 
particular, S(A) = 0, but A does not decompose into a direct sum. 

We point out that if all the algebras Ai in this example are commutative, 
then A is commutative too. If all the Ai are anticommutative, then we may 
consider A = A i Ff and replace conditions c) and d) by the following: c’) 
ev!j) = -v!j)e = f, Jj)f = -fJj) - - e; d’) ef = -fe = f. Then A is an 
an\icommutative algebra with a uhique minimal ideal I = Fe + Ff, I2 # 0 
and again S(A) = 0, but A does not decompose into a direct sum. 

One more approach to the notion of a radical of a non-associative algebra is 
possible: we can take the radical of an algebra A to be the smallest ideal N, for 
which the quotient algebra A/B decomposes into the direct sum of simple 
algebras. Such a radical exists in every finite-dimensional algebra A and, 
satisfies the condition &(A/fi) = 0; moreover N(A) = S(A) in the algebras 
we have mentioned above, while in general fi(A) 2 S(A). However, this 
radical is not only necessarily nilpotent or solvable, but can even be a simple 
algebra. For example, for the algebra A in Example 2, fi(A) = Fe E F. 

The following example shows that the simple finite-dimensional algebras 
also form a rather big class, which implies that their complete description 
can hardly be done, even in the case of small dimensions and an algebraically 
closed field. 

&ample 3. Let us consider the algebra A = A(aij) over the field F with a 
basisei,..., e, and the multiplication table of the form eiej = oijej, where 
0 # Qij E F,i,j = l,..., n and all the columns in the matrix (oij) are 
different. A peculiarity of the algebra A(aij) consists in the fact that in a 
given basis, the matrices of operators of left multiplications L, : y H zy have 
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a diagonal form and are therefore commuting. Consequently all the algebras 
A(aij) satisfy the identity 

It is not difficult to show that A(aij) is a simple algebra: in addition A(aij) E 
A(&) if and only if, oij = Xipo(i)o(j), where 0 # Xi E F, i = 1,. . . , n; IS E S,. 
If, in addition, we set (~~1 = 1, i = 1, . . . , n, then to every matrix (aij) there 
corresponds only a finite number (< n!) of matrices (pij) of the same type, 
for which A(aij) 2 A(Pij). C onsequently, the aforementioned simple algebras 
form a family that depends on n2 - n “independent” parameters. 

An element a of an algebra A is called nilpotent if the algebra generated by 
it in A is nilpotent. If all the elements of an algebra (ideal) are nilpotent, then 
such an algebra (ideal) is called a nilalgebra (a nilideal). In general the class 
of nilalgebras is not closed with respect to extensions. On the other hand, 
this condition is satisfied under the additional conditions of associativity of 
powers or power-associativity, defined in the sequel. 

An algebra A is called a power-associative algebra, if its every element lies 
in an associative subalgebra. It is not difficult to show that all the algebras 
considered in 1.1 are power-associative. Over a field of characteristic 0, the 
class of power-associative algebras may be defined by identities 

(z2)z = 2(22), (z%)z = E2Z2. 

The powers a” (n 2 1) of an element a are defined in a natural way in every 
power-associative algebra; in addition the equalities (an)m = anm, anam = 
un+m hold, and the element a is nilpotent if and only if un = 0, for some n. 

Just as for the associative algebras, the following is proved in a standard 
way: 

Proposition. Every power-associative algebra A contains a unique maximal 
two-sided nilideal Nil (A); moreover, the quotient algebra A/NilA does not 
contain two sided non-zero nilideals (i.e. it is a nilsemisimple algebra). 

The ideal Nil A is called the nikadicaI of the algebra A. If A is a finite 
dimensional power-associative algebra, then S(A) C Nil A; the inclusion may 
be strict, as the example of a Lie algebra shows, where Nil A = A. We will 
see in the sequel that, for finite-dimensional alternative and Jordan algebras 
the ideal Nil A is nilpotent. In particular, in these cases Nil A = S(A). In 
the case of finite-dimensional commutative power-associative algebras the 
question on equality of the radicals S(A) and Nil A is open and is known as 
Albert’s problem. The following example shows that in this case the ideal 
Nil A is not necessarily nilpotent. 

I&ample 4 (Suttles, 1972). Let A be a commutative algebra over a field of 
characteristic # 2, with the basis {ei, es, es, e4, es} and the following multi- 
plication table: 
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ele2 = e2e4 = -ele5 = es, ele3 = e4, e2e3 = es; 

and all the other products are zero. Then A is a solvable power-associative 
nilalgebra of index 4, which is not nilpotent. 

It is not difficult to see that Albert’s problem is equivalent to the fol- 
lowing question: are there any simple finite-dimensional commutative power- 
associative nilalgebras? The answer to this question is not known even with- 
out the assumption on power-associativity. The structure of nilsemisimple 
finite-dimensional commutative power-associative algebras is known. 

Theorem (Albert, 1950, Kokoris, 1956). Every nilsemisimple finite-dimen- 
sional commutative power-associative algebra over a field of characteristic 
# 2, # 3, # 5 has a unity and decomposes into the direct sum of simple 
algebras, such that each of them is either a Jordan algebra or an algebra of 
degree 2, over a field of positive characteristic. 

We clarify that the degree of an algebra A over a field F is a maximal 
number of mutually orthogonal idempotents in the scalar extension F 8’~ A, 
where F is the algebraic closure of the field F. Exceptional algebras of degree 
2 from the conclusion of the theorem have been described in (Oehmke, 1962); 
their construction is fairly complex and we will not state it here. A description 
of simple Jordan algebras will be given in Sect. 3. 

In general, the structure of nilsemisimple finite-dimensional power-associa- 
tive algebras remains unknown. It is possible to get the description of these 
algebras only under some additional restrictions (cf. Sect 4). An effective 
method of studying power-associative algebras is a passage to the associated 
commutative power-associative algebra A(+), since properties of the algebra 
A(+) often give an essential information about the properties of A. 

Let A be an algebra and let a E A. Let us denote by R, and L, respectively 
the operators of the right and left multiplication by the element a: 

R, : x H xa, L, : x H ax. 

The subalgebra of the algebra End A of the endomorphisms of the linear 
space A, generated by all the operators Ra, where a E A is called the algebra 
of tight multiplications of the algebra A and is denoted by R(A). The alge- 
bm of left multiplications L(A) of the algebra A is defined analogously. The 
subalgebra of End A generated by all the operators Ra, L,, a E A is called 
the multiplication algebra of the algebra A and is denoted by M(A). If B is a 
subalgebra of A, then MA(B) will denote a subalgebra of the algebra M(A), 
generated by all the operators &,, Lb, where b E B. 

Properties of an algebra A are reflected in a certain way in the properties 
of its multiplication algebra M(A). For example, the algebra A is nilpotent if 
and only if its associative algebra M(A) is nilpotent. If a finite-dimensional 
algebra A is semisimple (is a direct sum of simple algebras), then the algebra 
M(A) has the same property; and if A is simple, then M(A) is also simple 
and is isomorphic to the full matrix algebra over its center. 
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Along with associative multiplication algebras, it is sometimes suitable to 
consider also the Lie multiplication algebra Lie (A) defined as the subalgebra 
of the Lie algebra (End A)(-), generated by all the operators &, L,, where 
a E A. It is clear that Lie(A) 2 (M(A))(-). Another Lie algebra naturally 
connected with every algebra A is the derivation algebm Der A. 

Recall that the derivation of an algebra A is a linear operator D E End A 
which satisfies the equality 

(xy)D = (xD)y + x(yD), for all x, y E A. 

The set Der A of all derivations of an algebra A is a subspace of the vector 
space End A; moreover, it is not difficult to see that if Dr, Dz E Der A, then 
the commutator [Or, Dz] E Der A too, thus Der A is also a subalgebra of the 
Lie algebra ( End A)(-). 

Equality (10) may be rewritten in terms of right and left multiplications: 
the operator D E End A is a derivation if and only if any of the following 
two equalities is satisfied: 

[RY,D] =R@, for every y E A, 

(‘%I D] =J&D, for every x E A, 
(11) 

(12) 

A derivation D of an algebra A is called an inner derivation, if D E 
Lie (A). Equalities (11) and (12) easily imply that the set Inder A of all inner 
derivations of the algebra A is an ideal of the algebra Der A. 

Inner derivations play an important role in the theory of associative and 
Lie algebras. It is well known that every derivation of a finite-dimensional 
semisimple associative or Lie algebra of zero characteristic is inner. More 
generally, the following hold: 

Proposition (Schafer, 1966). Let A be a finite-dimensional algebra, over a 
field of characteristic 0, which is the direct sum of simple algebras, and A has 
either right or left unity. Then every derivation of the algebra A is inner. 

This proposition is not valid without the assumption on the existence of 
an one-sided unity (Walcher, 1987). 

We know from the theory of Lie groups that there is a close connection 
between derivations and automorphisms of finite-dimensional algebras over 
the field of real numbers. Namely, the algebra Der A, in this case, is noth- 
ing else but the Lie algebra of the automorphism group of the algebra A. 
The correspondence between derivations and automorphisms is established 
byDHexpD=l+D+g+.. . ; in the core of the proof that exp D is an 
automorphism lies the well-known Leibniz’ formula: 

(xy)D* = 2 (3 (xDi)(yDn-“). 
i=O 
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If A is an arbitrary algebra over a field of characteristic 0 and if D is a 
nilpotent derivation of A, then the operator G = exp D makes sense too; 
moreover, it is not difficult to show, with the aid of the Leibniz formula, that 
G is an automorphism of the algebra A. 

In considering non-associative algebras, the following notion of an ussoci- 
ator turns out to be useful 

(x7 Y, z> = (XY)Z - X(Y4. 

The ideal D(A) f o an algebra A, generated by all the associators is called an 
associator ideal of the algebra A. A dual to this notion is the notion of the 
associative center N(A) of an algebra A: 

An algebra A is associative if and only if D(A) = 0 (or N(A) = A). The 
center Z(A) of an algebra A is the set 

Z(A) = {z E N(A) 1 [z,A] = 0). 

Proposition. For every algebra A, the associative center as well as the 
center are subalgebras. Moreover, 

D(A) = (A,A,A) + (A,A,A)A = (A,A,A) + A(A,A,A). 

The proof follows from the following two identities valid in every algebra: 

The notions of a bimodule and a birepresentation play an important role 
in the theory of algebras. 

Let 9X be a class of algebras over a field F. Let us assume that, for an 
algebra A in !YJl and a vector space M over F, the bilinear compositions 
A x M - M, M x A --+ M, written as am and ma, for a E A and m E M 
have been defined. Then the direct sum A i M of the vector spaces A and 
M may be made into an algebra by defining multiplication via the following 
rule: 

(~1 + md(a2 + m2) = ala2+(mla2+alm2), 

where ai E A, rni E M. This algebra is called the split null extension of the 
algebra A, by M. If the algebra A i M again belongs to the class !DZ, then 
M is called a bimodule over the algebra A (or an A-bimodule) in the class 9X 

For instance, if !3.R is the class of all algebras over F, then, no conditions 
are required in the definition of a bimodule in the class M, except that the 
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operations am and ma are bilinear. If M is the class of all the associative 
algebras, then the bimodule operations must satisfy the following conditions: 

(ma)b = m(ab), (am)b = a(mb), (ab)m = a(bm), 

for all a, b E A, m E M; in other words, we arrive at the usual well-known 
definition of an associative bimodule. 

In the class of Lie algebras, the corresponding conditions for bimodule 
operations are of the form 

am = -ma, m(ab) = (ma)b - (mb)a. 

In general, if a class im is defined by a set of multilinear identities 
{fi(W* * * ,z,;) = 0 1 i E I}, then it is not difficult to see that M is a 
bimodule over an algebra A E M in the class m, if and only if the following 
conditions are satisfied: 

fi(cJl,..., ak-l,m,ak+l,...,ani) =O, k=l ,...,ni; i E I, 

for every aj E A,m E M. In case when the relations fi are not multilin- 
ear, the corresponding conditions for bimodules may also be written down 
fairly simply, with the aid of the operators of “partial linearizations” (cf. 
for instance Jacobson, 1968); if the class !7R is defined by a finite number of 
identities, then bimodules in the class !XR are also defined by a finite number 
of relations. For a concrete class ?YJX, defined by identities of small degree, 
it is simpler to find the conditions for bimodules directly. Let us show this 
through the examples of the alternative and Jordan algebras. 

1) Let EM be the class of alternative algebras. 
In terms of the associators, the class M is defined via the following iden- 

tities: 

(TTY) = 0, (X,Y,Y) = 0. (15) 

Thus a bimodule M over an alternative algebra A is alternative if and only if 
the following relations hold in the split null extension A -j- M: 

(a+m,a+m,b+n) =O, (a+m,b+n,b+n) =0, 

for all a, b E A; m, n E M. Because of M2 = 0 (in the algebra A i M), these 
relations give us the following conditions for a bimodule M to be alternative: 

(a,a,m)=O, (a,m,b)+(m,a,b)=O 

(m,b,b)=O, (a,m,b)+(a,b,m)=O. (16) 

2) Let 9X be the class of Jordan algebras. 
The defining relations for the class !7JZ are of the following form: 

XY = YX, (x2, y, x) = 0. 
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If A is a Jordan algebra and M is a bimodule over A, then the algebra A-i- M 
is Jordan if and only if the following relations hold there: 

(a+m)(b+n) = (b+n)(a+m), ((a+m)2,b+n,a+m) =0, 

for all a, b E A; m, n E M. It is easy to see that these relations are equivalent 
to the following: 

am = ma, (u2,m,a) =0, (a2,b,m)+2(am,b,a) =0, (17) 

for all a, b E A, m E M. 
If M is an A-bimodule, then the mappings p(a) : m -+ ma and x(a) : m + 

am are linear operators on M and the mappings a + p(a), a -+ x(a) are linear 
mappings from A into the algebra End M. The pair (p, X) of linear mappings 
from A into the algebra End M of endomorphisms of some vector space M is 
called a birepresentation of the algebra A in the class !?Jl, if M, equipped with 
the compositions ma = mp(a), am = mx(a), is a bimodule over A in the class 
!7Jl. It is obvious that the notions of a bimodule and a birepresentation define 
each other. Using relations (16) and (17) which define alternative and Jordan 
bimodules, we can easily write down the conditions defining birepresentations 
in these classes. For instance the alternative birepresentations are defined by 
the following conditions 

X(a2> - W2 = 0, [W, p(b)] + &)p@) - dab) = 0, 

p(a2) - &A)~ = 0, [A(a), p(b)] + X(ab) - X(b)X(a) = 0. 
(18) 

Every algebra A may be considered in a natural way to be a bimodule over 
itself, interpreting ma and am as multiplication in the algebra A. Bimodules 
of this kind along with the corresponding birepresentations a H Ra, a H L, 
are called regular bimodules. Note that subbimodules of a regular bimodule 
A are the two-sided ideals of the algebra A. 

If a class !?X is defined via a system of identities {fi}, then the regular 
bimodule for an algebra A E 1)32, generally speaking, may be not a bimodule 
in the class 502. Indeed, it is evident from the examples considered above that, 
for this property to hold, the algebra A must not only satisfy the identities 
{fi}, but also some new identities (for instance, in case of Jordan algebras 
the identity (a2, b, c) + 2(ac, b, u) = 0 should hold in A). These new identities, 
called partial linearizations of the identities {fi}, do not in general follow 
from {fi}. However, thii is the case if all the fi are homogeneous and the 
number of elements in the field F is not smaller than the degree of every fi 
in its every participating variable. In particular, every regular bimodule over 
an alternative algebra is alternative. The same is valid for Jordan algebras 
over a field F of characteristic # 2. 

In considerations on a family of linear transformations it is often useful 
to pass to the enveloping associative algebra of thii family. For instance, the 
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enveloping algebra of the family { Ra, L, 1 a E A} is the multiplication algebra 
M(A). In the case of arbitrary birepresentations, a study of the enveloping 
algebra of the family {p(a), x(a) ) a E A} is largely facilitated by introducing 
the universal enveloping algebra. Let us show how to construct this algebra 
through the example of alternative algebras. 

Let A be an alternative algebra and let B = A -l- A0 be the direct sum 
of vector spaces, where A0 is a vector space isomorphic to A under the iso- 
morphism a H a”. Let us consider the tensor algebra T(B) = F i B i B 8 
B/B@B@B/... For every pair (p, X) of linear transformations from 
A to End M, we can constract a linear transformation 4 : B - End M, 
setting +(a + b”) = p(a) + X(b). B ecause of the properties of the tensor alge- 
bra, 4 is uniquely extendable to the homomorphism of associative algebras: 
4 : T(B) - End M. It is not difficult to see that the pair (p, X) is an al: 
ternative birepresentation (i.e. satisfies identities (18)), if and only if Ker 4 
contains the following set of elements: 

(2)O - a0 8 .O, a”@b-bba’+a@b--ab, 

2-a&3, a”@b-bbao+(ab)o-bo@uo;a,bEA. (19) 

For instance, we have 

X(u2) - A(u)2 = c$((a2)O) - (c$(a”))2 = &(a2)O) - (&“))2 = 

&(a2)O) - c&P @ aO) = &(a2)0 - a0 8 aO>. 

Denote by I the ideal of the algebra T(B) generated by the set of elements 
(19), denote by U(A) the quotient algebra T(B)/1 and let R : a I+ a + I, t : 
a H u” + 1 be linear transformations from A to U(A). It is clear that the 
pair (R, L) satisfies the equalities in (18); in addition, it is not difficult to 
see that, for every alternative birepresentation (p, X) : A - End M there 
exists a unique homomorphism of associative algebras 4 : U(A) - End M, 
such that p = R o 4, X = C o 4. In this way, M may be considered as a 
right (associative) U(A)-module. Conversely, every right U(A)-module is an 
alternative A-bimodule with respect to the compositions mu = mR(a), am = 
mfZ(a). The algebra U(A) is called the universal multiplicative enveloping 
algebra of the algebra A (in the class of alternative algebras). 

We can also construct, in an analogous way, multiplicative enveloping al- 
gebras for other classes of algebras. Note that, for a Lie algebra L, the algebra 
U(A) is the ordinary universal (Birkhoff-Witt) enveloping algebra; if A is as- 
sociative then U(A) % An @ (An)’ 
(An)’ is anti-isomorphic to Al. 

, where An = F . 1 + A and the algebra 

If (p,X) is an arbitrary birepresentation of the algebra A (in the class 
9Jl), then the enveloping algebra of the family {p(a), x(a) 1 a E A} is a 
homomorphic image of the algebra U(A). In particular, if regular bimodules 
for algebras in m are bimodules in the class 9X, then the multiplication 
algebra M(A) and, more generally, the algebra ME(A), for every algebra B E 
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!?X containing the algebra A, are homomorphic images of the algebra U(A). 
Generally, introduction of the algebra U(A) reduces the problem of describing 
birepresentations of the algebra A to determination of the structure of U(A) 
and to the description of the right (associative) representations of U(A). 

As the concluding remark, we point out that, the notions of a right mod- 
ule and a right representation, which play a fundamental role in the theory 
of associative algebras, do not always yield to such simple and natural def- 
initions in other classes of algebras (except the cases of commutative and 
anticommutative algebras, where the notions of representation and birepre- 
sentation coincide by default). It, is still unknown whether a right alternative 
module may be defined by a finite number of relations. On this matter see 
(Slin’ko, Shestakov, 1974)) where the notion of the right representation in an 
arbitrary class of algebras has been defined and studied, and the theory of 
right, representations of alternative algebras has been constructed. 

Non-associative superalgebras have been studied more and more actively 
in recent times. They first arose in physics and geometry and turned out to 
be rather useful in algebra. An algebra A is called a &-graded algebra or a 
superalgebra, if A = A0 -I AI, where AiAj C Ai+j, i, j E 25~. For example, the 
Grassmann algebra G = Go i G1 is a superalgebra, where Go (Gl) denotes 
a subspace, generated by the words of even (odd) length, on the generators 
of the algebra G. Let m be a class of algebras over an infinite field, defined 
by some system of identities. The superalgebra A = A0 i Al is called an !%% 
superalgebra if its Grassmann envelope G(A) = Go @ Ao + G1 63 A1 belongs 
to !JX. The ?3X-superalgebra A, generally speaking, does not, itself belong to 
the class !Vl; its even part Ao is a subalgebra contained in 9X and its odd part 
A1 is an 9Jl-bimodule over Ao. If the identities defining M are known, then 
it is possible to write down “superidentities” defining ?XQ-superalgebras. For 
example, the superalgebra A = A0 i A1 is a Lie superulgebru, if the following 
identities hold there: 

UiUj + (-l)i’UjUi = 0, 

(Uihj)Uk - Ui(UjUk) - (-l)jk(uiUk)uj = 0; 

the alternative superalgebras are defined by the following identities: 

(%aj,uk) + (-l>“k(%ak,aj) = 0, 

(ui,uj,uk) + (-l)ij(uj,ui,uk); 

and the Jordan superulgebrus are defined by the following identities. 

UiUj - (-l)i’ * UjUi = 0, 

(-l)‘(i+k)(UiUj,uk,Ul) + (-l)i(j+k)(Ujul,uk,ui)+ 

(-I)j(‘+k)(~l~i, uk, Uj) = 0, 

where a, E A,, s = i, j, k, 1 E (0, l}, everywhere. 
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$2. Alternative Algebras 

2.1. Composition Algebras. We begin presentation of the theory of al- 
ternative algebras with consideration of the most important class of these 
algebras, namely the composition algebras. An algebra A with unity 1 over a 
field F of characteristic # 2 is called a composition algebra if a non-degenerate 
quadratic form n(x) has been defined on the vector space A such that 

nb.4 = n(xM) (1) 

In this case, we also say that the form n(s) allows composition on A. Typical 
representatives of composition algebras are fields of real numbers Iw and com- 
plex numbers C, the quaternion skew-field Q as well as the algebra of Cayley 
numbers (octonions) 0, with the Euclidean norm n(x) = (x,x) = 1~1~. The 
first three among them are associative and the algebra 0 provides us with 
the first and most important example of an alternative non-associative alge- 
bra. Equality (1)) written down in an orthonormal basis, for each of those 
algebras, gives an identity of the following form: 

where zi are bilinearly expressible through xp, ys. The efforts of many math- 
ematicians of the last century were devoted to finding all the k for which 
these identities were valid, and only in 1898, Hurwitz had shown that the 
values k = 1,2,4,8 were the only possible. We will see in the sequel that this 
claim is a consequence of a general fact that the dimension of a composition 
algebra may only be equal to 1, 2, 4, 8. 

Proposition. Let A be a composition algebra. Then A is alternative and ev- 
ery element of the algebra A satisfies a quadratic equation with the coeficients 
in F (i.e. the algebra A is quadratic over F). 

Proof. Substituting y + w for y in (1) we get n(z)n(y + w) = n(zy + ZCW). 
Subtracting the identity (1) from this equality as well as subtracting the 
identity obtained from (1) by substituting y by w, we get, 

n(x)f(y, w) = ~(xY, xw), (2) 

where f(x, y) = n(a: + y) - n(x) - n(y) is a non-singular symmetric bilinear 
form associated with the quadratic form n(x). Running the same procedure 
with x, we obtain 

fbc, Z)f(Y, w> = f(XY7 zw) + f(ZY’XW> (3) 

The procedure just performed is called the linearization of identity (1) in y 
and x respectively. The idea of this procedure is in lessening the degree of 
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the identity in a given variable, through introduction of new variables, and 
in arriving after all to a multilinear identity. We will apply this procedure in 
the sequel, without detailed explanations. Now set z = 1, y = xu in (3): 

f(x, l)f(xu, ul) = f(x * 221, w) + f(xu, z:ul). (4 

Since f(zu,xZO) = n(z)j( u,‘uI), and because of (2), (4) may be rewritten in 
the following way 

f(x * xu + n(x)u - f(x, l)xu, uJ> = 0, 

which implies that 

2. xu + n(x)u - f(x, l)xu = 0, (5) 

because the form f(x, y) is non-degenerate and zu is arbitrary. Setting here 
u = 1, we obtain 

x2 - f(x, 1)z + n(x) = 0 (6) 

which proves the second half of the proposition. It remains to prove that the 
algebra A is alternative. 

Multiplying (6) on the right by u and comparing with (5) we obtain x2u = 
x(xu). The proof that u . x2 = (UZ)X is analogous. Thus, the algebra A is 
alternative and the proof is complete. cl 

Recall that an endomorphism 4 of a vector space A is called an involution 
of the algebra A, if 4(4(z)) = x and 4(xy) = $(y)$(z), for all x,y E A. 

Proposition. In the composition algebra A, the mapping x H 33 = f(1, x) - 
x is an involution, jixing the elements of the field F = F. 1; in addition, the 
elements t(x) = x +Z and n(x) = XT are in F, for all x in A. 

We prove only the equality z 5 = jj?Z, as the other claims are fairly obvious. 
Linearising relation (6) in x, we obtain 

xy + yx - f(LX)Y - f(l, Y>X + f(x, Y) = 0. 

Moreover, for 20 = I = 1 in (3), we obtain the following: 

f(x, l)f(Y, 1) = f(XYY 1) + f(Y7X). 

Substituting it in (7)) we get 

xy + yx - f(l,X)Y - f(l,Y)X + f(Wf(l,Y) - f(l,XY) = 0. 

therefore 
(f(Lx) - Xc)(f(LY) - Y) = f(LXY) - YX* 

We infer from (8) that f(l,xy) = f(l,yz). Thus 5 jj = yZ. 

(7) 

(8) 

cl 
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Let us show now that the condition of the algebra A being alternative is 
not only necessary but also sufficient for the relation (1) to hold. 

Proposition. Let A be an. alternative algebra over a field F with unity 1 and 
involution x H Z, such that the elements t(x) = x + E and n(x) = x!E E F, 
for all x E A. Then the quadratic form n(x) satisfies condition (1). 

Proof. Note first of all that the following equalities hold in A: 

x(?&Ty) = (yF)x = n(x)y, (9) 

which is easily implied by the alternativity conditions. Furthermore, by lin- 
earizing the alternativity identities (1.15) in x and y respectively, we obtain 

(x7 Y, z) + (Y, 2, z> = 0, (10) 

(Xl Y, 4 + (x, G Y> = 0, (11) 

which imply that, in an alternative algebra, the associator (x, y, z) is an 
alternating function of its arguments. In particular, we have the identity 

(X,Y,Z) = (.z,X,Y). (12) 

Finally, in view of (9) and (12) we obtain the following: 

n(xy) = (xy)(Ejj) = (xy)(jj Z) = (xy .jj)Z - (xy,jj,Z) = 

n(x)@) - (Z, xy,B) = n(x)n(y) - (Z . xy)p + T(xy - p) = 

Wnb> - nCdn(d + n(x)nb) = 4dW. 

q 

Now let A be an algebra with the unity 1, over a field F and an involution 
a~E,wherea+E,uE~F,foreverya~A.LetusfixO#cw~Fandletus 
define on the vector space A i A the following operation of multiplication: 

-- 
(al, a2) . (a3, a4) = (ala3 - aa4a2r ala4 + a3a2). 

The resulting algebra (A, LY) is called the algebra derived from the algebra A 
by the Cayley-Dickson process. It is clear that A is isomorphically embeddable 
into (A, cr) and that dim(A, cr) = 2 dim A. Let v = (0,l); then v2 = -cr ~1 
and (A,(Y) = A i VA. For an arbitrary element x = ai + va2 E (A,cr), set 
5 = 7iT-va2. Then x+Z = al +Ei,xZ = aiEi++a2~ E F and the mapping 
x H Z is an involution of the algebra (A, a) extending the involution a H iZ 
of the algebra A. If the quadratic form n(u) = a?i is non-degenerate on A, 
then the quadratic form n(x) = XT is non-degenerate on (A, a). 

The Cayley-Dickson process may be applied to every composition algebra 
A; furthermore, the algebra (A, cy) will again be a composition algebra, if and 
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only if it is alternative. Let us clarify under what conditions this is the case. 
Letz,yE(A,cr),z=a+vb,y=c+vd. Wehave 

(x, 2, y) = (u + vb, a + vb, c + vd) = a(Zi, d,&) - v(a, c, b). 

Since (y, x, z) = -(Z, Z,J), the algebra (A, cy) is alternative if and only A is 
associative. 

We can now give the following examples of composition algebras over F: 
I. A field F of characteristic # 2. 
II. C(a) = (F, a), (Y # 0. If the polynomial z.? + cr is irreducible over F, 

then C(a) is a field; otherwise, C(o) = F @ F. 
III. H(a, p) = ((c(a), p), /? # 0 - the algebra of generalized quaternions. It 

is easy to check that the algebra Hl(a, p) is associative, but not commutative. 
IV. O(a, ,$r) = (W(cy, p), r), 7 # 0 - the Cuyley-Dickson algebra. It is not 

difficult to get convinced that the algebra C((Y, p, y) is not associative, thus 
our inductive process of constructing composition algebras breaks up. 

If F = R is the field of real numbers, then the construction described above 
gives, for a = ,B = y = 1, the classical algebras of complex numbers Cc = C(l), 
the quaternions W = W( 1,1) and the Cuyley numbers 0 = C( 1, 1,l). 

Let us show now that the examples I-IV exhaust all the composition al- 
gebras. 

Let A be a composition algebra with the quadratic form n(z) = ~5; 
f(z, y) = xv + ye be the bilinear form associated with n(z). If B is a sub- 
space in A, then we will denote by B* the orthogonal complement of B with 
respect to the form f(z, y). 

Lemma. Let B be a subalgebra of A containing the unity 1 of the algebra A. 
Then, if the restriction of the form f to B is non-degenerate and if B # A, 
then for a suitable v E Bl, the subspuce B1 = B + vB is a subulgebm of A, 
obtained from B by the Cayley-Dickson process. 

The following theorem is easy to prove with the aid of the lemma. 

Theorem. Every composition algebra is isomorphic to one of the algebras 
of types I-IV, given above. 

Indeed we may set B = F, since the subalgebra F is non-degenerate with 
respect to f (x, y). If F # A, then A contains the subalgebra B1 = (F,a) 
of type II. If B1 # A, then A contains the subalgebra BZ = (Bl,P) of type 
III. If firmly, Ba # A, then A contains the subalgebra B3 = (Bz,?) of type 
IV. The process must stop here, since, in the opposite case, the algebra A 
would contain a non-alternative subalgebra Bd = (Bs, a), which is impossible. 
Thus, A coincides with one of its subalgebras F, Br, Bz, Bs which proves the 
theorem. cl 

Corollary. A non-degenerate quadratic form n(x), defined on ajinite-dimen- 
sionul vector space V over a field F of characteristic # 2, allows composition 

II. Non-Associative Structures 217 

if and only if, dimF V = 1,2,4,8 and, in some basis of the space V, the form 
n(x) is respectively of one of the following forms: 

1) n(x) = xg; 
2) n(x) = xi + as:; 
3) n(x) = (xg + ax:) + P(xl + ax:); 
4) n(x) = [(xi + ax:) + /3(x; + ax$] + -y[(xij + ax:) + P(xi + ax;)], luhenz 

Q,P,Y E F,aPr # 0. 

We can choose a canonical basis in every composition algebra for which the 
form n(x) is of one of the forms l)-4). Let @(a) = F i Fvl, W(cr, p) = @(cr) -i- 
C(a)v2, C(a, /3,r) = lHl(a, p) $ lHl(a, @‘us; then VT = -Q,v~ = -p, v]32 = 
-7,~ = -vi, uivj = -2/jvi, for i # j and the elements es = 1, ei = ~1, es = 

212, e3 = v3,e4 = vlv2,e5 = v@3,e6 = q(v2v3),e7 = ‘ulv3 form a canonical 
basis of the algebra C((Y, p, 7). Note that E = -ei, eiej = -ejei, for i, j > 
1, i # j. If 0 = C(l,l, 1) is the algebra of Cayley numbers, then e: = -1, 
for all i > 1 and eiej = Xek,X = fl, for all i, j 2 1,i # j and a suitable 
k 2 1; in addition, for every cyclic permutation G of the symbols i, j, k, 

%(i)%(j) = k(k)- With these properties in hand, the multiplication table 
in the algebra 0 is fully determined by the foIlowing conditions: 

eiei+l = ei+3, i=l , . . . ,7; e7+j =ej, forj>O. (13) 

In case of arbitrary a, /3, y E F, we set formally ei = ,/Eei, es = fiei, es = 
tie;, e4 = mei, es = fieb, es = me;, er = me{; then multiplica- 
tion of the elements ei is according the formulas analogous to those in (13) 
and, the multiplication table for the elements ei will contain only positive 
integer powers of the parameters (Y, p, 7: 

The multiplication table of the algebra of Cayley numbers may be also 
defined with the aid of the scheme in Fig. 1 below. The enumeration of 
the vertices may be arbitrary since different enumerations give isomorphic 
algebras. The indicated enumeration is in accordance with the choice of a 
basis satisfying conditions (13). 

6 

A 
5 3 7 

1 4 2 

Fig. 1 
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A composition algebra A is called a split composition algebra if it satisfies 
one of the following equivalent conditions: 

a) n(z) = 0, for some z # 0 in A; 
b) zy=O,forsomes#O,y#OinA; 
c) A contains a non-trivial idempotent (i.e. an element e # 0,l such that 

e2 = e). 

F&call that an algebra A is called a division algebra, if, for every a, b (a # 0) 
in A, the following equations are solvable in A: 

ax = b, ya = b. 

If, for a # 0, each of these equations has a unique solution and A contains 
a unity, then A is called a (skew) field. It is easy to see that every finite- 
dimensional algebra without zero divisors is a division algebra, thus every 
composition algebra is either split or else is a division algebra (and therefore 
a skew-field). 

Let us give examples of split composition algebras over a field F. 

1. n = dimF A = 2,A = F $ F, with the involution (cr,p) = @,a). 
2. n = 4. A = FZ - the algebra of 2 x 2 matrices over F with the simplectic 

3. n=8,A=‘&F)Ith ’ e \so-called %3ayley-Dickson matrix algebra” con- 

sists of all the matrices of the form 
a u 

( > v P 
,wherea,pE Fandu,vare 

vectors in the three-dimensional vector space F3, with ordinary matrix 
operations of addition and multiplication by a scalar and the following 
multiplication: 

where (z, y) denotes the scalar product of vectors x,y E F3 and x x y 
denotes their “vector” product. Involution in the algebra O(F) is defined 

in the same way as in the algebra F2 and, for the element a = 
a u 

( > v P ’ 
wehaven(a)=aiZ=@-(u,v),t(a)=a+E==++. 

Theorem (Jacobson, 1958, Zhevlakov, Slm’ko, Shestakov, Shirshov, 1978). 
Every split composition algebra over a field F is isomorphic to one of these 
algebras: F ~3 F, Fz,O(F). 

Note that condition a) in the definition of a split algebra is always satisfied 
in a composition algebra over an algebraically closed field, thus the following 
holds: 
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Corollary. There are only four non-isomorphic composition algebras over 
an algebraically closed field F. 

Classification of the composition algebras over the fields QP of pa&c num- 
bers is the same, since every quadratic form in 5 and more variables over QP 
represents zero. Over the field W of real numbers, there exist only 7 non- 
isomorphic composition algebras: 3 split and 4 division algebras: W, C, W, 0. 
The latter 4 algebras are unique finite-dimensional alternative division alge- 
bras over IR. There are also non-alternative, finite-dimensional division alge- 
bras over R (Kuz’min, 1966). In general, they have not been described, but 
the following fundamental result holds: 

Theorem (Bott, Milnor, 1958). Finite-dimensional division algebras over 
R exist only in dimensions 1, 2, 4, 8. 

An algebraic proof of this result is not yet known. The known proof is 
topological and is based on investigations of topological properties of the 
mapping of the sphere P-l into itself, induced by multiplication in an n- 
dimensional division algebra. With the aid of the methods of mathematical 
logic, using the completeness of the elementary theory of real closed fields, it 
can be shown that an analogous result holds for finite-dimensional division 
algebras over an arbitrary real closed field. 

In the conclusion we note that the classification of the composition algebras 
over the fields of algebraic numbers is also known (Jacobson, 1958). 

2.2. Projective Planes and Alternative Skew-Fields. We have seen that the 
alternative algebras have naturally risen from the study of quadratic forms, 
admitting composition. Another factor that stimulated the development of 
alternative algebras was their relation with the theory of projective planes, 
established at the beginning of the thirties in papers by Moufang. 

We note that the ordered pair of sets ?r = (~0, x0) is called a projective 
plane with the set of points ~0 and the set of lines ?y”, if a relation of incidence 
(i.e. belonging of a point P to a line 1) exists between these two sets, subject 
to the following conditions: 

1. If PI, P2 E ~0, PI # P2, then there exists a unique line 1 E ?y”, containing 
PI and Pz (denoted by 1 = PI Pz). 

2. If II, 12 E r”, 11 # Z2, then there exists a unique point P E ~0 that belongs 
both to II and to l2 (P = l1 n Z2). 

3. There exist 4 point in a general position, i.e. a position such that no 
three of these points belong to one line. 

A classical example of a projective plane is a two-dimensional projective 
space PF2, over a field F, whose points are one-dimensional subspaces of the 
linear space F3 and whose lines are the twedimensional subspaces. If F = Fq 
is a field with q elements, then PF2 is a finite plane, containing q2 + q + 1 
points and lines. In particular, for q = 2 we get the smallest projective plane, 
the so-called Fano plane. It may be pictured as in Fig. 1, if the arrows there 
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are removed and if the “lines” are considered to be the sides and the altitudes 
of the triangle as well as its inscribed circle. 

Let P be a point and 1 be a line in the projective plane 7r. The plane r 
is called a (P, I)-Desques plane, if for any of its different points A, B, C, A’, 
B’, C’, such that (1) AA’ n BB’ n CC’ = P, (2) AB # A’B’, AC # A’C’, 
BC # B’C’, (3) AB n A’B’ E 1, AC n A’C’ E I, the intersection BC n B’C’ 
also belongs to 1. 

The two resulting configurations (depending on whether the point P be- 
longs to the line 1 or not) are pictured in Fig. 2 and 3: 

Fig. 2 Fig. 3 

If a plane K is (P, I)-Desargues, for every point P E 1, then ?r is called l- 
Desargues (or else we speak of ?r as of the translation plane, with respect to 
the line 1). A plane 7r is called a Desaryues plane, if it is a (P, l)-Desargues 
plane, for every P and 1. In this case we say that the Desargues theorem holds 
in ?r. An example of a Desargues projective plane is the aforementioned plane 
PF’. If the plane R is I-Desargues, for every line 1, then we say that the little 
Desargues theorem hblds in r and n is called a Moufang plane in this case. 

Coordinates may be introduced into every projective plane in the following 
way. Let X, Y, 0, I be four points in a general position. Let us call the line 
XY - the line at infinity 1, and, call the line 01- the line y = Z. On the line 
01, assign the coordinates (0,O) to the point 0, the coordinates (1,1) to the 
point I, and assign the single coordinate (1) to the point 2 of the intersection 
of the lines 01 and XY. We assign the coordinates (b, b) to other points of the 
line 01, where b are symbols different for different points. Let now P 4 1, 
and XP n 01 = (b,b), YP n OI = (a,a). Then we assign the coordinates 
(a,b) to the point P. By this rule, the previous coordinates are assigned to 
the points of the line OI. Let the line connecting (0,O) and (1, m) intersect 
1, in a point M. Assign a unique coordinate (m) to the point M; it may be 
interpreted as a characterization of the slope of the line OM. Finally, assign 
the symbol (00) as the coordinate of the point Y (cf. Fig. 4). 
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X(o) 
Fig. 4 

We point out that by this very construction we may obtain the Cartesian 
coordinates in the ordinary real plane. In doing this, the point X should be 
considered to be the point at infinity of the axis x, and Y - the point at 
infinity of the axis y, 0 is the coordinate origin and I is the point (1,l). 

Let us define now algebraic operations of addition and multiplication on 
the set R of the coordinate symbols b. Set a + b = c, for some elements 
a, b, c E R, if the point (a, c) belongs to the line connecting the points (0, b) 
and (1) and a . b = c, if the point (a, c) lies on the line connecting the point 
(0,O) with (b). It is easy to see that the following equalities are satisfied: 

a+o=o+a=a, 

O~a=a-O=0, 

l.a=a.l=a. 

Moreover, the following equations in R are uniquely solvable in x, y: 

y+a=b, a+x=b, c-x=a, y.c=a, 

for every a, b, c (c # 0) in R. 
The algebraic system (R, +, .) does not in general satisfy the axioms of a 

(non-associative) ring and, generaly speaking, does not define the plane T. 
Moreover, in choosing different coordinates, one plane r may be assigned sev- 
eral different coordinatizing systems (R, +, .) , which may be non-isomorphic. 
The situation changes if we impose some Desargues conditions on r. 

Theorem 1 (Skornyakov, 1951), (Picker%, 1955). A projective plane r is an 
1-Desargues plane, for two different lines 1, containing the point’Y = (oo), 
if and only if the corresponding coordinatizing system (R, +, .) is a left al- 
ternative skew-field. A plane T is a Moufang (Desargues) plane if and only 
if every of its coordinatizing systems is an altenative (respectively, associa- 
tive) skew-field. Every two skew-fields coordinatidng a Desargues plane are 
mutually isomorphic. 
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Conversely, given a (non-associative) skew-field R, then we can always 
construct a projective plane IT by it, whose one of the coordinatizing skew- 
fields is R. In addition, if R is alternative (associative), then 7~ is Moufang 
(respectively, Desargues). 

In the case of an arbitrary projective plane it is more suitable to consider 
one ternary operation, instead of the binary operations of addition and mul- 
tiplication, on the set of the coordinate symbols R. If a, b, c, d E R, then set 
d = a . b o c, if the point (a, d) lies on the line connecting the points (b) and 
(0, c). It is easy to see, that a + b = a . 1 o b, a . b = a + b o 0, i.e. the former 
binary operations are expressible in terms of the ternary ones. The set R, 
together with the introduced operation a. b o c is called ternary of the plane 
X. The advantage of a ternary is in the fact that the plane it coordinatizes 
may be uniquely restored by the ternary. However, in this case too, several 
non-isomorphic ternaries may correspond to one plane. 

Relation of the theory of projective planes with the alternative rings has 
initiated a series of algebraic questions on their structure. First of all, the 
question of description of alternative skew-fields had risen. A study on them 
was initiated by Zorn and Moufang. One of the results obtained by Zorn was 
the following: 

Theorem 2. A finite alternative skew-field is associative and is the Galois 
field Fp. 

This theorem easily follows from Artin’s theorem on associativity of two- 
generated alternative ring (cf. 2.3 in the sequel) and the classical Wedderburn 
theorem on finite associative skew-fields, which states that every such skew- 
field is a field and is generated by one element. 

Because of Theorem 1, Theorem 2 implies the following 

Corollary. Every finite Moufang plane is a Desargues plane. 

A final description of alternative skew-fields was obtained at the beginning 
of the fifties by Bruck and Kleinfeld and independently by L.A Skornyakov, 
who proved that every alternative, non-associative skew-field is a Cayley- 
Dickson algebra over its center. This result had enabled them to prove, in 
particular, that every two alternative skew-fields coordinatizing the same Mo- 
ufang plane x are mutually isomorphic. Somewhat later, L.A. Skornyakov had 
proved that every right alternative (or left alternative) skew-field is alterna- 
tive. In view of Theorem 1, the latter means that if a projective plane ?r is 
an I-Desargues plane, for two different lines 1, then ?r is a Moufang plane. 

Thus, the Moufang (non-Desargues) planes are exactly the planes that can 
be coordinatized by the Cayley-Dickson division algebras (Cayley-Dickson 
skew-fields). By the corollary of Theorem 2, they are all infinite. We will give 
another realization of these planes in 3.5. 

In the conclusion we add a few words about finite planes. It is not difficult 
to show that, in a finite projective plane n, every line contains exactly as 
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many points as the number of lines passing through an arbitrary point. If 
this number equals n + 1, then we say that ?r is of order n. In this case, the 
number of all the points in x equals n2 + n + 1. For instance, PF: is of order 
q = p’ (where p is prime). It turns out that, not for every n are there planes 
of order n. At this time, no finite plane is known of order different from pr. It 
has been proved for instance that there are no planes of orders 6 and 14. The 
question for n = 10 remains open. It is known that there exist non-Desargues 
planes of orders p’, for all r > 2 and all p # 2, and also of orders 22r, where 
r 2 2. For n = p’ < 9, there exist only Desargues planes. 

2.3. Moufang’s Identities and Artin’s Theorem. Let A be an alternative 
algebra (a. a.) over a field F. We have already observed that the associator 
(2, y, z) = (zy)z - z(yz) in the algebra A is an alternating function of its 
arguments. In particular, the following identity holds in A: 

(T Y, z> = 0. (14 

The algebras satisfying (14) are called flexible algebras. It is easy to see that, 
for instance, every commutative or anticommutative algebra is flexible. 

Let us prove that the following identities are satisfied in an a. a. A: 

By (1.13), we have 

CG Y, YZ) = (c Y, 4Y (15) 
kc, Y, ZY) = Yh Y, z>- (16) 

(G Y, XY> = -(TXY, Y) = 4G Y, Y> + (z,z, Y)Y - (x2, Y7 Y> - (T z9 Y2) = 0. 

Linearizing this identity in z, we get 

(ZY, z, Y> + (ZY, 2, Y> = 0, 

which implies, by (1.13) and (14), the following identity: 

0 = (ZY, z, Y> + (z, Y, ZY) = C&Y, 4Y + (2, YZZ, Y>. 

This proves (15). Identity (16) is proved analogously. 
Well known Moufang identities are easily provable using (15) and (16): 

(my. z)y = s(y . zy) - the right Moufang identity, 
(yz . y)x = y(z . yz) - the left Moufang identity, 

(xy)(zx) = z(yz)a: -the central Moufang identity. 

For instance, (zyez)y-z(yzy> = (z.yz)y+(z, y, z)y-(sOyz)y+(z, yz, y) = 0. 
We can now prove the following theorem we mentioned earlier: 
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Artin’s Theorem. In an a. a. A, any two elements generate an associative 
subalgebra. 

Proof. Let A,-, be the subalgebra generated by elements a, b E A. In order 
to prove its associativity, it is enough to prove, because of the distributivity 
of multiplication, that, for arbitrary finite products ul, ~2, ‘(13, of the elements 
a, b, the identity (~1, ‘112,213) = 0 holds. We will prove this claim by induc- 
tion on the total number of factors in the products ul,u2,ug. The basis of 
induction consists in the alternativity and flexibility conditions. By the in- 
ductive hypothesis, we may assume that ~1, ~2,113 are associative products 
of the elements a, b. In this case, in two of them, the rightmost factors must 
coincide. Let, for instance, u1 = via, u2 = v2a. If either VI or v2 are absent 
then, by the inductive hypothesis and (15) and (16), (~1, ~2, ~3) = 0. We can 
therefore assume that v1 and 02 are non-empty. Let us linearize identity (16) 
in y: 

(x, Y, z’w) + (x, 207 ZY) = Y(X, w, z) + 4x7 Y, z). 

Setting here z = u1,y = ~43, z = v2,w = a, we get the following, by the 
inductive hypothesis: 

(u17u2,u3) = -(vla~~3~vZa) = (vla7a7v2u3) -a(vlaY'l13,v2)- 

ug(vla,a,vp)= (vla,a, V2U3)= a(v~,a,V2u3)=0. 

The theorem has been proved. 0 

The following more general claim may be proved by similar arguments: 
any three elements a, b, c in an a. a. A that satisfy the relation (ab)c = a(bc), 
generate in A an associative subalgebra (compare with Moufang’s theorem 
in 6.2). 

Corollary. Every a. a. is power-associative. 

In particular, in every a. a. A, there is a uniquely defined nilradical Nil A. 

2.4. Finite-Dimensional Alternative Algebras (Schafer, 1966). Let A be an 
a. a., let, M be an alternative A-bimodule and let (p, X) be the corresponding 
birepresentation of the algebra A (cf. 1.2). It is said that the algebra A acts 

nilpotently on M, if the algebra (p(A) U X(A)), generated in End M by the 
set p(A)uX(A) is nilpotent. If 2 E A, then it is said that z acts nilpotently on 
M, if the subalgebra (p(z), X(Z)) is nilpotent. (1.18) implies that the algebra 

f?‘; Nx)) is commutative and that ~(z~),X(Z?) E (pea), for every 
/ * 

Theorem. Let A be an a. a. over the field F and let M be a finite- 
dimensional alternative A-bimodule. Let, in addition, C be a multiplicatively 
closed subset in A generating the algebra A. Then, if every element c E C 
acts nilpotently on M, A too acts nilpotently on M. 
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Proof. Note that there are multiplicatively closed subsets B 2 C, such that 
the algebra (B), generated by B acts nilpotently on M. For instance the set, 
{sk 1 k > l}, for every x E C. Moreover, the set {x E A 1 Mx = xM = 0) is 

an ideal in A (it easily follows from the fact that the split null extension A/M 
is alternative). Consequently, we may assume, without loss of generality, that 
the birepresentation (p, X) is exact (i.e. Ker Xrl Ker p = 0) as well as that the 
algebra A is finite-dimensional over F. Let D be a maximal multiplicatively 
closed subset in C, such that the subalgebra (D) acts nilpotently on M. We 
may assume that D 2 C. By assumption, there is an n such that Ma1 . . . un = 
0, for all Al,.. . ,cn from the set {p(x), X(x) 1 x E D}. Let Mi = {m E M 1 
mu1 . . . ui=O,forall~1,..., ~~};thenO=MoCMlc...cM,=M. 

Let us consider an arbitrary element w of the form 

w = CT1 . . . U~-lTUi+l . . . fT2n, (*I 

where ui are same as above, T = p(a) or 7 = x(a), i = 1,. . . ,2n - 1. It 
is clear that w = 0. Let now y be an arbitrary element in A, which is a 
product of 2n + 1 factors, 2n of which belong to D. It follows easily from 
(1.18) that p(y) and X(y) are linear combinations of elements of the form 
(*), thus p(y) = X(y) = 0 and y = 0. Hence, (D) acts nilpotently on A 
(and, in particular, on C), thus there exists an element z E C, such that 
z # D,zD U Dz C D. Clearly z”D U Dzk c D, for all k > 1, thus the set 
E=Du{z”Jk>l} is multiplicatively closed and properly contains D. 

It only remains to prove that (E) acts nilpotently on M. (1.18) implies 
that every Mi is invariant with respect to P(Z) and X(z), hence Mi is a 
(E)-bimodule. The algebra (E) acts nilpotently on every quotient MJMi-1, 
hence it acts nilpotently on M too. This contradiction finishes the proof. 0 

Note that the explicit form of the alternativity condition has not been used 
in the proof of the theorem. The same proof is applicable in case when A is, 

for instance, a Lie algebra and M a Lie bimodule. Moreover, the reasoning 
used is still valid in every class 9X of algebras, defined by the homogeneous 
identities of the third degree, such that,, for every algebra A and its every 
ideal I, the set I2 is again an ideal of A. The necessary changes, related to 
the possible non-associativity of powers in A are fairly obvious (Stitzinger, 
1983). 

The right, and left Moufang identities imply that every alternative birep- 
resentation (p, X) satisfies the following relations 

P(XYX> = P(X)P(YMX)> X(XYX) = %XP(YM>. 

This and the relations p(x2) = pi, X(Z’) = X(X)~ imply easily that, p(xk) = 
p(x)k, X(xk) = X(x)k, f or all k > 1. In particular, if the element x is nilpotent, 
then it acts nilpotently on every alternative bimodule. 

Using a regular birepresentation, we obtain the following 
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Corollary 1. Let A be a finite-dimensional a. a. and C be a multiplicatively 
closed nilsubset of A. Then the subalgebm (C) acts nilpotently on A and, in 
particular, is itself nilpotent. 

Corollary 2. The nilradical NilA of a finite-dimensional a. a. A is nilpo- 
tent. 

The quotient algebra A/Nil A does not contain non-zero nilideals, i.e. it is 
semisimple. The structure of semisimple a. a. is described by the following 

Theorem. A finite-dimensional semisimple a. a. is isomorphic to the direct 
sum of simple algebras, each of which is either associative and is a matrix 
algebra over a skew-field or is a Cayley-Dickson algebm over its center. 

A finite-dimensional a. a. A over the field F is called a separable algebm if, 
for every extension K of the field F, the algebra AK = K @F A is semisimple. 
As in the case of the associative algebras, this is equivalent to the property 
that the algebra A is semisimple and the center of its every simple component 
is a separable extension of the field F. 

The following theorem generalizes the classical Wedderburn-Malcev theo- 
rem in the theory of associative algebras to the a. a. 

Theorem. Let A be a finite-dimensional a. a. over the jield F and let 
N = NilA be its nilradical. If the quotient algebra A/N is separable over F, 
then A = B + N (the direct sum of vector spaces), where B is a subalgebm of 
the algebra A, isomorphic to A/N. If F is a field of characteristic # 2, # 3 
and B1 is another subalgebm of A, isomorphic to A/N, then there exists an 
inner automorphism cj of the algebra A, such that B1 = Bb. 

We will not specify the form of these inner automorphisms of the a. a., 
since they look fairly complicated in general. We only point out that, over a 
field of characteristic zero, 4 may be chosen to be in the subgroup generated 
by the automorphisms of the form exp(D), where D is a nilpotent inner 
derivation of the algebra A lying in the radical of its multiplication algebra 
M(A)* 

Let us clarify now how the inner derivations of the a. a. look, over the 
fields of characteristics # 2, # 3. 

First of all it is not difficult to see that the mapping R, - L, is a derivation 
of an a. a. A, for some a E A, if and only if the element a is in the center 
N(A) of the algebra A. Furthermore, the fact that the associator (z, y,z) is 
skew-symmetric implies the following relations: 

-Rz,+R& = L,,--L&z = [L&L] = [&,, L] = L&,-L,, = &m-R&, 

for all 2, y E A. This, in particular implies that 

Pm 41 = +,,I - Wz, 41. 

Furthermore, in view of the relation R, o q = Rzoi,, we get 

(17) 
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I&,, [Rz, Rzll = (Rz 0 4) 0 R, - (R, 0 I$,) 0 Rz = 

R(~~u)~~-(wb~ = %,[wJl-2(wz) 

Let us consider the following mapping, for arbitrary z, y E A: 

w 

D s,y = &,,I - &,I - 3L 41. 

For every z E A, by (17) and (18) we have 

2[&, Dz,y] = 3[&, R [WI - 2L %I1 - VL R[w/ll - WL J&/II = 
3[R,, [Rz, Ry]] - R k$wll - - R ~Mwll-%~a) = ~RzD~,~, 

which implies that Dz,y is a derivation of the algebra A. Clearly the derive 
tions R, - L, (a E N(A)) and D,,, (5, y E A) are inner. Let us show now 
that if A contains 1, then every inner derivation D of the algebra A is of the 
form 

D = R, - L, + c DzirYi, a E N(A),xi, yi E A. (20) 
i 

Indeed relations (17) and (18) and their left analogues easily imply that the 
Lie algebra Lie (A) of multiplications of the algebra A consists of elements of 
the form R, + L, + C,[L,, , R.J, z, y, zi, yi E A. It is clear that every such 
an element may be represented in the form T = Ro + Lh + xi DUi ,Vi. Now, 
if T is a derivation, then 0 = 1T = g + h, hence Rs - L, = T - xi Dud,,,* is 
a derivation of the algebra A, and g E N(A). This finishes the proof. 

We have already pointed out in Sect. 1 that every derivation of a finite- 
dimensional central simple associative algebra is inner. Let us clarify now 
what does the derivation algebra Der0 of the Cayley-Dickson algebra 0 
look like. 

Let 0 be a Cayley-Dickson algebra over a field F of characteristic # 2, # 3, 
let n(z) be the norm of an element z E 0 and let f (z, y) be the bilinear form 
on 0, associated with n(z). Let us represent 0 in the form 0 = F. 1 i 00, 
where 00 is the set of elements in UD with the zero trace. It is not difficult to 
show that every element in 00 is the sum of commutators, thus OD C_ 00, 
for every D E Der 0. In addition, for every z E 0 we have (z $ Z)D = 
(t(x) . 1)D = 0, hence ZD = -xD = a. Now 

f(xD,y)+f(x,yD)=xD.jj+y.~+x.~+yDZ= 

t(xD.jj+x.g) = t(xD.g+x.gD) = t((xB)D) =O, 

i.e. D is skew-symmetric, with respect to the form f. It is easy to see, that 
the operators of multiplication by elements in 00 are skew-symmetric with 
respect to f. The set o(8, f) of all the skew-symmetric linear transformations 
of 0 with respect to f, form a subalgebra of the Lie algebra ( End 0)(-J - an 
orthogonal Lie algebra of dimension 3 ~8. (8 - 1) = 28 over F. The elements 
of the form D + R, + L,, where D E Der 0, z,y E 0s form a subspace of 



228 E. N. Kuz’min, I. P. Shestakov 

o(8, f), which is the direct sum of the spaces Der 0, &, = {R, 1 z E ‘fDa} 
and Lo0 = {L, ( z E 00). In fact the following equality holds: 

Der 0 i l?.o, i Lo0 = o(8, f), 

thus, dimDer0 = 28 - 7 - 7 = 14. In addition, the algebra DerO is simple. 
Thus the following theorem holds: 

Theorem. Let 0 be the Cayley-Dickson algebra, over a field of character- 
istic # 2, # 3. Then the derivation algebra DerO is a 14-dimensional central 
simple Lie algebra. 

According to the classification of finite-dimensional simple Lie algebras 
over an algebraically closed field K of characteristic 0, only one of them is 
of dimension 14 - it is the exceptional algebra (6s. The theorem implies that 
Gz 2 Der 0, where 0 is the (split) Cayley-Dickson algebra over K. Let F be 
the algebraic closure of the field F. A central simple Lie algebra L over F is 
called an algebra of type 62, if p@F L g Der 0, where 0 is the (split) Cayley- 
Dickson algebra over F. It is clear that for every Cayley-Dickson algebra 0, 
the algebra Der 0 is an algebra of type Gz. Conversely, every central simple 
Lie algebra of type (62 over the field of characteristic # 2, # 3, is isomorphic to 
the algebra Der 0, for an appropriate Cayley-Dickson algebra 0; in addition, 
Der 01 g Der 02, if and only if 01 g 0s. 

Corollary. Every derivation D of a Cayley-Dickson algebra UD of chamc- 
teristic # 2, # 3 is inner and is of the form D = Ci DzirVi, where xi, yi E 0. 

Indeed, for every a. a. A the derivations of the form Ci D,i,yi form an 
ideal in the algebra Der A, and since this ideal is non-zero in the algebra 
Der 0, everything follows from the fact that Der 0 is simple. 

Combining this result with known facts on derivations of central simple 
associative algebras, we arrive, in a standard way, to the fact that every 
derivation D of a finite-dimensional separable a. a. A of characteristic # 2, # 
3, is inner and is of the form (20). Furthermore, in case of characteristic 0, 
we may choose a = 0. 

We also point out that a finite-dimensional a. a. A of characteristic 0 is 
semisimple if and only if the Lie algebra Der A is semisimple. 

At the conclusion let us shortly look into the structure of the bimodules 
over finite-dimensional a. a. Just as in the case of the associative algebras, 
every alternative bimodule over a separable a. a. is completely reducible. The 
structure of irreducible bimodules is described in the following 

Theorem (Schafer, 1952). Let A be a finite-dimensional a. a., let M be a 
faithful irreducible alternative A-bimodule and let (p, X) be the corresponding 
b&presentation of the algebra A. Then either M is an associative bimodule 
over the (associative) algebra A or one of the following cases holds: 

1) A is the algebra of generalized quaternions, X is a (right) associative 
irreducible representation of A and p(a) = X(E), for every a E A; 
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2) A is the Cayley-Dickson algebra and M = A is a regular A-bimodule. 

A few words about the methods of study of finite-dimensional a. a. These 
methods have a lot in common for different classes of algebras that are nearly 
associative (except the Lie algebras and their generalizations). In investigat- 
ing simple and semisimple algebras the methods consist in passing to an 
algebraically closed field, in finding a sufficient number of orthogonal idem- 
potents, and using the properties of Pierce decomposition of algebras. In 
studying solvable and nilalgebras the methods consist in the passage to the 
associative enveloping algebras. Apart from these, all the cases explore the 
traditional methods of finite-dimensional linear algebra: eigen vectors, mini- 
mal polynomials, the trace bilinear form etc. 

2.5. Structure of Infinite-Dimensional Alternative Algebras (Zhevlakov, 
Slin’ko, Shestakov, Shirshov, 1978). We have already mentioned in Sect.1 
that the fundamental instrument in building a structure theory of one or 
another class of algebras is the notion of a radical. In the case of infinite- 
dimensional a. a., the most important role is played by the quasi-regular and 
prime radicals. 

The quasi-regular radical Rad A of an a. a. A is a direct generalization of 
the corresponding notion from the theory of associative algebras and allows 
several equivalent characterizations: 

1) Rad A is the largest right (left) quasi-regular ideal of the algebra A; 
2) Rad A is the intersection of all maximal modular right (left) ideals of the 

algebra A; 
3) Rad A is the intersection of the kernels of all of the irreducible right (left) 

representations of the algebra A. 

Here, just as in the case of associative algebras, an ideal I is called a quasi- 
regular ideal if every element x E I is quasi-invertible (i.e. the element 1 -x is 
invertible in the algebra An, obtained from A by adjoining an external unity); 
a right ideal I is a modular right ideal, if there exists an element e E A such 
that x - ex E I, for every x E A. 

An algebra A is called semisimple, if Rad A = 0 and is called (right) 
primitive, if A contains a maximal modular right ideal that does not contain 
non-zero two-sided ideals. 

Construction of semisimple a. a. is described in the following 

Theorem. Every semisimple a. a. is isomorphic to a subdirect sum of prim- 
itive algebras, each of which is either associative or is the Cayley-Dickson 
algebra. 

The prime radical of an a. a. A is defined as the smallest ideal P(A) 
for which the quotient algebra A/P(A) is semiprime (i.e. does not contain 
non-zero nilpotent ideals). The ideal P(A) may be not nilpotent in general, 
although it is a nilideal. Every semiprime algebra is isomorphic to a subdirect 
sum of prime algebras (i.e. algebras where the product of every two non-zero 
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two-sided ideals is always different from 0). Simple algebras and algebras 
without zero divisors are examples of prime algebras. 

The problem of describing the simple algebras is one of the central ques- 
tions in studying every class of algebras. In a difference from the associative 
algebras, where this problem is practicably invisible (since every associative 
algebra may be embedded into a simple one), simple a. a. have an exhaustive 
description, modulo associative algebras. 

Theorem. Every simple non-associative a. a. is the Cayley-Dickson algebra 
over its center. 

This theorem generalizes, in particular, the Bruck-Kleinfeld-Skornyakov 
theorem on the structure of alternative skew-fields that was mentioned in 
2.2. 

One can relate a series of prime algebras with every central simple algebra. 
Let A be a central algebra over a field F. A subring B C_ A is called a 
central order in A, if its center 2 is contained in F and the ring of fractions 
Z-lB = {z-lb 1 0 # z E Z,b E B} coincides with A. It is easy to see that 
every central order of a simple algebra is a prime algebra. The central orders 
in Cayley-Dickson algebras are called the Cayley-Dickson rings. Prime a. a. 
are exhausted by these rings, with the exception of some “pathological” cases. 

Theorem. Every prime non-associative a. a. of characteristic # 3 is a 
Cayley-Dickson ring. 

The restriction on the characteristic is, generally speaking, essential. But 
it may be replaced, for instance, by the condition of A not having absolute 
tero divisors (i.e. elements a for which aAa = 0) or by the condition of 
A not having non-zero locally nilpotent ideals. F&call that an algebra A is 
called a locally nilpotent algebra, if every finitely generated subalgebra of A 
is nilpotent. Every a. a. A contains the largest locally nilpotent ideal LN(A), 
which is called the locally nilpotent radical of the algebra A. The radical 
LN(A) contains all the one-sided locally nilpotent ideals of the algebra A 
and all the absolute zero divisors; the quotient algebra A/LN(A) is LN- 
semisimple and is isomorphic to a subdirect sum of prime LN-semisimple 
algebras. 

The radicals Nil A (cf. 1.2), Rad A, LN(A) and P(A) are related by the 
following inclusions: 

RadA > NilA 2 LN(A) 2 P(A), (21) 

which are strict, in general, already in the case of the associative algebras. In 
finite-dimensional a. a. all these radicals coincide with the ordinary nilpotent 
radical (see 2.4). Moreover, they coincide within the class of Artinian a. a. 
(i.e. the algebras satisfying the minima&y condition for the right ideals), for 
which the generalization of the classical associative theory is valid. 
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Theorem. The RadA is nilpotent in every Artinian a. a. A. An algebra A 
is Artinian semisimple if and only if it is a finite direct sum of full matrix 
algebras over skew-fields and the Cayley-Dickson algebras. 

It is not difficult to derive from here that, in an Artinian a. a., every 
nil-subalgebra is nilpotent. In particular, the properties of solvability and 
nilpotency are equivalent within the class of Artinian algebras. With some 
constraints on the characteristic, these properties are equivalent for finitely 
generated algebras and their subalgebras too. This is not, the case in general 
- there exist examples of solvable, non-nilpotent a. a. over every field. Nev- 
ertheless, solvability and nilpotency are closely related within the class of a. 
a., as the following result shows: 

Theorem (Pchelintsev, 1984, Shestakov, 1989). Let A be a solvable alter- 
native @-algebra. Then the subalgebm A2 is nilpotent and, if $ E @, then 
(An)3 = 0, for some n. 

We also point out that over a field of characteristic 0, every alternative 
nilalgebra of bounded index is solvable. 

Free algebras play an important role in the theory of every class of algebras: 
free non-associative algebra, free alternative algebra, free Lie algebra etc. 
Recall that the algebra Fm[X] from the class ?JJl, with the set of generators 
X is called a free algebra in the class 9Jl (or m-free), if every mapping from 
the set X into an arbitrary algebra A in !?Jl is uniquely extendable to a 
homomorphism Fm[X] to A. 

The set of all the non-associative words made up out of elements of the 
set X forms the basis of the free non-associative algebm F(X), over a field 
F; its elements may be viewed as non-associative, non-commutative polyno- 
mials in variables from X. If the class !JR is defined by a system of identities 
{fa}, then the m-free algebra Fm[X] is isomorphic to the quotient algebra 
F(X}/Im, where Im is the ideal of the algebra F(X), generated by the set 

{fcz(Yl,. . . , yn,.)lyi E F{-V). Th us, the free alternative algebm F*lt(X] is 
isomorphic to the quotient algebra F(X), mod the ideal IAIt, generated by 
all the elements of the form (fl, fl, f-2), (fl, f2, f2), where fl, f2 E F(X). 

Many questions in the theory of a. a. are reduced to the study of the struc- 
ture of free and PI-algebras, i.e. the algebras satisfying essential polynomial 
identities, namely identities which are not consequences of associativity. A 
general scheme of this reduction is as follows: In the free algebra, one looks 
for fully invariant (i.e. stable under endomorphisms) ideals, subalgebras or 
subspaces with certain nice properties (for instance being contained in some 
center). If, in an algebra A, the value of the elements from this ideal (or the 
subalgebra) are not all equal to zero, then A has a series of nice properties; 
otherwise, A is a PI-algebra. 

Some basic properties of a free a. a. are described in the following 

Theorem (Zhevlakov, Slin’ko, Shestakov, Shirshov, 1978; Il’tyakov, 1984; 
Filippov, 1984; Shestakov, 1976, 1977, 1983; Zel’manov, Shestakov, 1990). 
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Let A = Alt [X] be the free a. a. over a field F of characteristic # 2,3 on 
the set of fnee generators X; let Z(A) be its center and N(A) its associative 
center. Then [x, y14 E N(A), (x, y, z)~ E Z(A), for all x, y, z E A; for 1x1 > 2 
the algebra A is not prime and for (X( > 3 it is not semiprime; RadA = {x E 
A 1 x+ = 0) = T(O) n D(A), where T(0) is the ideal of identities of the 
split Cayley-Dickson algebra over F and D(A) is the associator ideal of A; 
if either (Xl < oo or F is a field of characteristic 0, then RadA is nilpotent, 
and if 1x1 < 3, then RadA = 0; if 1x1 < lY[, then there is an identity in 
Alt [X] which does not hold in Alt [Y]. 

The study of structure of PI-algebras goes mainly by the pattern of the 
associative PI-theory. At this time, many principal results of that theory have 
been transfered to a. a. One of effective methods of investigation of alterna- 
tive PI-algebras is a passage to algebras from other classes which are in one 
way or another connected with the given PI-algebra A. For instance, it is not 
difficult to check that, for an a. a. A, the algebra A(+) is a special Jordan al- 
gebra (see 3.1), where, if A is a PI-algebra, then A(+) is a Jordan PI-algebra. 
The most brilliant example of utilization of this connection are the results of 
A. I. Shirshov, devoted to solving the well known Kurosh problem inside the 
class of alternative PI-algebras. This problem, which is a typical example of a 
problem of the “Burnside” type, is formulated as follows: if in an algebra A, 
every singly generated subalgebra is finite-dimensional, then is every finitely 
generated subalgebra of A finite-dimensional? In general the answer is nega- 
tive, already for the associative algebras (although for skew-fields the answer 
is not known), but if A is a PI-algebra, the answer is affirmative both for the 
associative as well as for the alternative and Jordan algebras. Furthermore, 
the solution of the problem for the a. a. relies essentially on the case of special 
Jordan algebras. Let, us state an important partial case of this result. 

Theorem. An a. a. with the identity x” = 0 is locally nilpotent. 

Along with the Jordan algebra A (+I, it, is useful to draw the algebra of right 
multiplications R(A) into the study of properties of an a. a. A; this algebra 
inherits many properties of A. For instance, if A is a finitely generated PI- 
algebra, then the algebra R(A) is of the same kind, and in this case we may 
apply the well developed associative PI-theory for studying A. On this path, 
we for example prove the following 

Theorem (Shestakov, 1983). The radical RadA of a finitely generated al- 
ternative PI-algebra A over a field is nilpotent. 

In investigating properties of free a. a., alternative superalgebras (cf. 1.2) 

proved to be useful; they satisfy the following classification theorem which has 
been proved recently (E. I. Zel’manov, I. P. Shestakov, 1990): every prime 
alternative superalgebra A = Ao -i- A1 of a characteristic # 2,3 is either 
associative or A1 = 0 and Ao is the Cayley-Dickson ring. 
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53. Jordan Algebras 

3.1. Examples of Jordan Algebras. Recall that an algebra is called a Jordan 
algebra (J. a.), if it satisfies the following identities: 

xy = yx 

(x21/)x = x2(yx). 

In this section we assume that the base field F is of characteristic not equal 
to 2. 

Example 1. Let A be an associative algebra. Then, the algebra A(+) is 
a J. a., as noted in 1.1. Every subspace J in A, closed with respect to the 
operation x . y = i(xy + yx), forms a subalgebra of the algebra A(+) and is 
consequently a J. a. Such a J. a. J is called a special Jordan algebra and the 
subalgebra At, in A generated by J is called the associative enveloping algebra 
of J. Properties of the algebras A and A(+) 
(prime, nilpotent), if and only if A(+) has th 

are closely related: A is simple 
e corresponding properties. The 

algebra A(+) may happen to be a Jordan algebra for non-associative A too. 
For instance, if A is a right, alternative (in particular, alternative) algebra, 
then A(+) is a special J. a. (cf. 4.2). 

Example 2. Let, X be a vector space of dimension greater than 1 over F, 
with a symmetric nondegenerate bilinear form f (x, y). Let us consider the 
direct sum of vector spaces J(X, f) = F -i- X and let, us define multiplication 
there in the following way: 

(a + x>(B + Y) = (a@ + f (X? Y)) + cay + Pxc>. 

Then J(X, f) is a simple special J. a.; its enveloping algebra is the Clifford 
algebra Cl (X, f) of the bilinear form f. In case when F = W and f(x, y) is the 
ordinary scalar product on X, the algebra J(X, f) is called the spin-factor 
and is denoted by V,, where n - 1 = dim X. 

Example 3. Let A be an associative algebra with involution *. The set, 
H(A,*)={hEAIh*=h} f o *-symmetric elements is closed with respect, 
to Jordan multiplication x . y, and therefore, is a special J. a. For instance, 
if D is a composition associative algebra over F, with involution d t ;i (cf. 
2.1) and if D, is the algebra of n x n matrices over D, then the mapping 
s : (Uij) - (rig is an involution in D, and the set of the D-Hermitian 
matrices H(D,) = H(D,, S) is a special J. a. If the algebra A is *-simple 
(i.e. does not, contain proper ideals I, such that I* C I), then H(A, *) is 
simple; if A is *-prime, then H(A, *) is prime. In particular, all the algebras 
II are simple. Every algebra of the form A(+) is isomorphic to the algebra 
H(B, *), where B = A @ A’, the algebra A0 is anti-isomorphic to A, and 
(w,a2)* = (a2,al). 
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Example 4. If D = 0 is the Cayley-Dickson algebra, then the corresponding 
algebra H(O,) of Hermitian matrices is a J. a., only for n < 3. In cases 
n = 1,2, the algebras obtained in this way are isomorphic to some algebras 
in Example 2, and thus are special. The algebra H(0s) is not special and 
gives us an example of a simple exceptional J. a. Albert was the first to 
prove that the algebra H(O 3 ) is exceptional. We will call a J. a. J the Albert 
algebra, if J 8’~ K S H(03), f or some extension K of the field F. Every 
Albert algebra is simple, exceptional and is of dimension 27 over its center. 

We will see in the sequel, in 3.7 that the stated examples exhaust all the 
simple J. a. 

3.2. Finite-Dimensional Jordan Algebras (Braun, Koecher, 1966), (Jacob- 
son, 1968). Let J be a 3. a. and let a, b, c E J. Consider a the following regular 
birepresentation of the algebra J: a H L,, a H R, (cf. 1.2). In view of (1. 
17), we have 

La = Ra, [Raz , &I = 0, 
&at, - &,&a + 2R&,R, - 2&& = 0. 

Linearizing the last relation in a, we get the following: 

(1) 

&c.b - l&R,, i- &R& + R&R, - R&, - R,& = 0. (2) 

It easily follows from (2) that, for every k 2 1, the operator &k belongs 
to the subalgebra A c End J generated by the operators &, Raz. In view 
of (l), A is commutative, thus we have [R,k, Ra-] = 0, for all k,n 2 1, 
or (&, J, an) = 0. In particular, every J. a. J is power-associative and the 
nilradical Nil J is uniquely defined. Just as in the case of the alternative 
algebras, the following theorem holds: 

Theorem. Let J be a finite-dimensional J. a. Then the radical Nil J is 
nilpotent and the quotient algebra J/Nil J is isomorphic to the direct sum of 
simple algebras. 

An important example of semisimple J. a. over W are so-called formally 
real J. a., i.e. algebras where the equality x2 + y2 = 0 implies z = y = 0. 
In the foundational paper (Jordan, von Neumann, Wigner, 1934), the finite- 
dimensional formally real J. a. were characterized as the direct sums of simple 
algebras of one of the following forms: W, V,, H(W,), H(C,), H(W,), H(&), 
where Cc is the field of complex numbers, W is the quaternion skew-field and 
0 is the algebra of Cayley numbers and n > 3. Simple finite-dimensional 
algebras over an algebraically closed field F are described in a similar fashion: 

Theorem. Every simple finite-dimensional J. a. over an ulgebmically closed 
field F is isomorphic either to F or to the ulgebm J(X, f), OT- to the algebra of 
Hermitian matrices H(D,,), n >/ 3, over a composition ulgebm D, associative 
for n > 3. 
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Recall (see 1.2) that every finite-dimensional commutative power-sssocia- 
tive nilsemisimple algebra over a field of characteristic 0 is a Jordan al- 
gebra, thus this theorem at the same time gives a description of simple 
finite-dimensional commutative power-associative algebras of characteristic 
0, which are not nilalgebras. 

In a finite-dimensional J. a. J with the separable quotient algebra J/Nil J 
an analogue of the classical Wedderburn-Malcev theorem on splitting off of 
the radical and conjugation of semisimple factors holds. 

Structure of Jordan bimodules over a J. a. J is defined by its universal 
m&iplicative enveloping algebra U(J), which is defined as the quotient al- 
gebra of the tensor algebra T(J) over the ideal generated by the set of the 
elements of the forms 

u2@u-u@u2,u2b-b@a’-2u@ba+2u@bbua, whereu,bE J 

(see 1.2). A linear mapping p : J - EndM is a representation of a J. a. 
J (or, equivalently, the pair (p, p) is a birepresentation of J) if and only if 
there exists a homomorphism of associative algebras 4 : U(J) - EndM, 
coinciding with p on the elements in J, identified with its cannonical images 
in U(J). Thus descriptions of Jordan J-bimodules reduce to determining the 
structure of the algebra U(J) and to a study of its associative representations. 
A finite-dimensional J. a. J is separable if and only if U(J) is separable. This 
implies that every Jordan bimodule over a separable finite-dimensional J. a. 
is completely reducible. The construction of the algebra U(J) is known for 
all central simple finite-dimensional J. a. J. This also determines irreducible 
J-bimodules (they correspond to simple components of the algebra U(J)). 

Example 1. Let J be the Albert algebra. Then U(J) = F $ F27. The 
component F corresponds to the trivial one-dimensional J-bimodule, and F27 
to a regular J-bimodule. Since we usually do not consider trivial bimodules 
to be irreducible, every irreducible J-bimodule is isomorphic to a regular 
bimodule. 

Example 2. J = J(X, f). Then U(J) = F CB Cl(X, f) CB D(X, f), where 
D(X, f), is the so-called “meson algebra”, defined as the quotient algebra 
T(X)/I, where T(X) is the tensor algebra of the space X and I is the ideal 
in T(X) generated by all the elements of the form x @ y @I z - f (x, y)x, 
where x, y E X. One can show that D(X, f) is isomorphic to the subalgebra 
of the algebra Cl (X, f) @ Cl (X, f), g enerated by elements of the form x @ 
1 + 18 x, x E J. We will not give the decomposition of D(X, f) into simple 
components, since it is fairly complicated: it depends on the parity of the 
dimension of X and the discriminant of the form f. 

3.3. Derivations of Jordan Algebras and Relations with Lie Algebras 
(Braun, Koecher, 1966; Schafer, 1966; Jacobson, 1966). With every J. a. J 
one can associate several interesting Lie algebras. We already know some of 
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them: It is the derivation algebra Der J, the Lie multiplication algebra Lie (J) 
and the algebra of inner derivations Inder J = Der J n Lie (J). We introduce 
two more algebras below: the structure algebra Strl J and the superstructure 
algebra (or the Tits-Kantor-Koecher construction) K(J). 

Let J be a J. a. with unity 1 and a, b, c E J. By skewsymmetrizing (2) in 
a and b we get the following: 

R(a,c,b) = [Rm [Rm Rb]]. (3) 

Since (a, c, b) = c(R,, Rb], then, in view of (1. ll), (3) implies that the op- 
erator [Ra, Rb] is a derivation of the algebra J. Moreover, (3) implies that 
Lie(J) = RJ + [RJ,RJ], where RJ = {R, 1 a E J}. Since Der J n RJ = 0 
(if R,, E Der J, then 0 = 1% = a), we have Inder J = Der J fl Lie (J) = 
Der J n (RJ + [RJ, RJ]) = (Der J n RJ) + [RJ, RJ] = [RJ, RJ], i.e. every 
inner derivation in J is of the form D = ci[Rai, R&l, aibi E J. At the same 
time, it has been proved that Lie (J) = RJ + Inder J is the direct sum of 
vector spaces with multiplication 

[&a + D, Rb + D’] = RO-bD + ([R,, Rb] + [D, D’]), (4 

where a, b E J; D, D’ E Inder J. If D and D’ in (4) are taken from the 
algebra Der J, then this formula will define multiplication on the vector space 
RJ + Der J. The resulting algebra is again a Lie algebra, called the strackre 
algebra of the algebra J and is denoted by Strl J. 

Theorem. Let J be a finite-dimensional semisimple J. a. over a field of 
characteristic 0. Then Der J = Inder J is a completely reducible Lie algebra. 
If J does not contain simple summands of dimension 3 over the center, then 
the algebra DerJ is semisimple. 

The stated restriction is essential since Der V3 is an one-dimensional Lie 
algebra. For the central simple J. a. J the algebra Der J is simple with the 
exception of the algebra J(X, j), dim X = 2,3,5, and the algebra H(F4). If 
J = II( where n >/ 3 and if D is a composition algebra of dimension 
d over F, then the dimension of the algebra Der J is given by the following 
table: 

d 1 2 4 8 

dim(Der J) w n2 - 1 n(2n+ 1) 52 (n = 3) 

In particular, the algebra Der (H(CDs)) is a simple 52-dimensional Lie alge- 
bra. According to the classification of finite-dimensional simple Lie algebras, 
over an algebraically closed field K of characteristic 0, only one of them has 
dimension 52, namely the exceptional algebra lF4. Thus, over the field K, we 
have IF4 = Der(H(CDs)). F or every Albert algebra J, the algebra Der J is 
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an algebra of type IF4 and, conversely, every Lie algebra of type IF4 is iso- 
morphic to the algebra Der J, for a suitable Albert algebra J; furthermore, 
DerJEDerJr,ifandonlyif Jr J1. 

For a semisimple J. a. J, the structure algebra Strl J is not semisimple 
since its center contains the element RI = IdJ, where 1 is the unity of J. 
Let J~={zE J]tr(R,)=O};thenJ=F~l+JsandStrlJ=F~R1/ 
RJ, i Der J. It is easy to see that (Strl J)’ = R J,, i Der J. The subalgebra 
Strl c J = RJ, iDer J of codimension 1 in Strl J is called the reduced structure 
algebra of the algebra J. 

Theorem. Let J be a central simple J. a. of finite dimension n > 1, over 
a field of characteristic 0. Then Strlo J is a semisimple Lie algebra. 

If J = H(D,,), w h ere n 2 3 and D is a composition algebra of dimension 
d over F, then the algebra Strlo J is simple for d = 1,4,8, and for d = 2 it is 
the direct sum of two isomorphic simple algebras. 

I&ample. The algebra Strl s(H(0s)) is a simple Lie algebra of dimen- 
sion (27-1)+52=78 and it acts irreducibly on H(CDs). There are three non- 
isomorphic simple Lie algebras of dimension 78, over an algebraically closed 
field K of characteristic 0: the algebra lEs, the orthogonal Lie algebra o(13) 
and the simplectic Lie algebra sp (12). However, the two latter algebras do 
not have irreducible representations of dimension 27. Thus, over the field K, 
we have lEs = Strls(H(Os)). If now J is an arbitrary Albert’s algebra, then 
the algebra StrleJ is a simple Lie algebra of type Es; in addition, the alge- 
bras Strl c J and Strl c 51, for Albert’s algebras J and Jl, are isomorphic if 
and only if J and J1 are isotopic (cf. 3.4 in the sequel). 

We need a notion of the triple Jordan product, which plays an important 
role in the theory of J. a., in order to define the superstructure algebra K(J). 
Let a,b,c E J; set {abc} = (a.b).c+(c.b).a-b.(a.c). Let us also define the 
linear operators Ua,b : z H {azb},V& : z H {abz},U, = U,,,=. If J = A(+), 
where A is an associative algebra with multiplication ab, then {aba} = abu. 
There are many arguments showing that the ternary operation {abc} is more 
natural for J. a., then the ordinary multiplication. We will return later to 
properties of this operation. Let us point out now only that, if J has the 
unity, then the ordinary multiplication is expressible through the ternary by 

%,a = Rx. 
Let us again consider the structure algebra Strl J = R J i Der J. We define 

a mapping * of the algebra Strl J into itself, by setting (R, + D)* = -R, + D. 
It is easy to see that * is an automorphism of order 2 of the algebra Strl J. 
We form the vector space K(J) = J i Strl J iJ, where 3 is isomorphic to J 
under the isomorphism a I+ h. Let us now define multiplication on K(J), by 
setting 

h + TI + GT, a2 + T2 + &] = (aIT - a2Tl)+ 
-- 

(&,ba - &,bl + [Tl,T21) + @IT, - bzT;). 
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The resulting algebra K(J) is a Lie algebra, called the szlperstmcture algebra 
or the Tits-Kantor-Koecher construction for the algebra J. 

The correspondence J H K(J) is functorial and there is a close relation 
between the properties of the algebras J and K(J). The algebra J is simple 
(semisimple, solvable), if and only if K(J) is of the same kind. 

The algebra K(J) h as a less formal interpretation too. Let Pol (J) be the 
vector space of the polynomial transformations J into J. It is known that 
Pol (J) forms a Lie algebra with respect to the brackets 

[p,q](x) = F,(x) - Fp(x), 

the so-called “Lie algebra of polynomial vector fields on J”. It is not difficult 
to ascertain that K(J) is isomorphic to the subalgebra of the algebra Pol (J), 
which consists of quadratic polynomials of the form a + TX + {xbx}, where 
a,b~ J,TEStrlJ. 

,&ample 1. Let J = W. Then K(W) consists of the polynomials of the form 
P(X) = p1+ PPX + P3Z2, where pi E W; furthermore 

[P, ql(4 = P’c+?(4 - dWP(4 = 

(P2Ql - Q2Pl) + 2(P3Ql - Q3P1)2 + (P3Q2 - Q3P2)X2. 

Thus, K(W) = sl(2, W). 

Example 2. Let J be the Albert algebra. Then K(J) is a simple Lie algebra 
of dimension 27+79+27=133, i.e. K(J) is an algebra of type IEr. 

The Tits-Kantor-Koecher construction results in fact not only in one Lie 
algebra, but the whole series. Namely, let H be an arbitrary subalgebra of the 
algebra Strl J which contains the subalgebra RJ i Inder J; then the vector 
space KH( J) = J i H -l- 7 is a subalgebra of K(J). All the algebras KH( J) 
are 3-graduated, i.e. are of the form L = L-1 i LO -& L1, where LiLj C 
Li+j, Li = 0, for Ii1 > 1; in addition L-1 = J, L1 = J, LO = N. 

In the conclusion of this part we give the Tits construction which brings 
about exceptional simple Lie algebras of every type, with the aid of the 
composition algebras and Jordan matrix algebras of order 3. 

Let F be a field of characteristic # 2, # 3 and let A be a composition 
algebra over F; J is either F or is the algebra H(Ds), where D is the com- 
position algebra over F. Let us denote by t(a) the trace of the element a in 
the algebra A and by tr (z) denote the ordinary trace of the matrix x in the 
algebra H(Ds). Let A0 = {a E A 1 t(a) = 0}, Jo = {x E J 1 tr(z) = 0) 
(Jo=O,forJ=F).Fora,b~Aandz,y~ J,set 

a * b = ab - it(ab), x * y = xy - itr (zy); 

then a * b E Ao, x * y E JO. Let us define an anticommutative multiplication 
on the direct sum of vector spaces Der A -!- A0 @ JO -i- Der J, according to the 
following rules: 
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1) Der A and Der J are commuting subalgebras in L; 
2) [a@~, D] = aD@x, [a@~, E] = a@xE, for all D E Der A, E E Der J, a E 

Ao,x E Jo; 
3) [a @IX, b 03 y] = &tr (Xy)D,,b + (a * b) 8 (x * y) + at (ab)[R,, 41, for all 

a, b E Ao,x, y E JO, where Da,b E DerA is of the form (2.19). 
The resulting algebra L is a Lie algebra. For brevity, we denote C(o) = 

@, lHl(cr, p) = W; then the type of the algebra L depending on the form of the 
algebras A and J is determined by the following table: 

t 
J I 

\ F fV’3) W@3) H(H3) fW3) 

A 
IF 0 Al A2 c3 F4 
Cc 0 A2 Aa@& ~45 E6 
w AI C3 A5 A6 E7 

0 G2 F4 E6 E7 ES 

For instance, if A = 0, J = H(&), then the algebra L = Der A i AIJ @ 
JO i Der J is of dimension 14+7.26+52=248 and is a simple Lie algebra of 

type lb. 

3.4. Isotopies of Jordan Algebras, Jordan Structures (Braun, Koecher, 
1966; Jacobson, 1968; Meyberg, 1972; Springer, 1973; Loos, 1975). An element 
a in a J. a. J with unity 1 is called invertible, if the operator U, = 2Ri - R,,a is 
invertible in End J. It is easy to see that a is invertible if and only if 1 is in the 
image of U,. Set a-l = a&i; then a-l is also invertible and (a-l)-’ = a. 
If A is an associative algebra, then a is invertible in A if and only if it is 
invertible in A(+) and a-l is same in A and in A(+). If every element in a 
J. a. J is invertible, then J is called a division J. a. We point out that the 
invertibility of an element a in a J. a., does not, generally speaking imply 
invertibility of the operator R,, thus the equations ax = b (a # 0) are not 
necessarily solvable in a division J. a. 

The notion of isotopy, whose sources lie in the associative theory, plays an 
important role in the theory of J. a. If an invertible element c is fixed in an 
associative algebra A, and if a new c-multiplication a& = bc-‘6 is defined, 
then the resulting algebra A cc) will again be associative, where the element c 
will be the unity in Ale). Analogously, for a J. a. J with an invertible element 
c, the algebra Jtc) obtained from J by introduction of a c-multiplication 
a, . b = {ac -lb}, will be a J. a. with the unity c. The algebra J(‘) is called 
the c-isotope of the algebra J. Two J. a. are called isotopic, if one of them 
is isomorphic to an isotope of the other; the corresponding isomorphism is 
called an isotopy. In the associative case, the algebras A and Ate) are always 
isomorphic: the mapping x H xc is an isomorphism of A and Ate), thus 
the notion of isotopy does not play a special role here. In the Jordan case, 
the situation is different: the algebra J(‘) may be non-isomorphic to J. For 
instance, the algebra J = H(&) d oes not contain nilpotent elements, while 
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its isotope Jcc), for c = eiz +ezi contains the nilpotent element eir: erl *err = 
eri(eiz + esr)-leii = 0. Nevertheless, many important properties of J. a., 
such as the properties of being simple or special, are invariant with respect 
to isotopy; isotopic J. a have isomorphic structure and superstructure Lie 
algebras. 

An isotopy of a J. a. J with itself is called an autotopy (in other words, 
an autotopy is an isomorphism of an algebra with its isotop). The family of 
all the autotopies of J. a. J form a group, which is called the structure group 
of the algebra J and is denoted by Str J. The group Str J is an algebraic 
group and its Lie algebra is the structure algebra Strl J. The automorphisms 
of J are autotopies which fix the unity 1 of the algebra J. More generally, 
two isotopes Jta) and Jtb) ar e isomorphic if and only if there is an autotopy 
carrying a to b. 

A series of important theorems in the theory of J. a. hold “up to an 
isotopy”, i.e. their conclusions do not apply to the algebras in question, but 
only to some of their isotopies. In this respect the group Str J often turns out 
to be more useful than the automorphism group Aut J. For instance, there 
is no natural notion of an inner automorphism for a J. a., while at the same 
time, for every invertible a E J, the operator U, is an “inner autotopy” from 
J to J@). All th’ is suggests a thought about the existence of some algebraic 
object which unifies the J. a. J and all its isotopies and which has the group 
Str J as its automorphism group. Such an object exists indeed and it is the 
Jordan pair (J, J). 

The Jordan pair (J. p.) over a field F of characteristic # 2, # 3 is the pair 
v = (v+,v-) f o vector spaces, with two trilinear mappings V” x V-” x V” w 
V”, u = f, written as (5, y, 2) H {zyz} and which satisfying the following 
identities 

Examples of J. p.: 

Example 1. V(J) = (J, J), h w ere J is a J. a. and {xyz} is the triple 
Jordan product in J. For this J. p., Aut V(J) E Str J. If V = (V+, V-) is an 
arbitrary J. p., then for every a E V”, the space V-“, with the multiplication 
operation z,.y = {xay} is a J. a. J,. If, in addition, the element a is invertible, 
then V g V(Ja). Thus the (unital) J. a. may be seen, “up to an isotopy”, to 
be a J. p. with invertible elements. 

Example 2. A vector space T with a trilinear operation {xyz}, satisfying 
(5) and (6)) is called a Jordan triple system (J. t. s.). For instance, every J. 
a. is a J. t. s. with respect to the triple Jordan product; the rectangular p x q 
matrices it4p,q(F) form a J. t. s. with respect to the operation {zyx} = xytz 
(in view of (5)) the trilinear operation {zyz} in J. p. and J. t. s. is obtained 
by linearization of the quadratic operation {xyx}, thus it suffices to give 
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the latter). With every J. t. s. T, one can relate in a natural way the J. 
p. V(T) = (T,T). Not every J. p. is obtainable in this fashion, since there 
exist J. p. for which dim V+ # dimV-. The pair V(T) has the involution 
(tr, tz) I+ (t2, tl); conversely, every J. p. with involution is of the form V(T), 
for an appropriate J. t. s. T. Thus J. t. s. may be viewed as a J. p. with 
involution. 

Example 3. V = (M,,,q(F), M,,,,,(F)), {xyx} = zyx. It is easy to see that 
V ?! V(T), for the J. t. s. T = M&F) from Example 2. 

Example 4. V(R) = (R-1, RI), where R = R-1 i Rc -i-R1 is an associative 
3-graded algebra (&Rj C_ &+j, & = 0, for ]i] > 1); {xyx} = xyx. If, in 
addition, R is a simple algebra and R-1 + RI # 0, then V(R) is a simple J. p. 

Example 5. V(L) = (L-~,LI), h w ere L = L-1 i Lo i L1 is a S-graded 
Lie algebra; {zyz} = [[x, y], z]. A n example of such a Lie algebra is the 
superstructure algebra L = K(J), for a J. a. J; furthermore V(L) 2 V(J). If 
LO acts faithfully on L-1 + LI, then we may assume that Inder V(L) C LO 2 
Der V(L). The algebra L will be called faithful in this case. A subalgebra H 
of derivations of a J. p. V will be called large, if Inder V G H. 

The Tits-Kantor-Koecher construction has a generalization to J. p., by 
assigning, to every J. p. V = (V+, V-) with a large subalgebra of derivations 
H, the faithful S-graded Lie algebra KH(V) = V- i- H i V+; furthermore, 
there is a bijective correspondence between faithful 3-graded Lie algebras and 
J. p. with fixed large derivation subalgebras. 

The simple Lie algebras A,, B,, C,, D,, Es, E, have a non-trivial faithful 
S-grading, thus they allow construction and study with the aid of J. p. The 
algebras GIL, F4, ES do not have such a grading, but have a grading of the form 
L = L-2 i L-1 i LO i L1 i L2. Jordan methods are effectively applicable in 
studying these algebras, as well as the Lie algebras with an arbitrary finite 
Zgrading (Kantor, 1974; Allison, 1976, 1978; Zel’manov, 1984). 

Another important kind of Jordan structures has been studied in recent 
times, namely Jordan supemlgebms (cf. 1.2). Just as in the case of ordinary 
algebras, there is a close tie between Jordan and Lie superalgebras; in partic- 
ular, the Tits-Kantor-Koecher construction generalizes to Jordan superalge- 
bras. With help of this connection, on the basis of a known classification of 
simple finite-dimensional Lie superalgebras over an algebraically closed field 
of characteristic 0, a classification of simple Jordan superalgebras with the 
same conditions had been obtained in (Kac, 1977). I. L. Kantor and E. I. 
Zel’manov have pointed out recently that the classification given in (Kac, 
1977) has a gap: a series of simple Jordan superalgebras, connected with 
gradings of Hamiltonian Lie superalgebras has been omitted. 

A typical example of a Jordan superalgebra is the algebra A(+ls, obtained 
by introducing Jordan super-multiplication x .a y = i (xy + (-l)“jyx), x E 
Ai, y E Aj, on the vector space of the associative superalgebra A = A0 -i- Al. 
The superalgebra J is called special if it is embeddable in a suitable algebra 
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A(+Js. For instance, if A has a superinvolution * (i.e. At s Ai and (z:y)* = 
(-l)i$/*z*, for 2 E Ai, y E Aj), then the set of supersymmetric elements 
H(A,*) = {z E A I z* = 5) forms a subalgebra in A(+18. If X = X0 i- X1 
is a vector space with a supersymmetric bilinear form f (f is symmetric on 
X0 and skewsymmetric on X1, f(Xi,Xj) = 0, for i # j), then the algebra 
of the bilinear form J(X, f) = F -i- X is a Jordan superalgebra with Jo = 
F + X0, J1 = X1. For every i&graded J. a. J = Jo + JI, its Grassmann 
envelope G(J) = G,-, @ Jo + Gl@ J1 is a Jordan superalgebra. 

An important class of Jordan superalgebras is connected with the algebras 
of Poison brackets. Let A be an associative and commutative algebra with 
a skew symmetric bilinear operation (5, y} (Poison brackets), such that A 
is a Lie algebra under this operation and such that, for every a E A, the 
mapping z -+ {a, z} is a derivation of the algebra A. Then the superalgebra 
J = J,-, + J1, where Jo = 51 = A with the multiplication 

(ao + h)(@ i- dl) = (ac + {b, d})o + (ad + bc)l,%here a, b, c,d E A, 

is a Jordan superalgebra. This construction has a generalization to the case 
when A is a commutative superalgebra. 

There are two more types of Jordan structures that we have not men- 
tioned. These are the quadratic J. a. (q. J. a.) and so-called J-structures. 
In the definition of a q. J. a., the bilinear operation of multiplication z * y 
is substituted by the quadratic operation yU, = {syz}, with the following 
axioms: 

where zV=,~ = {zyz} E y(Uz+, - U, - Uz). The advantage of the q. J. a. is 
in the fact that they cover the case of characteristic 2; in the case of charac- 
teristic # 2, they are equivalent to ordinary J. a. At present, almost all the 
fundamental theorems of J. a. have been carried over to q. J. a (McCrimmon, 
1966; Jacobson, 1981; Zelmanov, McCrimmon, 1988) 

The notion of a J-structure is based on the operation of inversion 2 H z-l. 
The Hua identity {zyz} = 2 - (z-l - (z - y-l)-l)-‘, which holds for any 
elements of an arbitrary J. a., for which the right-hand-side is defined, shows 
that, if a J. a. has “many” invertible elements, then the operation of inversion 
contains all the information about the algebra. In particular, this is so in the 
finite-dimensional case. A finite-dimensional space V, with a fixed element 
1 and a birational mapping 2 H 2-l is called a J-structure if 1) 1-l = 
1, (z-l)-’ = z, (X$1 = x- ‘x-l, for X E F; 2) (1+2)-l + (1 +z-‘)-’ = 1; 
3) the orbit of 1, under the action of the structure group G = {g E GL (V) 1 
(sg)-’ = (z-l)h, for some h E GL(V)} is a Zariski open set in V. Over 
the fields of characteristic # 2, the J-structures are categorically equivalent 
to finite-dimensional J. a. with unity. This approach was used in (Springer, 
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1973), for a classification of simple finite-dimensional J. a., on the basis of 
the Cartan-Shevalley theory of semisimple linear algebraic groups. 

3.5. Jordan Algebras in Projective Geometry. We have established in 2.2 
that every Moufang plane may be coordinatized by a Cayley-Dickson skew- 
field, uniquely determined up to isomorphism. This coordinatization is still 
insufficient for describing isomorphisms (collineations) of Moufang planes in 
algebraic language - in the spirit of “geometric algebra”. The latter is achiev- 
able with the aid of representations of Moufang planes in simple exceptional 
J. a. 

Let J = (H(Ds))(r), where D is the Cayley-Dickson skew-field and 7 is 
an invertible diagonal element in J. Let us denote by P the set of all the 
elements of “rank 1” in J: P = (0 # z E J 1 JU, = Fz}. If a E P, then 
either a2 = 0, or a = ae, where e is a primitive idempotent. Let [a] = aF* be 
the “ray” spanned over the element a. Denote by a* and a, two samples of 
the set [a]. We define the plane r(J) with the set of points no = {a, 1 a E P} 
and the set of lines x0 = {a* 1 a E P}, regarding a, to be incident to b’, if 
tr (ab) = 0, where tr (z) is the trace of the matrix 2. Then r(J) is a projective 
Moufang plane, coordinatized by the skew-field D. 

Fundamental theorem of projective geometry for Moufang planes r(J) 
(Jacobson, 1968; Faulkner, 1970). Every collineation of the projective Mo- 
ufang plane n(J) as induced by a semilinear autotopy of the algebra J, defined 
uniquely up to some factors in F*. The planes r(J) and r( JI) are isomorphic 
if and only if J and J1 are isotopic. (as rings). 

Another interesting application of J. a. in projective geometry concerns so- 
called Moufang polygonal geometries, where J. a. arise as the coordinatizing 
algebras (Faulkner, 1977). 

3.6. Jordan Algebras in Analysis. J. a. have various and deep applica- 
tions in differential geometry, in real, complex and functional analysis, in 
theory of automorphic functions (Koecher, 1962, 1971; Loos, 1969; McCrim- 
mon, 1978; Iordanesku, 1979; Hanche-Olsen, Stormer, 1984; Ayupov, 1985; 
Upmeier, 1985). The essence of the majority of them is in close relations 
among formally real 3. a., self-dual convex cones and the Hermitian symmet- 
ric spaces. 

An analytic Riemannian manifold M is called a Riemannian symmetric 
space, if every point p E M is an isolated fixed point of some involutive 
isometry (a geodesic symmetry with respect to p). Important examples of 
such spaces are self-dual convex cones, i.e. open subsets Y of an Euclidean 
space X such that: 1) (z, y) > 0, for every z,y E Y; 2) if (z, y) > 0, for all 
0 # y E P, then x E Y. Let Aut Y = {A E GL (X) 1 A(Y) = Y}; the cone 
Y is called homogeneous, if the group Aut Y acts transitively on it. It is not 
difficult to see that, for every formally real J. a. J, the set C(J) = {x2 1 
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0 # x E J} = {expz 1 z E J} is a homogeneous self-dual convex cone (with 
respect to the form (2, y) = tr &,). C onversely, the following holds: 

Theorem (Vinberg, 1965; Iochum, 1984; Koecher, 1962). Every homoge- 
neous self-dual convex cone Y is of the form Y = C(J), for some fovwzally 
real J. a. J. 

Geometric structure of the cone C(J) is quite compatible with the alge- 
braic structure of J: the geodesic symmetry at a point p is the operation of 
inversion in the isotope J(P); the coefficients r&(p) of af3ne connectedness 
coincide with the structural constants r& of the algebra J(P). If J is simple, 
then Str J = {&A 1 A E AutC(J)}. 

A complex analogue of a Riemann symmetric space is a Hermitian symmet- 
ric space, defined as a real Riemann symmetric space with complex structure, 
invariant with respect to geodesic symmetry. Examples of Hermitian symmet- 
ric spaces are bounded symmetric domains, i.e. bounded domains in @” such 
that their every point is isolated fixed point of some involutive automorphism. 
A metric, the so-called Bergman metric, may be introduced in every such a 
domain, and the following theorem holds: 

Theorem (Helgason, 1962; Loos, 1969). A bounded symmetric domain with 
Bergman metric is a Hennitian symmetric space of a non-compact type. Con- 
versely, evey Hermitian symmetric space of a non-compact type is isomor- 
phic to a bounded symmetric domain. 

The simplest examples of a Hermitian symmetric space of non-compact 
type and a bounded symmetric domain are respectively the upper half-plane 
and the unit disc in Cc. An isomorphism between them is realized through 
the Cayley transformation z H 5. Let now J be a formal real 3. a. and let 
C(J) be its related convex cone. Consider the set H(J) = {x + iy 1 x E J, y E 
C(J)} in the complexification JC of the algebra J and call it the half-space 
associated with the algebra J. 

Theorem (Koecher, 1962). The half-space H = H(J) is a Hermitian sym- 
metric space of a non-compact type, and the mapping 4 : z H (z - i. l)(~ + 
i * 1)-l defines an isomorphism of H with the bounded symmetric domain 
D = 4(H) = {z E Jc 1 1 - ZZ E C(J)}. 

Example 1. J = R, H is the upper half-plane and D - the unit disc. 

Example 2. J = H(R,), H = {A + iB 1 A, B E J and B is positive 
definite} is the Siegel generalized upper half-plane (Helgason, 1962) and D = 
{Z E JC ) 1 - ZZ E C(J)} is a generalized unit disc. 

The geometry of the half-space H(J) is .described well in Jordan terms: for 
instance, the group Aut (H(J)) consists of linear-fractional transformations, 
generated by the inversion z H -z -l, by the translations z I+ z + a, a E J, 
and the transformations in Aut C(J). 
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The bounded symmetric domains allow for another reduction to “nicer” 
objects - to so-called bounded homogeneous circular domains. These are de- 
fined as homogeneous bounded domains in P which contain the origin, and 
for which the transformation z H eitx is an automorphism for every t E Hp. 
These domains are symmetric: at the origin, the symmetry is given by the 
automorphism x H -x = eirx, and the symmetry exists in other points be- 
cause of homogeneity. Examples of such domains are the domains D = d(H), 
for the half-planes H considered above. 

Theorem (Koecher, 1969; Upmeier, 1985). Every bounded symmetric do- 
main is biholomorphically equivalent to a bounded homogeneous circular do- 
main. 

The circular domains of the stated form are in turn categorically equivalent 
to the Hermitian Jordan triple systems, i.e. to the real J. t. s. with a complex 
structure such that the triple product {xyz} is (C-linear in x, z and is @- 
antilinear in y, and the bilinear form (5, y) = tr &, is Hermitian and positive 
definite. 

Theorem (Koecher, 1969; Upmeier, 1985). There is a bijective correspon- 
dence between bounded homogeneous circular domains and the Hermitian J. 
t. s. If D is a domain with Bergman kennel K(z, w), then the operation of 
multiplication in the J. t. s. J = J(D) is defined by the following equality: 

Conversely, for a given J. t. s J, the domain is obtained as follows: 

D(J) = {x E J I2Id -V&z > 0). 

Relation between the geometric and the algebraic structures can be seen 
in further results: the Bergman kernel is 

K(z,w) = --& . det -‘(Id - 2V,,, + U&,); 

the Bergman metric at the origin is (u, v) = tr VU,v; the Shilov boundary of 
the closure D coincides with the set of maximal idempotents of J; a decompo- 
sition of J into the direct sum of simple J. t. s. corresponds to a decomposition 
of D into irreducible domains. We may easily get a classification of irreducible 
domains by using the description of simple Hermitian J. t. s. 

The aforementioned approach is also successfully applicable in studying 
infinite-dimensional (Banach) symmetric domains (Kaup, 1981; Upmeier, 
1985), where the role of formal real J. a. is played by the so-called JB- 
algebras, defined as real J. a. with complete norm which satisfy the following 
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conditions: 1) llabll < /lull . llbll, 2) lla211 = llal12, 3) lla211 < [Ia2 + b2/l. Finite- 
dimensional J&algebras are exactly the formal real J. a. Examples of infinite- 
dimensional J&algebras are the algebra B(H)sa of selfadjoint bounded op- 
erators in a Hilbert space H (with Jordan multiplication) and the algebra 
C(S, H(Os)) of all the continuous functions on a compact S, with values 
in iY(@), where 0 is the algebra of Cayley numbers. These examples are 
fairly general, as is seen in the following theorem, which is analogous to a 
Gel’fand-Najmark theorem for C*-algebras: 

Theorem (Alfsen, Shultz, Stormer, 1978). For every JB-algebra J, there 
exist a complex Hilbert space H and a compact topological space S, such that 
J is isometrically isomorphic to a closed subalgebra of the algebra B(H),, $ 

C(S, W~3)). 

3.7. Structure of Infinite-Dimensional Jordan Algebras. The basic notions 
of the modern structure theory of J. a. are that of an absolute zero divisor, 
a non-degenerate algebra and a non-degenerate radical. 

An element a # 0 of a J. a. J is called an absolute zero divisor, if JU, = 0; 
if the algebra J does not contain absolute zero divisors, then it is called a 
non-degenerate algebra. The smallest ideal I of an algebra J such that the 
quotient algebra J/I is non-degenerate is called the non-degenerate radical 
of the algebra J. We will denote it by rad J. 

Example 1. Let J = A(+), where A is associative. Then the absolute zero 
divisors in A(+) are elements a such that UAU = 0; A(+) is non-degenerate 
if and only if A is semiprime; rad A(+) coincides with prime radical of the 
algebra A. 

Example 2. Let J be a finite-dimensional J. a. Then rad J = Nil J is the 
greatest nilpotent ideal in J (cf. 3.2) and J is non-degenerate if and only if 
it is semisimple. 

Every non-degenerate J. a. is isomorphic to a subdirect sum of prime non- 
degenerate algebras. The structure of the latter is described in 

Theorem (Zel’manov, 1983a). A J. a. J is prime non-degenerate, if and 
only if one of the following cases holds: 

1) J is a central order (cf. p. 203) in the J. a. of the bilinear form J(X, f); 
2) A(+) a J G (Q(A))(+), w h em A is a prime associative algebra and Q(A) 

is its Martindale’s quotient ring (Bokut’, L’vov, Kharchenko, 1988); 
3) H(A,*) a J c H(Q(A),*), where A is an associative prime algebra with 

involution *; 
4) J is Albert’s ring (a central order in Albert’s algebra). 

Corollary. Every prime non-degenerate J. a. is either special or is the 
Albert ring. 
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The non-degeneracy condition in the theorem is essential: An example has 
been constructed in (Pchelintsev, 1986) of a (special) prime J. a. with a basis 
of absolute zero divisors and, naturally, not being an algebra of any of the 
types l)-4). The question on validity of the corollary of the theorem, without 
the non-degeneracy condition, remains open. 

Every simple J. a. is non-degenerate (see below), thus description of simple 
J. a. follows from the following description of prime non-degenerate J. a.: 

Theorem (Zel’manov, 1983a). Simple J. a. am exactly the algebras of one 
of the following types: 

1) J = J(X, f ); 
2) J = A(+), where A is an associative simple algebra; 
3) J = H(A,*), h w ere A is a simple associative algebra, with involution *; 
4) J is the Albert algebra. 

Division J. a. are described analogously: it is necessary only to assume 
that A is a skew-field, in cases 2) and 3) and, in cases 1) and 4), to impose 
natural restrictions on J. 

The notions of absolute zero divisors and non-degeneracy carry over to 
J. p. and J. t. s., naturally. Prime, non-degenerate and simple J. p. and J. 
t. s. are also described in (Zel’manov, 1983b). We now give classification of 
simple J. p.: 

Theorem (Zel’manov, 1983b). A Jordan pair V is simple if and only if 
it is of one of the following forms: 1) V = (R-1, RI), where R = R-1 i 
Rc + RI is a simple 3-graded associative algebra with R-1 + RI # 0; 2) V = 
@(R-I, *>, H(Rl, *>I, where R is same as in l), with the involution * that 
preserves graduation; 3) V = (J(X, f), J(X, f)); 4) V = (M1,2(0), M1,a(O”)) 
- a pair of 1 x 2 matrices over the Cayley-Dickson algebra 0, with the mul- 
tiplication {xyx} = x(ytx), and O” is anti-isomorphic to CD; 5) V = (J, J), 
where J is Albert’s algebra. 

We now turn to studying the properties of the radical rad J. In every J. a. 
J, just as in the case of alternative algebras, the quasiregular radical Bad J 
(the greatest quasiregular ideal), the nilradical Nil J, the locally nilpotent 
LN( J) and prime radicals P(J) are defined, and they are related by inclusions 
(2. 21). (However, it is still unclear, whether the ideal P(J) is a “real radical”, 
since it is not known whether a semiprime J. a. can contain P-radical ideals.) 
The place of the radical rad J, among those radicals is shown in the following 
theorem: 

Theorem (Zel’manov, 1982; Pchelintsev, 1986). In every J. a. J the in- 
clusions LN( J) 2 md J > P(J), hold, and in general, each of them may be 
strict. 

Corollary 1. In every J. a. J, every set of absolute zero divisors generates 
a locally nilpotent ideal. 
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Since simple locally nilpotent algebras do not exist, the following holds: 

Corolhy 2. Every simple J. a. is non-degenerate. 

For finite-dimensional J. a., all the aforementioned radicals coincide. More 
over, they all coincide in the class of J. a. with the minimal condition for 
so-called inner (or quadratic) ideals. The latter are analogues of one-sided 
ideals of associative algebras and are defined as a subspaces K of J. a. J such 
that {kak} E K, for all k E K and a E J. 

Example 1. Let J = A(+), where A is associative. Then every one-sided 
ideal of the algebra A is an inner ideal in A(+). 

Example 2. For every a E J, the set JU, = {sU, 12 E J} is an inner ideal 
of a J. a. J. 

Example 3. Let J = II(@). Th en, for every element a of rank 1 (cf. 3.5), 
the subspace F. a is a quadratic ideal of J. 

For a J. a., the following analogue of the classical Wedderburn-Artin the- 
orem holds: 

Theorem (Jacobson, 1968; Zhevlakov, Slin’ko, Shestakov, Shirshov, 1978). 
Let a J. a. J satisfy the minimal condition for inner ideals. Then Rad J is 
nilpotent and finite-dimensional, and the quotient algebra JIRadJ dewm- 
poses into a finite direct sum of simple J. a. of one of the following forms: 1) 
a division J. a.; 2) H(A, *), f or an associative artinian *-simple algebra A, 
with involution *; 3) J(X, f); 4) The Albert algebra. 

Many results from the theory of alternative algebras on relations between 
solvability and nilpotence are valid for J. a. too. For instance, every finitely 
generated solvable J. a. is nilpotent; if J is solvable, then J2 is nilpotent; over 
a field of characteristic 0, a Jordan nilalgebra of bounded index is solvable. 
At the same time, in contrast to alternative algebras, finitely generated 3. a. 
may contain solvable, but not nilpotent subalgebras. 

Free J. a. have been studied relatively poorly. One of the deepest results 
about their structure is a theorem by Shirshov, which ascertains that a free 
J. a. with two generators is special. The free J. a. J[X], for 1x1 2 3 is 
not special and contains zero divisors and, for a sufficiently large number of 
generators, rad J[X] # 0 (M e ve d d ev, 1985). For special J. a., the role of a free 
algebra is played by the so-called free special J. a. SJ[X], which is defined 
as the smallest subspace in the free associative algebra Ass [Xl, containing 
X and closed with respect to the Jordan multiplication. The elements of 
the J. a. SJ[X] are called the Jordan elements of the algebra Ass [Xl. It 
is easy to see that SJ[X] C H(Ass [Xl, *), where * is the involution of the 
algebra Ass [Xl, which is identity on X: (2122.. . z,)* = x, . . .x221. The J. 
a. WA= P% > g * is enerated by the set X and by all the possible “tetrades” 
{~~$?$&zl} = XixjxkXl + x[xkxjxi; for 1x1 < 3, it coincides with the J. 
a. SJ[X], and for 1x1 > 3 it properly contains it (since the tetrades are not 

II. Non-Associative Structures 249 

Jordan elements). For IX I > 3, no criteria for elements in Ass [X] to be Jordan 
have been found, up to now. Every special J. a. is a homomorphic image of 
the algebra SJ[X], but the converse is not always true. For instance, the 
quotient algebra SJ[x, y, ~]/1, where I is an ideal generated by the element 
x2 - y2, is exceptional. This implies that it is impossible to define the class 
SJord of all special J. a. by identities. Let r : J[X] - SJ[X] be a canonical 
epimorphism; then Kerr # 0, for 1x1 > 3. The elements in Kerr are called 
s-identities; they are satisfied in all special J. a., but are not identities in 
the class of all J. a. An example of such an identity is a well-known Glennie 
s-identity G(x, y, z) = K(x, y, z) - K(y, x, z), where 

K(x, Y, z> = 2{{~{xzx)~Mxcy)) - {Y{~z(xY)z~x~Y~. 

Let us denote by SJord the class of all J. a. satisfying all the s-identities, 
and by Jord - the class of all the J. a.; then the following proper inclusions 
hold: SJord c SJord c Jord (Albert’s algebra does not satisfy the Glennie 
identity, thus it does not belong to SJord). The question of describing all the 
s-identities is still open. It is not clear even whether they all follow from a 
finite number of s-identities. 

Note that the class SJord may be defined by quasi-identities, i.e. by the 
expressions of the form (f(x) = 0 + g(x) = 0). This is however impossible to 
achieve with finite number of quasi-identities. Moreover, any number of quasi- 
identities in a bounded collection of variables does not suffice (Sverchkov, 
1983). 

A J. a. is called a Jordan PI-algebra, if it satisfies an identity, which is not 
an s-identity. For Jordan PI-algebras analogues of main structure theorems 
from the theory of associative PI-algebras hold: 

Theorem (Zel’manov, 1983a; Medvedev, 1988). Let J be a Jordan PI- 
algebra over a field F. Then 1) Nil J = LN(J) = mdJ; 2) if J is prime 
and non-degenerate, then it is a central order in a simple J. a. with the same 
identity; 3) if J is simple, then either J is finite-dimensional over the center 
or J = J(X, f); 4) if J is finitely generated, then Rad J is nilpotent. 

We point out that the non-degeneracy condition on J in 2) and the con- 
dition of J being finitely generated in 4) are essential. 

As in the case of alternative algebras, an effective method of studying 
Jordan PI-algebras is a passage to different enveloping algebras. With regard 
to this, we mention the following result: 

Theorem (Shestakov, 1983; Medvedev, 1988). Let J be a finitely gener- 
ated Jordan PI-algebra over a field F. Then 1) the universal multiplicative 
enveloping algebra U(J) is an associative PI-algebra; 2) if J is special, then 
its associative enveloping algebra is also a PI-algebra. 
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$4. Generalizations of Jordan and Alternative 
Algebras and Other Classes of Algebras 

Just as in the previous section, F will be a field of characteristic # 2, in 
the sequel. 

4.1. Non-Commutative Jordan Algebras (Schafer, 1966). A natural gen- 
eralization of the class of Jordan algebras to the non-commutative case is a 
class of algebras satisfying the following Jordan identity: 

(x2y)x = x2(yx). (1) 
If the algebra has a unity, then the identity (1) easily implies the following 
flexibility identity: 

(XY)X = 4YXc). (2) 

Thus, if we want the class of algebras we are introducing to be stable with 
respect to adjoining a unity to an algebra, then we need to add the flexibility 
identity (2) to the identity (1). Algebras satisfying identities (1) and (2) are 
called non-commutative Jordan algebras (n. J.). 

It is not difficult to see that identity (1) in the definition of a n. J. algebra 
may be replaced by any of the following identities: 

x2(xy) = x(x2y), (yx)x2 = (yx2)x, (xy)x2 = (x2y)x. 

We have seen in 3.1 that, in case of a Jordan algebra J, the operators R,k , k = 
1,2,. . . ) for every z E J are in the commutative subalgebra, generated by 
the operators R, and R,a. For a n. J. algebra the following analogue of this 
result holds: 

Proposition. Let A be a n. J. algebra and a E A. Then the operators 
R,, L,, L,z generate a commutative subalgebm of the multiplication algebra 
M(A), containing all’the operators R,k, Lam; k, m = 1,2,. . . 

Corollary. Every n. J. algebra is power-associative. 

The condition of commuting of multiplication operators with the powers 
of an element fully characterizes n. J. algebras, since the identities (1) and 
(2) are just special cases of this condition ([L,a , R,] = [L,, R,] = 0). 

Another characterization of n. J. algebras is this: they are flexible algebras 
A, such that the associatied algebra A(+) (see 1.1 and 3.1) is a Jordan algebra. 

The class of n. J. is rather large. Apart from Jordan algebras, it contains 
all the alternative algebras, as well as arbitrary anti-commutative algebras. 
Let us give additional examples of n. J. algebras. 

Example 1. Let A be an algebra over a field F, X E F, X # 3. Let us define 
new multiplication on the vector space A: 
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aA . b = Xab + (1 - X)ba. 

We denote the resulting algebra by A tx). The passage from the algebra A 
to Alx) is reversible: A = (A(‘))(p), for p = &. Properties of algebras 

A and A@) are fairly closely related: the ideals (subalgebras) of the algebra 
A are ideals (subalgebras) of A(‘); the algebra Atx) is nilpotent, solvable, 
simple if and only if A has the corresponding property. If A is an associative 
algebra, then it is easy to check that A@) is a n. J. algebra; furthermore, if 
the identity [[z, y], Z] = 0 d oes not hold in A, then Acx) is non-associative. In 
particular, if A is simple non-commutative associative algebra, then A(‘) gives 
us an example of a simple non-associative n. J. algebra. The algebras of the 
form A(‘), for an associative algebra A, are called the split quasi-associative 
algebras. More generally, an algebra A is called a quasi-associative algebra, if 
it has a scalar extensions which is a split quasi-associative algebra. Clearly, 
every quasi-associative algebra is also a n. J. algebra. 

Example 2. Let 0 # (~1, . . . ,O # cr, E F and let A(al) = (F,al), . . . , 

ACal,..., a,) = (A(m, . . . , (Y,-i), a,) be the algebras obtained from F 
by sequential application of the Cayley-Dickson process (cf. 2.1). Then 
ACal,. . . , on) is a simple central quadratic n. J. algebra of dimension 2n. 

In general, every quadratic flexible algebra is a n. J. algebra. The following 
theorem shows that, under some restrictions, the nilsemisimple (i.e. with 
zero nilradical) finite-dimensional, power-associative algebras are also n. J. 
algebras. 

Theorem 1. Let A be a jinite-dimensional power-associative algebra, with a 
bilinear symmetric form (x, y), satisfying the following conditions: 1) (sy, i) = 
(z, ye), for all z,y, z E A; 2) (e, e) # 0, if 0 # e = e2; 3) (x, y) = 0, if xy 
is a nilpotent element. Then NilA = NilA = {x E A 1 (x,A) = 0}, and, 
if characteristic of the field F is not equal to 5, then the quotient algebra 
A/NilA is a n. J. algebra. 

The following theorem describes the structure of the nilsemisimple, n. J. 
algebras: 

Theorem 2. Let A be a finite-dimensional nilsemisimple n. J. algebra over 
F. Then A has a unity and decomposes into a direct sum of simple algebras; 
in addition, if characteristic of the field F equals to zero, then each of the 
simple summa&s is an algebra of one of the following forms: a (commutative) 
Jordan algebra; a quasi-associative algebra; a quadratic flexible algebra. 

Over the field of positive characteristic, there is another type of simple n. 
J. algebra, the so-called nodal algebras. An algebra A with unity 1 is called 
a nodal algebra, if every element in A is representable in the form cr . 1 + n, 
where (Y E F and n is nilpotent, and if furthermore, the nilpotent elements 
do not form a subalgebra in A. Nodal algebras do not exist either in the 
classes of alternative and Jordan algebras, or in the class of n. J. algebras 
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of characteristic 0. Every nodal algebra maps homomorphically onto some 
simple nodal algebra. 

Theorem 3. Let A be a simple finite-dimensional n. J. algebra over F. 
Then A is either anti-commutative, or satisfies the conclusion of Theorem 
2, or is a nodal algebra. In the latter case, charF = p > 0, the algebra 
A(+) is isomorphic to the pn-dimensional associative-commutative algebra 
of truncated polynomials F[xl, . . . ,x,,], xy = 0, and multiplication in A is 
defined by the following formula: 

n af % fg= f ‘g+ C -'-'Cij, 
i j=l 8% aXj 

where (.) is the multiplication in A(+), and cij = -cji are arbitrary elements 
in A, among which at least one is invertible in A(+). 

The construction described in Theorem 3 does not always result in a sim- 
ple algebra. However, all such algebras of dimension p2 are simple and, for 
every even n, there exist simple algebras of that form of dimension pn. The 
derivation algebras of the nodal n. J. algebras are related to the simple (non- 
classical) modular Lie algebras (Schafer, 1966; Strade, 1972). 

In a difference from the case of alternative and Jordan algebras, an ana- 
logue of the main Wedderburn theorem on splitting of the nilradical, does 
not in general hold in the class of n. J. algebras. 

The flexible power-associative algebras occupy an intermediate position 
between arbitrary power-associative algebras and n. J. algebras. Let A be a 
finite-dimensional algebra of that form, over a field of characteristic 0. The 
mapping x H [a,~] is a derivation of the associated commutative power- 
associative algebra A(+), and, since the nilradical of a power-associative al- 
gebra of characteristic 0 is stable with respect to the derivations (Slin’ko, 
1972), the inclusion [A, Nil (A(+))] C Nil (A(+)) holds, therefore Nil (A(+))aA 
and Nil(A(+)) = NilA. This means that (A/NilA)(+) = A(+)/Nil (A(+)) 
is a nilsemisimple finite-dimensional commutative power-associative algebra. 
Over a field of characteristic 0, all such algebras are Jordan algebras (cf. 1.2), 
thus A/Nil A is a n. J. algebra. Thus, every finite-dimensional nilsemisimple 
flexible power-associative algebra over a field of characteristic 0 is a n. J. 
algebra. In the general case, the following holds: 

Theorem 4 (Oehmke, 1958,1962). Let A be afinite-dimensional nilsemisim- 
ple flexible power-associative algebra over an infinite field of characteristic 
# 2,3. Then A has unity and decomposes into the direct sum of simple alge- 
bras, each of which is either a n. J. algebra, or is an algebra of degree 2 (cf. 
p. 179) over a field of positive characteristic. 

The algebras of the latter form have not been described up to date. A 
method of their description was given in (Block, 1968), where it was proved 
that, for every such algebra A, the algebra A(+) is also a simple algebra 

(of a known structure). An example of an flexible power-associative simple 
algebra of degree 2 which is neither commutative nor a n. J. algebra was 
given in (Mayne, 1973). 

In the conclusion we point out that structure of arbitrary finite-dimensional 
nilsemisimple power-associative algebras is still unclear. It is known that in 
this case new simple algebras arise, among them the nodal algebras, even 
over an algebraically closed field of characteristic 0. 

Example 3. Let V be a vector space of dimension 2n over a field F with 
a non-degenerate skew-symmetric bilinear form (x, y). Let us define multi- 
plication on the vector space A = F i V, by the rule (CX + v)(/3 + u) = 
(CY~ + (v, u)) + ((YU + Pv). Then A is a quadratic algebra over F, (hence, it 
is also power-associative), and it is simple and nodal. It is interesting that A 
turns out to be a Jordan superalgebra (cf. 3.4), if we set Ao = F, A1 = V. 

4.2. Right-Alternative Algebras (Bakhturin, Slin’ko, Shestakov, 1981; 
Zhevlakov, Slin’ko, Shestakov, Shirshov, 1982; Skosyrskij, 1984). Among the 
algebras that do not satisfy the flexibility identity (2), right alternative al- 
gebras are the most well researched. Recall that an algebra is called a right 
alternative algebra (r. a.), if it satisfies the identity 

(XY>Y = X(YY>* (3) 

Let A be a r. a. algebra over F; then (3) implies that the following relations 
hold in the algebra of its right multiplications R(A), for all a, b E A: 

R,P = R;, Ra.b = R, ’ Rb, (4) 

where a . b = i(ab + ba) is the multiplication in the associated algebra A(+). 
Thus, the transformation a H R, is a homomorphism of the algebra A(+) 
into the special Jordan algebra (R(A))(+) (cf. 3.1). If A has unity, then this 
transformation is injective. Since the class of r. a. algebras is closed with 
respect to adjoining a unity to the algebra, we have the following: 

Proposition. For every r. a. algebra A, the associated algebra A(+) is a 
special Jordan algebra. 

This proposition allows for application of the well-developed apparatus of 
the Jordan algebras to studies of r. a. algebras. The strongest results in the 
theory of r. a. algebras have been obtained exactly along this road. 

blations (4) easily imply that 

foreveryaEA,k,n=1,2 ,... In particular, every r. a. algebra A is power- 
associative and it has a uniquely defined nilradical Nil A 
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Theorem (Skosyrskij, 1984). Let A be an arbitrary I-. a. algebra. Then the 
quotient algebra A/NilA is alternative. 

Corollary 1. Every simple r. a. algebra that is not a nilalgebm is alternative 
(and consequently, is either associative or a Cayley-Dickson algebra). 

Corollary 2. Every r. a. algebra without nilpotent elements is alternative. 

Corollary 2 implies, in particular, Skornyakov’s theorem on right alterna- 
tive skew-fields, that we mentioned in 2.2. 

Corollary 3. Let A be a 7: a. algebra and a, b E A. Then the element (a, a, b) 
generates a nilideal in A. 

In general, the ideal generated by the associator (a, a, b) is not solvable. 
It is not clear however, whether it is a nilalgebra of fixed finite index. It is 
known only that (a, a, b)4 = 0. 

A subspace L of an algebra A is called right nilpotent, if L@) = 0, for 
some n, where L(l) = L, Lli+‘) = Lti)L. 

Theorem. Let A be a r. a. nilalgebm of bounded index. Then every jinite- 
dimensional subspace in A is right nilpotent. 

Corollary 4. A finite-dimensional 7: a. nilalgebra is right nilpotent. 

In particular, every finite-dimensional r. a. nilalgebra is solvable and there- 
fore cannot be a simple algebra. At the same time, it can be non-nilpotent. 

The “non-nil” restriction in Corollary 1 is essential in general: an example 
of a non-alternative, simple r. a. nilalgebra (with the identity x3 = 0) was 
constructed in (Miheev, 1977). There are no examples of that kind among 
right artinian r. a. algebras, as is shown in the following 

Theorem (Skosyrskij, 1985). Let A be a 7: a. algebra satisfying the minimal 
condition for right ideals. Then the ideal N = NilA is right nilpotent and the 
quotient algebra A/N is a semisimple artinian alternative algebra. 

The right artinian condition cannot be replaced by the left artinian: the 
simple algebra constructed in (Miheev, 1977) does not even contain proper 
left ideals. 

Just as in the case of non-commutative Jordan algebras, the main Wed- 
derburn theorem on splitting off of the radical, is not satisfied in general, in 
the class of r. a. algebras (Thedy, 1978). 

4.3. Algebras of (Y,S)-Type (Albert, 1949; Nikitin, 1974; Markovichev, 
1978; Ng Seong Nam, 1984). Besides the alternative algebras, an important 
example of non-flexible power-associative algebras is given by the so-called 
algebras of (y, S)-type that arise in studies of classes of algebras A with the 
following structural property: (*) if I is an ideal of the algebra A, then I2 is 
also an ideal of A. Despite its generality, this property enables proofs of fairly 
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meaningful structural results (cf. for instance, 2.4). At the same time, there 
are not so many generalizations of the associative algebras with property (*). 

Proposition. Let a class K of power-associative algebras, defined by a sys- 
tem of identities over an infinite field, is such that all of its algebras satisfy 
condition (*), and let K contain all the associative algebras. Then K is either 
the class of alternative algebras, or K is defined by the following identities 

(x, 5, x> = 0, 

S(x, Y, 4 = (x, Y, z> + (Y, z, x) + (z, x, Y) = 0, 

(x:, YI z> + -dY, 2, z) + qz, x, Y) = 0, 

where y and 6 am fixed scalars such that r2 - 62 + 6 = 1. 

(5) 

(6) 

(7) 

The algebras satisfying identities (5)-(7) are called the algebras of (y, S)- 
type. Their structure in the finite-dimensional case is described by the fol- 
lowing 

Theorem. Let A be a finite-dimensional algebra of type (y, 6), over afield F 
of characteristic # 2,3,5. Then the radical NilA is nilpotent and the quotient 
algebra A/NilA = 7ii is associative. If, in addition, the algebra 71 is separable 
over F, then A = B -i- NilA, where B is a subalgebm of A isomorphic to x. 

The class of algebras of (y, @-type does not give new examples of simple 
algebras. 

Theorem (Markovichev, 1978; Ng Seong Nam, 1984). Every simple (not 
necessarily finite-dimensional) algebra of type (+y,6) and characteristic # 
2,3,5 is associative. 

At the same time, there exist prime non-associative algebras of type (7, S) 
of arbitrary characteristic (Pchelintsev, 1984). These algebras, just as in gen- 
eral, every non-associative algebra of type (~,6), contain non-zero locally 
nilpotent ideals. 

4.4. Lie-Admissible Algebras (Myung, 1982, 1986). Studies of one more 
class of algebras have been fairly intensively initiated in recent times, under 
the influence of papers by a physicist Santilli (1978, 1982); these are the 
so-called Lie-admissible algebras, i.e. algebras A such that their commutator 
algebra A(-) is a Lie algebra. Apart from the associative and Lie algebras, this 
class for instance contains quasi-associative algebras and algebras of (7, S)- 
type. If L is a Lie algebra with multiplication [x, y], then after defining an 
arbitrary commutative multiplication zoy on L and setting x* y = i ([x, y] +x0 
y), we arrive at a Lie-admissible algebra ,? (with respect to the multiplication 
x* y), for which L(-) E L. It is clear that every Lie-admissible algebra allows 
such a realization; furthermore, if L is a simple algebra, then 1 is also simple. 
Since the commutative multiplication 5 o y was arbitrary, it is also clear 
that, in general, the problem of describing simple Lie-admissible algebras, 
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even modulo Lie algebras, is hardly feasible. However, under some additional 
restrictions, it is possible to obtain such a description. 

Theorem. Let A be a finite-dimensional Lie admissible algebra with mul- 
tiplication * over an algebraically closed field of characteristic 0, such that 
A(-) is a simple Lie algebra. Then if A satisfies the identity (x,x,x) = 0, 
then there exists a linear form r on A and a scalar p E F, such that 

x * Y = f [x7 Yl + +)Y + T(Y)2 + Pz#y, (8) 

where x#y is either equal to zero, for all x, y E A, or A(-) 2 sl(n + 1, F) 
and 

x#y=xy+yx- &Wxy)E, 

where E is the identity matrix. Furthermore, A is power-associative, if and 
only if p = 0 in (8). 

Corollary. If, the algebra A from the hypotheses of the theorem is flexible, 
then 

x*y = ;[x,Yl+Px#Y; 

if, in addition, A is power-associative, then A is a Lie algebra. 

55. Malcev Algebras and Binary Lie Algebras 

5.1. Structure and Representation of Finite-Dimensional Malcev Alge- 
bras. We have defined Malcev algebras and binary Lie algebras in $1, which 
arose in (Malcev, 1955) as two natural generalizations of Lie algebras. After 
expanding the Jacobian in identity (1.9), it may be rewritten (in view of 
anticommutativity) in the following form: 

1 
” , 
f 
,I 
‘I 
;i 

xyzx + yzx2 + zx2y = xy . xz, 

where parentheses were omitted in left normalized products xyzx = (xy . 
z)x, yzx2 = (yz.x)x, etc, for the convenience of notation. If the characteristic 
of the base field F is different from 2, then the following identity follows from 

0): 
xyzt + yztz + ztxy + txyz = ty * xz, (2) 

which, together with the anticommutativity identity x2 = 0, is appropriate 
to take as a definition of Malcev algebras in the case char F = 2 too, since 
first of all, for t = x it again turns into identity (l), and secondly, it has a 
number of advantages: it is multilinear and transforms into itself after cyclic 

permutations of the variables x, y, z, t, hence all the variables participate 
equally in (2). Every Lie algebra satisfies identity (2); on the other hand, an 
anticommutative algebra satisfying identity (1) or (2) is a binary Lie algebra. 
Thus, the class of Malcev algebras is placed between Lie algebras and binary 
Lie algebras. 

Up to now, the theory of finite-dimensional Malcev algebras has almost as 
a completed form as the theory of Lie algebras. We will give here only basic 
facts on the structure theory of Malcev algebras. 

In studying various classes of algebras one of the most essential questions 
is the question of describing simple algebras of that class. In case of Mal- 
cev algebras it is natural to ask the question about classification of simple 
Malcev algebras that are not Lie algebras, and there is almost complete an- 
swer to this question: non-Lie simple Malcev algebras over an arbitrary field 
F of characteristic different from 2 have been described, even without the 
assumption of finite-dimensionality (Kuz’min, 1971; Filippov, 1976a). 

Let CD = C(cr, j?, y) be the Cayley-Dickson algebra over F (cf. 2.1). Then 
0 = F i M, where M = {x E 0 1 t(x) = 0) and multiplication in 0, for 
elements a, b E M is defined by the following formula: 

a-b=-(a,b)+axb, (3) 

where (, ) is a symmetric non-degenerate bilinear form on M and (x) is anti- 
commutative multiplication on M. We denote the constructed 7-dimensional 
anticommutative algebra (M, x) by M(cr, p, 7); it is defined in the case when 
char F = 2 too, and it is a central simple Malcev algebra over F; if char F # 3, 
then the algebra M(cr,p, y) is not a Lie algebra. 

Theorem. Every central simple Malcev algebra over a field F of character- 
istic # 2 is either a Lie algebra or an algebra of type M(cY, p, 7). In particular, 
there are no non-Lie simple Malcev algebras of characteristic 3. 

Using the right alternativity of the Cayley-Dickson algebra CD(cr, p, y) = 
F i M, we obtain the following (a, b E M): 

(u . b) . b = -(a, b)b - ( a x b, b) + (a x b) x b = a. b2 = -(b, b)a, 

hence 
(a x b) x b = -(b,b)a + (a,b)b, (a x b,b) = 0. (4) 

In particular, (4) implies that the bilinear form (, ) is uniquely determined by 
the multiplication operation (x) on M, and then, by formula (3), multiplica- 
tion on UD is defined too. Thus, two Malcev algebras of types M(cY, p, 7) and 
M(cr’, p’, y’) over F are isomorphic if and only if the corresponding Cayley- 
Dickson algebras O(cr, p, 7) and C((Y’, p’, y’) are isomorphic. Another useful 
criterion for isomorphism of the algebras of type M(cY, ,0, y) consists in equiv- 
alence of bilinear forms (, ) defined on them. 
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For every n 2 3 there exist central simple anticommutative algebras of 
dimension 2n - 1, over the field F of characteristic 2, satisfying identity (l), 
but only for n = 3 do they satisfy identity (2) (Kuz’min, 1967a). 

In case char F = 0 the structure of finite-dimensional Malcev algebras has 
been studied in more depth. We define a Killing form K on the space of 
Malcev algebras A, by setting K(z, y) = tr (R.&,), where R, is the operator 
of right multiplication by z in A. The form K is symmetric and associa- 
tive: K(z, y) = K(y, z), K(zy, Z) = K(z, y.z). The algebra A is semisimple 
(i.e. its solvable radical S(A) equals 0), if and only if its Killing form is non- 
degenerate. In case of Lie algebras, this claim becomes the well-known Cartan 
criterion for semisimplicity of Lie algebras. A semisimple algebra A decom- 
poses into the direct sum of simple algebras, which are, by what has been 
said, either simple Lie algebras or 7-dimensional algebras of type M(o, p, r), 
over its centroid r > F (cy,/3,~ E r). 

The radical S(A) coincides with the orthogonal complement of A2, with 
respect to K. In particular, the algebra A is solvable if and only if K(A, A2) = 
0. In addition, the inclusions S.A C N, SD c N hold, where D is an arbitrary 
derivation of the algebra A, and N = N(A) is the greatest nilpotent ideal 
(nilradical) in A. Both the radical and nilradical of a Malcev algebra have the 
property of ideal heredity: if BaA, then S(B) = BnS(A), N(B) = BnN(A). 

An automorphism 4 E Aut A is called special, if it is a product of auto- 
morphisms of the form exp D, where D is a nilpotent inner derivation of the 
form R,, + [R,, Ry]. Just as in the case of alternative and Jordan algebras, a 
theorem on splitting off of the radical and conjugacy of semisimple quotients 
with respect to special automorphisms holds for Malcev algebras of charac- 
teristic 0. This result generalizes the classical Levi-Malcev-Harish-Chandra 
theorem for Lie algebras. 

A Cartan subalgebra of a Malcev algebra A over an arbitrary field F is 
defined in the same fashion as in the case of Lie algebras: it is a nilpotent 
subalgebra H that coincides with its normalizer %(H) = {z E A 1 Hex C H}. 
Such subalgebras necessarily exist if IFI 3 dim A. If char F = 0 and F is 
algebraically closed, -then the Cartan subalgebras are mutually conjugated 
via special automorphisms. 

An effective way to study finite-dimensional Malcev algebras of arbitrary 
characteristic is through the representations theory or Malcev modules. In 
agreement with identity (2), a linear transformation p : A -+ EndV is 
called a (right) representation of a Malcev algebra A if, for all a, b, c E A, the 
following relation holds: 

dab. 4 = P(aMbb(c) - P(+(a)P@) + P@)P(~) - PwP(ah (5) 

in this case, V is called a Mulcev A-module. Since the algebra A is anticom- 
mutative, the notion of a Malcev A-module is equivalent to the notion of a 
bimodule: it suffices to set am = -ma (u E A, m E V). A special case of a 
representation is a regular representation x H R,. 
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The representation theory of nilpotent Malcev algebras is fully analogous 
to the corresponding theory for Lie algebras. An important role here is played 
by a theorem on nilpotency of the associative algebra Ai, generated by the 
operators p(x), with the condition that p(x) are nilpotent (an analogue of 
Engel’s theorem). If, in addition, p is an almost exact representation (i.e. the 
kernel of p does not contain non-zero ideal of the algebra A), then the algebra 
A is also nilpotent. 

The representation p is called split if, for every x E A, the eigenvalues of 
the matrix p(x) are in F. For split representations of solvable Malcev algebras 
of characteristic 0, an analogue of a Lie theorem on triangularization holds, 
i.e. on the existence of an A-invariant flag of subspaces (submodules) of the 
module V. The following claim is an analogue of the classical Weil theorem: 
every representation of a semisimple Malcev algebra of characteristic 0 is 
completely reducible. If V is an exact irreducible A-module (char F = 0), 
then the algebra A is simple, and one of the following cases holds: 1) A 2 
M(a, p, 7) and V is a regular A-module, 2) A is a Lie algebra and V is a Lie 
module, 3) A 4- V g A1 i VI, where A1 = sl(2, F),dimMi = 2,p(a) = a*, 
where a* is the matrix adjoint to the matrix a E Al. 

A well known. first Whitehead lemma on derivation of a semisimple Lie 
algebra to a bimodule generalizes to representations of semisimple Malcev 
algebras; this implies, in particular, that every derivation of a semisimple 
Malcev algebra is inner. 

5.2. Finite-Dimensional Binary Lie Algebras (BL-Algebras). Engel’s theo- 
rem in its classical formulation remains valid for a B&algebra A of arbitrary 
characteristic: if every operator R, is nilpotent, then the algebra A is nilpo- 
tent (Kuz’min, 1967b). As in the case of Malcev algebras, a BGalgebra A 
contains the greatest nilpotent ideal N(A) - the nilradical of the algebra A. 
If A is a nilpotent algebra and p is a finite-dimensional binary Lie representa- 
tion of A by nilpotent operators, then the enveloping associative algebra Ai 
of the representation p is nilpotent. However, the majority of the results on 
finite-dimensional BL-algebras relates to the case of characteristic 0. In the 
sequel, A will denote a finite-dimensional BL-algebra of characteristic 0. If A 
is solvable and V is a binary Lie A-module, then the algebra A2 is nilpotent 
and acts nilpotently on V. The solvable algebra A # 0 contains an abelian 
ideal I # 0, and if the base field is algebraically closed, then A contains an 
one-dimensional ideal. Semisimple BL-algebras and their representations are 
described in the following 

Theorem (Grishkov, 1980). If A is semisimple, V is a binary Lie A-module 
and if Vo is the annihilator of the algebra A in module V, then A is a Malcev 
algebra and V/V0 is a Malcev A-module. 

In general, A does not necessarily decomposes into a semidirect sum of a 
semisimple subalgebra and the solvable radical S, but, among all the subal- 
gebras B < A, for which A = B + S, there exists a subalgebra Bo, which is a 
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semidirect sum of a semisimple Lie subalgebra L and an ideal C, whose rad- 
ical R is in the center (the annihilator) of A, C2 = C,c = C/R is the direct 
sum of 7-dimensional simple Malcev algebras (the base field is algebraically 
closed); if V is a binary Lie A-module, then VR = 0. In particular, the Levi 
decomposition for A exists, if A/S is a Lie algebra. 

Example. Let M be a simple 7-dimensional Malcev algebra over F, let V be 
a finite-dimensional space with 1 < dimV < 14 and let u : M x M - V be 
an arbitrary skew-symmetric function. Then the algebra (M, V, a) = M -+ V 
with the multiplication (oi + vi) . (uz + vz) = ala2 + (~(ui, oz) (ui E M, vi E 
V, i = 1,2) is a binary Lie algebra. Since the radical V of the algebra A = 
(M, V, cr) coincides with its center, then it obviously does not split off if 
A2 = A, which is easily achievable for an appropriate choice of (T. 

5.3. Inflnite-Dimensional Malcev Algebras. Studies of Malcev algebras, 
without the assumption of finite-dimensionality are mainly based on the anal- 
ysis of identities of the free Malcev algebra with finite or countable number 
of generators. Since the structure of the identities in Malcev algebras essen- 
tially depends on the characteristic, we will consistently assume here that 
char F # 2. 

A number of properties of infinite-dimensional algebras, such as local nilpo- 
tency, local finiteness, being algebraic (every subsequent notion is weaker than 
the preceeding one) brings them closer to finite-dimensional algebras. An al- 
gebra A is called locally finite, if every finite set of of its elements generates a 
finite-dimensional subalgebra. An algebra A is called an algebraic algebra if, 
for all z, y E A, there exists a natural number n dependent on z, y, such that 
zyn belongs to a subalgebra with the generators z, sy, . . . , zy’+l. A special 
case of the algebraic property is the weak Engel condition E : zy*(“J’) = 0. 
Every Malcev algebra A contains the greatest locally finite ideal L(A) as 
well as the greatest locally nilpotent ideal LN(A) (Kuz’min, 1968a). In the 
class of algebraic Malcev algebras, the extension of locally finite algebra by 
a locally finite is again a locally finite algebra, thus L(A/L(A)) = 0. If A is 
weakly Engel, then L(A) = LN(A) (K uz’min, 1968a). The following theorem 
reduces the question of local nilpotency for Malcev algebras to the corre- 
sponding question for Lie algebras. For a Malcev algebra A to be locally 
nilpotent, it is necessary and sufficient that condition E holds in A and that 
every Lie homomorphic image of A is locally nilpotent (Filippov, 1976b). In 
particular, a Malcev algebra of characteristic p > 2, satisfying the condition 
E p+i, i.e. the identity zyP+’ = 0 is 1 ocally nilpotent, since this holds for Lie 
algebras. As in the case of Lie algebras, this implies an affirmative solution 
of the weak Burnside problem for Moufang loops of prime period (Grishkov, 
1985; Kostrikin, 1986, cf. also 36). 

If char F # 2,3, then, along with the Jacobians J(z, y, Z) = zy.r+y~.z+ 
.ZX . y, we consider the function g(z, y, z, t, U) with a number of remarkable 
properties: 
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where [z, y, z] = 3xy . z - J(x, y, z). The function g(z, y, z, t,u) is skew- 
symmetric in y, Z, t, u and equals 0, if y, z E A3 or y, z, t E A2; in particular, 
the algebra A2 satisfies the identity g = 0. Since the function g is non-zero 
in the free Malcev algebra Mk, with k > 5 generators, for A = Mk (k > 5), 
the identities for A and A2 differ. The algebra MJ satisfies the identity g = 0 
and, for k > 5, Mk satisfies the identity g(zi, . . . ,zs)xs . . . zk+z = 0, but 
does not satisfy the identity g(xr , . . . zs)zs . . . zk+r = 0, thus, for every k > 4 
the identities for Mk and Mk+r are different (Filippov, 1984). Moreover, the 
algebras Mk, for k > 5 have a non-trivial center and thus, trivially, they are 
not prime. A free Malcev algebra with countable number of generators also 
has a non-trivial center: it contains for instance the elements of the form 

S(Xl, . . . Xs)Y2, which are in general different from 0. The semiprime Malcev 
algebras satisfy the identity g = 0. 

Prime and semiprime Malcev algebras of characteristic 3 are Lie algebras, 
thus, in particular, non-Lie simple Malcev algebras of characteristic 3 do not 
exist. Let A be a prime non-Lie Malcev algebra of characteristic # 2,3. Then 
the center 2 of the algebra of right multiplications R(A) is different from 
0 and is naturally contained in the centroid r. Since r is a commutative 
integral domain, there exists the quotient field Q of 2 (coinciding with the 
quotient field of r) and the canonical embedding A - AQ = Q 8,~ A. The 
algebra AQ turns out to be a 7-dimensional central simple algebra over the 
field Q. 

The commutator algebra A(-) of an arbitrary alternative algebra A is a 
Malcev algebra. In this regard, there arises a question: is it true that ev- 
ery Malcev algebra of characteristic # 2,3 is embeddable into a commutator 
algebra of a suitable alternative algebra? The answer to this question is affir- 
mative for semiprime Malcev algebras, but the problem remains open in the 
general case. 

$6. Quasigroups and Loops 

6.1. Basic Notions. A non-empty set Q with a binary operation (e) is called 
a quusigrozlp, if the equations a . x = b, y . a = b are uniquely solvable, for all 
a, b E Q. The solutions of these equations are denoted as x = a \ b, y = b/u, 
and the binary operations \, / are respectively called the left and the right 
division. They are related to the multiplication (e), via the following identities: 

x * (x \ Y) = x \ (x. Y) = Y, (X/Y> . Y = (x * Y>lY = x* (1) 

It is clear that the notion of a quasigroup generalizes the notion of a group: 
group is a quasigroup for which the operation of multiplication is associative. 
A quasigroup with unity is called a loop. . 
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A quasigroup may be equivalently defined as a set with three basic opera 
tions (v), \, /, related via identities (1). Then a loop is a quasigroup with the 
additional identity x \ x = y/y. 

Finite quasigroups may be defined with the aid of Cayley tables. 

Example. 

Gleabcd Gzeabcd Gseabcd Gdeabcd 
eeabcd eeabcd eeabcd eeabcd 
aaedbc aaedbc aabdec aaecdb 
bbceda bbcade bbcade bbcdae 
ccdaeb ccdeab ccdeab ccdeba 
ddbcae ddbcea ddecba ddbaec 

These are apparently mutually non-isomorphic non-associative loops. In- 
cidentally, the smallest order of a non-associative loop is 5. 

If we omit the borders in the Cayley table of a finite quasigroup, the result- 
ing square has the property that the elements in every row and every column 
(their number equals the order of the quasigroup) do not repeat. Squares 
with this property are called lath squares. They have been apparently stud- 
ied by Euler. Thus, quasigroups and latin squares are closely linked. Shuffling 
around rows and columns of a latin square or renaming its entries (i.e. apply- 
ing a permutation of the set Q, where the entries of the square come from) 
does not change the latin property of the square. Algebraically this leads to 
an important property, namely that of isotopy of quasigroups. Quasigroups 
Q, Q’ are said to be isotopic, if there is a triple of bijective transformations 
o,p,y : Q - Q’, such that (xy)y = zcr . yp, for all x,y E Q. The triple 
(a, p, 7) is called an isotopy of Q to Q’. Composition of isotopies is defined 
in a natural way: (cr, ,0,y). ((~1, pi, ~1) = ((~cri, p/31, yyi). If Q = Q’, then the 
isotopy is called an autotopy; the autotopies form a group with respect to the 
given operation. The transformations R, : x H xa, L, : x I-+ ax are called 
the right and the left translation respectively. Let us fix an arbitrary pair 
of elements a, b E Q and let us define a new operation (0) on Q, by setting 
xy = xboay. Then Q( ) o is a quasigroup and (R,, L,, 1) is an isotopy of Q to 
Q(o). It is clear that e = ab is the unity of the quasigroup Q(o), i.e. Q(o) is 
a loop. Thus, every quasigroup is isotopic to a loop. For b = a, the loop Q(o) 
is called an LP-isotope of the quasigroup Q. 

The notion of isotopy does not play a special role for groups, because 
of Albert’s theorem: if two groups are isotopic, they are isomorphic. This 
statement is a consequence of a more general statement: if a loop is isotopic 
to a group, then they are isomorphic. Loop properties preserved under iso- 
topies are called universal; the aforementioned implies that sssociativity is 
an example of a universal property. Universal identities in quasigroups may 
be described in the language of the so-called *-automata (Gvaramiya, 1985). 
The category of quasigroups is embeddable into the category of invertible 
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*-automata, and a quasigroup formula, in particular an identity, is universal, 
if and only if it is expressible in terms of the automata category containing it. 

By using isotopies, a number of quasigroups may be obtained from a given 
quasigroup. Another way consists in passing to the anti-isomorphic quasi- 
group or in substituting multiplication operation on Q by the operation of 
the left or the right division. The resulting quasigroups are called parastrophs 
of the quasigroup Q. 

6.2. Analytic Loops and Their Tangent Algebras. Let us first recall some 
basic facts from the theory of Lie groups and Lie algebras. First of all, 
there are different variants of definitions of Lie groups, depending on re- 
quirements of topological nature. The topological space of a Lie group G is 
an n-dimensional manifold - topological, differentiable, or analytic, and the 
group operations (multiplication and inversion) are assumed to be respec- 
tively continuous, differentiable appropriately many times, or analytic. The 
question of equivalence of the weakest of these definitions with the strongest 
was the essence of the fifth Hilbert problem, which was affirmatively solved 
in 1952 (Gleason, Montgomery, Zippin, (cf. Kaplansky, 1971)). 

Every neighbourhood U of the identity element e E G, homeomorphic to 
the Euclidean space IV’, is a local Lie group: there exists a neighbourhood 
Vi E U of e, such that, for x, y E Vi, the operations of multiplication and 
inversion are defined (with the values in U); the functions p(x, y), where 
fi(x, y) is the i-th coordinate of the vector f(x, y) = say are either continuous, 
or differentiable, or analytic, depending on the initial requirements. 

We will hold on to an intermediate variant and assume that the functions 
fi(x, y) are twice continuously differentiable in Vi. The point e is taken to be 
the coordinate origin; thus f(x,O) = f(O,x) = x. The set of all the tangent 
vectors at e, to all the differential paths g(t) starting at e, forms the tangent 
space T, = Rn. Let a, b E T, be the tangent vectors for the paths g(t), h(t). 
Then the tangent vector to the path k(t), where k(t’) = g(t)h(t)[h(t)g(t)lvl 
is a bilinear function of the vectors a,b; in this way, T, becomes an n- 
dimensional algebra over the field W, called the tangent algebra of the (local) 
Lie group G. The algebra T, = L(G) is obviously anticommutative (satisfies 
the identity x2 = 0); sssocia tivity of multiplication in G implies that L(G) 
satisfies the Jacobi identity xy~z+yz~x+zx~y = 0, i.e. L(G) is a Lie algebra. 
Another way of constructing the Lie algebra L(G) is possible too. To this end, 
expand the functions fi(x, y) into the Taylor series in a neighbourhood of the 
coordinate origin 1x1, IyI < c 

fi(x, y) = xi + yi + afkxjyk + o(2) 

(the summation is over the repeating indices) and set c& = ajk - ahj. Then 
L(G) is defined as the algebra with a basis ei, . . . , e, and the multiplication 
table eiej = c!jek. 

A. I. Malcev has pointed out that neither of the two ways of defining 
the tangent algebra really needs sssociativity of.multiplication in G, 8s well 
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as that they can be applied to differentiable and, in particular, to analytic 
loops. The curve k(t), considered above may be defined in case of loops by 
the equality k(t2) = g(t)h(t)/[h(t)g(t)]. 

There is a close relation between Lie groups and their tangent algebras. 
For instance, two connected Lie groups are locally isomorphic if and only 
if, their Lie algebras are isomorphic; connected simply connected Lie group 
is uniquely determined by its Lie algebra. Thus it is clear why Lie algebras 
are one of the main instruments in studying Lie groups. However, in a more 
general case of loops, without sssociativity, the notion of a tangent algebra 
turns out to be not very meaningful, if at least power-associativity is not 
assumed. 

A continuous curve g(t), defined for sufficiently small values oft is called a 
locally one-parameter subgroup, if the following identity g(t + s) = g(t) . g(s) 
holds in its domain. Such a curve is always differentiable and if a is its tangent 
vector in e, then the coordinates gi(t) satisfy the following system of ordinary 
differential equations 

hi(t) 
dt 

= vj(g)aj, i = 1,. . . ,n, (2) 

where V:(Z) = &f(z,O). A crucial moment for the theory of local Lie 
groups is the theorem about the existence of the local one-parameter sub- 
groups g(t) = g(a; t) with a given arbitrary tangent vector a E T,. Because 
of g(cra; t) = g(a;&),a > 0, the vector g(a; 1) is defined, for sufficiently 
small a. The transformation exp : a I-+ g(a; 1) defines a diffeomorphism 
of a neighbourhood V of the coordinate origin in T, to some neighbour- 
hood U of the element e in G. The inverse transformation log : U I+ V 
introduces the so-called canonical coordinates of the 1st kind. The formula 
a o b = log (exp a. exp b) provides V with a structure of a local Lie group, iso- 
morphic to the local group U; the one-parameter subgroups in V are defined 
by the equations G(a; t) = at. 

A natural boundary of generality of the assumptions, under which a simi- 
lar situation occurs is the condition of power-associativity. And, in fact, this 
condition turns out to be sufficient too. Let g(t) be a solution of the sys- 
tem (2) with the initial condition g(0) = (0,. . . ,O) = e, defined for ItI < (Y. 
By approximating the curve g(t) by the cyclic subgroups with generators 
g(u), u + 0, we can show that g(t) is a one-parameter subgroup in its whole 
domain. Thus it is in the class of power-associative loops where the exponen- 
tial transformation makes sense and where the canonical coordinates of 1st 
kind are defined (Kuz’min, 1971). 

The fact that a passage from one system of canonical coordinates of 1st 
kind to another system of canonical coordinates of 1st kind is given by an- 
alytic functions (in fact even linear) implies, for instance, invariance of the 
differentiable structure in a local differentiable power-associative loop. 

If G is a Lie group, then, in the canonical coordinates of the 1st kind the 
multiplication operation on G (more exactly, in a neighbourhood of the unity 
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of G) is expressible through the operations of addition and multiplication in 
the Lie algebra, with the aid of the so-called CampbelGHausdorff series 

1 
zoY=z+y+~zy+12 %Y2 + YZ2) + g-ps2y + . . . ) (3) 

where parentheses have been left out in the left normalized products of el- 
ements of L(G). H ausdorff gave a constructive method of finding the sum- 
mands of the series (3) (cf. Chebotarev, 1940). Consider z, y to be generators 
of the free Lie algebra (or the free anti-commutative algebra) and denote the 
right-hand-side of (3) by u(z, y). Th en u(z, y) satisfies a symbolic differential 
equation 

xg - We = 0, 
aY 

where the operator s& stands for the differential replacement of occurrences 
of t by occurrences of s, zV-l(y) = C,“=s(-l)“b,zyn and b, are rational 
numbers with the derived function C b,P = t/(et - 1) (bk = Bk/k!, where 
Bk are the so-called Bernoulli numbers). Arranging U(Z, y) in powers of z: 
u=uo+u1+..., we get a system of recurrent relations for determining ui: 
us = y, kuk = xv-‘(y)*, k >, 1. In particular, 

Ul = d@(y) = 2 + fzy + &Y2 - $Y4 + 
1 

-zy6+... 
6 . 7! 

Alternative (dissociative) loops where every two elements generate a 
subgroup, occupy an intermediate place between power-associative loops 
and groups. If G is an alternative differentiable loop and if g(t), h(t) 
are its local one-parametric subgroups, then the products of the form 
g(h)h(s1). .4(tn> h(%z), f or small ti, si do not depend on the distribution 
of the parentheses (initially it is checked for rational ti, si). Thus, g(ti), h(si) 
lie in a local Lie subgroup. After switching to the canonical coordinates of the 
1st kind, we find that the multiplication in G, in the neighbourhood of the 
coordinate origin is expressible by the ordinary Campbell-Hausdorff formula 
(3), and that the tangent algebra L(G) is a binary Lie algebra: every two of 
its elements generate a Lie subalgebra. Formula (3) shows that G is deter- 
mined uniquely, up to a local isomorphism, by its tangent algebra, and since 
the right-hand-side of (3) is an analytic function of its coordinates z, y, G has 
a structure of a local analytic loop, compatible with the initial differential 
structure. 

For every finite-dimensional binary Lie algebra L over W, with the aid of the 
Campbell-Hausdorff series, a local analytic alternative loop is constructed, 
whose tangent algebra is isomorphic to L. 

For a long time the attention of algebraists has been attracted by the 
so-called Moufang loops, defined by any of the following mutually equivalent 
identities: 
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(XY . Z>Y = X(Y. ZY>, (4) 
(YZ . Yb = Y(Z * YX>, (5) 

xy .2x = (x . yz)x. (6) 

They have been first considered by Moufang, in whose honor they have 
been named, in connection to studies on non-Desarguesian projective planes. 
The following fundamental theorem is due to her: if G is a Moufang loop, 
then every three elements a, b, c E G, connected with the relation abc = aebc, 
generate a subgroup. In particular, for c = e, this implies the statement about 
the alternativeness of the Moufang loops. Let us give two examples of analytic 
Moufang loops. 

Alternative rings and algebras satisfy the identities (4)-(6) (cf. 2.3). If A 
is a finite-dimensional alternative algebra with unity, over the field W and 
if a is its invertible element, then a-l is a polynomial in a (over R). Thus, 
the set W(A) of invertible elements of the algebra A is closed with respect 
to multiplication and forms an analytic Moufang loop globally. Its tangent 
algebra is isomorphic to the commutator algebra A(-), whose space coincides 
with A and the multiplication [,] is related to the multiplication in A by the 
formula [a, b] = ab - ba. 

Multiplicativity of the norm in the Cayley-Dickson algebra UD = O(cr, p, 7) 
over W implies that the elements in 0, with the norm equal to 1 also form an 
analytic Moufang loop H, globally. If 0 is a division algebra, then the space 
of this loop is a 7-dimensional sphere S’, and if 0 is a split Cayley-Dickson 
algebra, then the space H is analytically isomorphic to the direct product 
S3 x R4. The tangent algebra of this loop is isomorphic to a 7-dimensional 
simple Malcev algebra M(a, p, 7) (cf. 5.1). 

By writing down operation of multiplication in an arbitrary analytic Mo- 
ufang loop G with the aid of the Campbell-Hausdorff series (in canonical 
coordinates of the 1st kind), A. I. Malcev discovered that the tangent alge- 
bra L(G) satisfies identity (4.1), i.e. turns out to be a Malcev algebra (in 
modern terminology). Thus, a Malcev algebra is associated to every analytic 
(or differentiable) Moufang loop, in the same way as a Lie algebra is associ- 
ated to a Lie group. The question arose, however, about the existence of the 
inverse correspondence: Is there any analytic Moufang loop, even local, corre- 
sponding to any finite-dimensional real Malcev algebra? For an arbitrary Lie 
algebra L, the multiplication defined in the neighbourhood of the coordinate 
origin, via the Campbell-Hausdorff series, produces a local Lie group g(L). 
An analogous result turned out to be true for Malcev algebras too (Kuz’min, 
1971). 

Let L be a finite-dimensional Malcev algebra over W and let G be a local 
analytic loop, constructed on L, by the Campbell-Hausdorff formula. G is 
alternative, because L is a binary Lie algebra. Substituting y by z-‘y in (6) 
and multiplying both sides of that equality by z-l on the right, we conclude 
that, in the class of alternative loops, the Moufang identities are equivalent 
to the following identity 
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(y . zx)x-l = x(x-ly * z). (6’) 

Assume that x, y, z are generators of the free Malcev algebra and define 
a formal alternative loop by series (3), and then denote the left-hand-side of 
(6’) by 81(x, y, ,z) and the right-hand-side by &(z, y, 2). Then, we can show 
that each function t$ satisfies the following symbolic differential equation 

yg - 
[ 
yv-l(z) - $I(,, y, z>V(x) g = 0; 1 

this equation induces a system of recurrent relations for the participating 
functions 8, homogeneous in y. Since the components of the zero power (com- 
putable as the values of the functions &, for y = 0) also coincide for both 
functions (&(s, 0, z) = (zx)x-1 = E, &(x, 0, z) = X(X-%) = z), all the other 
components of these functions are equal, and 01 = 8s. Thus, a formal Moufang 
loop is assigned via the Campbell-Hausdorff series to a free Malcev algebra, 
while a local analytic Moufang loop G corresponds to a finite-dimensional 
Malcev algebra L; this gives the affirmative answer to the question posed 
above. Note that, for z = 0, equation (7) turns into the defining equation for 
the functions t9(0, y, z) = y o z. 

The fundamental results about relations between local Lie groups and 
global Lie groups carry over to analytic Moufang loops. Namely, every local 
analytic Moufang loop is locally isomorphic to an analytic global Moufang 
loop. If G and G’ are connected analytic Moufang loops where G is simply 
connected and if 4 is a local homomorphism of G to G’, then 4 is uniquely 
extendable to a homomorphism 4 globally, and if G’ is also simply connected 
and 4 is a local isomorphism, then $J is an isomorphism of G to G’. Thus, 
there exists an up to isomorphism unique simply connected analytic global 
Moufang loop G with a given tangent Malcev algebra, and every connected 
analytic Moufang loop G’ with the same tangent algebra can be obtained 
from G by factoring out mod a discrete central normal subgroup. The space 
of a simply connected analytic Moufang loop, with a solvable tangent Malcev 
algebra, is homeomorphic to the Euclidean space W” (Kerdman, 1979). 

The analogous statements in the more general case of binary Lie algebras 
and analytic alternative loops are incorrect: a finite-dimensional binary Lie 
algebra over R may be not a tangent algebra of any global analytic alternative 
loop. 

Example. The unique non-Lie Malcev algebra A of dimension 4 has the fol- 
lowing multiplication table: eres = es, eieq = ei, ese4 = es, ese4 = -es, eies = 
eses = 0. The algebra A is solvable and is the tangent algebra of an analytic 
Moufang loop whose space coincides with W4, while the multiplication in the 
coordinate form is defined by the following formulas: 

zl = xleY4 + yl, z2 = x2ey4 + y2, z3 = x3 + y3ez4.+ my2 - 22~1, z4 = x4 + y4. 
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An interesting generalization of the theory of local analytic Moufang loops 
is connected with the notion of a Bol loop. A loop G is called a left Bol loop, 
if it satisfies the following identity: 

(Y . ZY)X = Y(.z. YX:) (8) 

(compare with (5)). The loop anti-isomorphic to it satisfies the following 
identity: 

(XY . Z>Y = X(YZ * Y> (8’) 

and is called the right Bol loop. Moufang loops are both left and right Bol 
loops; conversely, the set of identities (8), (8’) implies the identity zy.2 = z.yz 
(flexibility), therefore left and right Bol loop is a Moufang loop. In the sequel, 
we mean a left Bol loop, when we speak of a Bol loop. 

Example. The set of positive definite Hermitian matrices of order n with 
the operation of “multiplication” sob = &&% is an analytic global Bol loop. 
The inversion operation in this loop is an automorphism: (zoy)-’ = z-lay-l. 
More generally, let G be a group with an involutive automorphism 4 and 
assume that the set {z . (~4)~’ ] z E G} allows taking unique square roots. 
Then A is a Bol loop with respect to the operation a o b = @. We remark 
also that in this case, every element z E G is uniquely representable in the 
form z = ah, where a E A, h E H = {y E G ] yr#~ = y}, thus A can be 
identified in a natural way with the space of the left conjugacy classes of G 
mod H. 

The Bol loops are power-associative, thus, they have canonical coordinates 
of the 1st kind. If G is a local differentiable Bol loop of class Ck, k 2 5, then 
the multiplication operation in G is analytic with respect to the canonical 
coordinates of the 1st kind. The tangent space T, of a locally analytic Bol 
loop is a binary-ternary algebra with anticommutative multiplication and a 
trilinear operation [, ,] satisfying the following identities: 

~~,~,Yl = 0, (9) 

1x7 Y, 4 + [Y, z, xl + [z, x9 Yl = 0, (10) 

b>h ~GYJII = b,bAY,4 + [x, bAYI, + [E,Y, [~,b,zll, (11) 
XY .A = [xc, Y> zt] - [z, t, “Yl + 12, Y, tlz - 12, Y, zlt. (12) 

Identities (9)-(12) define the class of Bol algebras. In canonical coordi- 
nates of 1st kind multiplication in G is expressible through the mentioned 
operations in T, = B(G) by the following formula: 

aob=a+b+;ab-;(ab’-ba2)+&,b,b]-;[b,a,a]+... (13) 

Thus, to every locally analytic Bol loop G, the tangent Bol algebra B(G) 
is assigned uniquely. Conversely, every finite-dimensional Bol algebra over 

the field lw is a tangent algebra of some local analytic Bol loop and two 
such loops are locally isomorphic if and only if their tangent algebras are 
isomorphic (Sabinin, Miheev, 1982). In case of Moufang loops, the ternary 
operation [, ,] is expressible through the binary, as follows: 

[x, y, z] = 5(2sy - z - yz * x - zx . y), (14 

and the series on the right-hand-side of (13) turns into the Campbell-Haus- 
dorff series. Identities (9)-(11) define the so-called class of Lie triple systems 
(L. t. s.). Any Lie algebra is a Lie triple system with respect to the operation 
of double multiplication or, any of its subspaces closed under this operation; 
every L. t. s. has a standard embedding into a Lie algebra. Every Jordan 
algebra is a L. t. s. with respect to the operation [z, y, z] = (z, z, y). A Malcev 
algebra A is a L. t. s. TA with respect to operation (14), thus L. t. s. is one 
of the means of studying Malcev algebras. 

Bol loops have an intrinsic application in differential geometry. For exam- 
ple, every locally symmetric affinely connected space X (cf. Helgason, 1962, 
p. 163; Sabinin, Mikheev, 1985), can be provided, in a natural way, with the 
structure of a local Bol loop X,, in a neighbourhood of an arbitrary point 
e E X; furthermore, e is the unity of the loop X, and the geodesics, through 
e, are local one-parameter subgroups. A special role in this case is played by 
analytic Moufang loops and Malcev algebras: a solution of the problem of 
describing n-dimensional torsion-free affinely connected spaces, with n inde- 
pendent infinitely small translations is related to them (Sabinin, Mikheev, 
1985). 

6.3. Some Classes of Loops and Quasigroups. The class of loops closest to 
groups and most researched is that of Moufang loops. The loop property to 
be a Moufang loop is universal in the sense of 6.1. The Moufang loops also 
have the following invariant under isotopy. We introduce a derived operation 
z + y = zy-lz in a Moufang loop Q(.) and we call Q(+) the core of Q. If 
two Moufang loops are isotopic, then their cores are isomorphic. The loop 
property of being a left Bol loop is also universal. 

Commutative Moufang loops (CML) have been studied specially thor- 
oughly. They arise in studying rational points on cubic hyperplanes (Manin, 
1972) and are characterized by one identity x2 . yz = xy . xz. 

Let k be an infinite field and let V be a cubic hypersurface defined over 
k. By definition, V is defined by a homogeneous equation of the third degree 
F(To, . . . ,T,) = 0, where (To,. . . , T,) is the system of homogeneous coordi- 
nates in the projective space P” over k. We will assume that the form F is 
irreducible over the algebraic closure z of the field k. Let V, be the set of 
non-singular k-points of V (the tangent hyperplane to V is defined in such 
points). A ternary relation of collineation is introduced on the set V,.: the 
triple of points (x, y, Z) is collinear, if 2, y, z are on one line 1 defined over k 
which is either contained in V or intersects V only in the points x, y, z (each 
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of the points z, y, z appears as many times as the order of osculation of V 
with line 1 at that point). It is obvious that the relation of collineation .is 
symmetric, i.e. is preserved under any permutations of 2, y, z; moreover, for 
every Z, y E V, there exists a point z E V,, such that z,y, .Z are collinear. 
If z is uniquely determined by given z and y, then by setting z o y = z we 
can define a structure of a totally-symmetric quasigroup on V, (the equality 
a o b = c is preserved under all the permutations of the symbols a, b, c). For 
n > 1 however, the set V, does not in general have this property, hence one 
performs an additional factorization mod a “permissible” equivalence rela- 
tion S, with a totally-symmetric quasigroup Q = VT/S as a result. Fixing an 
arbitrary element E in Q and introducing a new multiplication (e) in Q by 
the formula X . Y = E o (X o Y), we get a CML Q(e) with unity E and the 
identity x6 = 1. The loop Q(e) is locally finite. 

Let G be an arbitrary CML and let (2, y, Z) = (zy . Z)(Z . yz)-’ be the 
associator of the elements x, y, z E G. We define the descending central series 
G=Go>G12... of the loop G, by taking Gi+r(i > 0) to be the subloop 
generated by the associators of the form (x, y, z), x E Gi, y, z E G. The loop 
G is said to be centrally nilpotent of class k, if Gk = (e) and if k is the 
smallest number with this property. 

By the Bruck-Slaby theorem, every n-generated CML is centrally nilpotent 
of class < n - 1 (cf. Bruck, 1958). The intriguing question about the exactness 
of this estimate had been open for a long time; the affirmative answer was 
given in 1978 (Malbos, 1978; Smith, 1978; cf. also Bdneteau, 1980). 

If two CML are isotopic, then they are isomorphic. 
We can arrive at the notion of a Moufang loop in the following way. Let 

-lx, x-i be defined by the equalities -lx. x = x. x-l = e. A loop G is called 
an IP-loop (a loop with the inversion property), if it satisfies the identity 
-lx . xy = yx . x-l = y (in this case -ix = x-l). Every Moufang loop is an 
IP-loop, because of the alternativity property. If all the U-isotopes of G (cf. 
6.1) are IP-loops, then G is a Moufang loop. 

Medial quasigroups, defined by the identity xu.vy = xv. uy, appear in var- 
ious applications. The.main theorem for them is the Bruck-Toyoda theorem: 
Let Q(.) be a medial quasigroup; then there exists an abelian group Q(+) 
such that x . y = X$J + y$ + c, where 4, II, are commuting automorphisms of 
the group Q(+) and c is a fixed element. 

Another type of quasigroups has apparently first attracted attention of 
the algebraists; these are the distributive quasigroups satisfying the following 
identities of the left and the right distributivity: 

x * yz = xy * xz, yz . 2 = yz .2x. 

There is an interesting relation between the distributive quasigroups and 
the CML: every LP-isotop Q(o) of a distributive quasigroup Q(.) is a CML 
and isomorphic LP-isotopes Q(o) correspond to different elements a E Q. 

The defining identities of a distributive quasigroup Q mean that the left 
and the right translations are automorphisms of Q, and they generate respec- 
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tively the left and the right associated groups. The left associated group of 
a finite distributive quasigroup is solvable and, moreover, its commutator is 
nilpotent; furthermore, a finite distributive quasigroup decomposes into the 
direct product of its maximal psubquasigroups. The latter result carries over 
to locally finite distributive quasigroups too. 

The following analogue of Moufang’s theorem holds for distributive quasi- 
groups: if four elements a, b, c, d are related by the medial law ab. cd = ace bd, 
then they generate a medial subsemigroup. A distributive quasigroup may 
be not medial globally. The left distributive identity does not imply the right 
distributivity. Let Q(.) b e a Moufang loop, where the mapping z --) x2 is 
a permutation, and Q(+) is its core (i.e. x + y = xy-ls). Then Q(+) is a 
left distributive quasigroup, isotopic to a left Bol loop. Q(+) is a distributive 
quasigroup if and only if Q(.) satisfies the identity xy2x = ys2y. 

Example. Let G be the free group with the identity x3 = 1 and with r 2 3 
generators. Then G is a finite group of order 3m(P), where m(r) = r+ (;) +(j); 
G is a non-associative CML with respect to the operation x o y = x-lyx-l, 
and it is a distributive quasigroup, with respect to the operation z + y = 
xy-lx; it is non-medial for T 2 4. 

A special place in the theory of quasigroups is occupied by the direction 
related to finding fairly general conditions on the identity of the quasigroup 
Q(.), so that the operation of multiplication on Q is representable in the 
form x. y = Z(Y + yp + c, where Q(+) is a group, Q, p are its automorphisms 
and c is a fixed element. A typical example of such an identity is the medial 
identity to which the aforementioned Bruck-Toyoda theorem applies. The 
identity wi = wp is called balanced, if wr, wz are non-associative words of the 
same composition and every variable occurs in wi, wz only once. A balanced 
identity wr = wz is called completely cancellable, if wi contains a subword 
ui, i = 1,2, where ui, uz are of the same composition and of length > 1. If a 
quasigroup satisfies a balanced identity, which is not completely cancellable, 
then it is isotopic to a group. 

6.4. Combinatorial Questions of the Theory of Quasigroups. The class of 
totally-symmetric quasigroups (TS-quasigroups) that we encountered in 6.3 
is interesting from the point of view of combinatorics. It is obvious that this 
class is defined by the identities xy = yx, x .xy = y. An idempotent (x2 = x) 
TS-quasigroup is called a Steiner quasigroup. Steiner quasigroups arise in 
connection to the so-called Steiner triple systems studied in combinatorial 
analysis. A system S of unordered triples (a,b,c) of elements of the set Q 
is called a Steiner triple system, if the elements of every triple are mutually 
different and if every pair of elements a, b E Q occurs in a unique triple 
(a, 6, c) E S. Setting a . 6 = c, if (a, b, c) E S and a2 = a, we get a Steiner 
quasigroup; conversely, every Steiner quasigroup Q(s) determines a Steiner 
triple system S on Q. A finite Steiner quasigroup of order n exists if and only 
if n is either of the form 6k + 1 or 6k + 3. Every distributive quasigroup is an 
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extension of a normal Steiner subquasigroup, by a medial quasigroup. In the 
above example of a distributive quasigroup, related to the group G of period 
3, G(+) is a Steiner quasigroup. 

Steiner quadruples are defined analogously to Steiner triplets: every pair 
of elements a, b E Q occurs in a unique quadruple (a, b, c, d) E S. The Stein 
quasigroups, satisfying the identities x . xy = yx, xy . yx = x are related to 
them. Every two different elements a, b of a Stein quasigroup Q generate a 
subquasigroup of order 4 with the following Cayley table 

a b c d 
a d b 

-I- 

b i i a c 
b d c a 

d” c a b d 

Thus, 2-generated subquasigroups in the Stein quasigroup Q form a quadru- 
ple Steiner system Q. Conversely, the Stein quasigroup Q(e) is easily con- 
structible on every quadruple Steiner system, with the aid of the Cayley 
table above. A finite Stein quasigroup of order n exists if and only if n is 
either of the form 12k + 1 or 12k + 4 (Stein, 1964). 

If a Stein quasigroup is isomorphic to a group, then the latter must be of 
nilpotence degree 2. 

A number of applications of the theory of quasigroups to the solution of 
combinatorial questions is based on the close relation between finite quasi- 
groups and the latin squares, mentioned in 6.1. One of the questions of this 
kind concerns investigations of orthogonal latin squares. Two latin squares 
of order n are called orthogonal, if in their superposition, there are exactly 
n2 different ordered pairs of elements. A pair of orthogonal quasigroups cor- 
responds to a pair of orthogonal latin squares. The quasigroups Q(A) and 
Q(B) (A, B are the multiplication operations on Q) are called orthogonal, if 
the system of equations A(x, y) = a, B(x, y) = b is uniquely solvable, for all 
a, b E Q. By joint efforts of Bose, Shrikhande and Parker (1960), it was shown 
that there are orthogonal latin squares of every order n # 2,6. Latin squares 
form an orthogonal system, if they are mutually orthogonal. An orthogonal 
system of quasigroups (OSQ) corresponds to an orthogonal system of latin 
squares. The following theorem holds: If Al,. . . At is an orthogonal set of 
latin squares of order n 2 3, then t 6 n - 1. For t = n - 1, this orthogonal 
system and the corresponding system of quasigroups are called full. The full 
OSQ may be constructed with the aid of Galois fields, setting for instance, 
Ai(x, y) = x + Xiy, where Xi # 0. Thus, for every n = pQ > 3, where p is a 
prime number, there exists a full OSQ of order n. Full OSQ are related to 
projective planes (cf. 2.2), since every projective plane may be coordinatized 
by a full OSQ. Furthermore the following holds: 

Theorem. A projective plane of order n 2 3 may be constructed if and only 
if them exists a full OSQ of order n. 
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The OSQ with k 6 n - 1 quasigroups of order n correspond to algebraic 
k-nets (cf. 6.5), which are generalizations of projective planes. 

The multiplication operation in the Stein quasigroup Q(.) is orthogonal to 
the operation x o y = y. x. There are six more classes of quasigroups that are 
definable by identities of the Stein identity type, for which some conditions 
of orthogonality are satisfied. 

The notion of orthogonality is closely related to the notion of a transver- 
sal in a latin square. A transversal of a latin square of order n is a sequence 
of n different elements in different rows and columns of the latin square. A 
quasigroup is called admissible, if the corresponding latin square contains 
at least one transversal. In this case the quasigroup has the so-called com- 
plete permutation. A permutation 9 of elements of Q(e) is called complete, 
if the mapping 8’ : x H x. x0 is also a permutation. For instance, the iden- 
tity permutation in any group of odd order or, more generally, in a power- 
associative loop of odd order, is a complete permutation. In the Klein group 

K4 = {e, a, b, c} the permutation 0 = 
(: ; : :) 

is a complete permuta- 

tion,sinceOt=(ec z % ;). On the other hand, the cyclic groups of even 

order have no complete permutations, i.e. are not admissible. It is known that 
the number of different transversals in a group is a multiple of the order of 
the group. 

A quasigroup with an orthogonal quasigroup has a complete permutation. 
Two permutations $i,& on the set Q are non-intersecting, if ~$1 # ~$2, for 
every x E Q. The following holds: 

Theorem. A quasigroup Q of order n has an orthogonal qua&group, if and 
only iL Q contains n mutually non-intersecting complete permutations. 

A group, on the other hand, has an orthogonal quasigroup if and only if 
it is admissible. 

The existence of a transversal in a quasigroup Q of order n gives a possi- 
bility to go from Q to a quasigroup of order n + 1, if we project the elements 
of this transversal onto an additional row and column indexed by k, where 
k 4 Q, and place the new element k in their place and in the cell (k, k). This 
passage from a semigroup of order n to a quasigroup of order n + 1 is called 
extension and allows for different generalizations. 

The notion of orthogonality of latin squares of order n may be generalized 
requiring that in their superposition there are exactly r different ordered 
pairs, n < r < n2. In this case the latin squares and the corresponding 
quasigroups are called r-orthogonal (for r = n2 we get the ordinary or- 
thogonality). In relation to the notion of r-orthogonality, there is a ques- 
tion of describing the spectrum R, of partial orthogonality of the class of 
quasigroups of order n, i.e., for every n, finding all the values of r such 
that there are r-orthogonal quasigroups of order n. This question remains 
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open in general. There are descriptions of the spectrum &,, for small n: 
R3 = {3,9}, R4 = {4,6,8,9,12,16}, R5 = {5,7,10 - 19,21,25}. 

Example. Tht following two squares are 12-orthogonal: 

A notion of r-orthogonal systems of quasigroups is introduced in analogy 
with the OSQ. Up to now, only the (n+2)-orthogonal systems of quasigroups 
of order n have been investigated. It has been proved that the number of 

quasigroups in systems of this kind does not exceed 2[s]-l and possibilites of 

constructing full systems of this kind (i.e. systems with 2[5]-l quasigroups) 
over groups have been investigated. 

The theory of quasigroups has practical applications, through its combi- 
natorial aspect: in the theory of information coding and in planning experi- 
ments. 

6.5. Quasigroups and Nets. The notion of a S-web has a significant role 
in differential geometry; the algebraic analogue of this notion is that of a 
3-net. A family N consisting of objects of two forms - lines 1 and points p 
with the incidence relation p E 1 is called an (algebraic) 3-net, if the set of all 
the lines L is divided into three mutually non-intersecting classes fZr, Lz, JZ~ 
and if the following conditions hold: 1) every point p is incident to one and 
only one line in every class; 2) every two lines in different classes are incident 
to some point p. Instead of “p is incident to 1” we will say “p belongs to 
1 “, “I contains p”. If P(1) = {p ] p E 1}, then all the classes Li are of the 
same cardinality as P(1) and are of the same cardinality as some “index” set 
Q. Let & : Q - J$ be some bijective transformations, i = 1,2,3. Let us 
introduce the coordinates of lines and points in N. If &(a) = 1 E Li, then 
assign the pair [a, i] to the line 1. If the lines [a, 11, [b, 21 contain the point 
p, then assign the pair (a,b) to the point p. Let us define a multiplication 
operation (.) on Q, setting a.b = c, if the line [c, 31 contains the point (a, b). Q 
is a quasigroup with respect to this operation; mutually isotopic quasigroups 
correspond to different triples of “index transformations” 4i. Thus a class of 
isotopic quasigroups uniquely corresponds to every 3-net. Conversely, one can 
relate with any given quasigroup Q(.) (and its isotopes) the algebraic 3-net 
N whose lines are the pairs [a, i], a E Q, i = 1,2,3, and whose points are the 
pairs (a, b), a, b E Q with the incidence relation (a, b) E [a, 11, [b, 21, [a . b, 31. 

The closure conditions, that also arose in differential geometry, play a 
great role in the theory of 3-nets. The points (a, b), (c, d) are called collinear 
if a . b = c . d. It is said that a 3-net N satisfies some closure condition, if 
collinearity of some pairs of points implies the collinearity of another pair of 
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points. Thus, the closure conditions are equivalent to some quasi-identities 
of a special form, in the coordinate quasigroup Q. Since the closure conditions 
do not depend on notation of the lines, they are preserved under isotopy of 
quasigroups (i.e. have the universal property). In some cases, the closure 
conditions (quasi identities) are equivalent to the identities in Q(o), which 
are also universal, i.e. are invariant with respect to the isotopies of loops. An 
algorithm for constructing the closure figures, corresponding to the universal 
identities is known (Belousov, Ryzhkov, 1966). 

Example 1. The Thomsen condition is of the form xiyz = ~2~1, 51~3 = 
xsyi + ~2~3 = ~3~2. It is satisfied if and only if Q(s) is isotopic to an abelian 
group. 

Example 2. The Reidemeister condition is of the form 21~2 = xsyr, zry4 = 
~2~3, ~392 = z4yi + 24~3 = 23~4. It is satisfied if and only if Q(a) is isotopic 
to a group. 

The notion of a S-net generalizes to that of k-nets (k > 3), which dilfer from 
S-nets in that there are exactly k lines passing through every point and those 
lines belong to k different classes Lr , . . . , &. The number k is called the genus 
of the net. The points and lines of the k-net N may be denoted again as the 

pairs (a,b), [ , I, h a i w ere a, b run through the base set Q, i = 1,. . . , k, [a, i] E 
Li. If [c, i] is a line in Li passing through the point (a, b), we set Ai(a, b) = C; 
the outcome of this is that we assign the binary operation Ai on Q to every 
family Li. Since, for i # j the system of equations A~(z, y) = a, A~(x, y) = b 
is uniquely solvable for every a, b E Q, the operations AI,. . . , Ak form an 
orthogonal system (OSO), which, in particular, may be OSQ. Change of the 
coordinates of points and lines of k-nets corresponds to an isostrophy of the 
corresponding OS0 (or OSQ); isostrophy is a generalization of isotopy. The 
order of a k-net is the number of points on every line, i.e. the order of the set 
Q. The genus k and the order n are connected by the relation k < n + 1. If 
k = n + 1, then such a net is nothing else but an affine plane. 

Let C = {Ai 1 i = l,..., k} be the coordinate OSO. We have a bijec- 
tive correspondence Bij : (a, b) - (x, y), if we assign, to every point (a, b) 
the intersection point (x, y) of the lines [a,i], [b,j] (i # j). Let us denote 
AmQ(a, b) = V&(a, b); then Vijm is a quasigroup operation on Q. The 
system C of all the quasigroups Vijm is called a covering for C. A family 
of points and lines of a k-net N is called a configuration, if there are three 
lines (edges) of this configuration passing through every point (vertex) of 
this configuration and if every edge contains at least two vertices. It turns 
out that some functional equation on the quasigroups in r corresponds to 
every configuration in N and conversely. Thus, the configuration with 4 ver- 
tices corresponds to the equation of general associativity, the configuration 
with 5 vertices corresponds to the equation of general distributivity etc. 

Even a more general notion of a spatial net is considered in the theory of 
nets; an orthogonal system of n-ary operations (n-quasigroups) corresponds 
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to them. Such nets have not been studied much up to now and it is partly 
related to the fact that there are different variants of defining orthogonality 
for n-quasigroups. 

Formation of the quasigroup theory goes back to the beginning of the 
thirties. It has recently intensively developed in a number of countries (USSR, 
USA, France, Hungary, etc.) and has become one of the independent parts 
of modern algebra. 
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