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The motivation

The present paper is related to certain works of Klaus Weihrauch,
and the motivation is similar. Here is a quotation from one of
them.

From the paper: Klaus Weihrauch. The computable

multi-functions on multi-represented sets are closed under
programming. J. of Univ. Computer Sci., 14, 801-844, 2008.

The main motivation for this article came from the wish to
make practical work in computable analysis easier. The results
should simplify (or justify the current practice of) many proofs of
computability in advanced applications. Although it does not
intend to design a programming language this article can be
considered as a step towards a higher level programming language
for computable analysis.




A source for some notions that will be used

Some notions will be used from the following paper:

Yiannis N. Moschovakis. Abstract first order computability. |.

Trans. Amer. Math. Soc., 138, 427-464, 1969.




The notion of Moschovakis extension
A quotation from Moschovakis' paper

Let B be an arbitrary set, let 0 be some object not in B, let
B° = BU {0}

We define the set B* by the inductive clauses

if x € BY, then x € B*,

if x,y € B*, then (x,y) € B*.
Here (x,y) is the ordered pair of x and y and we assume that we
have chosen a particular set-theoretic operation to represent the
ordered pair so that no object in B® is an ordered pair. Thus if
z € B*, then either z € B or z = (x, y) with uniquely determined
x,y € B*.

The above-mentioned object 0 will be denoted by o in this talk,
thus B® = B U {o} will hold. Let B* = B*\ B®. We will consider
functions L™ and R* from B™ to B* defined as follows:

L*(z) =x and RT(z) =y if z = (x,y) with x,y € B*. The
identity mapping of any set Z will be denoted by /7.



Absolute prime computability

Certain relative computability notions for functions in B* are
introduced and studied in Moschovakis' paper. The considered
functions are, in general, multi-valued. In the case of single-valued
functions, one of these notions, namely absolute prime computability,
seems to be able to cover any reasonable kind of deterministic
computability by means of programs using some given functions.

The definition given by Moschovakis uses recursively an index
construction described by means of a number of clauses. Functions
of arbitrary number of variables are considered in this definition.
On the other hand, it would be sufficient to confine ourselves to
unary functions, because tuples of elements of B* are representable
by elements of B*. For this case a simpler definition can be given
in the spirit of functional programming.

Remark 1. Predicates on B* can be represented by functions in
B* with values o and (o, 0). For the representation of the natural
numbers, the Moschovakis injective mapping of N into B* can be
used, i.e. the mapping v defined inductively by setting

v(0) = o, v(k + 1) = (v(k), 0).



Basic functions for the simpler definition

Let F be the set of all partial multi-valued functions in B* (they
will be regarded as partial mappings of B* into the set of the
nonempty subsets of B*, with the natural identification of the
single-valued functions in B* with such mappings).

We will use as basic functions the total single-valued functions
L, R € F defined as follows:
L(z) = L*(z) and R(z) = R*(z) if z€ BT;
o if z=o,

Hz) = Rlz) = (0,0) ifzeB.

Moschovakis denotes these functions by 7 and 4, respectively, and

adds the explanation below to their definition.

The difference in defining the components of z for the cases z = 0
and z € B is for technical reasons; one of its consequences is that
the singleton {0} will be a “primitive computable” subset of B*
without requiring a special axiom.




Basic operations for the simpler definition

Three binary operations in F will be the basic ones in the simpler
definition: the usual relational composition specified below, as well
as juxtaposition and a certain kind of while-iteration (they will be
specified on the next slides).

For any @, { in F, their composition @1 describes the action on
the variable z of the following program:

i i ‘ )
| START -~ » zey(z) — » z<®@2) » END
|

(all successful instances of termination are considered). Thus:
e dom(@V) = {z € dom(P) |P(z) Ndom(¢) # T},

o oP(z) =U{e(Z")|Z € P(z) Ndom(¢)} for all z in
dom(¢).



Juxtaposition in F

For any @, U in F, their juxtaposition is the function which
describes the action on the variable z of the following program:

START - » x<—@(2) ‘ > y—uiz) » Z— (X)) ‘[ » END |

Thus:
e dom(0) = dom(¢) N dom(p),
e 0(z) = @(z) x P(z) for all z in dom(0).



[teration in F

This is the operation @, x > t, where t (the iteration of @ controlled
by x) describes the action on the variable z of the next program:

START | » wex(@ | » ueB ~ yes » END
S =L — = — . : - = =
no
7 |
Czeg(2)
Thus: -
@ z € dom(L) iff some finite sequence zy, zi, . .., z, of elements

of dom(x) with zp = z and x(z,) N B® # @ exists such that
x(z)N BT # @, zi € dom(@) and z11 € @(z) for all i < n,

e for any z in dom(t), (z) is the set of the last terms of the
sequences zg, 21, - . - , Zp With the above properties.

Let t be the iteration of L controlled by L. Then L31(z) = o for all
z in B, the iteration of @ controlled by L3tis Ig« for any @ in F,
and the iteration of /g+ controlled by /g« is /go.




The simpler definition

Definition 1
Let @1,...,@mn be functions from F. A function 8 from F will be
said to be absolutely prime computable in @1, ..., @, if 0 can be

obtained from @1,...,®m, L, R by finitely many applications of
the three above-mentioned operations.

| A\

Example 2

The constant function which maps all elements of B* to o is
absolutely prime computable in any @1,..., @, from B*, and so
are the mappings /g« and of /go.

A proof of the equivalence of the above definition to the
corresponding Moschovakis' one can be found, for instance, in the
following book of mine:

Computability in Combinatory Spaces: An Algebraic Generalization

of Abstract First Order Computability. Kluwer Academic
Publishers, 1992.




Reducibility of iteration to a particular instance of it

Let ¢, x € F, and let ¢ be the iteration of ¢ controlled by x. If ¥
is the juxtaposition of x and /g« then

L = Ry,
where T is the iteration of X¢@R controlled by L.

Hence iteration can be replaced in Definition 1 with iteration
controlled by L if one adds /g« to the list

(p17"'7(Pm7L7R'



On branching in F

There are some natural operations of branching in F, for instance

the ternary operation X, @, — (X D @,V), where (x D @,) is
the action on the variable z of the following program:

yes o Z—p(2)

START - » uex@ -~ *» uyeB+t = | END

no s Ze—Y(2)

Using a technique by Bohm and Jacopini, we may express this
operation through the chosen basic functions and operations, thus
showing that (x D @, ) is uniformly absolutely prime computable
in the functions x, @,1. Indeed, if the functions ¥, @, from F
are defined by setting

X(2) = x(2) x {((0,0),2)},
®(2) = {o} x ({0} x @R*(2)) , V(2) = {0} x YR(2)

then (x D @,V) = R}I’R@)_(, where @ is the iteration of @
controlled by L, and 1 is the iteration of { controlled by L.



Iteration in F as least fixed point

Definition 2

We define the partial ordering > in F by adopting that t; > 71 iff
dom(t1) O dom(T2) and T1(z) 2 T2(2) for all z € dom(T2).

The following holds:

For any ¢ and X in F, if L is the iteration of @ controlled by x
then t = (X D @, Ig+). Moreover, t is the least T in F satisfying
the inequality T > (x D T, Ig+).




Absolute prime computability and recursion

First Recursion Theorem for absolute prime computability

Suppose @1,...,@m € F, and I is a mapping of F into F such
that () is absolutely prime computable in @1,...,@m, T
uniformly with respect to T when T ranges over F. Then the
inequality T > I'(T) has a least solution, this solution is absolutely

prime computable in @1,..., @, and it is a fixed point of I (the
least one).
The case when @1,..., @, are single-valued and total is settled in

Moschovakis' paper. The validity of the theorem in the general
case follows, for instance, from results established in the book
mentioned above.



The notion of multi-representation

There are several versions of the notion. In all of them, the
multi-representations of a set Z are multi-valued functions with
range Z. The difference between the versions concerns the
admissible domains of these functions The most often used
definition for multi-representation assumes a finite alphabet X is
given which contains at least the symbols 0 and 1. This definition
has two variants:

@ Any set of infinite sequences of symbols from ¥ is admitted.

@ In addition, any set of finite sequences of such symbols is also

admitted.

From the point of view of the corresponding computability notions,
these two variants are equipollent, and the concrete choice of the
alphabet X is inessential. They are equipollent in this respect also
to another version — it does not use ¥, and the subsets of NV are
the admissible domains of the multi-representations of Z (of
course, NN is the set of all infinite sequences of natural numbers).

In the slides that follow, except for one of them, it does not matter
which of the variants is accepted.



TTE computability w.r.t. multi-representations

We will consider TTE computability via single-valued realizations.
For completeness sake, we give below some needed definitions.
Definition 3

Let a1,...,an,, 8 be multi-representations of the sets

X1,...,Xn, Y, respectively. A partial multi-valued function @ from
X1 X -+ x X, to Y will be said to be (o, ..., an, 3)- computable
if a computable partial mapping F of dom(aj) X - -+ x dom(«,)
into dom(3) exists such that (p1,...,pn) € dom(F) and
B(F(p1,---,pn)) N@(x1,...,%n) # & whenever

(p1,...,pn) € dom(a) X -+ x dom(c,) and

(X1,...yxn) € (1(p1) X -+ X ap(pp)) N dom(e).

Definition 4

Let o be a multi-representation of a set X. An element of X is
said to be a-computable if it belongs to a(p) for some computable
element p of dom(«). A mapping ¢ of X into N is said to be
a-computable if a computable mapping F of dom(«) into N exists
such that F(p) = ¢(x) whenever p € dom(«) and x € a(p).




Acceptable multi-representations of B*

A multi-representation § of the set B* will be called acceptable if it

satisfies the following conditions:

© The element o is J-computable, and so is the mapping of B*
into N which maps o, the elements of B and the ones of BT
into 0, 1 and 2, respectively.

@ The functions L™ and R™ are (4, §)-computable.
© The ordered pair operation in B* is (4, 0, §)-computable.

Remark 2. One gets a definition equivalent to the above one by
replacing the first two conditions with the following ones:

© The element o is J-computable, and so is the mapping of B*
into N which maps the elements of B% and the ones of BT
into 0 and 1, respectively.

@ The functions L and R are (4, §)-computable.




Acceptable multi-representations of B* which are

in accordance with a given multi-representation of B

Definition 6

Let Z C Z' and ~ be a multi-representation of Z. A multi-
representation § of Z’ will be said to be in accordance with ~ if the
mapping /7 is both (,d)- and (9, y)-computable (if Z = Z’ then ~
and § are said to be equivalent in such a case).

Remark 3. Let Z C Z’. If a multi-representation § of Z’ is in
accordance with a multi-representation v of Z, and

a1,...,an, B € {v,d}, then the (a1, ..., an, 3)-computability of
an n-ary partial multi-valued function in Z is equivalent to its
(7,...,7,7)-computability. Obviously any multi-representation of
Z' is in accordance with some multi-representation of Z, and any
two such multi-representations of Z are equivalent.

For any multi-representation -« of B, an acceptable multi-
representation of B* exists which is in accordance with ~y, and any
two such multi-representations of B* are equivalent.



Proof of the first part of the statement of Theorem 1

In the proof below, the multi-representations of a set are assumed
to be the surjective partial multi-valued mappings from N to it.

Proof.
Let v be a multi-representation of B. We choose a computable
injective mapping C of N2 into N such that 2C(i,;) > max(i, ) for
all i,j in N, and define the partial mapping 6 from N into the set
of the nonempty subsets of B* inductively as follows:

e d(Ak.2p(k) +2) =~(p) for any p in dom(7);

@ )(Ak.0) = {o};

@ J(Ak.2C(q(k), r(k)) +1) =0(q) x o(r) for all g, r in dom(9).
Then J is an acceptable multi-representation of B* which is in
accordance with ~. [

The proof of the second part is more complicated, therefore it will
be omitted in this presentation.



Some results about preservation of TTE computability

In the sequel, an acceptable multi-representation § of B* is
supposed to be given.

Let @1,...,®@m be (,)-computable single-valued functions from
F. Then all functions from F absolutely prime computable in
@1,-..,9m are also (4, 0)-computable.

The proof is based on Definition 1. We show that:
1. The basic functions L and R are (4, d)-computable.
2. The considered three basic operations in F transform
(8, 6)-computable single-valued functions again in such ones.

Under the assumption of Theorem 2, let [ be a mapping of F into
F such that I'(T) is absolutely prime computable in @1,...,@m,T
uniformly with respect to T when T ranges over F. Then the least
fixed point of I w.r.t. the partial ordering > is single-valued and
(6, 6)-computable.




The conclusion of Theorem 2 fails without the
single-valuedness assumption

Definition 7

Let o be a multi-representation of a set Z. A mapping ¢ of N into
Z is said to be a-computable if a computable mapping F of N into
dom(a) exists such that ¢(k) € a(F(k)) for all k in N.

Let v be the Moschovakis injective mapping of N into B*.

The mappings v and v~! are d-computable.

Let f be a non-computable function from N to N\ {0}, and T be
the function from rng(v) to rng(v) defined by setting

T(v(k)) = v(f(k)). Let @ = Ig+, dom() = rng(v) and

P(z) = {o,t(2)} for all z € dom(Pp). Then @ = T, hence @ is
not (0, 0)-computable, although ¢ and 1V are (d, §)-computable.




Secure composition and secure iteration in F

Definition 8

The secure composition is the operation @, — @ o (used, e.g.,
in Klaus Weihrauch's book Computable Analysis), where @ o is
the restriction of @\ to the set {z € dom() [P(z) C dom(ep)}.

Definition 9

Let @,x € F. The secure iteration of @ controlled by x is the
restriction of the one considered till now to the set of the elements
z of B* with the following properties:

@ no infinite sequence zy, z1, 22, . . . of elements of B* exists with
Zo = z such that
z; € dom(@)Ndom(x) & X(z)NBT # @ & zi11 € ¢(z) (1)

for all /;
e z, € dom(x) & (x(zn) N BT # @ = z, € dom(¢)) whenever
20,21, - - -, 2Zn Is a finite sequence of elements of B* with

zp = z and (1) holding for all i < n.




A modification of absolute prime computability

Definition 10

Let @1,...,@m be functions from F. A function 8 from F will be
said to be regularly computable in @1,..., @, if © can be obtained
from @1,..., ©m, L, R by finitely many applications of secure

composition, juxtaposition and secure iteration.

Remark 4. On single-valued functions, the secure composition
and the secure iteration coincide with the initially considered ones.
Therefore regular computability in single-valued functions is
equivalent to absolute prime computability in them. However,
neither of these two computability properties implies the other one
in the general case.

Remark 5. Clearly a function regularly computable in certain
functions is always a restriction of some function absolutely prime
computable in these functions. Moreover, each function regularly
computable in certain functions is absolutely prime computable in
some restrictions of these functions.



Reducibility of secure iteration to a particular instance of it

Let @, x € F, and let  be the secure iteration of @ controlled by
X. If X is the juxtaposition of x and /g« then

t=Rolo¥,
where T is the secure iteration of X o @ o R controlled by L.

Hence secure iteration can be replaced in Definition 10 with secure
iteration controlled by L if one adds /g« to the list

(p17"'7(Pm7L7R'



A counter-example to the implication from regular

computability to absolute prime computability

Example 4

Functions @ and 1 from F will be constructed such that @ o is
not absolutely prime computable in @,1{. Let @ be the same as in
Example 3, i.e. @ = Ig+. For the definition of {, we take a
two-argument primitive recursive function f such that the set

{k € N|VI € N(f(k,I) # 0)} is not recursively enumerable. Let
dom() = rng(v), where v is the Moschovakis injective mapping
of N into B*, and let

b(v(k)) = {v(f(k,0)), v(f(k, 1)), v(f(k,2)),.. .}
for all k in N. Then {k € N|v(k) € dom(¢p o)} is not
recursively enumerable, and this can be used for showing that
@ o is not absolutely prime computable in @, .

A counter-example to the converse implication will be given a little
later.



Secure branching in F

An appropriate secure branching operation in F can be defined as
follows: it is the operation X, @, — (x 3 @, ), where
(x 3 @,) is the restriction of (x D @, ) to the set

{z € dom(x) | (x(2) N BT # @ = z € dom(y))
& (x(z2)NB°# @ = z€dom(P))}.

This operation turns out to be expressible through L, R, secure
composition, juxtaposition and secure iteration, i.e. (X 3 @,) is
uniformly regularly computable in the functions x, @,V (the
expression for (x 3 ¢, ) can be obtained from the Béhm-
Jacopini style expression for (x D @,\) by replacing usual
composition and iteration with secure ones).



Secure iteration as a least fixed point

Definition 11

We define the partial ordering > in F by adopting that t; &> 15 iff
dom(t1) O dom(tz) and T1(z) C T2(2) for all z € dom(T2).

The following holds:

For any @ and x in F, if tis the secure iteration of @ controlled by
X then 1= (x J to @, Ig+). Moreover, tis the least T in F
satisfying the inequality T > (x O to @, Ig+).




Regular computability and recursion

First Recursion Theorem for regular computability

Suppose @1,...,9mn € F, and I is a mapping of F into F such
that () is regularly computable in @1, ..., @m, T uniformly with
respect to T when T ranges over F. Then the inequality T > (1)
has a least solution, this solution is regularly computable in
@1,---,@m, and it is a fixed point of I (the least one).

The validity of the theorem follows from results established in my
book mentioned earlier.



Regular computability preserves (6, §)-computability

Let @1,...,®©m be (J,d)-computable functions from F. Then all
functions from F regularly computable in @1,..., @, are also
(6, 6)-computable.

The proof is based on Definition 10. We show that secure
composition, juxtaposition and secure iteration transform
(9, 6)-computable functions again in such ones.

Example 5

In Example 3, (0, )-computable functions @ and ¥ from F have
been constructed such that @1 is not (6, d)-computable. By
Theorem 3, @ is not regularly computable in @, 1.

Corollary 2

|

Under the assumption of Theorem 3, let [ be a mapping of F into
F such that I'(T) is regularly computable in @1,...,©m, T
uniformly with respect to T when T ranges over F. Then the least
fixed point of I w.r.t. the partial ordering > is (¢, d)-computable.




Brattka style TTE computability

In the case of represented spaces, another TTE computability
notion for multi-valued functions is defined in the paper

Vasko Brattka. Computability over topological structures. In:

Computability and Models, eds. S. B. Cooper and
S. S. Goncharov, Kluwer Academic Publishers, 2003, 93-136.

The definition below is an adaptation of Brattka's one for the case
of multi-represented spaces.

Definition 12

Let o and B be multi-representations of the sets X and Y,
respectively. A partial multi-valued function @ from X to Y will be
said to be Brattka style («, 3)-computable if a computable partial
mapping F of dom(a) x NV into dom() exists such that the
following holds whenever p € dom(«) and x € a(p) N dom(¢):

@ (p,q) € dom(F) and B(F(p,q)) N @(x) # @ for all g € NV;
@ ¢(x) € Ugenn B(F (P, ).




Preservation of Brattka style (0, §)-computability under
regular computability

Let @1,..., @m be Brattka style (¢, )-computable functions from
F. Then all functions from F regularly computable in @1,...,@om
are also Brattka style (, §)-computable.

The proof is based on Definition 10. We show that secure
composition, juxtaposition and secure iteration transform Brattka
style (4, 0)-computable functions again in such ones.

Under the assumption of Theorem 3', let I be a mapping of F into
F such that I'(7) is regularly computable in @1,..., @m,T
uniformly with respect to T when T ranges over F. Then the least
fixed point of I w.r.t. the partial ordering &> is Brattka style

(6, )-computable.




Thank you for your attention!



