# On transition from local to global presence of properties of functions

Dimiter Skordev

Sofia University "St. Kliment Ohridski" Faculty of Mathematics and Informatics

Gyolechitsa, October 8, 2016



<ロト <四ト <注入 <注下 <注下 <

A lemma from: Klaus Weihrauch. *Computable Analysis. An Introduction*. Berlin/Heidelberg, Springer-Verlag, 2000

#### Lemma 4.3.5 (join of functions)

Let  $f1, f2 :\subseteq \mathbb{R} \to \mathbb{R}$  be computable real functions and let  $c \in \mathbb{R}$  be a computable real number. Then the function  $f :\subseteq \mathbb{R} \to \mathbb{R}$ , defined by

$$f(x) := \begin{cases} f_1(x) & \text{if } x < c, \\ f_2(x) & \text{if } x > c, \\ f_1(c) & \text{if } x = c \text{ and } f_1(c) = f_2(c) \\ \text{div} & \text{otherwise,} \end{cases}$$

is computable.

#### An equivalent reformulation of this lemma

Let  $f :\subseteq \mathbb{R} \to \mathbb{R}$ , let c be a computable real number, and let both  $f \upharpoonright [c, \infty)$ ,  $f \upharpoonright (-\infty, c]$  be computable. Then f is also computable.

## An example and a problem related to it

#### Example 1

Let **C** be the class of the computable partial functions from  $\mathbb{R}$  to  $\mathbb{R}$ , and let  $f = \lambda x$ . arctan x. To prove that  $f \in \mathbf{C}$ , we start by consecutively proving that  $f \upharpoonright [-1, 1]$ ,  $f \upharpoonright [1, \infty)$ ,  $f \upharpoonright (-\infty, -1] \in \mathbf{C}$ .



We proceed then by applying the reformulated lemma as follows:
To f \[-1,∞) with c = 1.
To f with c = -1.

**The problem.** Let X be a set, and **C** be a class of functions with domains contained in X. Give a characterization of the finite collections A of subsets of X such that the following holds:

## From local computability in $\mathbb{N}^n$ to global one

A paper at http://arxiv.org/abs/1609.04254 presents solutions of the formulated problem for certain X and **C**. Results essentially contained in this paper will be indicated by # in front of them.

#### Definition

A set *H* is called to *quasi-separate* a set *P* from a set *Q* if  $H \supseteq P \setminus Q$  and  $H \cap (Q \setminus P) = \emptyset$ .

#### # Theorem 1

Let  $n \in \mathbb{N}^+$ ,  $\mathcal{A}$  be a finite collection of subsets of  $\mathbb{N}^n$ ,

 $\mathbf{C} = \{ f \mid f : \subseteq \mathbb{N}^n \to \mathbb{N}, \ f \text{ is potentially partial recursive} \},$ 

 $\mathbf{H} = \{ H \, | \, H \subseteq \mathbb{N}^n, \, H \text{ is recursively enumerable} \}.$ 

Then the condition  $(\sigma_{\mathbf{C}}^{\mathcal{A}})$  is equivalent to the following one:

 $(\alpha_{\mathbf{H}}^{\mathcal{A}})$  for any subcollection  $\mathcal{K}$  of  $\mathcal{A}$ , some set from  $\mathbf{H}$  quasiseparates  $\bigcup \mathcal{K}$  from  $\bigcup (\mathcal{A} \setminus \mathcal{K})$ .

This equivalence remains valid after replacement of "partial recursive" and "recursively enumerable" with "recursive" or with "primitive recursive".

## A slight generalization of Theorem 1

Let  $Y \subseteq \mathbb{N}$ . A partial function from  $\mathbb{N}^n$  to  $\mathbb{N}$  will be called potentially partial recursive to Y if it can be extended to a partial recursive function with values in Y. One defines similarly potential recursiveness to Y and potential primitive recursiveness to Y.

#### Theorem 1'

Let  $n \in \mathbb{N}^+$ ,  $\mathcal{A}$  be a finite collection of subsets of  $\mathbb{N}^n$ ,

 $\mathbf{C} = \{ f \mid f : \subseteq \mathbb{N}^n \to \mathbb{N}, \ f \text{ is potentially partial recursive to} Y \},\$ 

 $\mathbf{H} = \{ H \,|\, H \subseteq \mathbb{N}^n, \ H \text{ is recursively enumerable} \},\$ 

and let Y have more than one element. Then  $(\sigma_{\mathbf{C}}^{\mathcal{A}}) \Leftrightarrow (\alpha_{\mathbf{H}}^{\mathcal{A}})$ . This equivalence remains valid after replacement of "partial recursive" and "recursively enumerable" with "recursive" or with "primitive recursive".

#### Remark 1

A function with values in Y can be potentially partial recursive without being potentially partial recursive to Y. Such is, for instance,  $id_Y$  if Y is not recursively enumerable.

# Similar theorems for continuity and for computability in topological spaces

#### # Theorem 2

Let  $\mathfrak{X}$  and  $\mathfrak{Y}$  be topological spaces with carriers X and Y, respectively,  $\mathcal{A}$  be a finite collection of subsets of X,

 $\mathbf{C} = \{ f \, | \, f : \subseteq \mathfrak{X} \to \mathfrak{Y}, \ f \text{ is continuous} \},$ 

 $\mathbf{H} = \{ H \,|\, H \text{ is an open set of } \mathfrak{X} \}.$ 

Then  $(\alpha_{\mathbf{H}}^{\mathcal{A}}) \Rightarrow (\sigma_{\mathbf{C}}^{\mathcal{A}})$ , and if there exists an open set of  $\mathfrak{Y}$  different from  $\varnothing$  and Y then  $(\sigma_{\mathbf{C}}^{\mathcal{A}}) \Leftrightarrow (\alpha_{\mathbf{H}}^{\mathcal{A}})$ .

#### # Theorem 3

Let  $\mathfrak{X}$  be a computable topological space with carrier X,  $\mathfrak{Y}$  be an effective topological space,  $\mathcal{A}$  be a finite collection of subsets of X,

 $\mathbf{C} = \{ f \mid f : \subseteq \mathfrak{X} \to \mathfrak{Y}, f \text{ is TTE computable} \},\$ 

 $\mathbf{H} = \{ H \,|\, H \text{ is an effectively open set of } \mathfrak{X} \}.$ 

Then  $(\alpha_{\mathbf{H}}^{\mathcal{A}}) \Rightarrow (\sigma_{\mathbf{C}}^{\mathcal{A}})$ , and if there exist at least two different computable elements of  $\mathfrak{Y}$  then  $(\sigma_{\mathbf{C}}^{\mathcal{A}}) \Leftrightarrow (\alpha_{\mathbf{H}}^{\mathcal{A}})$ .

# A noteworthy sufficient condition for $(\alpha_{\mathbf{H}}^{\mathcal{A}})$

## Theorem 4

Let  ${\mathcal A}$  be a finite collection of sets, and  ${\mathbf H}$  be a class of sets such that:

- **(**) Whenever  $H_1, H_2 \in \mathbf{H}$ , then  $H_1 \cup H_2, H_1 \cap H_2 \in \mathbf{H}$ .
- $@ \emptyset \in \mathbf{H}.$

**3**  $\bigcup \mathcal{A} \subseteq X$  for some  $X \in \mathbf{H}$ .

Then the following condition is sufficient for the fulfillment of the condition  $(\alpha_{\mathbf{H}}^{\mathcal{A}})$ :

 $(\beta_{\mathbf{H}}^{\mathcal{A}})$  for any two different sets A and A' from  $\mathcal{A}$ , some set belonging to  $\mathbf{H}$  quasi-separates A from A'.

Outline of the proof. Let condition  $(\beta_{\mathbf{H}}^{\mathcal{A}})$  be satisfied, and  $\mathcal{K}$  be a subcollection of  $\mathcal{A}$ . In the case when  $\mathcal{K} \neq \emptyset$  and  $\mathcal{K} \neq \mathcal{A}$ , let, for any  $A \in \mathcal{K}$  and any  $A' \in \mathcal{A} \setminus \mathcal{K}$ ,  $H_{A,A'}$  be a set of  $\mathbf{H}$  quasi-separating A from A'. Then  $\bigcup \mathcal{K}$  is quasi-separated from  $\bigcup (\mathcal{A} \setminus \mathcal{K})$  by the set  $\bigcup_{A \in \mathcal{K}} \bigcap_{A' \in \mathcal{A} \setminus \mathcal{K}} H_{A,A'}$ . The case when  $\mathcal{K} = \emptyset$  or  $\mathcal{K} = \mathcal{A}$  is easy.

200

# Collections of sets from H or of complements of such ones

### Corollary

Under the assumptions of Theorem 4, the condition  $(\alpha_{\mathbf{H}}^{\mathcal{A}})$  is surely satisfied if  $\mathcal{A} \subseteq \mathbf{H}$  or  $\mathcal{A} \subseteq \{X \setminus H \mid H \in \mathbf{H}\}$ . Therefore:

 # If n ∈ N<sup>+</sup> and A is a finite collection of recursively enumerable subsets of N<sup>n</sup> or of co-recursively enumerable subsets of N<sup>n</sup> then condition (σ<sup>A</sup><sub>C</sub>) is surely satisfied for

 $\mathbf{C} = \{ f \mid f : \subseteq \mathbb{N}^n \to \mathbb{N}, \ f \text{ is potentially partial recursive} \}.$ 

# If X is a computable topological space, 𝔅 is an effective topological space, and A is a finite collection of effectively open subsets of X or a finite collection of effectively closed subsets of X then condition (σ<sup>A</sup><sub>C</sub>) is surely satisfied for

 $\mathbf{C} = \{ f \, | \, f :\subseteq \mathfrak{X} \to \mathfrak{Y}, \ f \text{ is TTE computable} \}.$ 

#### Remark 2

Let  $\mathcal{A}$  be a finite collection of sets,  $X \supseteq \bigcup \mathcal{A}$ ,  $\mathbf{H}$  be a class of sets, and  $\mathbf{H}' = \{X \setminus H \mid H \in \mathbf{H}\}$ . Then  $(\alpha_{\mathbf{H}}^{\mathcal{A}}) \Leftrightarrow (\alpha_{\mathbf{H}'}^{\mathcal{A}})$  and  $(\beta_{\mathbf{H}}^{\mathcal{A}}) \Leftrightarrow (\beta_{\mathbf{H}'}^{\mathcal{A}})$ .

## Some instructive counterexamples to $(\alpha_{\mathbf{H}}^{\mathcal{A}}) \Rightarrow (\beta_{\mathbf{H}}^{\mathcal{A}})$

## Let X be a set, **H** be a class of subsets of X such that $\emptyset \in \mathbf{H}$ , $X \in \mathbf{H}$ .

#### Example 2

Suppose  $A \subset X$  and  $A \notin H$ . Let  $\mathcal{A} = \{A, X \setminus A, X\}$ . Then  $(\alpha_{H}^{\mathcal{A}})$  is satisfied: if  $\mathcal{K} \subseteq \mathcal{A}$  then  $\bigcup \mathcal{K}$  is quasi-separated from  $\bigcup (\mathcal{A} \setminus \mathcal{K})$  by X in the case of  $X \in \mathcal{K}$  and by  $\emptyset$  otherwise. However,  $(\beta_{H}^{\mathcal{A}})$  fails, since no set from **H** quasi-separates A from  $X \setminus A$ .

#### Example 3

Suppose  $E_0, E'_0, E_1, E'_1, E_2, E'_2$  are pairwise disjoint subsets of X not belonging to **H** such that  $H \cap (E_i \cup E'_i) \in \mathbf{H}$  for any  $H \in \mathbf{H}$  and any  $i \in \{0, 1, 2\}$ . Let  $\mathcal{A} = \{A_0, A_1, A_2\}$ , where  $A_0 = E_0 \cup E'_0 \cup E'_1 \cup E_2, A_1 = E_1 \cup E'_1 \cup E'_2 \cup E_0, A_2 = E_2 \cup E'_2 \cup E'_0 \cup E_1$ . Condition  $(\alpha_{\mathbf{H}}^A)$  is satisfied thanks to the inclusions  $A_0 \subseteq A_1 \cup A_2, A_1 \subseteq A_0 \cup A_2, A_2 \subseteq A_0 \cup A_1$ . However, for any  $i, j \in \{0, 1, 2\}$ , no set from **H** quasi-separates  $A_i$ from  $A_j$  if  $i \neq j$ . E.g. if a set H quasi-separates  $A_0$  from  $A_1$  then

 $H \supseteq E_2$ ,  $H \cap E_2' = \emptyset$ , hence  $H \cap (E_2 \cup E_2') = E_2 \notin \mathbf{H}$ , thus  $H \notin \mathbf{H}$ .

## Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで