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Topology bases

Definition

A base for a topology T is a family of T -open sets such that any
T -open set is a union of sets belonging to this family.

E. g. the open intervals with rational end-points in R form a base
for the usual topology in R.

A family of subsets of a set X is a base for some topology in X iff
the set X and the intersection of any two sets of the family in
question can be represented as unions of sets belonging to this
family.

If a family of subsets of X has the above property then this family
is a base for exactly one topology T in X – the one whose T -open
sets are all possible unions of sets belonging to the family in
question.



Effective topological spaces

Definition

An effective topological space (ETS) is an ordered pair (X ,U),
where X is a set, and U = {Ui}i∈N is a base for a T0 topology
in X .

Example 1. Let i 7→ Ui be a total enumeration of the set of all
open intervals with rational end-points in R. Then (R, {Ui}i∈N) is
an ETS.
Example 2. Let X be the set of all partial functions from N to N,
and f0, f1, f2, . . . be an effective listing of the ones with finite
domains. For any i ∈ N, let Ui be the set of all functions of X
which are extensions of fi . Then (X , {Ui}i∈N) is an ETS.
Example 3. Let (X , d) be a separable metric space, A be a
denumerable dense subset of it, i 7→ Ui be a total enumeration of
the set of the open balls in (X , d) with centers in A and radii of
the form 2−k , where k ∈ N. Then (X , {Ui}i∈N) is an ETS.



Computable ETS

Definition

An ETS (X ,U) is said to be computable if a recursively
enumerable subset S of N3 exists such that
Ui ∩ Uj =

⋃
{Uk | (i , j , k) ∈ S} for all i , j ∈ N.

Example 1′. If the enumeration i 7→ Ui from Example 1 is
computable then the ETS (R, {Ui}i∈N) is computable.

Example 2′. The ETS considered in Example 2 is computable.

Example 3′. Let X be RK , where K is a positive integer, d be the
Euclidean metrics in RK , and A be QK . If the enumeration i 7→ Ui
from Example 3 is computable then the ETS considered there is
computable.

The set S = {(i , j , k) ∈ N3 | Uk ⊆ Ui ∩ Uj}) can be used in any of
the above three examples. In the first two of them, one could also
use S = {(i , j , k) ∈ N3 | Uk = Ui ∩ Uj}.



Computable elements of an ETS

Definition

Let (X ,U) be an ETS. We set U−1(x)={i ∈ N | x ∈Ui} for any
x ∈X . The element x is said to be U-computable if the set U−1(x)
is recursively enumerable.

Example 1′′. If U is a computable enumeration of the kind
considered in Example 1 then the U-computability of a real
number is equivalent to its computability in the usual sense.

Example 2′′. If U is an enumeration of the kind considered in
Example 2 then a partial function from N to N is U-computable
iff it is partial recursive.

Example 3′′. Under the assumptions of Example 3′, an element
of RK is U-computable iff its components are computable real
numbers.



Computability of partial functions from an ETS to an ETS

Definition

Let (X ,U) and (Y ,V) be ETS, and f be a partial function from X
to Y . A mapping F of P(N) into P(N) is said to realise f if
F (U−1(x)) = V−1(f (x)) for any x ∈ dom(f ). The function f is
(U ,V)-computable if there is some enumeration operator which
realises f .

Example 1′′′. If U is a computable enumeration of the kind
considered in Example 1 then a partial function from R to R is
(U ,U)-computable iff it is computable in the usual sense.

Example 3′′′. Under the assumptions of Example 3′, if V is a
computable enumeration of the kind considered in Example 1 then
a partial function from RK to R is (U ,V)-computable iff it is
computable in the usual sense.



Some statements about preservation of computability

Proposition 1

If (X ,U) and (Y ,V) are ETS, f is a (U ,V)-computable partial
function from X to Y , and a is a U-computable element of
dom(f ) then f (a) is a V-computable element of Y .

Proposition 2

If (X ,U) and (Y ,V) are ETS, and b is a V-computable element
of Y then the constant function from X to Y with value b is
(U ,V)-computable.

For any functions f and g , we will denote by gf the function
x 7→ g(f (x)) (dom(gf ) = {x ∈ dom(f ) | f (x) ∈ dom(g)}).

Proposition 3

If (X ,U), (Y ,V) and (Z ,W) are ETS, f is a (U ,V)-computable
partial function from X to Y , and g is a (V,W)-computable
partial function from Y to Z, then the partial function gf from X
to Z is (U ,W)-computable.



Computability of partial functions from an ETS to N

Let A = {Ai}i∈N, where Ai = {i}. Clearly (N,A) is a computable
ETS and all elements of N are A-computable.

Theorem

Let (X ,U) be an ETS, and f be a partial function from X to N.
For f to be (U ,A)-computable, it is sufficient that an
one-argument partial recursive function ϕ exists such that

f (x) = y ⇔ U−1(x) ∩ ϕ−1(y) 6= ∅
for all x ∈ dom(f ) and all y ∈ N. If rng(f ) ⊆ {0, 1} then for f to
be (U ,A)-computable, it is sufficient that some disjoint recursively
enumerable subsets E0 and E1 of N exist such that

f (x) = y ⇔ U−1(x) ∩ Ey 6= ∅, y = 0, 1,

for all x ∈ dom(f ). If the ETS (X ,U) is computable then the
above conditions are also necessary.



Moschovakis extension of an ETS (I)

Let (X ,U) be an ETS. One constructs its Moschovakis extension
X ∗ in the usual way: X ∗ is the closure of X ∪ {o} with respect to
formation of ordered pairs, assuming that o 6∈ X and no element of
X ∪ {o} is an ordered pair. We define a family U∗ = {U∗j }j∈N of
subsets of X ∗ by means of the equalities

U∗0 = {o}, U∗2i+2 = Ui , U∗2〈m,n〉+1 = U∗m × U∗n ,
where (m, n) 7→ 〈m, n〉 is some computable bijection from N2 to N
such that 〈m, n〉 ≥ max(m, n) for all m, n ∈ N.

Theorem

The ordered pair (X ∗,U∗) is an ETS, and the identity mapping
idX is a (U ,U∗)-computable function from X to X ∗, as well as
a (U∗,U)-computable partial function from X ∗ to X .

By definition, 0∗ = o, (n + 1)∗ = (n∗, o) for any n ∈ N.

Theorem

The function n 7→ n∗ from N to X ∗ is (A,U∗)-computable, and
its inverse function is (U∗,A)-computable.



Moschovakis extension of an ETS (II)

Corollary

If (X ∗,U∗) is the Moschovakis extension of an ETS (X ,U) then:

For any partial function from X to X , its (U ,U)-computability
is equivalent to anyone of the following three properties:
(U ,U∗)-computability as a partial function from X to X ∗,
(U∗,U)-computability as a partial function from X ∗ to X ,
(U∗,U∗)-computability as a partial function from X ∗ to X ∗.

A partial function from X to N is U-computable iff it is
U∗-computable as a partial function from X ∗ to N.

A partial function f from X ∗ to N is U∗-computable iff
the partial function z 7→ f (z)∗ from X ∗ to X ∗ is
(U∗,U∗)-computable.

From now on, we will suppose that an ETS (X ,U) is given and
some Moschovakis extension (X ∗,U∗) of it is specified.



The Moschovakis extension
of any computable ETS is computable

Theorem

If the ETS (X ,U) is computable, then the ETS (X ∗,U∗) is
computable too.

Proof. Let S ⊆ N3, S be recursively enumerable and

Ui ∩ Uj =
⋃
{Uk | (i , j , k) ∈ S}

for all i , j ∈ N. We define S∗ ⊆ N3 in the following inductive way:

(0, 0, 0) ∈ S∗.

(2i + 2, 2j + 2, 2k + 2) ∈ S∗, whenever (i , j , k) ∈ S .

If (m, m̄, r) ∈ S∗ and (n, n̄, s) ∈ S∗ then
(2〈m, n〉+ 1, 2〈m̄, n̄〉+ 1, 2〈r , s〉+ 1) ∈ S∗.

The set S∗ is recursively enumerable and

U∗i ∩ U∗j =
⋃
{U∗k | (i , j , k) ∈ S∗}

for all i , j ∈ N. �



Computable elements of the Moschovakis extension

Proposition 1

An element of X is U∗-computable iff it is U-computable. The
element o is U∗-computable.

Proposition 2

For any x and y in X ∗, the element (x , y) is U∗-computable iff
x and y are U∗-computable.

Corollary

An element of X ∗ is U∗-computable iff it can be obtained from
U-computable elements of X and o by finitely many applications
of the ordered pair operation.



(U∗,U∗)-computability of Moschovakis’s functions π and δ
The functions π and δ from X ∗ to X ∗ are defined as follows:

π(x , y) = x , δ(x , y) = y , π(o) = δ(o) = o,

π(z) = δ(z) = (o, o) for z ∈ X .

Theorem

The functions π and δ are (U∗,U∗)-computable.

Proof. The (U∗,U∗)-computability of the function π will be shown,
and the reasoning about δ is similar. Let z ∈ X ∗. The condition
π(z) ∈ U∗j holds for a number j ∈ N iff some of the following cases
is present:

z ∈ U∗2〈j ,n〉+1 for some n ∈ N;

j = 0 and z ∈ U∗0 ;

j = 1 and z ∈ U∗2 ∪ U∗4 ∪ U∗6 ∪ · · · .
It is clear now that π is realized by the mapping F : P(N)→ P(N)
which is defined as follows:

F (M) = {j ∈ N | ∃n ∈ N (2〈j , n〉+ 1 ∈ M) ∨ (j = 0 & 0 ∈ M)
∨ (j = 1 & M ∩ {2, 4, 6, . . .} 6= ∅).} �



Preservation of (U∗,U∗)-computability under combination

Theorem

Let f , g , e be partial functions from X ∗ to X ∗ with
dom(e) = dom(f ) ∩ dom(g) and e(z) = (f (z), g(z)) for all
z ∈ dom(e). If the functions f and g are (U∗,U∗)-computable,
then the function e is (U∗,U∗)-computable too.

Proof. Let F and G be enumeration operators realising the
function f and the function g , respectively. For any z ∈ dom(e)
and any j ∈ N,

j ∈ U∗−1(e(z))

⇔ ∃m ∈ U∗−1(f (z))∃n ∈ U∗−1(g(z)) (j = 2〈m, n〉+ 1)

⇔ ∃m ∈ F (U∗−1(z))∃n ∈ G (U∗−1(z)) (j = 2〈m, n〉+ 1).

Thus U∗−1(e(z)) = E (U∗−1(z)) for all z ∈ dom(e), where
E : P(N)→ P(N) is defined by means of the equality
E (M) = {j | ∃m ∈ F (M) ∃n ∈ G (M) (j = 2〈m, n〉+ 1)}. �

The function e considered in the theorem will be denoted by (f , g).



Preservation of (U∗,U∗)-computability under branching
If f , g and h are partial functions from X ∗ to X ∗ then (h ⊃ f , g) is
the function e (branching to f or g controlled by h) defined as
follows: e(z) = z ′ iff

(z∈h−1(X∪{o}) & f (z)=z ′)∨(z∈h−1(X ∗\(X∪{o})) & g(z)=z ′).

Theorem

If f , g h are (U∗,U∗)-computable partial functions from X ∗ to X ∗

then the function (h ⊃ f , g) is (U∗,U∗)-computable too.

Proof. Let F , G and H be enumeration operators which realise the
functions f , g and h, respectively. If e = (h ⊃ f , g), z ∈ dom(e)
and j ∈ N then

e(z) ∈ U∗j ⇔ (h(z) ∈ U∗0 ∪ U∗2 ∪ U∗4 ∪ · · · & f (z) ∈ U∗j )

∨ (h(z) ∈ U∗1 ∪ U∗3 ∪ U∗5 ∪ · · · & g(z) ∈ U∗j ),

i. e.

j ∈ U∗−1(e(z))⇔ (H(M) ∩ {0, 2, 4, . . .} 6= ∅ & j ∈ F (M))

∨(H(M)∩{1, 3, 5, . . .} 6= ∅ & j ∈ G (M)), where M = U∗−1(z). �



Preservation of (U∗,U∗)-computability under iteration (I)

If f and h are partial functions from X ∗ to X ∗ then the iteration
of f controlled by h is the partial function e from X ∗ to X ∗ which
is defined as follows: e(z) = z ′ iff a finite sequence z0, z1, z2, . . . , zn
of element of X ∗ exists such that

z0 = z , zn = z ′;

zk ∈ h−1(X ∗ \ (X ∪ {o})) and zk+1 = f (zk) for all k < n;

zn ∈ h−1(X ∪ {o}).

We will denote this function by [f , h].

Theorem

Let f and h be partial functions from X ∗ to X ∗. If f and h are
(U∗,U∗)-computable then [f , h] is (U∗,U∗)-computable too.



Preservation of (U∗,U∗)-computability under iteration (II)

Proof. Let F and H be enumeration operators which realise,
respectively, the functions f and h, and let e = [f , h]. For any
m ∈ N, let Dm be the finite subset of N with canonical index m.
Suppose z ∈ dom(e). One verifies that a natural number j belongs
to U∗−1(e(z)) iff some finite sequence m0,m1,m2, . . . ,mn of
natural numbers satisfies the following conditions:

1 Dm0 ⊆ U∗−1(z), j ∈ Dmn ;

2 H(Dmk
) ∩ {1, 3, 5, . . .} 6= ∅ and Dmk+1

⊆ F (Dmk
) for all

k < n;

3 H(Dmn) ∩ {0, 2, 4, . . .} 6= ∅.

Therefore U∗−1(e(z)) = E (U∗−1(z)), where E : P(N)→ P(N) is
defined as follows: a natural number j belongs to E (M) iff some
finite sequence m0,m1,m2, . . . ,mn of natural numbers satisfies the
conditions Dm0 ⊆ M, j ∈ Dmn and the conditions 2 and 3 above.�



A computability notion for operators in the set
of the partial functions from X ∗ to X ∗

Let F be the set of all partial functions from X ∗ to X ∗. Some
mappings of F into itself will be called (U∗,U∗)-computable by
construction (CBC). This will be arranged by means of the
following inductive definition:

The identity mapping idF is CBC.

If a mapping assigns to any function from F one and the same
(U∗,U∗)-computable function from F then this mapping is CBC.

If Γ1 and Γ2 are CBC mappings of F into itself then the
mappings f 7→ Γ1(f )Γ2(f ), f 7→ (Γ1(f ), Γ2(f )) and
f 7→ [Γ1(f ), Γ2(f )] are CBC too.

If Γ1, Γ2 and Γ3 are CBC mappings of F into itself then the
mapping f 7→ (Γ3(f )⊃Γ1(f ), Γ2(f )) is CBC too.

Example. The mapping f 7→ (idX∗ ⊃ idX∗ , (f δ, f π)) is CBC.

The mapping from the above example has exactly one fixed point
(its domain is X ∗).



First Recursion Theorem for the computability in (X ∗,U∗)

Theorem

If Γ is a CBC mapping of F into itself then Γ has a least fixed
point with respect to the usual partial ordering of F , and this fixed
point is (U∗,U∗)-computable.

Proof. One makes use of the recursion theorem from [2] and the
preservation of (U∗,U∗)-computability under composition,
combination, branching and iteration. �
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