Moschovakis extension of effective topological spaces

Dimiter Skordev

Sofia University "St. Kliment Ohridski"
Faculty of Mathematics and Informatics

Spring Scientific Session of FMI
March 28, 2015

To the bright memory of the colleague and friend, the brilliant mathematician

Ivan Prodanov
(1935-1985)

Definition

A base for a topology \mathcal{T} is a family of \mathcal{T}-open sets such that any \mathcal{T}-open set is a union of sets belonging to this family.
E. g. the open intervals with rational end-points in \mathbb{R} form a base for the usual topology in \mathbb{R}.

A family of subsets of a set X is a base for some topology in X iff the set X and the intersection of any two sets of the family in question can be represented as unions of sets belonging to this family.

If a family of subsets of X has the above property then this family is a base for exactly one topology \mathcal{T} in X - the one whose \mathcal{T}-open sets are all possible unions of sets belonging to the family in question.

Definition

An effective topological space (ETS) is an ordered pair (X, \mathcal{U}), where X is a set, and $\mathcal{U}=\left\{\mathcal{U}_{i}\right\}_{i \in \mathbb{N}}$ is a base for a T_{0} topology in X.

Example 1. Let $i \mapsto \mathcal{U}_{i}$ be a total enumeration of the set of all open intervals with rational end-points in \mathbb{R}. Then $\left(\mathbb{R},\left\{\mathcal{U}_{i}\right\}_{i \in \mathbb{N}}\right)$ is an ETS.
Example 2. Let X be the set of all partial functions from \mathbb{N} to \mathbb{N}, and $f_{0}, f_{1}, f_{2}, \ldots$ be an effective listing of the ones with finite domains. For any $i \in \mathbb{N}$, let \mathcal{U}_{i} be the set of all functions of X which are extensions of f_{i}. Then $\left(X,\left\{\mathcal{U}_{i}\right\}_{i \in \mathbb{N}}\right)$ is an ETS. Example 3. Let (X, d) be a separable metric space, A be a denumerable dense subset of it, $i \mapsto \mathcal{U}_{i}$ be a total enumeration of the set of the open balls in (X, d) with centers in A and radii of the form 2^{-k}, where $k \in \mathbb{N}$. Then $\left(X,\left\{\mathcal{U}_{i}\right\}_{i \in \mathbb{N}}\right)$ is an ETS.

Computable ETS

Definition

An ETS (X, \mathcal{U}) is said to be computable if a recursively enumerable subset S of \mathbb{N}^{3} exists such that
$\mathcal{U}_{i} \cap \mathcal{U}_{j}=\bigcup\left\{\mathcal{U}_{k} \mid(i, j, k) \in S\right\}$ for all $i, j \in \mathbb{N}$.

Example $\mathbf{1}^{\prime}$. If the enumeration $i \mapsto \mathcal{U}_{i}$ from Example 1 is computable then the ETS $\left(\mathbb{R},\left\{\mathcal{U}_{i}\right\}_{i \in \mathbb{N}}\right)$ is computable.

Example 2'. The ETS considered in Example 2 is computable.
Example $\mathbf{3}^{\prime}$. Let X be \mathbb{R}^{K}, where K is a positive integer, d be the Euclidean metrics in \mathbb{R}^{K}, and A be \mathbb{Q}^{K}. If the enumeration $i \mapsto \mathcal{U}_{i}$ from Example 3 is computable then the ETS considered there is computable.

The set $\left.S=\left\{(i, j, k) \in \mathbb{N}^{3} \mid \mathcal{U}_{k} \subseteq \mathcal{U}_{i} \cap \mathcal{U}_{j}\right\}\right)$ can be used in any of the above three examples. In the first two of them, one could also use $S=\left\{(i, j, k) \in \mathbb{N}^{3} \mid \mathcal{U}_{k}=\mathcal{U}_{i} \cap \mathcal{U}_{j}\right\}$.

Computable elements of an ETS

Definition

Let (X, \mathcal{U}) be an ETS. We set $\mathcal{U}^{-1}(x)=\left\{i \in \mathbb{N} \mid x \in \mathcal{U}_{i}\right\}$ for any $x \in X$. The element x is said to be \mathcal{U}-computable if the set $\mathcal{U}^{-1}(x)$ is recursively enumerable.

Example $\mathbf{1}^{\prime \prime}$. If \mathcal{U} is a computable enumeration of the kind considered in Example 1 then the \mathcal{U}-computability of a real number is equivalent to its computability in the usual sense.

Example $\mathbf{2}^{\prime \prime}$. If \mathcal{U} is an enumeration of the kind considered in Example 2 then a partial function from \mathbb{N} to \mathbb{N} is \mathcal{U}-computable iff it is partial recursive.

Example $\mathbf{3}^{\prime \prime}$. Under the assumptions of Example 3', an element of \mathbb{R}^{K} is \mathcal{U}-computable iff its components are computable real numbers.

Computability of partial functions from an ETS to an ETS

Definition

Let (X, \mathcal{U}) and (Y, \mathcal{V}) be ETS, and f be a partial function from X to Y. A mapping F of $\mathcal{P}(\mathbb{N})$ into $\mathcal{P}(\mathbb{N})$ is said to realise f if $F\left(\mathcal{U}^{-1}(x)\right)=\mathcal{V}^{-1}(f(x))$ for any $x \in \operatorname{dom}(f)$. The function f is $(\mathcal{U}, \mathcal{V})$-computable if there is some enumeration operator which realises f.

Example $\mathbf{1}^{\prime \prime \prime}$. If \mathcal{U} is a computable enumeration of the kind considered in Example 1 then a partial function from \mathbb{R} to \mathbb{R} is $(\mathcal{U}, \mathcal{U})$-computable iff it is computable in the usual sense.

Example $\mathbf{3}^{\prime \prime \prime}$. Under the assumptions of Example 3^{\prime}, if \mathcal{V} is a computable enumeration of the kind considered in Example 1 then a partial function from \mathbb{R}^{K} to \mathbb{R} is $(\mathcal{U}, \mathcal{V})$-computable iff it is computable in the usual sense.

Some statements about preservation of computability

Proposition 1

If (X, \mathcal{U}) and (Y, \mathcal{V}) are $E T S, f$ is a $(\mathcal{U}, \mathcal{V})$-computable partial function from X to Y, and a is a \mathcal{U}-computable element of dom (f) then $f(a)$ is a \mathcal{V}-computable element of Y.

Proposition 2

If (X, \mathcal{U}) and (Y, \mathcal{V}) are $E T S$, and b is a \mathcal{V}-computable element of Y then the constant function from X to Y with value b is $(\mathcal{U}, \mathcal{V})$-computable.

For any functions f and g, we will denote by $g f$ the function $x \mapsto g(f(x))(\operatorname{dom}(g f)=\{x \in \operatorname{dom}(f) \mid f(x) \in \operatorname{dom}(g)\})$.

Proposition 3

If $(X, \mathcal{U}),(Y, \mathcal{V})$ and (Z, \mathcal{W}) are $E T S, f$ is a $(\mathcal{U}, \mathcal{V})$-computable partial function from X to Y, and g is a $(\mathcal{V}, \mathcal{W})$-computable partial function from Y to Z, then the partial function gf from X to Z is $(\mathcal{U}, \mathcal{W})$-computable.

Computability of partial functions from an ETS to \mathbb{N}

Let $\mathcal{A}=\left\{\mathcal{A}_{i}\right\}_{i \in \mathbb{N}}$, where $\mathcal{A}_{i}=\{i\}$. Clearly $(\mathbb{N}, \mathcal{A})$ is a computable ETS and all elements of \mathbb{N} are \mathcal{A}-computable.

Theorem

Let (X, \mathcal{U}) be an $E T S$, and f be a partial function from X to \mathbb{N}. For f to be $(\mathcal{U}, \mathcal{A})$-computable, it is sufficient that an one-argument partial recursive function φ exists such that

$$
f(x)=y \Leftrightarrow \mathcal{U}^{-1}(x) \cap \varphi^{-1}(y) \neq \varnothing
$$

for all $x \in \operatorname{dom}(f)$ and all $y \in \mathbb{N}$. If $\operatorname{rng}(f) \subseteq\{0,1\}$ then for f to be $(\mathcal{U}, \mathcal{A})$-computable, it is sufficient that some disjoint recursively enumerable subsets E_{0} and E_{1} of \mathbb{N} exist such that

$$
f(x)=y \Leftrightarrow \mathcal{U}^{-1}(x) \cap E_{y} \neq \varnothing, \quad y=0,1
$$

for all $x \in \operatorname{dom}(f)$. If the $E T S(X, \mathcal{U})$ is computable then the above conditions are also necessary.

Moschovakis extension of an ETS (I)

Let (X, \mathcal{U}) be an ETS. One constructs its Moschovakis extension X^{*} in the usual way: X^{*} is the closure of $X \cup\{0\}$ with respect to formation of ordered pairs, assuming that $o \notin X$ and no element of $X \cup\{o\}$ is an ordered pair. We define a family $\mathcal{U}^{*}=\left\{\mathcal{U}_{j}^{*}\right\}_{j \in \mathbb{N}}$ of subsets of X^{*} by means of the equalities

$$
\mathcal{U}_{0}^{*}=\{o\}, \mathcal{U}_{2 i+2}^{*}=\mathcal{U}_{i}, \mathcal{U}_{2\langle m, n\rangle+1}^{*}=\mathcal{U}_{m}^{*} \times \mathcal{U}_{n}^{*}
$$

where $(m, n) \mapsto\langle m, n\rangle$ is some computable bijection from \mathbb{N}^{2} to \mathbb{N} such that $\langle m, n\rangle \geq \max (m, n)$ for all $m, n \in \mathbb{N}$.

Theorem

The ordered pair $\left(X^{*}, \mathcal{U}^{*}\right)$ is an ETS, and the identity mapping id_{X} is a $\left(\mathcal{U}, \mathcal{U}^{*}\right)$-computable function from X to X^{*}, as well as a $\left(\mathcal{U}^{*}, \mathcal{U}\right)$-computable partial function from X^{*} to X.

By definition, $0^{*}=o,(n+1)^{*}=\left(n^{*}, o\right)$ for any $n \in \mathbb{N}$.

Theorem

The function $n \mapsto n^{*}$ from \mathbb{N} to X^{*} is $\left(\mathcal{A}, \mathcal{U}^{*}\right)$-computable, and its inverse function is $\left(\mathcal{U}^{*}, \mathcal{A}\right)$-computable.

Moschovakis extension of an ETS (II)

Corollary

If $\left(X^{*}, \mathcal{U}^{*}\right)$ is the Moschovakis extension of an ETS (X, \mathcal{U}) then:

- For any partial function from X to X, its $(\mathcal{U}, \mathcal{U})$-computability is equivalent to anyone of the following three properties: $\left(\mathcal{U}, \mathcal{U}^{*}\right)$-computability as a partial function from X to X^{*}, $\left(\mathcal{U}^{*}, \mathcal{U}\right)$-computability as a partial function from X^{*} to X, $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computability as a partial function from X^{*} to X^{*}.
- A partial function from X to \mathbb{N} is \mathcal{U}-computable iff it is \mathcal{U}^{*}-computable as a partial function from X^{*} to \mathbb{N}.
- A partial function f from X^{*} to \mathbb{N} is \mathcal{U}^{*}-computable iff the partial function $z \mapsto f(z)^{*}$ from X^{*} to X^{*} is $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable.

From now on, we will suppose that an ETS (X, \mathcal{U}) is given and some Moschovakis extension $\left(X^{*}, \mathcal{U}^{*}\right)$ of it is specified.

The Moschovakis extension of any computable ETS is computable

Theorem

If the ETS (X, \mathcal{U}) is computable, then the ETS $\left(X^{*}, \mathcal{U}^{*}\right)$ is computable too.

Proof. Let $S \subseteq \mathbb{N}^{3}, S$ be recursively enumerable and

$$
\mathcal{U}_{i} \cap \mathcal{U}_{j}=\bigcup\left\{\mathcal{U}_{k} \mid(i, j, k) \in S\right\}
$$

for all $i, j \in \mathbb{N}$. We define $S^{*} \subseteq \mathbb{N}^{3}$ in the following inductive way:

- $(0,0,0) \in S^{*}$.
- $(2 i+2,2 j+2,2 k+2) \in S^{*}$, whenever $(i, j, k) \in S$.
- If $(m, \bar{m}, r) \in S^{*}$ and $(n, \bar{n}, s) \in S^{*}$ then

$$
(2\langle m, n\rangle+1,2\langle\bar{m}, \bar{n}\rangle+1,2\langle r, s\rangle+1) \in S^{*} .
$$

The set S^{*} is recursively enumerable and

$$
\mathcal{U}_{i}^{*} \cap \mathcal{U}_{j}^{*}=\bigcup\left\{\mathcal{U}_{k}^{*} \mid(i, j, k) \in S^{*}\right\}
$$

for all $i, j \in \mathbb{N}$.

Computable elements of the Moschovakis extension

Proposition 1

An element of X is \mathcal{U}^{*}-computable iff it is \mathcal{U}-computable. The element o is \mathcal{U}^{*}-computable.

Proposition 2

For any x and y in X^{*}, the element (x, y) is \mathcal{U}^{*}-computable iff x and y are \mathcal{U}^{*}-computable.

Corollary
An element of X^{*} is \mathcal{U}^{*}-computable iff it can be obtained from \mathcal{U}-computable elements of X and o by finitely many applications of the ordered pair operation.

$\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computability of Moschovakis's functions π and δ

The functions π and δ from X^{*} to X^{*} are defined as follows:

$$
\begin{gathered}
\pi(x, y)=x, \delta(x, y)=y, \pi(o)=\delta(o)=0 \\
\pi(z)=\delta(z)=(o, o) \text { for } z \in X
\end{gathered}
$$

Theorem

The functions π and δ are $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable.
Proof. The $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computability of the function π will be shown, and the reasoning about δ is similar. Let $z \in X^{*}$. The condition $\pi(z) \in \mathcal{U}_{j}^{*}$ holds for a number $j \in \mathbb{N}$ iff some of the following cases is present:

- $z \in \mathcal{U}_{2\langle j, n\rangle+1}^{*}$ for some $n \in \mathbb{N}$;
- $j=0$ and $z \in \mathcal{U}_{0}^{*}$;
- $j=1$ and $z \in \mathcal{U}_{2}^{*} \cup \mathcal{U}_{4}^{*} \cup \mathcal{U}_{6}^{*} \cup \cdots$.

It is clear now that π is realized by the mapping $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ which is defined as follows:

$$
\begin{aligned}
F(M)=\{j \in \mathbb{N} \mid \exists n & \in \mathbb{N}(2\langle j, n\rangle+1 \in M) \vee(j=0 \& 0 \in M) \\
& \vee(j=1 \& M \cap\{2,4,6, \ldots\} \neq \varnothing) .\}
\end{aligned}
$$

Preservation of $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computability under combination

Theorem

Let f, g, e be partial functions from X^{*} to X^{*} with $\operatorname{dom}(e)=\operatorname{dom}(f) \cap \operatorname{dom}(g)$ and $e(z)=(f(z), g(z))$ for all $z \in \operatorname{dom}(e)$. If the functions f and g are $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable, then the function e is $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable too.

Proof. Let F and G be enumeration operators realising the function f and the function g, respectively. For any $z \in \operatorname{dom}(e)$ and any $j \in \mathbb{N}$,

$$
\begin{aligned}
& j \in \mathcal{U}^{*-1}(e(z)) \\
& \quad \Leftrightarrow \exists m \in \mathcal{U}^{*-1}(f(z)) \exists n \in \mathcal{U}^{*-1}(g(z))(j=2\langle m, n\rangle+1) \\
& \quad \Leftrightarrow \exists m \in F\left(\mathcal{U}^{*-1}(z)\right) \exists n \in G\left(\mathcal{U}^{*-1}(z)\right)(j=2\langle m, n\rangle+1) .
\end{aligned}
$$

Thus $U^{*-1}(e(z))=E\left(\mathcal{U}^{*-1}(z)\right)$ for all $z \in \operatorname{dom}(e)$, where $E: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is defined by means of the equality $E(M)=\{j \mid \exists m \in F(M) \exists n \in G(M)(j=2\langle m, n\rangle+1)\}$.
The function e considered in the theorem will be denoted by (f, g).

Preservation of $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computability under branching

If f, g and h are partial functions from X^{*} to X^{*} then $(h \supset f, g)$ is the function e (branching to f or g controlled by h) defined as follows: $e(z)=z^{\prime}$ iff

$$
\left(z \in h^{-1}(X \cup\{o\}) \& f(z)=z^{\prime}\right) \vee\left(z \in h^{-1}\left(X^{*} \backslash(X \cup\{o\})\right) \& g(z)=z^{\prime}\right)
$$

Theorem

If $f, g \quad h$ are $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable partial functions from X^{*} to X^{*} then the function $(h \supset f, g)$ is $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable too.

Proof. Let F, G and H be enumeration operators which realise the functions f, g and h, respectively. If $e=(h \supset f, g), z \in \operatorname{dom}(e)$ and $j \in \mathbb{N}$ then

$$
\begin{aligned}
e(z) \in \mathcal{U}_{j}^{*} \Leftrightarrow(h(z) & \left.\in \mathcal{U}_{0}^{*} \cup \mathcal{U}_{2}^{*} \cup \mathcal{U}_{4}^{*} \cup \cdots \& f(z) \in \mathcal{U}_{j}^{*}\right) \\
& \vee\left(h(z) \in \mathcal{U}_{1}^{*} \cup \mathcal{U}_{3}^{*} \cup \mathcal{U}_{5}^{*} \cup \cdots \& g(z) \in \mathcal{U}_{j}^{*}\right),
\end{aligned}
$$

i.e.

$$
\begin{gathered}
j \in \mathcal{U}^{*-1}(e(z)) \Leftrightarrow(H(M) \cap\{0,2,4, \ldots\} \neq \varnothing \& j \in F(M)) \\
\vee(H(M) \cap\{1,3,5, \ldots\} \neq \varnothing \& j \in G(M)), \text { where } M=\mathcal{U}^{*-1}(z)
\end{gathered}
$$

If f and h are partial functions from X^{*} to X^{*} then the iteration of f controlled by h is the partial function e from X^{*} to X^{*} which is defined as follows: $e(z)=z^{\prime}$ iff a finite sequence $z_{0}, z_{1}, z_{2}, \ldots, z_{n}$ of element of X^{*} exists such that

- $z_{0}=z, z_{n}=z^{\prime}$;
- $z_{k} \in h^{-1}\left(X^{*} \backslash(X \cup\{o\})\right)$ and $z_{k+1}=f\left(z_{k}\right)$ for all $k<n$;
- $z_{n} \in h^{-1}(X \cup\{o\})$.

We will denote this function by $[f, h]$.

Theorem

Let f and h be partial functions from X^{*} to X^{*}. If f and h are $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable then $[f, h]$ is $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable too.

Proof. Let F and H be enumeration operators which realise, respectively, the functions f and h, and let $e=[f, h]$. For any $m \in \mathbb{N}$, let D_{m} be the finite subset of \mathbb{N} with canonical index m. Suppose $z \in \operatorname{dom}(e)$. One verifies that a natural number j belongs to $\mathcal{U}^{*-1}(e(z))$ iff some finite sequence $m_{0}, m_{1}, m_{2}, \ldots, m_{n}$ of natural numbers satisfies the following conditions:
(1) $D_{m_{0}} \subseteq \mathcal{U}^{*-1}(z), j \in D_{m_{n}}$;
(2) $H\left(D_{m_{k}}\right) \cap\{1,3,5, \ldots\} \neq \varnothing$ and $D_{m_{k+1}} \subseteq F\left(D_{m_{k}}\right)$ for all $k<n$;
(3) $H\left(D_{m_{n}}\right) \cap\{0,2,4, \ldots\} \neq \varnothing$.

Therefore $\mathcal{U}^{*-1}(e(z))=E\left(\mathcal{U}^{*-1}(z)\right)$, where $E: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is defined as follows: a natural number j belongs to $E(M)$ iff some finite sequence $m_{0}, m_{1}, m_{2}, \ldots, m_{n}$ of natural numbers satisfies the conditions $D_{m_{0}} \subseteq M, j \in D_{m_{n}}$ and the conditions 2 and 3 above. \qquad

A computability notion for operators in the set of the partial functions from X^{*} to X^{*}

Let \mathcal{F} be the set of all partial functions from X^{*} to X^{*}. Some mappings of \mathcal{F} into itself will be called $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable by construction (CBC). This will be arranged by means of the following inductive definition:

- The identity mapping $\mathrm{id}_{\mathcal{F}}$ is CBC.
- If a mapping assigns to any function from \mathcal{F} one and the same $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable function from \mathcal{F} then this mapping is CBC .
- If Γ_{1} and Γ_{2} are CBC mappings of \mathcal{F} into itself then the mappings $f \mapsto \Gamma_{1}(f) \Gamma_{2}(f), f \mapsto\left(\Gamma_{1}(f), \Gamma_{2}(f)\right)$ and $f \mapsto\left[\Gamma_{1}(f), \Gamma_{2}(f)\right]$ are CBC too.
- If Γ_{1}, Γ_{2} and Γ_{3} are CBC mappings of \mathcal{F} into itself then the mapping $f \mapsto\left(\Gamma_{3}(f) \supset \Gamma_{1}(f), \Gamma_{2}(f)\right)$ is CBC too.

Example. The mapping $f \mapsto\left(\mathrm{id}_{X^{*}} \supset \mathrm{id}_{X^{*}},(f \delta, f \pi)\right)$ is CBC.
The mapping from the above example has exactly one fixed point (its domain is X^{*}).

Theorem

If Γ is a CBC mapping of \mathcal{F} into itself then Γ has a least fixed point with respect to the usual partial ordering of \mathcal{F}, and this fixed point is $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computable.

Proof. One makes use of the recursion theorem from [2] and the preservation of $\left(\mathcal{U}^{*}, \mathcal{U}^{*}\right)$-computability under composition, combination, branching and iteration.

References

[1] Moschovakis, Y.N. Abstract first order computability. I. Trans. Amer. Math. Soc., 138 (1969), 427-464.
[2] Skordev, D. Recursion theory on iterative combinatory spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys., 24 (1976), 23-31.
[3] Weihrauch, K. and Grubba, T. Elementary computable topology. J. Univers. Comput. Sci., 15 (2009), 1381-1422.

